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Höhere mesontheoretische Näherungen zum magnetischen
Moment des Protons

von A.Thellung, ETH. Zürich/T.H. Delft (Holland).
(22. I. 1952.)

Summary: The fourth order corrections to the magnetic moment of the proton,
due to the coupling with a neutral pseudoscalar meson field, are calculated within
the framework of Dyson's radiation theory, a slightly different method of self-
energy subtraction being used. The integrations over the Feynman parameters
are carried out only in the approximation <52 (fi/M)2 0. The results are
unable to compensate the wrong second order contributions. Some questions
concerning the renormalization of the coupling constant are discussed in detail
and it is shown that, to a certain extent, the definition of what has to be
interpreted as renormalization terms is arbitrary, without modifying the quantitative
predictions of a theory.

§ 1. Einleitung.

In den letzten Jahren wurde, vor allem durch Arbeiten von
Tomonaga1), Schwinger2), Dyson3) und Feynman4), eine
relativistisch invariante Form der Quantenelektrodynamik entwickelt,
die dank der Einführung des Begriffes der Massen- und Ladungs-
renormalisation imstande ist, die Divergenzschwierigkeiten zu
umgehen und für die beobachtbaren Effekte endliche Resultate zu
liefern. Nachdem diese Theorie für gewisse Phänomene glänzende
Übereinstimmung mit dem Experiment ergeben hatte5), war es

naheliegend, ähnliche Rechnungen mit den Mesontheorien zu
versuchen. Wie man die kleine Abweichung des magnetischen Momentes

des Elektrons vom Wert, den man auf Grund der Diracschen
Theorie erwarten würde, durch den Einfluss des Strahlungsfeldes
erklären konnte (vgl. S HI), so hoffte man insbesondere auch,
die relativ grossen anomalen magnetischen Momente von Proton

und Neutron durch ihre Kopplung an Mesonfelder in richtiger
Grösse zu erhalten. Im Sinne einer Störungsrechnung, die als
ein wesentlicher Zug allen bisherigen Theorien anhaftet, wurden
die Beiträge verschiedener Mesonfelder zu den magnetischen
Momenten der Nukleonen in 2. Ordnung in der Kopplungskonstanten

durch viele Autoren berechnet6). Die Resultate zeigten,
bei aus der Theorie der Kernkräfte in 2. Ordnung entnom-
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menen Werten der Kopplungskonstanten, wenig Ähnlichkeit mit
dem Experiment, und auch das von der Kopplungskonstanten
unabhängige Verhältnis der magnetischen Momente von Neutron
und Proton wurde von keiner Mesontheorie richtig wiedergegeben.
Der naheliegendste Grund für dieses Versagen war in der Anwendung
der Störungsrechnung zu suchen, da man es hier, im Gegensatz
zur Elektrodynamik, mit einer starken Kopplung zu tun hat. Wenn
überhaupt die Störungstheorie zulässig war, so stand auf jeden Fall
zu erwarten, dass die folgende Näherung einen Beitrag von
ähnlicher Grössenordnung liefern würde.

Das Fehlen einer Theorie, die ohne Entwicklung nach Potenzen
der Kopplungskonstanten auskommt, liess es deshalb als
wünschenswert erscheinen, die Berechnung der anomalen magnetischen
Momente in der 4. Ordnung zu versuchen. Dabei sollte sich erstens
zeigen, ob sich auch in dieser Näherung alle Divergenzen als
Renormalisationen deuten liessen. War dies der Fall, so war die
zweite Frage, ob die Resultate imstande waren, die falschen
Aussagen der 2. Ordnung zu verbessern. In der vorliegenden Arbeit
wurde als Modell die pseudoskalare Mesontheorie mit pseudoska-
larer Kopplung gewählt, da diese Theorie am besten geeignet
erscheint, die für die Nukleoneigenschaften verantwortlichen
Mesonen zu beschreiben. Da die Rechnungen ausserordentlich umfangreich

werden, mussten wir uns auf ein neutrales Mesonfeld
beschränken, so dass wir bloss für das Proton ein magnetisches
Moment erhalten.

Während sich die ursprüngliche Schwingersche Methode (vgl.
S III) für praktische Rechnungen in 4. Ordnung sehr kompliziert
gestaltet, eignet sich der Feynman-Dysonsche Formalismus3)4)
besser. Er wurde von Karplus und Kroll7) zur Berechnung des
anomalen magnetischen Momentes des Elektrons in 4. Ordnung
benützt und wird im wesentlichen auch in der vorliegenden Arbeit
verwendet. Eine Methode von Géhéniatj und Villars8), die
speziell für den Fall konstanter äusserer elektromagnetischer Felder

entwickelt wurde, würde sich ebenfalls gut eignen, vielleicht
auch eine Methode von Källen9), bei der man direkt in der
Heisenbergdarstellung arbeitet. Diese letzte Methode wurde kürzlich

von Heber6) zur Berechnung der magnetischen Momente in
2. Ordnung verwendet.

Was die Frage der Divergenzen betrifft, so wird sich im Laufe der
Rechnung zeigen, dass sich durch die Renormalisation von Proton-
und Mesonmasse sowie der elektrischen Ladung und der
Mesonkopplungskonstanten tatsächlich alle Unendlichkeiten in konsi-
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stenter Weise (d. h. mit den gleichen Renormalisationen wie in
anderen Problemen) beseitigen lassen. Inzwischen hat Matthews10)
zeigen können, welche Meson-Nukleon-Wechselwirkungen mit Hilfe
der Renormalisationsmethode in allen Näherungen zu eindeutigen
und konvergenten Resultaten führen und welche es nicht tun.
Die hier verwendete Wechselwirkung zwischen Proton- und Mesonfeld

gehört zur ersten Sorte. Daran ändert sich nichts, wenn ein
äusseres elektromagnetisches Feld hinzukommt.

Wegen des Umfanges der Rechnungen kann nur ein kleiner
Teil der Arbeit dargestellt werden. In erster Linie sollen die
Unterschiede und Besonderheiten gegenüber dem analogen Problem in
der Elektrodynamik7) diskutiert werden. In § 2 wird die Methode
zur Aufstellung des effektiven Energieoperators skizziert und die
hier verwendete Methode der Massenrenormalisation erläutert. §3
handelt von der Regularisierung der divergenten Ausdrücke. § 4
ist den Effekten 2. Ordnung gewidmet, und die Methode zur
Ausführung der Impulsraumintegrationen wird am Beispiel der La-
dungsrenormalisation illustriert. In § 5 werden Probleme, die bei
der Renormalisierung der Kopplungskonstanten auftreten, behandelt.

In § 6 wird das magnetische Moment 4. Ordnung berechnet.
Die Resultate werden diskutiert und mit einer kürzlich
bekanntgewordenen japanischen Arbeit über dasselbe Problem11), in der
auch geladene Mesonfelder verwendet werden, verglichen.

§ 2. Zur Methode. Massenrenormalisation.

Wir verwenden durchgehend natürliche Einheiten (% c 1).
Der différentielle Hamiltonoperator in der Wechselwirkungsdarstellung

lautet für unser Problem

H(x) He(x)+HI(x), (1)

He(x) -iey(x)yfif(x)Afl(x), (2)

H1 (x) =ify(x) y5y>(x) 0(x)-EsP(x)-ESM(x) (3)

Hier bedeutet Ap das Viererpotential des äusseren elektromagnetischen

Feldes (c-Zahl), 0 ist der Operator des (quantisierten)
pseudoskalaren neutralen Mesonfeldes, während die Protonen durch
das (quantisierte) Spinorfeid ip,ïp ip* yi beschrieben werden, y^
sind die Diracschen Matrizen, y5 yx y2 y3 y4. e bedeutet die
elektrische Ladung des Protons, / die Kopplungskonstante für die
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Wechselwirkung zwischen Proton- und Mesonfeld, ip, ip und 0
erfüllen die Gleichungen der ungekoppelten Felder,

(^ + M)V 0, (4f^-»M) 0, (4)

(n-fi2)0 o, (5)

und die entsprechenden invarianten Vertauschungsrelationen

{ipa(x), yß(x')} — S0,ß(x — x') (6)

[0(x), 0(x')] iD(x-x'), (7)

wo
{A, B} AB + BA, [A,B]=AB~BA. (8)

S in (6) ist identisch mit der Schwingerschen S-Funktion (vgl. S II),
wenn man dort die Elektronenmasse durch die Protonmasse M
ersetzt. D in (7) ist gleich definiert wie das Schwingersche A, wenn
man die Elektronenmasse dort durch die Mesonenmasse pt ersetzt.

In (4) und (5) sowie in S und D von (6) und (7) bedeuten M
M0 + ÔM bzw. fi pt0 + àpi die „physikalischen" (renormalisierten)
Massen von Proton bzw. Meson. (M0, pt0 bezeichnen die „mathematischen"

Massen der Teilchen, wie sie ursprünglich in der Hamilton-
funktion der ungekoppelten Felder standen. òM und òfi sind die
Änderungen dieser Massen, die durch die Wechselwirkung zwischen
den beiden Feldern hervorgerufen werden.) Dagegen sind e und /
die „mathematischen" Kopplungskonstanten; für sie haben wir
Renormalisationen zu erwarten. Da in besagter Weise die
Selbstenergien in die Hamiltonfunktion der ungekoppelten Felder
aufgenommen sind, müssen sie in der Hamiltonfunktion der Wechselwirkung

wieder subtrahiert werden. Dem wird durch den Term
— Esp — Efj in (3) Rechnung getragen*).

Ep und Efj sind so definiert, dass die Einteilchenterme (1 Protonoder

1 Meson-Terme) der S-Matrix ohne äusseres Feld**)

<<S(°°)>iP,oif <S(°o)>0p, !.,/ !• (9)

Ausserdem sind die Vakuumerwartungswerte der Selbstenergien
so definiert, dass auch der Vakuumerwartungswert der S-Matrix

<S(oo)>0„i0J,~l. (10)

*) Nach Matthews10) musste auch ein Term òX0l subtrahiert werden, um die
Meson-Meson-Streuung endlich zu machen. Da er jedoch für das hier
interessierende Problem keine Rolle spielt, lassen wir ihn weg.

**) S (oo) ist in DI, Gl. (32) gegeben, wobei nun unter HI der Ausdruck (3)
zu verstehen ist.
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Aus (9) folgt direkt, bei Bildung der Einteilchenterme auf die in
D I oder D II dargelegte Weise, dass die Selbstenergiedichten von
Proton und Meson in 2. Ordnung in / — die Selbstenergien höherer
Ordnung haben in unserer Näherung keinen Einfluss auf das
anomale magnetische Moment — gegeben sind durch

Ep(x) =-l-if2 fdix'[ip~(x)MPx-x')ip(x')
ö j

+ f(x')Mc(x'-x)ip(x)],
MPx — x') =y5Sc(x — x')y5DPx—x'

(11)

und

Fî1(x)=-±if2fd*x'Sp[ybSc(x-x')y5SPx'-x)]0(x)0(x'). (12)

(Sp bedeutet Spurbildung bezüglich der y-Matrizen.) Weiter
enthalten die Selbstenergiedichten noch Vakuumterme, so dass

<EsP(x)+EsM(x)>0Pt0M —Lif* fd*x' Sp[yòSc(x-x')x

xy5Se(x'-x)ÌDe(x-x'). (13)

Dann ist auch (10) erfüllt.
In diesen Gleichungen bezeichnen Sc und Dc die „kausalen"

Funktionen

£«(*) =-w/^i4^e"*- (15)

dix, d*p, d4k bedeuten die reellen vierdimensionalen Volumenelemente
dxxdx2dxsdx0, px, kx, yx, p2, k2 stehen für die skalaren
Produkte der Vierervektoren p^ x/À=px —p0x0, ...,k/J,k/1
k2 —k20. M'2 M2 — ie soll angeben, dass man sich bei der Protonmasse

einen infinitesimalen negativ-imaginären Zusatz zu denken
hat, der bei der p0- Integration den Weg um die Pole p0 fa Yp2+M2
festlegt und den man nach der Integration nach Null gehen lässt.
Analog bedeutet pt'2 pt2 — ie.

Aus Gründen der relativistischen Invarianz ist direkt ersichtlich,
dass die Ausdrücke (11), (12) von der Form sind

Esp=ÒMyip, E% ^òfi202. (16)

òM und òfp divergieren jedoch.
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Wir interessieren uns für den 1 Proton-0 Meson-Teil des in D I
definierten effektiven Hamiltonoperators HF

<HF(x)>XP:0U= Xfafa1 fd'x'.... />*<»> x

x<P(H°(x), H1 (x'),...., H'(a;W))>1Pi0Jf. (17)

Er stellt die Dichte der potentiellen Energie eines Protons im äusseren

elektromagnetischen Feld in 1. Bornscher Näherung dar und ist
mit dem analogen Energieoperator, den man nach der invarianten
Störungsmethode von Schwinger erhielte, identisch (D I, Appendix).

Das Ziel ist nun, (17) zu berechnen bis zur 4. Ordnung in /.
Daraus lässt sich dann das magnetische Moment des Protons ~ /4

ableiten.
Hierbei denken wir uns die Selbstenergiedichten Ep und ESM, die

in (17) vermöge (3) vorkommen, nicht in der meist verwendeten
Form (16), sondern in der Form (11) und (12) — mit Berücksichtigung

von (13) — eingesetzt. Diese Art der Selbstenergiesubtraktion
erwies sich in Arbeiten von Jost und Luttinger12) und von
Schafroth13) im Rahmen der Schwingerschen Theorie als nützlich. Sie
lässt sich im Rahmen der Dysonschen Rechenmethoden ebenfalls
durchführen. Sie ist zwar etwas weniger elegant als der übliche
Dysonsche Subtraktionsformalismus, hat aber den Vorteil, dass

man in den Termen von (17), wo die abgeänderten ïp- und
^-Operatoren (in D II mit y>' und ip' bezeichnet) auftreten, die Renormali-
sationen von e und / „von selbst" richtig erhält, während die
übliche Methode eine feinere Analyse gewisser unbestimmter Ausdrücke
nötig macht. Wir werden dies am Schluss von § 4 noch näher
erläutern.

Die Einführung der Ausdrücke (11), (12) in (17) hat zur Folge,
dass in den P-Klammern neben den Variablen x^, die für die
chronologische Reihenfolge massgebend sind, noch andere Variablen
x(ic) vorkommen. Für diese Fälle müssen die Regeln zur Bildung
der Einteilchenterme noch etwas verallgemeinert werden. Nehmen
wir als einfaches Beispiel den Ausdruck

-iJä*x'(P(H°(x), -EP(x'))yiP, (18)

der im Term n 1 von (17) enthalten ist. Einsetzen von (11) gibt

-Ì/2 fd*x' [d*x"(PIH12)(Hpx),f(x')Mc(x'-x")ip(x"))A-

+ P0(21)(H*(x),w(x") Mpx"-x') ip(x'))yiP.
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Wegen (2) erhält man also P-Klammern von der Form (Spinor-
indizes weggelassen)

P0<12) (*) V (*) » f (x>) f (*"))
und Poj2i_)(w(x)y>(x), w(^")w(x'))- (19)

Die Indizes 0, 1, 2 am Operator der chronologischen Ordnung P
beziehen sich auf die Variablen x, x', x". Unterstreichen von 0 und
1 soll andeuten, dass die Zeiten der Punkte x und x' für die Reihenfolge

der Faktoren massgebend sind [wie es in (18) die Meinung
war], während die runde Klammer um 1 2 bzw. 2 1 besagen soll,
dass ip (x") immer direkt hinter y> (x') stehen muss bzw. ip (x")
immer direkt vor ip (x'). Etwas allgemeiner definieren wir z. B.

PW)tzi)(vLx) f(x") > W (xl w(x'))
] y>(x) ip(x")ip~(x'") ip(x') für x0 > x0' .„
\ïp(x'") ip(x') îp(x)ip(x") für x0'> x0.

Zum Einteilchenterm von (20) gehört ein Ausdruck, in dem ip(x)
und ip(x') als freie Operatoren stehenbleiben, während bezüglich
ip(x") und y>(x'") der Vakuumerwartungswert gebildet werden
muss. Dieser ist, mit den Definitionen (8) und mit

'<*-*H-î»-!>l (21)

\-P(02)(3l)(Va(a;") > Wß(X ))/0

^{^(x''),Wß(xM)}+^s(x-x')(Xip.(x"),ip(x''')]\

^^Saß(x"-x'")-^e(x-x')S^ß(x"-x'"),
also

<P(02) (31) Va (X"),fß(x '") >0

-^ -^ e{x-p)[S^ß(x"-x'") + ie(x-x') Saß(x"-x'")]. (22)

Die zur Herleitung von (22) neben den Vertauschungsrelationen (6)
verwendeten Ausdrücke für Vakuumerwartungswerte sind bei
Schwinger (S II) erläutert. Ähnlich findet man für
Vakuumerwartungswerte in den Mesonoperatoren

<P(02)(31)(^(^").^(^'"))>0

Ud^(x"-x'") +ie(x-x') D(x"-x'")]. (23)
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Formel (22) dient auch zur Berechnung des Einteilchenterms im
spezielleren Fall (18), (19), wo mindestens zwei der Variablen a;w

zusammenfallen. Ist insbesondere x" x und x'" x', so gehen
(22) und (23) in die bekannten Beziehungen über

<Po1(v«(^),^'))>o= -\e(x-x')SCaLß(x-x'), (22')

<[PQX(0(x), 0(x'))\=^DPx-x'), (23')

wo

Sc (x — x') Sw(x — x') + i £ (x — x') S(x — x')

S(1) (x—x') — 2 i S (x—x') (24)

und

Dc (x— x') Dw(x — x') + ie(x — x')D(x — x')

D(-1\x-x')-2iD(x-x') (25)

durch die Fourierdarstellungen (14) und (15) gegeben sind. S, £(1)

und S sind gleich definiert wie in S II ; nur muss die Elektronmasse
durch die Protonmasse M ersetzt werden. D, D(1> und D sind identisch

mit den Schwingerschen A zl(1) und A für Teilchen der
Ruhemasse pt.

In (22) tritt, ebenso wie in der bekannten Beziehung (22'), der
Faktor —\ e (x — x') auf, wo x und x' die für die Reihenfolge der
Faktoren in den P-Klammern verantwortlichen Variablen sind.
Aus diesem Grunde lassen sich die Dysonschen Überlegungen (vgl.
D I) betreffend Vorzeichen usw. bei der Berechnung von
Matrixelementen unverändert auf den vorliegenden Fall übertragen, und
die in D I und D II gegebenen Regeln zur Bildung von Einteilchen-
termen oder allgemeineren Operatoren aus P-Klammern gelten
hier ebenfalls, mit dem einzigen Unterschied, dass man für die
Vakuumerwartungswerte von Operatorpaaren an Stelle der Sc- und
Dc-Funktionen von (22') und (23') die allgemeineren Funktionen in
den eckigen Klammern von (22) und (23) einzusetzen hat, falls die
Argumente der Operatoren nicht Variablen sind, welche die
zeitliche Ordnung in den P-Klammern bestimmen. Wie man mit den
Funktionen (22), (23) zu rechnen hat, soll in § 4 am Beispiel der
Renormalisation von e noch ausgeführt werden.
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§ 3. Regularisierung.

Wie bereits bemerkt, werden gewisse Ausdrücke, wie z. B. die
Selbstenergiedichten (11), (12), divergent. Es handelt sich dabei
immer um Renormalisationen, also um unbeobachtbare Effekte. Da
man sie jedoch bei der Berechnung der beobachtbaren Effekte
benützt, sollte man, um letztere eindeutig zu definieren, von einer
Regularisierungsmethode Gebrauch machen, wie sie von Pauli und
Villars14) u. a. entwickelt worden ist. Im vorliegenden Fall kann
eine einfache und klare Vorschrift zu einer relativistisch invarianten
Regularisierung durch die folgenden zwei Forderungen gegeben
werden :

1. Man kopple formal neben dem wirklichen Mesonfeld mit der
Masse pt und der Kopplungskonstanten / noch weitere (virtuelle)
Mesonfelder des gleichen Typs mit Massen ptx, pt2, und mit (zum
Teil imaginären) Kopplungskonstanten f^cx, fYc^, an das Protonfeld.

Diesen Mesonfeldern misst man keine reale Bedeutung zu;
sie haben aber den Effekt, dass jede in den Formeln auftretende
D-Funktion (D, D(1\ D oder Dc) ersetzt wird durch eine Summe
von Funktionen

D(x; pt) -> JT CiD(x; fi,) (c0 1, fi0 /Ï). (26)
i

In 4. Ordnung, wo Produkte von zwei D-Funktionen auftreten,
erhält man damit eine Regularisierung mit Faktorisierung. Den c,
und /ii werden Bedingungen auferlegt, so dass die sonst divergenten
Ausdrücke endlich werden. Für unsere Zwecke genügt

2> 0 (27)
i

(woraus bereits folgt, dass mindestens eine der formalen
Kopplungskonstanten imaginär sein muss). Damit werden die logarithmischen

Divergenzen weggeschafft, und sowohl die Protonselbstenergie

(11) als auch die Renormalisation von e in 2. Ordnung wird
dadurch endlich. Die Renormalisation 2. Ordnung von / ist zwar
ebenfalls bloss logarithmisch divergent, doch enthält sie einen
Term, in dem die Mesonselbstenergie eine Rolle spielt. Um diese

zu regularisieren, braucht man noch eine zweite Vorschrift:
2. Man kopple formal neben dem wirklichen Protonfeld noch

weitere (virtuelle) Spinorfelder mit Massen Mk und Kopplungskonstanten

/ Yci \fü~l an die Mesonfelder. Diesen Spinorfeldern
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kommt ebenfalls keine reale Bedeutung zu. Sie haben den Effekt,
dass in (12) und allgemein in Ausdrücken, wo Spuren von S-Funk-
tionen vorkommen, und nur in diesen, jede Spur in eine einfache
Summe von Spuren übergeht (Regularisierung ohne Faktorisie-
rung) :

Sp(yS(x;M)yS(x;M)....)->
2JCkSp(yS(x;Mk)yS(x;Mk

(C0 l, M0 M).

(28)

(Die S können irgendwelche S-Funktionen und die y irgendwelche
y-Matrizen bedeuten.) Da die Mesonselbstenergie (12) quadratisch
divergiert, haben wir hier zwei Bedingungen,

£Ck 0, 2JCkM2 0, (29)
* k

nötig, um sie endlich zu machen.
Da den Hilfsfeldern sicher keine reale Bedeutung zukommt —

ihre Hamiltonfunktionen der Wechselwirkung sind ja teilweise anti-
hermitisch — dürfen sie auf die beobachtbaren Resultate keinen
Einfluss haben. Das erreicht man dadurch, dass man die
Hilfsmassen [ii und Mj. gross wählt gegenüber den realen Massen pt und
M. Nach erfolgter Rechnung macht man den Grenzübergang
jMj-fa oo, MkA>-oo (i, k £0)14). Die Formulierung mit den Hilfsfeldern
ist praktisch, weil sie auf alle Fragen (z. B. Faktorisierung oder
Nicht-Faktorisierung) der Regularisierung von Ausdrücken beliebig
hoher Ordnung eine eindeutige und vernünftige Antwort gibt.

Um die Formeln nicht unnötig zu belasten, schreiben wir sie auch
im folgenden nicht in der regularisierten Form. Jedoch denken wir
uns die Ausdrücke gemäss den dargelegten Vorschriften regulari-
siert und machen auch Gebrauch von der Eigenschaft, dass sie endlich

und eindeutig definiert sind. Wenn wir im folgenden dennoch
von divergenten und konvergenten Ausdrücken sprechen, so ist
damit das Verhalten gemeint, das sie ohne Regularisierung hätten.

§ 4. Magnetisches Moment und Ladungsrenormalisation in 2. Ordnung.

Mit der in § 2 skizzierten Methode findet man für den effektiven
Hamiltonoperator (17) in 2. Ordnung, bei Verwendung der
Bezeichnungen

F(x)=F(0), F(x')=F(l), F(x")=F(2),
F(x-x') =F(01), F(x'-x) =F(10) usw. ' (3°'
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für Funktionen unter dem Integralzeichen,

<Hf>1P,0M=Hf + Hf\ (31)

Hf (x) ~-\f2ieAß(x) j>x' fd'x" x

Xf(l)y5Sc (10) Yß Sc (02) y5 ip (2) Dc (12), (31a)

Hf (x)=^f2ie Ap(x)fd*x'fd*x"{y(0) V/t[i e(02) S(01) +

+ 2iS(01)]y5Sc(12)y5ip(2) + (<-)}Dpi2). (31b)

Mit (-P) ist der Ausdruck gemeint, den man erhält, wenn man den
vorangehenden Term „von hinten nach vorn liest" :

y (2) y5 S.(21) y5 [i e(20) S(10) + 2i$(10)] yß y>(0).

Die Ausdrücke in den eckigen Klammern entstehen als Differenzen
zwischen den Funktionen in den eckigen Klammern von (22) und
den Sc-Funktionen (24). Aus dieser Form von (31b) ist die
relativistische Invarianz nicht direkt ersichtlich; sie wird jedoch später
evident werden.

Obwohl die Methode, die zu (31), (31a), (31b) führt, eine rein
analytische ist, geben wir, um den Vergleich mit anderen Arbeiten

0

abcFig. 1.

Feynman-Dysonsche Figuren für die Streuung eines Protons an einem äusseren
elektromagnetischen Feld in 2. Ordnung. Protonlinien sind ausgezogen, Meson¬

linien gestrichelt, Photonlinien punktiert gezeichnet.

zu erleichtern, in Fig. 1 die Feynman-Dysonschen Figuren3)4) für
die Effekte in 2. Ordnung. Figur a entspricht dem Ausdruck (31a),
Figur b dem Ausdruck (31 b) ; jedoch ist in (31 b) der Effekt der
Massenrenormalisation bereits berücksichtigt. Ohne Massenrenormalisation

hätte der Figur b entsprechende Ausdruck die Form:

-J-fHeA^x) d* I d'x"{ip(0)y/iSc(01)y&Sc(12)y5ip(2)

+ (<-)}Dc(12).
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Der Term, der Figur c entspräche, ist Null, da

Sp(yßScY&Sc) 0 (/1 1,2,8,4) (32)

auf Grund bekannter Eigenschaften der Dirac-Matrizen.
Setzt man voraus, dass das äussere elektromagnetische Feld

(räumlich und zeitlich) quasi-konstant ist, so erhält man aus (31 a)
mit den bekannten Methoden3)4)

Hf\x) -BU2ieAp(x)ip(x)ypip(x)-

-fi^f^Afl(x)-±-(ip(x)aMvW(x)), (33)

wo

afiv YT (Vi* Yv—Yv Yfi) ¦ (34)

Alle andern Terme von (31 a) sind von einem der drei Typen

const. Aß-j^-an(ipf), const. Aflnn+1(wyß'>p),

const. Aßnn+1-^ (ip Op» ip). (n 0,1,2,...).

Diese sind, abgesehen von Viererdivergenzen, äquivalent mit Ter-
men ~ òA^/òx^ (was verschwindet, wenn man die Ap der Lorentz-
schen Nebenbedingung unterwirft) oder ~ Ap (was für ein
quasikonstantes Feld vernachlässigbar ist).

Der erste Term auf der rechten Seite von (33) bedeutet eine
Ladungsrenormalisation zu He in (2). Die Renormalisationskon-
stante Rl ist durch das Integral

E^-^hd^Jdikp^p^^w ^
gegeben und würde ohne Regularisierung logarithmisch divergieren.
Die Vorschrift (26) mit der Bedingung (27) macht (35) jedoch
regulär. Der zweite Term rechts in (33) ist, abgesehen von einer
Viererdivergenz, von der Form eines Pauli-Terms

-l^i^F^m^, (36)

wo

^ 1^-4*7' V=2ï^V?> (37)
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und bedeutet die Energie, die von dem zusätzlichen magnetischen
Spinmoment des Protons in 2. Ordnung herrührt. Dieses beträgt,
in Kernmagnetonen e/2M gemessen,

fi(2)/2 - (tuTtJ^ P + ôpi-Ç)
0

/ / \2fi â2 ôpi-ô*) i sps-ô2) ô\ ,QQ,-fa— —+-S -n -m-s 7 arccos-fa, (38)\2n M * 2 2 ô 21/4-Ô2 22/4-c5
WO

* -£ ; (39)

es ist von Luttinger u. a.6) berechnet worden.
Der Ausdruck (31b) gibt eine reine Ladungsrenormalisation.

Diese Rechnung wollen wir etwas ausführen, um das Rechnen mit
den Funktionen (22) zu illustrieren. Setzen wir also in (31b) die
Fourierdarstellungen (14), (15) und (vgl. S II!)

S(x) - -rrj— / d*p(iy p-M) e(p) ò(p2 + M2) eipx, (40)

S(x) -±e(x)S(x) ^Hwfd*p^=ifreiv* (41)

ein [e(p) ist analog (21) definiert, ô ist die eindimensionale Diracsche
^-Funktion und HW bedeutet Hauptwert bei der p0-Integration].
Im Laufe der Rechnung zeigt sich, dass der Ausdruck mit (-<-) in
(31 b) denselben Beitrag gibt wie der vorangehende Ausdruck. Wir
nehmen dies vorweg und schreiben 2 x den ersten Term; dann
ergibt sich

HfHx) \f2ieAß(x) [^Vf [d*x'Jd*x"jd*pjd*p'jd*k x

x f(x)y/i(iyp-~M)y5(iyp' — M)ysip(x") x

^[^^'x")ljke(p)è(p2 + M2) + J^HW^w\x
l 1 J,v(x—x') „ip'tx'—x") Alc(%'—%")

..i-i e e ep'faif'2 k% + fï

Die Integration über x' gibt eine (vierdimensionale) d-Funktion

[tpÎ fdix'ei{-1>+p'+k)x'= ô(-p + p'+k), (42)
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so dass die Integration über p' trivial wird (p' —> p — k). Benützen
wir einige bekannte Eigenschaften der y-Matrizen, so erhalten wir

Hf(x) -lpieAp(x) -^±-fd*x''fd*pfd'k x

x V (x) YiÄP2 + M2 + (iyp)(iyk) — M(iyk)] y> (x") x

^^e(x-x")^e(p)ô(p2+M2) + 1^HW^Wi\x
y Av(x-X")

(p-k)2 + M'2 lc2 + p'2

Wir fassen nun die beiden letzten Brüche gemäss der Feynmanschen
Formel4)

n! / dÇx. / dÇ2 ¦ ¦ ¦ I dçn x
«o «i • • • a„

0 o o

x K + Çx(ax-a0) + ¦ ¦ • + ïn(an-an_x)}-^l) (43)

zusammen :

1 ï /Pt 1

k2 + p'2 {p-k)2 + M'2 / * [k* + p2 + Ç{p2-2pk + M2-n2)]2 '

0

Mit der Schiebung*)
k' fc — | p (44)

wird der Nenner rein quadratisch in der neuen Variablen fc'. Da
fc' sonst nur noch im Ausdruck mit den y-Matrizen vorkommt,
geben dort Terme linear in fc' aus Symmetriegründen keinen Beitrag
bei der Integration. Mit

(V2 + M2)ò(p2 + M2)^0, (p2 + M2)HW—~^1 (45)

erhält man
i

Hf(x)=-\f2ieAp (x) (-^ffd* x" [d*k'fdïx
o

x f'(*) ?/»{ — *«(*-**) -^r/d*p(iyp-M) e(p) x

x 0{p +-1V1 )e [k'*+p'*-pH+M*PY +

¦+
2i fd'v fl—£— HW ir?-31 MiA e^<*-*") x

X
[r2 + /*'2+(p2-rilf2-/i2)f-p2l2]2fa ^ '

*) Man beachte, dass dank der (gedachten) Regularisierung gemäss (26), (27)
das Integral über k wohldefiniert und endlich ist. Im Gegensatz zu Karplus und
Kroll7), Seite 540/541, bekommen wir deshalb bei der Schiebung keinen Ober-
flächenterm.
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Das erste Integral über p gibt nach (40) gerade wieder die S-Funk-
tion, jetzt aber mit dem gleichen Argument (x — x") wie die e-

Funktion, mit der sie multipliziert ist. Dadurch wird die
Lorentzinvarianz evident. Setzen wir für e (x — x") S (x — x") die Fourier-
darstellung (41) ein und verwenden wir die Abkürzungen

OL k'2A-fi'2-fi2i + M2i2, ß *A-(p2A-M2) (f-f2),
so ergibt sich

i
Hf\x) =- \f2ieAp(x) 2t [-^ffd*x"fd*k'Jd*pfdl;y(x) yß x

" "
o

xKJSM^+ [^-HW^M^^'M^
i

-f2ieAp(x)i(-^-\8 fd*x" fd*k' [d'p fd£ip~(x)ypX
o

x |^ + (irp-M)(|-!2)M!-^[!+ -\})e^-^ip(x"),
da

J 1_ _ ß-a
a2 ß2 ~ aß a fi

Zur Ausführung der a: "-Integration zerlegen wir ip nach Fourier.
Um die Formeln nicht zu überlasten, setzen wir nur eine Fourier-
komponente von ip ein (da sie beliebig ist, wird die Allgemeinheit
der Rechnung nicht eingeschränkt) :

ip(x) =u(q)el<lx. (46)

Analog werden wir in §§ 5 und 6 brauchen

y(x) ü(q')e-iq'x. (47)

Wegen der Diracgleichungen (4) gilt

• •• (iyq + M)u(q)eiC[X u(q')e-i,l'x (iyq' + M) • • • 0 (48)
und

¦¦¦(q2 + M2)u(q)eiiX ü(q')e-i"'x (q'2 +M2) ¦ ¦ ¦ =0, (49)

sofern der mit bezeichnete Rest endlich ist (d. h. nicht von der
Form (iyq + Mp1 oder (q2 + M2)-1 usw.).

Die Integration über x" gibt nun, analog (42), die Funktion
6 (q — p). Die p-Integration wird wieder trivial (p-^-q). Wegen (49)

21



322 A. Thellung.

hat man ß -*- a, und bei Berücksichtigung von (48) und (46) erhält
man schliesslich

Hf\x)=-Blf2ie Ap(x)y (x) Ypip(x), (50)
WO

Bb=lPPPj d^l~^J di]t[[_k*+p*- pH+ MH*T ~
°

L^ül 1 (5D
[k2 + p'*-p*$+M2P]3 J ' V ;

Ein Vergleich der Formeln (33) und (50) mit (2) zeigt, dass die
beobachtbaren Einflüsse des äusseren Feldes auf das Proton —
abgesehen von Pauli-Termen — nicht durch e Ap, sondern (bis in
2. Ordnung) durch

(eAp)Km eAp[l + (Ri + Rl)f2] (52)

bestimmt werden. (Es ist konsequent, die Renormalisationen nicht
auf e allein, sondern auch auf die Ap zu beziehen, da die Ap auch
wieder durch Ladungen e erzeugt werden.) Ein Vergleich von (35)
und (51) — am einfachsten mit Hilfe einer partiellen Integration in
I*) — zeigt jedoch, dass

B:+Bl 0. (53)

Hierbei ist die Regularisierung wieder wesentlich, da Bea und B\
sonst unbestimmt sind und sich nur auf Grund gewisser Zusatzvorschriften

betreffend die Ausführung der Integration wegheben.

Eine Bemerkung: Verwendet man die Selbstenergiedichte in der
Form ôMyiip, so ändert sich H(2)(r\l a) nicht, während H(ò2)(31 b) eine
andere Form bekommt. Bei der Berechnung von B\ stösst man
dann auf den Ausdruck (p2 + M2) (p2 + M'2)-1 im Integranden,
während bei unserer Rechnung Ausdrücke von der Form (p2+M2)x
x HW (p2 + M2)-1 auftraten. Wegen derÄquivalenz von (p2+M'2)~1
mit HW (p2 + M2px A- i n ò (p2 + M2)**) schiene es auf den ersten
Blick vernünftig, dem Ausdruck (p2 + M2) (p2 + M'2)-1 ebenfalls
den Wert 1 zu geben, wie das in einer Arbeit von Watson und
Lepore15) bei der Renormalisation von / getan wird. Dann erhielte
man aber eine doppelt so grosse Renormalisationskonstante, und
es würde

(eAX.. eAß[l + (Bl + 2B$f2}.

*) Vgl. die analoge Rechnung in 7), Seite 542.

**) Vgl. hierzu z. B. S. III (1. 68).
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Nun zeigt die Integration über x" und p, dass man es eigentlich mit
den Ausdrücken

• • • Yp§i »(<Ù «*«* bzw. ...HW ^-§ru(q) e*** (54)

zu tun hat, wovon der erste unbestimmt ist (daran kann auch die
Regularisierung nichts ändern), während im zweiten der Bruch
gleich 1 gesetzt werden darf. Eine Analyse solcher, durch die
Integration über ein unendliches Zeitintervall bedingter Unbestimmtheiten

in der S-Matrix*) zeigt, dass es tatsächlich richtig ist, dem
Bruch im ersten Ausdruck (54) den Wert 1/2 zuzuschreiben. Solche
Finessen sind dagegen nicht nötig, wenn man die Selbstenergiedichten

in der Form (11), (12), (13) einführt.

§ 5. Renormalisation der Kopplungskonstanten.

Bei der Berechnung des anomalen magnetischen Momentes in
4. Ordnung haben wir Korrekturen zu erwarten, die von der Re-
normalisation von eAp und /2 im Ausdruck 2. Ordnung [(33), zweiter
Term] herrühren. In einer konsistenten Theorie müssen die Renor-
malisationen für alle Prozesse, die man sich im Rahmen dieser
Theorie denken kann, dieselben sein, und man kann sie an Hand
einfacherer Prozesse bestimmen. Für eAp ist dies in § 4 geschehen
an Hand der Streuung eines Protons an einem äusseren
elektromagnetischen Feld. Für /2 könnte man analog die Streuung eines
Protons an einem „äusseren Mesonfeld" betrachten. Doch bringt
das, abgesehen von der Frage, ob ein äusseres Mesonfeld etwas
physikalisch Sinnvolles ist, Komplikationen mit sich, auf die wir noch
zu sprechen kommen werden.

Besser geeignet ist die Proton-Proton-Streuung. Für diesen Prozess

lautet die S-Matrix [D I, Gl. (32)] in 2. Ordnung "

S^\^)=\f2jd^xfd^x'(nPx)ybip(x))(W(x')y5ip(x'))Dc(x-x'), (55)

oder bei Einsetzen von Fourierkomponenten gemäss (46), (47),

S<2)(oo) 1/2 /'d^x fd*x'(ü (q') e-iq'xy5u(q) ei<lx) x

x (w(p') e-ip'x'yhu(p) eipx')DPx — x') (56)

Die Terme 4. Ordnung schreiben wir hier nicht explizit an ; zu ihrer
Diskussion charakterisieren wir sie durch die Feynman-Dysonschen

Vgl. D II, Seite 1752 und '), Seite 542.
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Symbole, Fig. 2. Hierzu ist zu bemerken, dass wiederum in den
entsprechenden analytischen Ausdrücken die Massenrenormalisation

nach der in § 2 dargelegten Methode bereits ausgeführt ist.
Während die Terme, die den Figuren d und e entsprechen, keine
Ausdrücke der Form (56) geben, also keine Renormalisationen ent-

V V fa
Ol I \/I I /\0

a b c d e

Fig. 2.

Feynman-Dysonsche Figuren für die Proton-Proton-Streuung in 4. Ordnung.

halten können, zeigt sich, bei Benützung der Beziehungen (48), (49),
dass die den Figuren a, b und c entsprechenden Ausdrücke auf die
Form

const. /4 / d"x j dix'(ü(q') e-ic'x y-au(q) eiqx) x

x irü(p')e-iv'x'yhu(p)e'ivx')DPx — x')F[(q — p)2] (57)

gebracht werden können. Das ist auch aus Gründen der
Lorentzinvarianz, zusammen mit (48), (49) ersichtlich.

Man kann sich nun F in (57) nach Potenzen von (q — q')2
entwickelt denken. Der erste Term dieser Entwicklung JP [0] gibt in
(57) einen Ausdruck der Form (56) ; dieser kann deshalb als Renor-
malisationsterm angesprochen werden (Fall I). Ebenso gut kann
man aber F auch nach Potenzen von (q — q')2 +¦ pt2 entwickeln und
den vom konstanten Term F[—pt2~\ herrührenden Ausdruck als
Renormalisation zu (56) interpretieren (Fall II). Im Falle I definiert
man die physikalische Kopplungskonstante an Hand des
unrelativistischen Grenzfalles: Für Geschwindigkeiten der Protonen, die
klein sind verglichen mit der Lichtgeschwindigkeit, werden in der
S-Matrix alle Terme der Form (56) in höherer als 2. Ordnung als
Renormalisationen interpretiert. Auf den Fall der Streuung eines
Protons an einem äusseren Mesonfeld 0" übertragen, bedeutet das,
dass die Dichte der Wechselwirkungsenergie für alle Näherungen
durch _i(/^V.f75V (58)

gegeben ist, sofern das äussere Feld 0a [wegen der Äquivalenz von
— (q — q')2 mit dem Operator ?] der Bedingung genügt

D 0a 0 (59 I)
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Im Falle II gibt (58) die Wechselwirkungsenergie für alle
Näherungen, sofern 0a der Bedingung

(n-fi*)0a O (59II)

genügt, also der Gleichung des freien Mesonfeldes (5). In der
Elektrodynamik und auch bei unserem Problem in § 4 sind die Fälle I
und II identisch, da für Photonen pt 0. Nun ist ein Feld, das der
Gl. (59 I) genügt, und damit auch der unrelativistische Grenzfall
in einer Mesontherie wahrscheinlich wenig sinnvoll, und tatsächlich
wird sowohl bei Matthews10) undNAKABAYASi und Sato11) als auch
bei Watson und Lepore15) dio Definition II gewählt. Es sei hier
aber betont, dass man mit der Definition I ebenfalls zu einer
konsistenten Renormalisation gelangt. Auch werden die quantitativen

Aussagen der Theorie dadurch nicht geändert. Das soll am
Ende dieses Paragraphen bewiesen werden.

Zunächst seien noch die Resultate für die Renormalisation von /
zusammengestellt. Man findet bis zur 2. Ordnung

f2^ f2[l + (Ba + Bb + Bc)f2}, (60)

wo Ba, Bb und Bc von den Termen herrühren, die den Symbolen a,
b und c in Fig. 2 entsprechen. Sie werden im Falle II

tC°~APl*layarlla K
[k2 + p'*-p2£+MH*-li* (S- v)W ' [ '

0 0

Bb 2Bl, (62)

Ec~4Pi*j dU(l~ï)J d P [p.+jf'i-p.f (!_{)]. • (bd3

o

B\ ist durch (51) gegeben. Im Falle I würde Ba einfacher, da die
Summanden fi2(£ — rj)n in Zähler und Nenner wegfielen. Bb würde
gleich bleiben. Bc dagegen würde komplizierter.

Die Renormalisationen Ba und Bb stimmen mit den entsprechenden
Grössen, die Nakabayasi und Sato11) für ein neutrales Mesoh-

feld finden, überein, falls man ihre Ausdrücke regularisiert. [Dann
fallen dort wegen (27) gewisse additive, von pt und M unabhängige
Konstanten weg]. Bc wird in der japanischen Arbeit doppelt so gross,
weil dort auch Neutronen an die Mesonfelder gekoppelt sind. Diese
geben für Bc in den virtuellen Zwischenzuständen denselben Beitrag
wie die Protonen. Mathematisch äussert sich das darin, dass man
nicht nur eine Spurbildung bezüglich der y-Matrizen, sondern auch
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bezüglich der Matrizen des isotopen Spins auszuführen hat. Das
gibt gerade den Faktor 2.

Nach (52) und (60) erwarten wir bei der Rechnung in 4. Ordnung
folgende Renormalisationsterme zum Pauli-Term (36)

-ti(2)f2±FpVmpV[RlA-Reb+Ra + Ri> + Rc]f*, (64)

wobei die B in (35), (51), (61), (62) und (63) gegeben sind.
Versucht man, die Renormalisation von / an Hand der Streuung eines Protons

an einem „äusseren Mesonfeld" zu bestimmen, so ergeben sich zwei Komplikationen.

Erstens hat bei einer Wechselwirkungsenergiedichte vom Typus

H j0a + Hl (65)

(j =-- i f y> y5 y>, cp" äusseres Mesonfeld (c-Zahl) ; H1 ist durch (3) gegeben)
die Subtraktion der Mesonselbstenergie in H1 auf die Renormalisation in 2.

Ordnung keinen Einfluss <P kommutiert ja mit j &"¦), und der Rc entsprechende
Ausdruck würde im Falle I ohne Regularisierung quadratisch divergieren und
wäre im Falle II nicht definiert (auch mit Regularisierung nicht). Dem kann man
abhelfen, indem man statt des äusseren Feldes &a seine Quellen

f {U-fi2) <P" (66)

in die Wechselwirkungsenergie einführt:

H=ja&+ HI (67)

(ja c-Zahl). Ohne Subtraktion der Selbstenergien in H1 erhält man mit (67)
dieselbe Ä-Matrix wie mit (65), weil in allen Termen ja, mit einer Greenschen
Funktion von (66) multipliziert und über den ganzen vierdimensionalen Raum
integriert, auftritt. Mit Selbstenergiesubtraktion kommt in 2. Ordnung für den
Fall (67) auch ein Beitrag von der Mesonselbstenergie hinzu, so dass die
/-Renormalisationen nur logarithmisch divergent werden.

Die zweite Komplikation besteht darin, dass man so die folgende Renormalisation

erhält:
(/ *a)ren. f &>[l+(j Ba + \ £„+ Be) /2] (68)

Der Vergleich mit (60) zeigt, dass man 0" anders als / renormalisieren muss,
nämlich

^enfa^+i^c/2]. (69)

Das gibt zu keinerlei Widersprüchen Anlass und weist höchstens darauf hin, dass
weder ein äusseres Mesonfeld noch seine Quellen etwas sehr Sinnvolles sind.

N. B. Dasselbe Problem hätte man auch in der Quantenelektrodynamik. Dort
kann man das äussere Feld nur deshalb gleich wie die Ladung des Elektrons
renormalisieren, weil dort Ba+ Rb 0.

Zum Schluss dieses Kapitels soll im Hinblick auf die oben
diskutierten Fälle I und II allgemein gezeigt werden, weshalb es in einer
Theorie, die durch Renormalisierung divergenzfrei gemacht werden
kann, bis zu einem gewissen Grade reine Konventionssache ist, wel-
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chen Anteil man von den ohne Regularisierung endlichen Termen
zu den beobachtbaren Grössen zählen will und welchen man als
Renormalisation interpretieren will. Die Reihenentwicklungen der
beobachtbaren Grössen nach Potenzen der physikalischen
(renormalisierten) Kopplungskonstanten fr bekommen bei einer andern
Renormalisierung zwar andere Koeffizienten ; der Wert von fr muss
dann aber konsequenterweise so geändert werden, dass der numerische

Wert der Reihe, die man (durch Vergleich mit dem Experiment)

zur numerischen Bestimmung von fr benützt, ungeändert
bleibt. Daraus wird folgen, dass auch die numerischen Werte aller
andern Reihen gleich bleiben.

Nennen wir die mathematische Kopplungskonstante wie bisher /.
Setzen wir voraus, dass die Theorie mit einer bestimmten Renormalisation

/2 /2[l + B2/2 + B4/4 + E6/6+...] (70)

für die beobachtbaren Effekte endliche Resultate liefert. Irgendein
Operator, der beobachtbare Grössen beschreibt (z. B. Streuquerschnitte),

wird von der Theorie durch eine Reihe in frmit endlichen
Koeffizienten gegeben. Bezeichnen wir einen Erwartungswert dieses

Operators, den wir mit dem Experiment vergleichen können, mit
crexp, so ist

*exp Af2[lA-A2f2 + A,fr + Atf*T+ ¦ ¦ •]• (71)

Dabei ist der Einfachheit halber angenommen, dass der erste Term
der Entwicklung mit fp beginnt; das ist jedoch nicht wesentlich.
A, A2, Ait sind auch ohne Regularisierung endlich. Ersetzen
wir gemäss (70) fr durch /, so wird

Gesv A{f2[l + B2f2 + RAf*A-Bef« +••¦] +
+ A2/4[1 + 2 B2f2 + (B22 + 2 B4) /4 + • • •] +
+ Aif[l + 2B2f2+...] + A6f+..-}

tfexp A {f2 + [B2 + A2] /4 + [B4 + 2 B2 A2 + AP f +
A-[B6 + (B2 + 2Bi)A2A-2B2Ai + Ae]P+ ¦¦¦}. (72)

Nun nehmen wir eine Umdefinition der Renormalisierung vor-:

Bt-+Bt, Ai-^A/, fr^rf/. (73)

Natürlich muss dabei z. B. gelten

B2 + A2 B2 + A2

da Koeffizienten der Entwicklung (72) nach Potenzen der unrenor-
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malisierten Kopplungskonstanten durch die Störungsrechnung
eindeutig definiert werden. Allgemein muss deshalb verlangt werden

B« + (B|-
B4 +

¦2E4)i2-

B2

2B2A2

A invariant
A2 invariant
At

¦3B,i, + 48 invariant
invariant (74)

Unter „invariant" ist bei dieser Betrachtung immer die Invarianz
gegenüber den Umdefinitionen (73) gemeint. Die At sollen natürlich
nur um Beträge geändert werden, die auch ohne Regularisierung
endlich sind. Die ohne Regularisierung vorhandenen Divergenzen
in den B{ werden dadurch nicht stärker. Im Fall der pseudoska-
laren Mesonen divergiert z. B. B2 logarithmisch; es wird nach(74)
um einen endlichen Betrag geändert. Bit das wieder eine E2-Renor-
malisation zu B2 enthält, divergiert mindestens wie das Quadrat
eines Logarithmus. Aus der dritten Gleichung (74) sieht man, dass
es sich höchstens um einen logarithmisch divergenten Betrag
ändert.

Den numerischen Wert der physikalischen Kopplungskonstanten
fr können wir durch Vergleich mit einem experimentell gemessenen
<rexp auf Grund von (71) bestimmen. Analog bestimmt sich der
Wert von // aus

ofap A /;2[1 + Ä' /;2 + A'f'S + A'ft (75)

Berechnet man den beobachtbaren Erwartungswert m eines
anderen Operators (z. B. ein magnetisches Moment), so muss er
sich in der Form

m Bf2[l + B2f2 + Bifr + B6fi+...] (76)

darstellen lassen. Gemäss unserer Voraussetzung sind die Bt bei der
ursprünglichen Art der Renormalisation endlich. Wir wollen nun
beweisen, dass sich der numerische Wert von m (76) nicht ändert
und dass die B{ endlich bleiben, wenn die Umdefinition (73) in
konsistenter Weise erfolgt.

Aus den gleichen Gründen wie für (74) muss auch gelten

B, 2 B2 B2

B
B2 ¦+ B2

invariant
invariant
invariant

B6 + (B\ + 2 B4) B2 + 3B2B4 + B6= invariant

(77)
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Aus (74) und (77) folgt
B2 — A2 invariant

2 B2 (B2 — A2) + B4 — AA invariant
(B2+2B4) (B2-^2)+3ß2(B4-^4) + B6-^6 invariant

(78)

Wir formen m (76) so um, dass fr sukzessive eliminiert und durch
den experimentell gegebenen Wert orexp (71) ersetzt wird:

m B«^ + B{(B2-A2)fr + (Bl-Ai)ft+(B6-A6)frA----}
B

A

B(B2-A2)(^2v-f+B{[Bi-Ai-(B2-A2)2A2]frA

+ [B6-A6-(B2-A2)(AtA-2Ai)]fr + ¦ ¦ ¦}.
So ergibt sich schliesslich

m B *f- + B(B2-A2) (a^-f+B[Bi-Ai-2(B2-A2)A2\ (°f)3+

+ B[B6-^--3(B4-^4)^+(B2-^)(5^2-2^)](^)4 +

+ Terme-/10. (79)

Aus (74), (77) und (78) ist leicht zu sehen, dass alle Koeffizienten in
der Reihenentwicklung (79) Invarianten sind. Somit ist auch m
eine Invariante. Weiter folgt, dass die Bi für die zugelassenen Um-
definitionen der Renormalisation endlich bleiben, da die anderen
Grössen in (79) endlich bleiben für jede bestimmte Ordnung der
Störungsrechnung. Der Beweis, dass m in eindeutiger Weise von
ercxp abhängen muss, unabhängig davon, wie fr aus / definiert wird,
ist viel kürzer, wenn man die inverse Funktion von (70), / =B~1(fr),
benützen will. Jedoch ist es dann nicht so evident, unter
welchen Bedingungen die Koeffizienten der Entwicklung von m nach
Potenzen von fr auch ohne Regularisierung endlich bleiben. Die
hier verwendete Methode ist dagegen dem Formalismus der
Störungstheorie angepasst und verwendet direkt die endlichen physfa
kaiischen Kopplungskonstanten.

Diese Invarianz gegenüber „Umeichungen" in der Renormalisierung

gilt auch für die Elektrodynamik. Nur ist es dort eindeutig,
was man als renormalisierte Elektronenladung zu definieren hat, da
die elektrische Ladung eine unmittelbare physikalische Bedeutung
hat und direkt messbar ist. (Für sie gilt ja sogar ein Erhaltungssatz.)
Dagegen kommt der Mesonkopplungskonstanten wohl keine so
direkte physikalische Bedeutung zu; ihr Wert muss indirekt z. B. aus
Streuversuchen bestimmt werden.
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Wenn für eine beobachtbare Grösse crexp (71) gilt : | A{ | < Am&K

für alle i, wo Am&x eine feste Zahl ist, so kann die Renormalisation
so definiert werden, dass die Reihe (71) schnell konvergiert. Über
die Konvergenz der anderen Reihen, z. B. (76), ist damit jedoch
nichts bewiesen.

§ 6. Das magnetische Moment in 4. Ordnung.

Für den effektiven Hamiltonoperator (17) findet man in 4.

Ordnung, mit den gleichen Bezeichnungen wie in § 4 und mit dle x
dÀx' dÀx"dÀx'"d*x"",

<HfpP<Qil=Hf + Hb* + H? + HfA-H^AHfA- (80)

+ Terme, die zum anomalen magnetischen Moment nichts beitragen.

Hf(x)=-[\)*fHeAp(x) fd^xW(l)ybSc(12)y,Sp2i))yp x

x Sc(03) y5Sc(U) y5ip(4) D.(18) Dc(24), (80a)

H(i\x) =-[^ffHeAp(x) fd^Xf(l)y5Sc(12)y5Sc(20)yp x

x Sc (03) y5 Sc (34) y5 ip (4) Dc (14) Dc (23), (80 b)

B<4)(x) =-[\)&fHeAp(x)fd^x{ip-(l)y,SpPS)ypSc(02)y5 x

x Sc(23) y5Sc(34)yBy(4) + (*-)}De(Ì8) Dc(24), (80c)

Hf(x) (^)7fHeAß(x)fd*x{f(l)y5SpiO)ypSp02)y5x
x Sc (23) y5 [* e (24) S (34) + 2 i « (34)] yhj (4) + (<-) +
+ ™ (1) y5 Sc (10) y^ s (03) S (02) + 2 i N (02)] y5 x

x Sc(23)y5Sc(34)y5V(4) + (^)}Dc(14)Dc(23), (80 d)

Hf(x) (-\-)7fHeAp(x)/d^x{w(l)y,Spi0)ypSP02)y;>x

x [i e (24) S (23)"+ 2 i S (23)] y5 Sc (34) y5 ip (4) +
+ (<-)}DP12) DC(U) (80e)

Hf)(x) - (±)7fHeAp(x) fd1«xf(l) ÏSSP10) 7p x

x Sp02)y5ip(2)Sp(ysSc(M)y,SP^)) x

x {Dc(13)[ie(23) D(24) + 2iD(24)] +
+ D,(23)[*e(18)Z>(14) + 2tZ)(14)]}. (80f)
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Die (80 a) — (80 f) entsprechenden Feynman-Dysonschen Symbole

sind in Fig. 3, a—f, zusammengestellt. Die Ausdrücke, die den
Symbolen g und h entsprechen, kompensieren sich gerade, wie das
auch in der Quantenelektrodynamik der Fall ist.

Zur Ausrechnung von (80 a)—(80 f) setzt man die Fourierdarstel-
lungen (14), (40) und (41) für Sc, Sund S ein und die entsprechenden
Fourierdarstellungen für Dc, D und D. Ebenso ersetzt man ip und
ip durch Fourierkomponenten (46) und (47). Die Terme, die
Produkte von e mit S oder D enthalten, lassen sich, genau wie in § 4,

N yX

h~\-o-
e f g h

Fig. 3.

Feynman-Dysonsche Figuren für die Streuung eines Protons an einem äusseren
elektromagnetischen Feld in 4. Ordnung, soweit sie zum anomalen magnetischen

Moment beitragen.

durch Integration über ein x und eine Variable p oder fc so
umformen, dass die S- oder D-Funktion dasselbe Argument bekommt
wie die «-Funktion. Von hier an ist die Lorentzinvarianz der
Ausdrücke evident. Für die so erhaltenen S und D setzt man ebenfalls
die Fourierdarstellung ein. Der Rest der Rechnung verläuft analog
wie bei Karplus und Kroll7). Alle ^-Integrationen geben <5-Funk-

tionen, und es bleiben zwei nichttriviale Integrationen über
„Impulse" p oder k übrig. Die Brüche fasst man mit Feynmans Formel
(43) zusammen. Durch Schiebungen von der Art (44) werden die
Nenner rein quadratisch in der Variablen fc oder p gemacht, über
die man integrieren soll. Nach Feynman4) ist

^4i, (l;ka;kgkQ) _ fAi, (l-.kg; j ôae k*
a K

(k* + A)* -JaK (k*+A)*
/Jl2ì „ lo Jl2 Î \
[tPP ' u ' T °as YÄ) ' (82)
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wobei in A immer ein infinitesimaler negativ-imaginärer Zusatz zu
denken ist, der festlegt, wie die Pole bei der fc0-Integration
umfahren werden müssen. Wegen (81) und (82) lassen sich die
Ausdrücke in den y-Matrizen vereinfachen. Dank den bequemen
Eigenschaften von y5 ist das hier etwas einfacher als in der
Quantenelektrodynamik. Eine Erleichterung kommt auch dadurch, dass

man die zu erwartenden Renormalisationen zum Ausdruck in 2.

Ordnung bereits kennt; sie lassen sich leicht vom Rest abspalten, ohne
dass es nötig ist, diesen als Funktion von iyp A- M usw. zu schreiben.

Nach Abspaltung der Renormalisationen und Ausführung der
Impulsraumintegrationen für den Rest bleiben nur noch Integrale
über die Feynmanschen Parameter von (43) übrig. Auf Grund der
Eigenschaften der Dirac-Matrizen und mit Hilfe der Beziehungen
(48), (49) lassen sich alle Ausdrücke in den y-Matrizen auf die Form

YnFKP-lTl oder l^GÜq-PY] oder OpV(qv-q'v)L[(q-q^

bringen. Da uns Ladungsrenormalisationen und, wie in 2. Ordnung,
Viererdivergenzen und Terme ~ ÒAp/ÒXp oder ~[jAp nicht
interessieren, schreiben wir nur Terme der Form cTpV (qv — qv') L [0] an.
So erhalten wir, wenn wir die Fourierkomponenten (46) und (47)
wieder durch ip (x) und y> (x) ersetzen,

BP

Hi«

BP

H?

BP

Hf

-lfi{2)Bl + fi?]f*±FpVmpV,

-[fii2)Ba + fif]p-2FpVmpV,

-[fim2Bl + fif}p\FpVmpV,

— //(2> Re /4 — F m

-ifrmRcA-[cf^\FpVmpV,

(83)

Wegen Bb 2 Beb (62) sieht man, dass man wirklich die in (64)
erwarteten Renormalisationen erhält, so dass nur noch die renormalisierten

Grössen auftreten:

\HF +HFylp^0M= [i fr-K-(FpVmpV)KÜ

t* 1

-fi(4)fr-2-(FpVmpV)iem + (84)
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+ Terme, die kein anomales magnetisches Moment beschreiben,

^ [i<A)A-[if + [if + fif + (if.
Mit den Abkürzungen

Ò2 ([i/M)2, f(v)=v2 + ô2(l-v), g(v)=l-ò2v(l-v)
h =(l-ri)v-(i — 7])w, Is—
AT v (l-v) f (v)-2 n(Ç-n) vw + v ^^w2 + wf(Ç)

wird

(85)

(86)

ra
i ç i v

{1^)i^fdsfdnfdv[dw{-^{ï2(l-^)V(2v-w) +
0 0 0 0

¦+£(l-ï)r)h(2v-w)-ï(l-^i)ri2l-(l-ï)ri2(l-ri)l2-
+ ^n2(l-n)2P-^Linh2(2v-w)} +

+ jf\— Ìw(l — v + 2w) — Tj(v — w) + Ç2w(l + 2w) +

+ l~r\ (%v — yf- vw\ — ~rj2v + yf (1 — rj)w2 +

+ (2e-%ti)hu>-2SV^w + ±t1*yij w-

-£y^i——W-+ ni''' 1—r) ' (Va

KÏ'PP)1 \4 1_

8
lit) w

fdi fdv fdw fdtÇ2(l-£) x

'0000
X[£(l-S)/(,) + */({)]-! +ili- I dÇ dz dv Idw

oooo
f (» — w) (4»2-2ü) \f(v) +

+ (2v3—vi) m+ 1(1- $) z m \idhm
L n

7<ÄlfaC+
2|

(87 b)
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l l
r,

(4) (-ppfi{ fdçfdn[dzfdvfdw(v-w) x

4

2l2

-2l2 + l^][z(P + ö2(l-v))+^n

P_2ilA±lzl — rj
z(l2 + ô2(l-v)) +

n)

W(f)
n(i-n)

+ ^^[-Hv-w)l + (2i-i2-^(v + w)+iW{^)l2-
~2(l~C)nlz + n(l-n)P}{l2 + ò2(l-v) + ^)rjy}-* +

+ [~ï + ^Hv + w)-o-ïw^- + 2(l-Ç)ril~4:ri(l-r])l2\x

l2+ò2(l-v) wf(S)
îj (1 - p
i » i

di P 12

+ (-2fa)Vd|7S) fdvldwldz
1

+ T

/(¦
ö 0 0

<52 d2(w —w) M)

/(f)

(52(f — w) M)

2 /(w)— (52z(w-w) w

ô2(v-w)w |

* /(w) [/(»)- <52 (« — «>) «"] 4 / (») - <52 (» - w) '
(87 c)

(Die letzten Terme, die proportional ô2 sind, fallen weg, wenn die
Renormalisation gemäss Fall I von § 5 definiert wird.)

^
f(r)

UifdifdzfdvfdW{\^-S^-
0 0 0 0

1

ypPP) t-1 ' j, 2 £v2w i »/({

o
^l(l-f)

M(4)
1 \4 1

2fa) "2

1 \ l
[d^ [dz [dvi2(l-pj2v3x
odo

(87d)

•3+^(i-^^—JJw-^^e+^a-D/wr1- (87f)

In allen diesen Ausdrücken sind die einfachsten Integrationen
über einen oder mehrere der Feynman-Parameter bereits ausgeführt.
Die Resultate der restlichen Integrationen sind Funktionen von
è2. Für 7r-Mesonen (pt 275 Elektronenmassen) ist <32 aa 0,022 < 1.

Um analytisch weiter rechnen zu können, beschränken wir uns auf
den Grenzfall

Ò2 0. (88)
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Sollten einzelne Terme dann divergieren, so musste man natürlich
Ausdrücke der Form In ô usw. mitnehmen. Eine nähere
Untersuchung zeigt jedoch, dass alle Ausdrücke (87 a)—(87f) einzeln endlich

bleiben, wenn man ô2 0 setzt. Das steht im Gegensatz zur
Elektrodynamik7), wo man in den zu ptf und pt^ analogen Termen
zunächst eine endliche Photonmasse einführen muss, da sie sonst
divergieren würden.

Auch im Grenzfall (88) macht die Ausführung der Integrale (87 a)
bis (87f) den weitaus grössten Teil der ganzen Arbeit aus. Am
langwierigsten sind (87 a) und (87 c). (87 b) ist erheblich einfacher,
(87 d) und (87f) sind leicht. Viel hängt auch davon ab, in welcher
Reihenfolge ¦ die Integrationen ausgeführt werden. Bei den ersten
Integrationen werden die Ausdrücke stets umfangreicher und spalten

sich auf in Terme, die bei den letzten zwei Integrationen einzeln
divergieren, wenn man bis exakt zu den Grenzen integriert. Man
hat deshalb, soweit nötig,

1 U \—Si V, — £2

I du dv.. durch / du I dv.

zu ersetzen. Für e^ -> 0 müssen sich alle Divergenzen innerhalb jedes
Terms p*\ p-f kompensieren, was übrigens eine gute Kontrolle
für allfällige Rechenfehler bietet. Alle Integrationen sind analytisch
ausführbar. Bei der zweitletzten Integration gewisser Terme stösst
man auf die Funktion

cp(z)=jd^^-. (89)
o

Die benötigten Eigenschaften dieser Funktion findet man z. B. in
Arbeiten von Powell16) und Mitchell17). Bei der letzten
Integration erhält man für alle Terme in (87 a), (87 b), (87 c) und (87 f) —
abgesehen vom Faktor (1/2 jt)4 — rationale Resultate und Terme
der Form

9>(1)=-S-, ç»(-l) -Ç-. (90)

In /iii! sowie in fif heben sich alle transzendenten Terme der Form
(90) am Ende weg. In (87 c) stösst man noch auf das Integral

fdvlnvln(l-v) jdv In, In (1 -fa _ ^ ^ (gi)1-v
WO

£(3) =2^= 1,202 (92)
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-Funktion vom Argument 3 bedeutet. Die Re-

rf'favr-
M(4)rb

u(4) ¦

re

ri'-
I'f

(PÏ-
up-
(Pï'
\2P)

13

T4

61_

Pi
11

"24

7ï2-f(3)

18

(93)

Nach (84), (38), (85) und (93) erhält man somit für das anomale
magnetische Moment in 2. und 4. Ordnung in der Näherung ô2 0.

Wfi~(-kH + (£,'[g - -r—TT' C(3)

-(£-)'• 0,250- (^)4-0,166, (94)

in Kernmagnetonen e/2M gemessen, während der experimentell
gefundene Wert

ftexp (+ 1,79268 ± 0,00006) KM (95)

beträgt18). Das magnetische Moment in 4. Ordnung hat also, wie
dasjenige 2. Ordnung, das falsche Vorzeichen, wenn man nur ein
neutrales Mesonfeld ankoppelt. Für den von Luttinger6)
versuchsweise gebrauchten Wert von /~/4 n aa 36 wird p2)fl aa — 3,

fi(i)f/ aa—22. Nun sind aber die experimentellen Werte der
Kopplungskonstanten selbst grössenordnungsmässig noch unsicher. Auf
jeden Fall müssen in einer Theorie mit y5-Kopplung die Effekte
4. Ordnung bei der Bestimmung der Kopplungskonstanten
mitberücksichtigt werden*). Dann zeigt sich auch, dass man für /2
wesentlich kleinere Werte bekommt15)19). Nehmen wir versuchsweise

/2 um einen Faktor 10 kleiner, so wird p-2)fzraa—0,3,
,«<*>/**»-0,2.

Die Resultate (93) stimmen in Vorzeichen und Grössenordnung
mit den entsprechenden Ergebnissen in der Arbeit von Nakabayasi
und Sato11) überein, worin die magnetischen Momente der
Nukleonen in 4. Ordnung der pseudoskalaren Mesontheorie durch nu-

*) Vgl. hierzu R. P. Feynman, Phys. Rev. 76, Seite 783.
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merische Integration für ô2 0,022 abgeschätzt werden. Immerhin
ergeben sich Abweichungen, die jedoch nicht mehr als etwa 15%
betragen, ausser im Falle von pt^, wo sich ein Unterschied um einen
Faktor 3,5 ergibt.

Eine Möglichkeit, diesen Unterschied zu erklären, könnte darin
liegen, dass die Approximation (88) schlecht ist. Während in der
japanischen Arbeit ein maximaler Fehler von wenigen Prozent
angegeben wird, ist der Fehler, der durch das Nullsetzen von ô2

entsteht, schwierig abzuschätzen. Er beträgt für das magnetische
Moment in 2. Ordnung etwa 5 %. Nur im Ausdruck pf kann man, wegen
der besonderen Form des Nenners in (87f) leicht zeigen, dass der
Fehler nicht mehr als etwa 1 % betragen kann. Tatsächlich stimmt
f/P bis auf wenige Prozent mit dem entsprechenden Resultat von
Nakabayasi und Sato überein (abgesehen von einem Faktor 2, der
in der japanischen Arbeit für diesen speziellen Term, und nur für
diesen, hinzukommt, weil dort auch Neutronen an das Mesonfeld
angekoppelt sind. Vgl. die Bemerkung hierzu in § 5 der vorliegenden

Arbeit).
Eine zweite Möglichkeit könnte in der verschiedenartigen

Renormalisierung der Kopplungskonstanten gesucht werden. Da in der
japanischen Arbeit keine Regularisierung verwendet wird,
unterscheiden sich die Renormalisationskonstanten dort von den unsrigen
um endliche Summanden. Das hat dort z. B. zur Folge, dass das
Neutron vom geladenen Mesonfeld her eine endliche elektrische
Ladung ~ /2 bekommt (die mit 2J ci 0 verschwinden würde), wo-

i
durch Ladungserhaltung und Eichinvarianz verlorengehen.
Wahrscheinlich haben diese Differenzen bei der Renormalisierung jedoch
keinen Einfluss auf die Berechnung des anomalen magnetischen
Momentes.

Das Endresultat (94) stimmt mit demjenigen von Nakabayasi
und Sato im Vorzeichen überein. Beide Arbeiten kommen demnach
zu der Feststellung, dass das magnetische Moment des Protons
durch neutrale pseudoskalare Mesonfelder bis in 4. Ordnung nicht
richtig wiedergegeben werden kann. Nach Nakabayasi und Sato
ist es in einer pseudoskalaren geladenen oder symmetrischen Theorie
möglich, das richtige Protonmoment zu erhalten, jedoch wird dann
das magnetische Moment des Neutrons falsch. Die besten Möglichkeiten,

um die Momente für Proton und Neutron in einer
pseudoskalaren Theorie bis zur 4. Ordnung richtig zu bekommen, scheint
die Kombination einer symmetrischen mit einer neutralen Theorie
zu bieten. Man hat dann aber Werte der Kopplungskonstanten
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nötig, die es wahrscheinlich machen, dass auch die Beiträge noch
höherer Ordnungen eine wichtige Rolle spielen.

Wahrscheinlich ist auch von den in der kosmischen Strahlung
gefundenen F-Mesonen ein Beitrag zu den magnetischen Momenten
der Nukleonen zu erwarten ; doch ist im Augenblick noch so wenig
über diese schweren Mesonen bekannt, dass es für eine Diskussion
ihres Einflusses zu früh ist.

Meinem verehrten Lehrer, Herrn Prof. Dr. AV. Pauli, möchte
ich für sein dauerndes Interesse an dieser Arbeit herzlich danken.
Besonderen Dank schulde ich auch Herrn Dr. R. Jost für seine
wertvollen Ratschläge beim Beginn dieser Arbeit. Weiter bin ich
Herrn Prof. Dr. F. J. Dyson für eine aufschlussreiche Diskussion
zu grossem Dank verpflichtet und Herrn Prof. Dr. R. Kronig für
einige wertvolle Hinweise.
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