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Hohere mesontheoretische Niherungen zum magnetischen
Moment des Protons
von A.Thellung, ETH. Ziirich / T.H. Delft (Holland).
(22. 1. 1952.)

Summary: The fourth order corrections to the magnetic moment of the proton,
due to the coupling with a neutral pseudoscalar meson field, are calculated within
the framework of Dyson’s radiation theory, a slightly different method of self-
energy subtraction being used. The integrations over the Feynman parameters
are carried out only in the approximation 0% = (u/M)? = 0. The results are
unable to compensate the wrong second order contributions. Some questions
concerning the renormalization of the coupling constant are discussed in detail
and it is shown that, to a certain extent, the definition of what has to be inter-
preted as renormalization terms is arbitrary, without modifying the quantitative
predictions of a theory.

§ 1. Einleitung.

In den letzten Jahren wurde, vor allem durch Arbeiten von
Tomonacal), ScawiNcer?), Dyson3) und FryNmMAN?), eine rela-
tivistisch invariante Form der Quantenelektrodynamik entwickelt,
die dank der Einfiihrung des Begriffes der Massen- und Ladungs-
renormalisation imstande ist, die Divergenzschwierigkeiten zu um-
gehen und fiir die beobachtbaren Effekte endliche Resultate zu
Liefern. Nachdem diese Theorie fiir gewisse Phénomene glénzende
Ubereinstimmung mit dem Experiment ergeben hatte5), war es
naheliegend, ahnliche Rechnungen mit den Mesontheorien zu ver-
suchen. Wie man die kleine Abweichung des magnetischen Momen-
tes des Elektrons vom Wert, den man auf Grund der Diracschen
Theorie erwarten wiirde, durch den Einfluss des Strahlungsfeldes
erkliren konnte (vgl. S III), so hoffte man insbesondere auch,
die relativ grossen anomalen magnetischen Momente von Pro-
ton und Neutron durch ihre Kopplung an Mesonfelder in richtiger
Grosse zu erhalten. Im Sinne einer Stérungsrechnung, die als
ein wesentlicher Zug allen bisherigen Theorien anhaftet, wurden
die Beitrige verschiedener Mesonfelder zu den magnetischen
Momenten der Nukleonen in 2. Ordnung in der Kopplungskon-
stanten durch viele Autoren berechnet®). Die Resultate zeigten,
bei aus der Theorie der Kernkriafte in 2. Ordnung entnom-
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menen Werten der Kopplungskonstanten, wenig Ahnlichkeit mit
dem Experiment, und auch das von der Kopplungskonstanten
unabhéngige Verhiltnis der magnetischen Momente von Neutron
und Proton wurde von keiner Mesontheorie richtig wiedergegeben.
Der naheliegendste Grund fiir dieses Versagen war in der Anwendung
der Stoérungsrechnung zu suchen, da man es hier, im Gegensatz
zur Elektrodynamik, mit einer starken Kopplung zu tun hat. Wenn
iberhaupt die Storungstheorie zulassig war, so stand auf jeden Fall
zu erwarten, dass die folgende Naherung einen Beitrag von &hn-
licher Grossenordnung liefern wiirde.

Das Fehlen einer Theorie, die ohne Entwicklung nach Potenzen
der Kopplungskonstanten auskommt, liess es deshalb als wiin-
schenswert erscheinen, die Berechnung der anomalen magnetischen
Momente in der 4. Ordnung zu versuchen. Dabei sollte sich erstens
zeigen, ob sich auch in dieser Niherung alle Divergenzen als
Renormalisationen deuten liessen. War dies der Fall, so war die
zweite Frage, ob die Resultate imstande waren, die falschen Aus-
sagen der 2. Ordnung zu verbessern. In der vorliegenden Arbeit
wurde als Modell die pseudoskalare Mesontheorie mit pseudoska-
larer Kopplung gewahlt, da diese Theorie am besten geeignet er-
scheint, die fiir die Nukleoneigenschaften verantwortlichen Me-
sonen zu beschreiben. Da die Rechnungen ausserordentlich umfang-
reich werden, mussten wir uns auf ein neutrales Mesonfeld be-
schrianken, so dass wir bloss fiir das Proton ein magnetisches Mo-
ment erhalten.

Wiahrend sich die urspriingliche Schwingersche Methode (vgl.
S III) fiir praktische Rechnungen in 4. Ordnung sehr kompliziert
gestaltet, eignet sich der Feynman-Dysonsche Formalismus3)4)
besser. Er wurde von Karprrus und Krorr”) zur Berechnung des
anomalen magnetischen Momentes des Elektrons in 4. Ordnung
bentitzt und wird im wesentlichen auch in der vorliegenden Arbeit
verwendet. KEine Methode von GEHENTAU und ViLnLars®), die
speziell fir den Fall konstanter #usserer elektromagnetischer Fel-
der entwickelt wurde, wiirde sich ebenfalls gut eignen, vielleicht
auch eine Methode von KArLvLin?®), bei der man direkt in der
Heisenbergdarstellung arbeitet. Diese letzte Methode wurde kiirz-
lich von HeBER®) zur Berechnung der magnetischen Momente in
2. Ordnung verwendet.

Was die Frage der Divergenzen betrifft, so wird sich im Laufe der
Rechnung zeigen, dass sich durch die Renormalisation von Proton-
und Mesonmasse sowie der elektrischen Ladung und der Meson-
kopplungskonstanten tatsédchlich alle Unendlichkeiten in konsi-
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stenter Weise (d.h. mit den gleichen Renormalisationen wie in
anderen Problemen) beseitigen lassen. Inzwischen hat MaTTrEWS10)
zeigen konnen, welche Meson-Nukleon-Wechselwirkungen mit Hilfe
der Renormalisationsmethode in allen N&herungen zu eindeutigen
~und konvergenten Resultaten fiihren und welche es nicht tun.
Die hier verwendete Wechselvvlrkung zwischen Proton- und Meson-
feld gehort zur ersten Sorte. Daran dndert sich nichts, wenn ein
dusseres elektromagnetisches Feld hinzukommt.

Wegen des Umfanges der Rechnungen kann nur ein kleiner
Teil der Arbeit dargestellt werden. In erster Linie sollen die Unter-
schiede und Besonderheiten gegeniiber dem analogen Problem in
der Elektrodynamik?) diskutiert werden. In § 2 wird die Methode
zur Aufstellung des effektiven Energieoperators skizziert und die
hier verwendete Methode der Massenrenormalisation erldutert. §3
handelt von der Regularisierung der divergenten Ausdriicke. § 4
ist den Effekten 2. Ordnung gewidmet, und die Methode zur Aus-
fihrung der Impulsraumintegrationen wird am Beispiel der La-
dungsrenormalisation illustriert. In § 5 werden Probleme, die bel
der Renormalisierung der Kopplungskonstanten auftreten, behan-
delt. In § 6 wird das magnetische Moment 4. Ordnung berechnet.
Die Resultate werden diskutiert und mit einer kiirzlich bekannt-
gewordenen japanischen Arbeit iiber dasselbe Problem!?), in der
auch geladene Mesonfelder verwendet werden, verglichen.

§ 2. Zur Methode. Massenrenormalisation.

Wir verwenden durchgehend natiirliche Einheiten (% =¢ = 1).
Der differentielle Hamiltonoperator in der Wechselwirkungsdarstel-
lung lautet fiir unser Problem

H (z) = H*(x) + H' (2) , (1)
H(z) = —tey (x) yu v (2) 4 (2) (2)
H(z) =i fy (z) 5 y () @ (2) — B3 (2) —E3 (2) . (3)

Hier bedeutet 4, das Viererpotential des &usseren elektromagne-
tischen Feldes (c-Zahl), @ ist der Operator des (quantisierten)
pseudoskalaren neutralen Mesonfeldes, withrend die Protonen durch
das (quantisierte) Spinorfeld vy, y = y* y, beschrieben werden. y,
sind die Diracschen Matrizen, y5 = 9, ¥s ¥3 v4. € bedeutet die elek-
trische Ladung des Protons, f die Kopplungskonstante fiir die
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Wechselwirkung zwischen Proton- und Mesonfeld. v, » und @ er-
fillen die Gleichungen der ungekoppelten Felder,

0 0w —
(VM—57H+M)1#=0, (Ol’ﬁ m—wM)=0, (4)
{ L ) = (5)

und die entsprechenden invarianten Vertauschungsrélationen

— 1 /
{%a(fl?), T/’ﬁ(x)}=—isocﬁ(x_$)’ (6)
[@(x), @(a")] =iD(z—a), (7)
WO

{A,B}EAB+BA, [4,B] = AB— BA. (8)

Sin (6) ist identisch mit der Schwingerschen S-Funktion (vgl. S IT),
wenn man dort die Elektronenmasse durch die Protonmasse M
ersetzt. D in (7) 1st gleich definiert wie das Schwingersche 4, wenn -
man die Elektronenmasse dort durch die Mesonenmasse u ersetzt.

In (4) und (5) sowie in S und D von (6) und (7) bedeuten M =
My + 0M bzw. u = py + ou die ,,physikalischen‘* (renormalisierten)
Massen von Proton bzw.Meson. (M, u, bezeichnen die ,,mathema-
tischen‘* Massen der Teilchen, wie sie urspriinglich in der Hamilton-
funktion der ungekoppelten Felder standen. 6M und o sind die
Anderungen dieser Massen, die durch die Wechselwirkung zwischen
den beiden Feldern hervorgerufen werden.) Dagegen sind e und f
die ,,mathematischen Kopplungskonstanten; fiir sie haben wir
Renormalisationen zu erwarten. Da in besagter Weise die Selbst-
energien in die Hamiltonfunktion der ungekoppelten Felder auf-
genommen sind, miissen sie in der Hamiltonfunktion der Wechsel-
wirkung wieder subtrahiert werden. Dem wird durch den Term
— E$ — E% in (3) Rechnung getragen*).

E3 und Ej; sind so definiert, dass die Einteilchenterme (1 Proton-
oder 1 Meson-Terme) der S-Matrix ohne dusseres Feld**)

S (00)> pom = <S(°°)>0P, =1 (9)

Ausserdem sind die Vakuumerwartungswerte der Selbstenergien
so definiert, dass auch der Vakuumerwartungswert der S-Matrix

S(e0)>gpou=1. (10)

*) Nach MaTTHEWS!?) miisste auch ein Term 4 @4 subtrahiert werden, um die
Meson-Meson-Streuung endlich zu machen. Da er jedoch fiir das hier interes-
sierende Problem keine Rolle spielt, lassen wir ihn weg.

*¥*) 8§ (c0) ist in D I, Gl. (32) gegeben, wobei nun unter HI der Ausdruck (3)
zu verstehen ist.
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Aus (9) folgt direkt, bei Bildung der Einteilchenterme auf die in
D I oder D II dargelegte Weise, dass die Selbstenergiedichten von
Proton und Meson in 2. Ordnung in f — die Selbstenergien hoherer
Ordnung haben in unserer Naherung keinen Einfluss auf das ano-
male magnetische Moment — gegeben sind durch

Bj(a) = — 5ift [ 8@ [§(a) M (e—2) (o) +

+y(z) M (2" —x) p(x)], } (11)

M, (z—a') =y;S;(x—2")y; D, (z—1"),
und

B5(@) = — < if* [ @' Splys S.(a— ) y5 S(a’ —2)] @ (0) B(x). (12)

(Sp bedeutet Spurbildung beziiglich der y-Matrizen.) Weiter ent-
halten die Selbstenergiedichten noch Vakuumterme, so dass

) i g /
B (x) + B3 (2)> o0 = — 35 1f* | @42 Splys 8o (a—a')x
XVs Sc (37'—93):[ Dc (m_m’) g (18)

Dann 1st auch (10) erfillt.

In diesen Gleichungen bezeichnen S, und D, die ,,kausalen*
Funktionen

2: [ yP=M  ipe
So(e) —— 2o [arp P o, (14)

2 1 -
Dc(m):_(zi;)!l\/‘d4kmek . (15)

atx,d*p, d*: bedeuten die reellen vierdimensionalen Volumenelemente
dx, dz,dzzday, ..., ... . pz, kz, yz, p2 k2 stehen fiir die skalaren
Produkte deererervektoren Pu Ty = T B — Py Ty & 55 wsvi g 5 vk k=
—k2. M'? = M? — 1e soll angeben, dass man sich bei der Proton-
masse einen infinitesimalen negativ-imaginiren Zusatz zu denken
hat, der bei der p,-Integration den Weg um die Pole p, = - Vp 2+ M2
festlegt und den man nach der Integration nach Null gehen lasst.
Analog bedeutet w'? = pu? —ie.

Aus Griinden der relativistischen Invarianz ist direkt ersichtlich,
dass die Ausdriicke (11), (12) von der Form sind

B =oMyy, ES = op® o2, (16)

0M und 6u? divergieren jedoch.
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Wir interessieren uns fiir den 1 Proton-0 Meson-Teil des in D I
definierten effektiven Hamiltonoperators Hy

CHp(®)>1 p o 31 = 2( /d4 ../"dm(mx
x <P (H*(x) o, H@), ..., H( ()51 p a1 - (17)

Er stellt die Dichte der potentiellen Energie eines Protons im &usse-
ren elektromagnetischen Feld in 1. Bornscher Nédherung dar und ist
mit dem analogen Energieoperator, den man nach der invarianten
Storungsmethode von Scuwincer erhielte, identisch (D I, Appen-
dix). Das Ziel ist nun, (17) zu berechnen bis zur 4. Ordnung in f.
Daraus lasst sich dann das magnetische Moment des Protons ~ f*
ableiten.

Hierbei denken wir uns die Selbstenergiedichten E5, und E5,, die
n (17) vermége (3) vorkommen, nicht in der meist verwendeten
Form (16), sondern in der Form (11) und (12) — mit Beriicksichti-
gung von (13) — eingesetzt. Diese Art der Selbstenergiesubtraktion
erwies sich in Arbeiten von Jost und Lurrineer!2) und von ScHAF-
roTH'?) Im Rahmen der Schwingerschen Theorie als niitzlich. Sie
lasst sich im Rahmen der Dysonschen Rechenmethoden ebenfalls
durchfiihren. Sie ist zwar etwas weniger elegant als der tbliche
Dysonsche Subtraktionsformalismus, hat aber den Vorteil, dass
man in den Termen von (17), wo die abgeénderten »- und -Ope-
ratoren (in D II mit %" und ¢’ bezeichnet) auftreten, die Renormali-
sationen von e und f ,,von selbst* richtig erhilt, wihrend die iib-
liche Methode eine feinere Analyse gewisser unbestimmter Ausdriicke
notig macht. Wir werden dies am Schluss von § 4 noch néher
erliutern.

Die Einfiihrung der Ausdriicke (11), (12) in (17) hat zur Folge,
dass in den P-Klammern neben den Variablen z®, die fiir die chro-
nologische Reihenfolge massgebend sind, noch andere Variablen
z® vorkommen. Fir diese Fille miissen die Regeln zur Bildung
der Einteilchenterme noch etwas verallgemeinert werden. Nehmen
wir als einfaches Beispiel den Ausdruck

e f dta’ P (H(x), —ES(@)) > ps (18)

der im Term n = 1 von (17) enthalten ist. Einsetzen von (11) gibt

$ 1 @ [d8" (P (e 0), (2') Mol — ") (&) +

+P9<21>(H( )s p (&") Mo(x" — ') (') > p-
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Wegen (2) erhdlt man also P-Klammern von der Form (Spinor-
indizes weggelassen)

Pyy (v (@) w (@), v (@) (2"))
und Po_(21_) (v (2) p(2), p (z") p (). (19)

Die Indizes 0, 1, 2 am Operator der chronologischen Ordnung P
beziehen sich auf die Variablen x, z’, ’’. Unterstreichen von 0 und
1 soll andeuten, dass die Zeiten der Punkte x und z’ fiir die Reihen-
folge der Faktoren massgebend sind [wie es in (18) die Meinung
war], wihrend die runde Klammer um 1 2 bzw. 2 1 besagen soll,
dass p (z”") immer direkt hinter p () stehen muss bzw. ¥ (z'') im-
mer direkt vor y (z'). Etwas allgemeiner definieren wir z. B.

P ooy (@) w(a") . 7 (2") p(a')) =
_ @ p@) T @M p(@) fra > g
ltp(x”’ p(a) p(x)p(x") fur zy'> .
Zum Einteilchenterm von (20) gehort ein Ausdruck, in dem ¥ (x)
und y(z') als freie Operatoren stehenbleiben, wahrend beziiglich

p(2") und w(z"”) der Vakuumerwartungswert gebildet werden
muss. Dieser ist, mit den Definitionen (8) und mit

_r_J+1fﬁr$0>a}6
e(z $)_lw1fﬁr 2y == s (21)
<P(02)(31)("Po¢ (z"), 'guﬁ( ”’))\ -

_.{1/)05 ”) ’lp " }+—8 T— m)/["/"a( ) ip(m”’)]

1 ’
=———S —2") — s e(z—2zx) SW (" —a"),

ﬁ( 2 aﬁ(

<P(02)(31) (o (), ?;,3(55”,) ) o=

':-—-%8(&3—66,)[8(1) ((B” ”I)+’L£($—Ji)8aﬁ($”—$m)]. (22)

also

Die zur Herleitung von (22) neben den Vertauschungsrelationen (6)
verwendeten Ausdriicke fiir Vakuumerwartungswerte sind bel
SCHWINGER (S II) erlautert. Ahnlich findet man fir Vakuum-
erwartungswerte in den Mesonoperatoren

CP gy (D (27), B(2")) 5, =
— 2 [DD(z" —z") +ie(z—a) D(z"—a")]. (28)
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Formel (22) dient auch zur Berechnung des Einteilchenterms im
spezielleren Fall (18), (19), wo mindestens zwei der Variablen z®
zusammenfallen. Ist insbesondere z” =  und z"” = 2’, so gehen
(22) und (23) in die bekannten Beziehungen tiber

(P ((@), Pp(@)) D= — 5 £ (3—2)Ses(3—2),  (22)

Py (B(2), D(a))>e= 5 De(z—12'), (23")
wo
Se(x—2z') = SV(z—a)+ie(z—2a) S(x—a')=
= SW(zg—z')—2¢8(z—=z) (24)
und

Dy(z— 2" )=DV(x—z")+1e(x—a)D(x—2z') =
=DWV(z—1z')—2iD(z—x') (25)

durch die Fourierdarstellungen (14) und (15) gegeben sind. S, S®
und S sind gleich definiert wie in S II; nur muss die Elektronmasse
durch die Protonmasse M ersetzt werden. D, D) und D sind iden-
tisch mit den Schwingerschen 4, AV und A fiir Teilchen der
Ruhemasse u.

In (22) tritt, ebenso wie in der bekannten Beziehung (22'), der
Faktor — % ¢ (x — ') auf, wo « und z’ die fiir die Reithenfolge der
Faktoren in den P-Klammern verantwortlichen Variablen sind.
Aus diesem Grunde lassen sich die Dysonschen Uberlegungen (vgl.
D I) betreffend Vorzeichen usw. bei der Berechnung von Matrix-
elementen unverdndert auf den vorliegenden Fall iibertragen, und
die in D I und D II gegebenen Regeln zur Bildung von Einteilchen-
termen oder allgemeineren Operatoren aus P-Klammern gelten
hier ebenfalls, mit dem einzigen Unterschied, dass man fiir die
Vakuumerwartungswerte von Operatorpaaren an Stelle der S,- und
D .-Funktionen von (22’) und (23") die allgemeineren Funktionen in
den eckigen Klammern von (22) und (23) einzusetzen hat, falls die
Argumente der Operatoren nicht Variablen sind, welche die zeit-
liche Ordnung in den P-Klammern bestimmen. Wie man mit den
Funktionen (22), (23) zu rechnen hat, soll in § 4 am Beispiel der
Renormalisation von e noch ausgefiithrt werden.
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8§ 3.‘ Regularisierung.

Wie bereits bemerkt, werden gewisse Ausdriicke, wie z. B. die
Selbstenergiedichten (11), (12), divergent. Es handelt sich dabei
immer um Renormalisationen, also um unbeobachtbare Effekte. Da
man sie jedoch bei der Berechnung der beobachtbaren Effekte
beniitzt, sollte man, um letztere eindeutig zu definieren, von einer
Regularisierungsmethode Gebrauch machen, wie sie von Paurr und
ViLLars!4) u. a. entwickelt worden ist. Im vorliegenden Fall kann
eine einfache und klare Vorschrift zu einer relativistisch invarianten
Regularisierung durch die folgenden zwei Forderungen gegeben
werden :

1. Man kopple formal neben dem wirklichen Mesonfeld mit der
Masse # und der Kopplungskonstanten f noch weitere (virtuelle)
Mesonfelder des gleichen Typs mit Massen py, g, ... und mit (zum
Teil imaginédren) Kopplungskonstanten f)e¢,, f/c, , ... an das Proton-
feld. Diesen Mesonfeldern misst man keine reale Bedeutung zu;
sie haben aber den Effekt, dass jede in den Formeln auftretende
D-Funktion (D, DV, D oder D,) ersetzt wird durch eine Summe
von Funktionen

D(x; p) — ) e:D(w; )  (co =1, o = ). (26)

In 4. Ordnung, wo Produkte von zwei D-Funktionen auftreten,
erhélt man damit eine Regularisierung mit Faktorisierung. Den ¢;
und u; werden Bedingungen auferlegt, so dass die sonst divergenten
Ausdricke endlich werden. Fiir unsere Zwecke gentigt

D, =0 (27)

1

(woraus bereits folgt, dass mindestens eine der formalen Kopp-
lungskonstanten imaginir sein muss). Damit werden die logarith-
mischen Divergenzen weggeschafft, und sowohl die Protonselbst-
energie (11) als auch die Renormalisation von e in 2. Ordnung wird
dadurch endlich. Die Renormalisation 2. Ordnung von f ist zwar
ebenfalls bloss logarithmisch divergent, doch enthélt sie einen
Term, in dem die Mesonselbstenergie eine Rolle spielt. Um diese
zu regularisieren, braucht man noch eine zweite Vorschrift:

2. Man kopple formal neben dem wirklichen Protonfeld noch
weitere (virtuelle) Spinorfelder mit Massen M, und Kopplungs-
konstanten f ¢, /0, an die Mesonfelder. Diesen Spinorfeldern
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kommt ebenfalls keine reale Bedeutung zu. Sie haben den Effekt,
dass in (12) und allgemein in Ausdriicken, wo Spuren von S-Funk-
tionen vorkommen, und nur in diesen, jede Spur in eine einfache
Summe von Spuren iibergeht (Regularisierung ohne Faktorisie-
rung) :

Sp(yS(a; M)yS(z; M)....) — l |
'*kZ’C’kSP(VS(w;Mk)yS(a:;M,c).,._) , (28)
| (00:1: M():M) ,

(Die S konnen irgendwelche S-Funktionen und die ¢ irgendwelche
y-Matrizen bedeuten.) Da die Mesonselbstenergie (12) quadratisch
divergiert, haben wir hier zwei Bedingungen,

k k

notig, um sie endlich zu machen.

Da den Hilfsfeldern sicher keine reale Bedeutung zukommt —
ihre Hamiltonfunktionen der Wechselwirkung sind ja teilweise anti-
hermitisch — diirfen sie auf die beobachtbaren Resultate keinen
Einfluss haben. Das erreicht man dadurch, dass man die Hilfs-
massen u; und M, gross wihlt gegeniiber den realen Massen p und
M. Nach erfolgter Rechnung macht man den Grenziibergang
pi—> 00, My— oo (1, k£ 0)14). Die Formulierung mit den Hilfsfeldern
1st praktisch, weil sie auf alle Fragen (z. B. Faktorisierung oder
Nicht-Faktorisierung) der Regularisierung von Ausdriicken beliebig
hoher Ordnung eine eindeutige und verniinftige Antwort gibt.

Um die Formeln nicht unnétig zu belasten, schreiben wir sie auch
im folgenden nicht in der regularisierten Form. Jedoch denken wir
uns die Ausdriicke geméss den dargelegten Vorschriften regulari-
siert und machen auch Gebrauch von der Eigenschaft, dass sie end-
lich und eindeutig definiert sind. Wenn wir im folgenden dennoch
von divergenten und konvergenten Ausdriicken sprechen, so ist
damit das Verhalten gemeint, das sie ohne Regularisierung hatten.

§ 4. Magnetisches Moment und Ladungsrenormalisation in 2. Ordnung.

Mit der in § 2 skizzierten Methode findet man fiir den effektiven
Hamiltonoperator (17) in 2. Ordnung, bei Verwendung der Be-
zelchnungen

F(z) =F(0), F(«)=F(Q1), F(z")=F(@2),

F(z—a') =F(01), F(a'—a) = F(10) usw. (30)
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fiir Funktionen unter dem Integralzeichen,

<Hg§)>1 P.OM ™ Hg,g) T ng) ’ (31)
y ; 1 . ’ "
H® (z) = — - f2ie 4, (x) v/d‘*x fd% X
x 9 (1) v58:(10) 7, 8. (02) y5 9 (2) D,(12), (31a)

HY (2) = — f%eAM(ac)fd‘*m’ f dta” {1 (0) [ £(02) S(01) +
+248(01)] 5 8:(12) y5 9(2) + (<) } D.(12). (31D)

Mit (<) ist der Ausdruck gemeint, den man erhélt, wenn man den
vorangehenden Term ,,von hinten nach vorn liest:

¥(2) v58.(21) y5[12(20) S(10) + 24 S(10)] 7, v (0).
Die Ausdriicke in den eckigen Klammern entstehen als Differenzen
zwischen den Funktionen in den eckigen Klammern von (22) und
den S,-Funktionen (24). Aus dieser Form von (31b) ist die relati-
vistische Invarianz nicht direkt ersichtlich; sie wird jedoch spéter
evident werden.

Obwohl die Methode, die zu (81), (31a), (81b) fithrt, eine rein
analytische ist, geben wir, um den Vergleich mit anderen Arbeiten

a

[}
1.
)
1
.
.
.
.

Fig. 1.
Feynman-Dysonsche Figuren fiir die Streuung eines Protons an einem &usseren
elektromagnetischen Feld in 2. Ordnung. Protonlinien sind ausgezogen, Meson-
linien gestrichelt, Photonlinien punktiert gezeichnet.

zu erleichtern, in Fig.1 die Feynman-Dysonschen Figuren?)4) fiir
die Effekte in 2. Ordnung. Figur a entspricht dem Ausdruck (31a),
Figur b dem Ausdruck (81b); jedoch ist in (31b) der Effekt der
Massenrenormalisation bereits beriicksichtigt. Ohne Massenrenor-
malisation hétte der Figur b entsprechende Ausdruck die Form:

__i_fzq;eAM(m)fd4m'/d4x”{w(O) Y Se(01) 75 8, (12) 75 9(2) +
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Der Term, der Figur ¢ entspriche, ist Null, da

Sp(yuSeys8) =0  (6=1,2,38,4) (32)

auf Grund bekannter Eigenschaften der Dirac-Matrizen.

Setzt man voraus, dass das #ussere elektromagnetische Feld
(rdumlich und zeitlich) quasi-konstant ist, so erhélt man aus (31a)
mit den bekannten Methoden?3)*)

HP(x) = — Ry f*iedy(x) y(z) ypw(c) —

— iP5 A (@) 5o (F @ o (@), (89
wo

1
Ouv= 5, (V,u Yv— Vv y,u) . (34)
Alle andern Terme von (81a) sind von einem der drei Typen

; B -
const. Aﬂ_é_i; O"(y v), const. 4,0 (py,y),

0
0x,

const. 4, "1 (% 0un ¥) . (n=0,1,2,...).

Diese sind, abgesehen von Viererdivergenzen, dquivalent mit Ter-
men ~ 0A4y/dx, (was verschwindet, wenn man die 4, der Lorentz-
schen Nebenbedingung unterwirft) oder ~ [] 4, (was fiir ein quasi-
konstantes Feld vernachléssighar ist). :

Der erste Term auf der rechten Seite von (33) bedeutet eine
Ladungsrenormalisation zu H¢ in (2). Die Renormalisationskon-
stante R¢ ist durch das Integral

1
e 0 P k2+2 M2 8 .
Ra_ 8 it "/Edgjd I [k2+y’2—p2§+M2.§2]3 (80)
0

gegeben und wiirde ohne Regularisierung logarithmisch divergieren.
Die Vorschrift (26) mit der Bedingung (27) macht (35) jedoch
regulér. Der zweite Term rechts in (83) ist, abgesehen von einer
Viererdivergenz, von der Form eines Pauli-Terms

1
— @ 5 Fuvmyuy, (36)

WO
04, 04, 5 -
=z, 0w, ' wrT oy YOV B 7)

Py
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und bedeutet die Energie, die von dem zus#tzlichen magnetischen
Spinmoment des Protons in 2. Ordnung herriihrt. Dieses betrigt,
in Kernmagnetonen e¢/2 M gemessen,

1
(2)2:_j__2if & _
1ot (273) 2 d§ Eyrot(l—¢g)

B f o\2(1 6 92 (1-46?) _6*(3-99) d
— (_) {Z__{- S Ml In T e arccos ?}, (38)

6=—r; (39)

es 1st von LUTTINGER u. a.%) berechnet worden.

Der Ausdruck (31b) gibt eine reine Ladungsrenormalisation.
Diese Rechnung wollen wir etwas ausfithren, um das Rechnen mit
den IFunktionen (22) zu illustrieren. Setzen wir also in (31b) die
Fourierdarstellungen (14), (15) und (vgl. S II!)

S (@) = — g [0y p— M) e(p) 8(p* + M2 6=, (40)

o 1 1 ) -M ipx
S(@) = — 5 ¢(0) S(¢) = e HW [d*p 250 672 (41)

eln [&(p) ist analog (21) definiert, d ist die eindimensionale Diracsche
0-F'unktion und HW bedeutet Hauptwert bei der p,-Integration].
Im Laufe der Rechnung zeigt sich, dass der Ausdruck mit (<) in
(81b) denselben Beitrag gibt wie der vorangehende Ausdruck. Wir

nehmen dies vorweg und schreiben 2 x den ersten Term; dann
ergibt sich

HP(a) = ¢ [Piedu(e) [ o] [ [asa’ [atp [dtp’ [dvk x

Xp(x)yu(yp— M) ys(iyp"— M) ysp(z") x
: " — 1 2. 1
X [i(@—2") g e(P) O (P2 + M2) + oo HW — | x

1 1
PE+M'T kPt u?

ei'p(w~a:’) ei v (z'—ax') eik(x’—a:”).

Die Integration tiber x’ gibt eine (vierdimensionale) §-Funktion

_%)4fd4 o gi—ptr th) 2’ 5(—10 + ,pr+ k) ' (42)
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so dass die Integration tiber p’ trivial wird (p” — p — k). Beniitzen
wir einige bekannte HEigenschaften der y-Matrizen, so erhalten wir

. 1 - —4 )
HP(2) =~ f2ie 4,(x) Wﬁ[dm /d‘-‘pfd% <
X (@) yulp?+ M2+ (syp) oy k) — My k)] v (z”) X

: " - 2 1

x [ie(a—a") oz () $(p%+ M) + s HW 35 x
1 1

C -k M B

i p(x— ')

Wir fassen nun die beiden letzten Briiche geméss der Feynmanschen
Formel?)

Ens
Fre il fdfl/dfﬁ / e
X [ag+ & (ay— ao) + cm +5n(an—an-1)] L (43)
zusammen :
1 1 : 1

Bru® (p-k)P+M?
Mit der Schiebung*)

(k24 w2+ E(p2—2pk+M2—u?)]? "

K=k—E&p (44)

wird der Nenner rein quadratisch in der neuen Variablen k’. Da
k' sonst nur noch im Ausdruck mit den y-Matrizen vorkommt,
geben dort Terme linear in k" aus Symmetriegriinden keinen Beitrag
bel der Integration. Mit

1

(p*+ M%) 5(p*+ M3 >0, (p+ MY HW ——m > 1 (45)
erhilt man
HP (2) = —+ f2ied,( fd4 fd‘*kfd&x
x«;(wm{*m—x o | APy — M) £(p)

ME_
[E2+u2— p? £+ M2 E2)2

| ’l,’y_’p M i (ac—— H)
- fd4 [1 —E—HW LLEZ0L Me| o) x

x 5(p2+ Mz) etp(@—a")

+

X .
62+ @2+ (p2 +M2_’u2) E-pr e } p(z")
*) Man beachte, dass dank der (gedachten) Regularisierung gemiss (26), (27)
das Integral iiber & wohldefiniert und endlich ist. Im Gegensatz zu KarpPLUS und

Krorvr?), Seite 540/541, bekommen wir deshalb bei der Schiebung keinen Ober-
flachenterm.
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Das erste Integral tiber p gibt nach (40) gerade wieder die S-Funk-
tion, jetzt aber mit dem gleichen Argument (x — z") wie die e-
Funktion, mit der sie multipliziert ist. Dadurch wird die Lorentz-
invarianz evident. Setzen wir fiir ¢ (x — 2”) S (x — ") die Fourier-
darstellung (41) ein und verwenden wir die Abkiirzungen

a=K'2 4 @ p2E 4+ M2E2,  B—a+ (p2+ M) (§—87),
so ergibt sich
1
1 . . 1 8 " ’ i
HP(2) =— 5 fHie d,(2) 2 (5 fd% fd“kfd‘-*p/déw(x) Vi X

x[HW 7= MS-+[1 E—HW I Me | }eW‘“’ “p(a’) =

24 M2 p*+ M?
——friedu@i(g) [ata” faw [atp /dfw )7y %
x{ = —+uyp—ﬂ®(sm@ﬂuszgﬁg+-%ﬂeww—ﬂwwmﬂ,

da

a2 pE T af

1 1 p-afl 1
=+l
Zur Ausfihrung der z”-Integration zerlegen wir ¢ nach FoURIER.
Um die Formeln nicht zu iiberlasten, setzen wir nur eine Fourier-
komponente von y ein (da sie beliebig i1st, wird die Allgemeinheit
der Rechnung nicht eingeschrédnkt):

(z) = u(q) e'*”. (46)
Analog werden wir in §§ 5 und 6 brauchen
p(z) = u(q) e 7= (47)

Wegen der Diracgleichungen (4) gilt

q iy g+ M)u(q) et® = u(q)e=i7% (iyq' + M)... =0 (48)
un

(@ MP)u(g) et =u(g) e (¢*+ M%) .- =0, (49)
sofern der mit ... bezeichnete Rest endlich ist (d. h. nicht von der
Form (vyq + M)~ oder (¢% + M?)-! usw.).

Die Integration tiber z” gibt nun, analog (42), die Funktion
0 (g — p). Die p-Integration wird wieder trivial (p — q). Wegen (49)

21
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hat man g — «, und bei Berticksichtigung von (48) und (46) erhélt
man schliesslich

HP(2) = — R f*ie A, (2) 9 (@) v (2), (50}
wo 1
2 ) [ 1
Ri= g | 460—8) [ 0% | e aprss —
0
4 M2 £ =
e e T | is

Ein Vergleich der Formeln (33) und (50) mit (2} zeigt, dass die
beobachtbaren Einfliisse des dusseren Feldes auf das Proton — ab-
gesehen von Pauli-Termen — nicht durch eA4,, sondern (bis in
2. Ordnung) durch

(6 A ) ren, = e Au[1 + (B + Bp) 7] (52)

bestimmt werden. (Es ist konsequent, die Renormalisationen nicht
auf e allein, sondern auch auf die 4, zu beziehen, da die Ay auch
wieder durch Ladungen e erzeugt werden.) Ein Vergleich von (35)
und (51) — am einfachsten mit Hilfe einer partiellen Integration in
&%) — zeigt jedoch, dass

Rt + R =0. (53)

Hierbei ist die Regularisierung wieder wesentlich, da R¢ und Rj
sonst unbestimmt sind und sich nur auf Grund gewisser Zusatzvor-
schriften betreffend die Ausfithrung der Integration wegheben.

Eine Bemerkung: Verwendet man die Selbstenergiedichte in der
Form 6 My, so dndert sich H?(31a) nicht, wahrend H®(31b) eine
andere Form bekommt. Bei der Berechnung von R stosst man
dann auf den Ausdruck (p2? + M?) (p? + M'%)~! im Integranden,
wahrend bei unserer Rechnung Ausdriicke von der Form (p2+M?)x
x HW (p2?+ M%) -1 auftraten. Wegen der Aquivalenz von (p2+ M'2)-1
mit HW (p2 + M?)-1 + 17 6 (p? + M?)**) schiene es auf den ersten
Blick verniinftig, dem Ausdruck (p% + M?2) (p® + M’?)~! ebenfalls
den Wert 1 zu geben, wie das in einer Arbeit von Warsox und
Lerore!?®) bei der Renormalisation von f getan wird. Dann erhielte
man aber eine doppelt so grosse Renormalisationskonstante, und
es wiirde

(8 A,u)ren. = eA,M[I + (R; + 2 Rz) f2] 2

*) Vgl. die analoge Rechnung in 7), Seite 542.
**) Vgl. hierzu z. B. S. ITI (1. 68).
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Nun zeigt die Integration iiber z” und p, dass man es eigentlich mit
den Ausdriicken

LI () €% baw. ... HW @i (54)
zu tun hat, wovon der erste unbestimmt ist (daran kann auch die
Regularisierung nichts #ndern), wihrend im zweiten der Bruch
gleich 1 gesetzt werden darf. Eine Analyse solcher, durch die Inte-
gration tber ein unendliches Zeitintervall bedingter Unbestimmt-
heiten in der S-Matrix*) zeigt, dass es tatsichlich richtig 1st, dem
Bruch im ersten Ausdruck (54) den Wert 1/2 zuzuschreiben. Solche

Finessen sind dagegen nicht notig, wenn man die Selbstenergiedich-
ten in der Form (11), (12), (18) einfithrt.

§ 5. Renormalisation der Kopplungskonstanten.

Bei der Berechnung des anomalen magnetischen Momentes in
4. Ordnung haben wir Korrekturen zu erwarten, die von der Re-
normalisation von e4, und f2im Ausdruck 2. Ordnung [(33), zweiter
Term] herrithren. In einer konsistenten Theorie miissen die Renor-
malisationen fiir alle Prozesse, die man sich im Rahmen dieser
Theorie denken kann, dieselben sein, und man kann sie an Hand
einfacherer Prozesse bestimmen. Fir ed,, ist dies in § 4 geschehen
an Hand der Streuung eines Protons an einem #usseren elektro-
magnetischen Feld. Fir f2 konnte man analog die Streuung eines
Protons an einem ,,dusseren Mesonfeld betrachten. Doch bringt
das, abgesehen von der Frage, ob ein dusseres Mesonfeld etwas phy-
sikalisch Sinnvolles ist, Komplikationen mit sich, auf die wir noch
zu sprechen kommen werden.

Besser geeignet ist die Proton-Proton-Streuung. Fiir diesen Pro-
zess lautet die S-Matrix [D I, Gl. (32)] in 2. Ordnung *

S®(o0)= 1 2 | dia [ d*a'((@)ysp()) (9(@')ysp(a) Dula—a),  (55)
oder bel Einsetzen von Fourierkomponenten gem'ass (46), (47),
S®(o0) = 1 [ dia [ a4’ (i (q) e ys u(g) €47) x

x (W(p') e~ y5 u(p) %) Dy (2—2') (56)

Die Terme 4. Ordnung schreiben wir hier nicht explizit an; zu ihrer
Diskussion charakterisieren wir sie durch die Feynman-Dysonschen

*) Vgl. D11, Seite 1752 und 7), Seite 542.
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Symbole, Fig. 2. Hierzu ist zu bemerken, dass wiederum in den
entsprechenden analytischen Ausdriicken die Massenrenormalisa-
tion nach der in § 2 dargelegten Methode bereits ausgefiihrt ist.
Wiéhrend die Terme, die den Figuren d und e entsprechen, keine
Ausdricke der Form (56) geben, also keine Renormalisationen ent-

v \/\O/\J\J
A“\f/\/_)\/*é\

Flg. 2.
Feynman-Dysonsche Figuren fiir die Proton-Proton-Streuung in 4. Ordnung.

halten kinnen, zeigt sich, bei Beniitzung der Beziehungen (48), (49),
dass die den Figuren a, b und ¢ entsprechenden Ausdriicke aut die

Form ‘
const. f4 / A / &' (u(g") e %y u(g) €49%) x
X (u(p) e= " ysulp) €7%) Do(w—2) Fl(g—q)*]  (57)

gebracht werden koénnen. Das ist auch aus Griinden der Lorentz-
invarianz, zusammen mit (48), (49) ersichtlich.

Man kann sich nun F in (57) nach Potenzen von (g — q')2 ent-
wickelt denken. Der erste Term dieser Entwicklung I [0] gibt in
(57) einen Ausdruck der Form (56); dieser kann deshalb als Renor-
malisationsterm angesprochen werden (Fall I). Ebenso gut kann
man aber If' auch nach Potenzen von (¢ — q')? + u2 entwickeln und
den vom konstanten Term I'[— u?] herriihrenden Ausdruck als
Renormalisation zu (56) interpretieren (Fall II). Im Falle I definiert
man die physikalische Kopplungskonstante an Hand des unrelati-
vistischen Grenzfalles: Fir Geschwindigkeiten der Protonen, die
klein sind verglichen mit der Lichtgeschwindigkeit, werden in der
S-Matrix alle Terme der Form (56) in hoherer als 2. Ordnung als
Renormalisationen interpretiert. Auf den Fall der Streuung eines
Protons an einem &usseren Mesonfeld @¢ iibertragen, bedeutet das,
dass die Dichte der Wechselwirkungsenergie fur alle Néherungen

durch _ _ |
C (féa)ren_ YVs Y (58)

gegeben ist, sofern das dussere Feld @@ [wegen der Aquivalenz von
— (¢ — q')? mit dem Operator []] der Bedingung gentigt

Ode=0. (59 1)
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Im Falle II gibt (58) die Wechselwirkungsenergie fir alle Niihe-
rungen, sofern @@ der Bedingung

(—p7) Pe=={] (59 1)

gentigt, also der Gleichung des freien Mesonfeldes (5). In der Elek-
trodynamik und auch bei unserem Problem in § 4 sind die Falle I
und II identisch, da fiir Photonen x = 0. Nun ist ein Feld, das der
Gl. (59 I) geniigt, und damit auch der unrelativistische Grenzfall
in einer Mesontherie wahrscheinlich wenig sinnvoll, und tatsachlich
wird sowohl be1 MaTTHEWS1?) und NaKABAYAST und SaTo??) als auch
bei Warson und Lerore!®) die Definition II gewahlt. Es sei hier
aber betont, dass man mit der Definition I ebenfalls zu einer
konsistenten Renormalisation gelangt. Auch werden die quantita-
tiven Aussagen der Theorie dadurch nicht gedndert. Das soll am
Ende dieses Paragraphen bewiesen werden.

Zunichst seien noch die Resultate fiir die Renormalisation von f,
zusammengestellt. Man findet bis zur 2. Ordnung

fon. = 2[1+ (Bo+ By + B,) /7], (60)

wo RB,, R, und R, von den Termen herriithren, die den Symbolen a,
b und ¢ in Fig. 2 entsprechen. Sie werden im Falle II

1 &
_ b [ " 141, k- M2 &4 p2(E—-n) 7
R.= 47140/d§6/d?7u/d4h PR a s St R 1)
R, =2 R¢, (62)
1
i o (e 3P MA+p2E(L-8)
Rr-ﬁ;p/dff(l 5)/@410 e (63)

0

Ry ist durch (51) gegeben. Im Falle I wiirde R, einfacher, da die
Summanden p2(§ — n)n in Ziahler und Nenner wegfielen. B, wiirde
gleich bleiben. R, dagegen wiirde komplizierter.

Die Renormalisationen R, und R, stimmen mit den entsprechen-
den Grossen, die NAkaBAYAST und SaTo!!) fiir ein neutrales Meson-
feld finden, tberein, falls man ihre Ausdriicke regularisiert. [Dann
fallen dort wegen (27) gewisse additive, von g und M unabhéngige
Konstanten weg]. E, wird in der japanischen Arbeit doppelt so gross,
weil dort auch Neutronen an die Mesonfelder gekoppelt sind. Diese
geben fiir R, in den virtuellen Zwischenzustédnden denselben Beitrag
wie die Protonen. Mathematisch &dussert sich das darin, dass man
nicht nur eine Spurbildung beziiglich der y-Matrizen, sondern auch
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beziiglich der Matrizen des isotopen Spins auszufiihren hat. Das
gibt gerade den Faktor 2.

Nach (52) und (60) erwarten wir bei der Rechnung in 4. Ordnung
folgende Renormalisationsterme zum Pauli-Term (36)

— pD 2 By my [ B+ By + Ro+ Ry + R 2, (64)

wobel die E in (35), (51), (61), (62) und (63) gegeben sind.
Versucht man, die Renormalisation von f an Hand der Streuung eines Protons
an einem ,,dusseren Mesonfeld‘ zu bestimmen, so ergeben sich zwei Komplika-

tionen.
Erstens hat bei einer Wechselwirkungsenergiedichte vom Typus

H—j ¢ry H (65)

(j==1tfyysy, D= dusseres Mesonfeld (c-Zahl); HT ist durch (3) gegeben)
die Subtraktion der Mesonselbstenergie in HI auf die Renormalisation in 2. Ord-
nung keinen Einfluss (@ kommutiert ja mit j @%), und der R, entsprechende
Ausdruck wiirde im Falle I ohne Regularisierung quadratisch divergieren und
ware im Falle II nicht definiert (auch mit Regularisierung nicht). Dem kann man
abhelfen, indem man statt des dusseren Feldes &2 seine Quellen

= (0-p2) o (66)
in die Wechselwirkungsenergie einfiihrt:
H— j*» @+ H! (67)

(j® = c¢-Zahl). Ohne Subtraktion der Selbstenergien in HT erhilt man mit (67)
dieselbe S-Matrix wie mit (65), weil in allen Termen 4% mit einer Greenschen
Funktion von (66) multipliziert und tber den ganzen vierdimensionalen Raum
integriert, auftritt. Mit Selbstenergiesubtraktion kommt in 2. Ordnung fiir den
Fall (67) auch ein Beitrag von der Mesonselbstenergie hinzu, so dass die f-Renor-
malisationen nur logarithmisch divergent werden.

Die zweite Komplikation besteht darin, dass man so die folgende Renormali-
sation erhélt:

(1 DY) ren. = [ 9* [l ¥ (% R, +% By + Rc) fa] . (68)

Der Vergleich mit (60) zeigt, dass man @2 anders als f renormalisieren muss,
namlich

- 7 [1+ = Rm]’. (69)

ren.

Das gibt zu keinerlei Widerspriichen Anlass und weist hichstens darauf hin, dass
weder ein dusseres Mesonfeld noch seine Quellen etwas sehr Sinnvolles sind.

N. B. Dasselbe Problem hitte man auch in der Quantenelektrodynamik. Dort
kann man das dussere Feld nur deshalb gleich wie die Ladung des Elektrons re-
normalisieren, weil dort R,+ R, = 0.

Zum Schluss dieses Kapitels soll im Hinblick auf die oben disku-
tierten Fille I und II allgemein gezeigt werden, weshalb es in einer
Theorie, die durch Renormalisierung divergenzfrei gemacht werden
kann, bis zu einem gewissen Grade reine Konventionssache ist, wel-
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chen Anteil man von den ohne Regularisierung endlichen Termen
zu den beobachtbaren Grossen zéhlen will und welchen man als
Renormalisation interpretieren will. Die Rethenentwicklungen der
beobachtbaren Grissen nach Potenzen der physikalischen (renor-
malisierten) Kopplungskonstanten f, bekommen bel einer andern
Renormalisierung zwar andere Koeffizienten; der Wert von f, muss
dann aber konsequenterweise so gedndert werden, dass der nume-
rische Wert der Reihe, die man (durch Vergleich mit dem Experi-
ment) zur numerischen Bestimmung von f, bentitzt, ungeéndert
bleibt. Daraus wird folgen, dass auch die numerischen Werte aller
andern Reihen gleich bleiben.

Nennen wir die mathematische Kopplungskonstante wie bisher f.
Setzen wir voraus, dass die Theorie mit einer bestimmten Renorma-
lisation

f%=f2[1+R2f2+R4f4+R6f6—]—---] (70)

fir die beobachtbaren Effekte endliche Resultate liefert. Irgendein
Operator, der beobachtbare Grissen beschreibt (z. B. Streuquer-
schnitte), wird von der Theorie durch eine Reihe in f, mit endlichen
Koeffizienten gegeben. Bezeichnen wir einen Erwartungswert dieses
Operators, den wir mit dem Experiment vergleichen kénnen, mit
Cexps SO 18t |

| chp:Af3[1+A2fE+A1f$+A6fS+°"]' (71)

Dabei ist der Einfachheit halber angenommen, dass der erste Term
der Entwicklung mit f? beginnt; das ist jedoch nicht wesentlich.
A, A,, 4y, ...... sind auch ohne Regularisierung endlich. Ersetzen
wir geméss (70) f, durch f, so wird

Ooxp = A{P[1+ Bof? + Ryft+ Refo+ - - -] +
+ A, 14+ 2R,f2 + (RE+2R,) f*+ -]+
+ A1 +8Ry 2+ ]+ AgfB+ -}

Opp = A{f*+[Ba+ 4;]f* +[By + 2 By 4, + A, ] f6 +
+[Rg+ (R2+2R,) Ay + 8 Ry Ay + Aglf8+---}. (72)
Nun nehmen wir eine Umdefinition der Renormalisierung vor:
R,— R/, A4,—A4/), f.—1 . (73)
Natiirlich muss dabei z. B. gelten |
R, + 4, = Ry, + A4,/,

da Koeffizienten der Entwicklung (72) nach Potenzen der unrenor-
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malisierten Kopplungskonstanten durch die Stérungsrechnung ein-
deutig definiert werden. Allgemein muss deshalb verlangt werden

A = invariant

R, + A, = invariant

R, + 2R, 4, + A, = invariant (74)
) A3 +8 Ry, A+ A, = invariant

------

R¢+(R3+2 R,

Unter ,,invariant‘ ist bei dieser Betrachtung immer die Invarianz
gegeniiber den Umdefinitionen (73) gemeint. Die 4, sollen natiirlich
nur um Betrige geéindert werden, die auch ohne Regularisierung
endlich sind. Die ohne Regularisierung vorhandenen Divergenzen
in den E; werden dadurch nicht stéarker. Im Fall der pseudoska-
laren Mesonen divergiert z. B. R, logarithmisch; es wird nach (74)
um einen endlichen Betrag gedndert. R,, das wieder eine R,-Renor-
malisation zu R, enthilt, divergiert mindestens wie das Quadrat
eines Logarithmus. Aus der dritten Gleichung (74) sieht man, dass
es sich hochstens um einen logarithmisch divergenten Betrag
andert.

Den numerischen Wert der physikalischen Kopplungskonstanten
f» konnen wir durch Vergleich mit einem experimentell gemessenen
Oup auf Grund von (71) bestimmen. Analog bestimmt sich der
Wert von f,” aus

Ooep = A1+ Ay 24+ AL 0+ A5+ -] (75)

Berechnet man den beobachtbaren Erwartungswert m eines
anderen Operators (z. B. ein magnetisches Moment), so muss er
sich in der Form

m=Bf}[1+ By f2+ Byfi+ Bfi+ -+ -] (76)

darstellen lassen. Gemé&ss unserer Voraussetzung sind die B; bei der
urspriinglichen Art der Renormalisation endlich. Wir wollen nun
beweisen, dass sich der numerische Wert von m (76) nicht dndert
und dass die B, endlich bleiben, wenn die Umdefinition (73) in
konsistenter Weise erfolgt.

Aus den gleichen Griinden wie fir (74) muss auch gelten

B = invariant

"B, + B, = invariant

R,+ 2R, B, + B, = invariant

R¢+(R5+2 R,) B,+3 R, B,+ B; = invariant

------

(77)
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Aus (74) und (77) folgt
B, — 4, = invariant l
2 R, (B, — 4,) + B, — A, = invariant
(R2+2R,) (By—Ay)+8 Ry (By—~A,)+By— A, — invariant J

(78)

Wir formen m (76) so um, dass f, sukzessive eliminiert und durch
den experimentell gegebenen Wert o, (71) ersetzt wird:

m =B 4 B{(By— Ay fi+ (By— 4 f+ (Bs—Ag) fi+ - -} =
- B sz + B(B,— A,) (iefn) +B{[By— 4,— (B;— 4,) 2 4,] {2 +
+[Bsg— d¢—(By—4,) (Ag+ 2 4,)] ff +ow }

So ergibt sich schliesslich

m = B2 4 B(By— 4,) (°52)"4 B{B,—4,—2(By—4,)45] (") +

A
+ B[Be—As—3 (Bi— 4,) 4y + (By—45) (5 43— 2.4,)] (752) " +
+ Terme ~ f1°, | (79)

Aus (74), (77) und (78) ist leicht zu sehen, dass alle Koeffizienten in
der Reihenentwicklung (79) Invarianten sind. Somit ist auch m
eine Invariante. Weiter folgt, dass die B, fir die zugelassenen Um-
definitionen der Renormalisation endlich bleiben, da die anderen
Grossen in (79) endlich bleiben fiir jede bestimmte Ordnung der
Storungsrechnung. Der Beweis, dass m in eindeutiger Weise von
Oyp abhingen muss, unabhéngig davon, wie f, aus f definiert wird,
1st viel kiirzer, wenn man die inverse Funktion von (70), f =R-1(f,),
beniitzen will. Jedoch ist es dann nicht so evident, unter wel-
chen Bedingungen die Koeffizienten der Entwicklung von m nach
Potenzen von f, auch ohne Regularisierung endlich bleiben. Die
hier verwendete Methode ist dagegen dem Formalismus der Sto-
rungstheorie angepasst und verwendet direkt die endlichen physi-
kalischen Kopplungskonstanten.

Diese Invarianz gegeniiber ,,Umeichungen® in der Renormalisie-
rung gilt auch fiir die Elektrodynamik. Nur ist es dort eindeutig,
was man als renormalisierte Elektronenladung zu definieren hat, da
die elektrische Ladung eine unmittelbare physikalische Bedeutung
hat und direkt messbar ist. (Fiir sie gilt ja sogar ein Erhaltungssatz.)
Dagegen kommt der Mesonkopplungskonstanten wohl keine so di-
rekte physikalische Bedeutung zu; ihr Wert muss indirekt z. B. aus
Streuversuchen bestimmt werden.
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Wenn fir eine beobachtbare Grosse oo, (71) gilt: | 4| < Apax
fir alle 1, wo A4,,,, eine feste Zahl ist, so kann die Renormalisation
so definiert werden, dass die Reihe (71) schnell konvergiert. Uber
die Konvergenz der anderen Reihen, z. B. (76), ist damit jedoch
nichts bewiesen.

§ 6. Das magnetische Moment in 4. Ordnung.

Fir den effektiven Hamiltonoperator (17) findet man in 4. Ord-
nung, mit den gleichen Bezeichnungen wie in § 4 und mit d1¢ « =
d4 (IJ' d4$ﬂ d4.’1,'m d4.’L'””

CHE S p o= HP + HP+HA L HY 4 HY L HP 4 (80)

+ Terme, die zum anomalen magnetischen Moment nichts beitragen.

HP(x) = — (3 ) FHie 4, (@) [ @® 2 (1) 955.(12) 7550(20) 70 X

X 5.(03) y55:(84) y5 9 (4) D, (18) D.(24) , (80a)
HP(a) = — () friedu(®) [ 4 2p (1) 755.(12) 755.(20) 7 x

X S,(03) y5.5:(84) ys 9 (4) D (14) D (23) , (80D)
HOx) — — 3) THiedu(a) [da{p ) yss (10) 7,8:(02) v

x 8:(28) 755:(84) ys 9 (4) + (<) } D.(18) D,(24) ,  (80¢)
HP(2) = (g)Fiedyua) [z {3 (1) ys Se(10) 7, 8.(02) y5 x

X S, (23) ys[%8(24) S(84) +21S(84) ] vsw(4) + (<) +
+9 (1) 75 5,(10) y, [1£(08) S(02) + 21 .S (02)] y5 x
X S.(28) 75 S (84) ys w(4) + (<) } D,(14) D, (28), (80d)

HO(@) = (g)T*iedule) [ @2 {p (1) ys So(10) 7, 8:(02) 75

x [ie(24) 8 (23) + 245 (23)] 75 S, (34) 75 1 (4) +
<)} D,(12) D,(34) (80e)

H{(@) = — () Fie 4, (o) [0 05 (1) 758,(10) 7 %
x 8:(02) y5 w(2) Sp(v5 S:(34) y5 5. (43)) x
x {D,(18)[1¢(23) D (24) + 27 D (24)] +
+ D, (28)[1£(13) D(14) + 20 D (14)]}. (80f)
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Die (80a) — (80f) entsprechenden Feynman-Dysonschen Sym-
bole sind in Fig. 3, a—f, zusammengestellt. Die Ausdriicke, die den
Symbolen g und h entsprechen, kompensieren sich gerade, wie das
auch in der Quantenelektrodynamik der Fall ist.

Zur Ausrechnung von (80a)—(80f) setzt man die Fourierdarstel-
lungen (14), (40) und (41) fiir S,, S und § ein und die entsprechenden
Fourierdarstellungen fir D,, D und D. Ebenso ersetzt man y und
v durch Fourierkomponenten (46) und (47). Die Terme, die Pro-
dukte von & mit S oder D enthalten, lassen sich, genau wie in § 4,

_— / < -
N, ~/
= /\
7N y ~
a b ¢ d
NG ' AN AN
\ \ ~N 7
) \\ I I Pprd
’ <> / \ / \
e i g h

Fig. 3.
Feynman-Dysonsche Figuren fiir die Streuung eines Protons an einem &usseren
elektromagnetischen Feld in 4. Ordnung, soweit sie zum anomalen magnetischen
Moment beitragen.

durch Integration tiber ein x und eine Variable p oder k so um-
formen, dass die S- oder D-Funktion dasselbe Argument bekommt
wie die e-Funktion. Von hier an ist die Lorentzinvarianz der Aus-
driicke evident. Fiir die so erhaltenen S und D setzt man ebenfalls
die Fourierdarstellung ein. Der Rest der Rechnung verlduft analog
wie bei Karrrus und Kror?). Alle z-Integrationen geben §-Funk-
tionen, und es bleiben zwel nichttriviale Integrationen tber ,,Im-
pulse‘“ p oder k iibrig. Die Briiche fasst man mit Feynmans Formel
(43) zusammen. Durch Schiebungen von der Art (44) werden die
Nenner rein quadratisch in der Variablen k oder p gemacht, iber
die man integrieren soll. Nach Feynman4) ist

(s kg; ko ko) n2i 1 [ k®
Jak S = (545 0 dog [ AR ), (8D)

(1; ko3 ko ko) . g (1=ka;71509k2)
[d”" (lc2+A)4g = /d% (k% +A)*
1

a2y n2q

o
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wobel in 4 immer ein infinitesimaler negativ-imaginédrer Zusatz zu
denken 1st, der festlegt, wie die Pole bei der k,-Integration um-
fahren werden miissen. Wegen (81) und (82) lassen sich die Aus-
driicke in den y-Matrizen vereinfachen. Dank den bequemen Eigen-
schaften von vy, ist das hier etwas einfacher als in der Quanten-
elektrodynamik. Eine Erleichterung kommt auch dadurch, dass
man die zu erwartenden Renormalisationen zum Ausdruck in 2, Ord-
nung bereits kennt; sie lassen sich leicht vom Rest abspalten, ohne
dass es notig ist, diesen als Funktion von 1y p + M usw. zu schreiben.

Nach Abspaltung der Renormalisationen und Ausfithrung der
Impulsraumintegrationen fiir den Rest bleiben nur noch Integrale
iiber die Feynmanschen Parameter von (43) iibrig. Auf Grund der
Eigenschaften der Dirac-Matrizen und mit IHilfe der Beziehungen
(48), (49) lassen sich alle Ausdriicke in den y-Matrizen auf die Form

YuFl(q—q)? oder (qu—gqp) G[(q—q)?] oder o,,(¢,—q,) L[(g—q)?]

bringen. Da uns Ladungsrenormalisationen und, wie in 2. Ordnung,
Viererdivergenzen und Terme ~ 0 4,/0 z, oder ~[]4, nicht inter-
essieren, schreiben wir nur Terme der Form o4, (g, — ¢,") L [0] an.
So erhalten wir, wenn wir die Fourierkomponenten (46) und (47)
wieder durch v (z) und v () ersetzen,

4 4 1
Hgf) — — Mf;)f‘l'z“ﬁ;;v My,
' = 5
HY — —[u® R + uP1 {45 By myy,
1
HY — —[p®Ro+pP] 45 Fuvmuy,
) @9 Re 1 ,wfs L 504
Hy — —[u® 2R+ p1f* 5 Fuvmyy »

1
4 2
H® — — u® R f4 5 Ly My s

; 1
Hf}) = [/J'(2) R, + M?)]f‘L? F,me,uv s

/

Wegen B, = 2 R; (62) siecht man, dass man wirklich die in (64) er-
warteten Renormalisationen erhilt, so dass nur noch die renormali-
sierten Grossen auftreten:

1
(2 (4 _ 2) £2
<HF)+HF)>1P,0M_H/’I‘( r?(Fﬂvmllv)ren.'—

1
— 1O By M) o+ Ch
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+ Terme, die kein anomales magnetisches Moment beschreiben,
u® — Mw e Mu) L ,u(4) o Mff) e M?})' (85) |
Mit den Abkiirzungen

82 = (u/M)2, [() =02+ 62(1—), g(v) =1—o62v(1—v),

h

h =Q1—n)v—(E—n) w, =17 (86)

N =n(t—n)f @) —2nE—nvw+y 50 w2 wf(E)

wird

0= () o o [l 1 e+
+E(1—Hnh@v—u)—& (1—5 &) n2l—(1—E (1 —n) 12 +

+ 3Pl B — g Enh*@o—w)| +

T
o [Ew =+ 2w — g (v —w) + £w (1 + 2u) +

+$77(81)—w%w—®w)-;~772?) E(l—mn)w?+
(ZEﬁ—n)hw 2517 E’W“P

517 w+7712]} (87a)

H§,4>_ %)4% {fdf/ldvfdwjﬂdtéz(l__g) «
X[E(l—é)f(v)+tf(§)]—1+

+/d5fdzfd” 0 w[w o) [+ gl £+

+ @9 [F0) + 1%y 16)] } fds } (87h)
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1 & 1 1w
p® = %)4_14_{6/ dgofdndfdze/dvﬁfdw(v“w) X

< e[ i) [0 @)+ T

420 [12— = z[z (12 + 82 (1—0)) + T"i}?)}*i

i AU w)l+ (28 —8— L E@+w) + Ew =T) 1P —

w2(1m5)nzs+n(1;n)z4][zwam e

t e+ St rw—8iwiTt L2 —Hnl—dn(l—n)P|x
1

<[peor—n+ T+ [ fasg )

0
g /df /dvo dw/dz[ T T

62 o—w)w __1_ 02 (v—w)w }
f@) [fv)=(v—w)w] & f(v)-0*(v—w)w |’

1
+'Z

(87c)

(Die letzten Terme, die proportional 6% sind, fallen weg, wenn die
Renormalisation gemiss Fall T von § 5 definiert wird.)

(4)_(41 /d&/dz/dbfd’w{[ L = f)vz]x

<[+ <5 g] +/"”%Sﬂ'w fo+ weg] T @)

MSS”M( )41 /ﬂd&/dz /db £2(1 —£)203 x

N -8 i o9 +zc0-g700 6

In allen diesen Ausdriicken sind die einfachsten Integrationen
tiber einen oder mehrere der Feynman-Parameter bereits ausgefiihrt.
Die Resultate der restlichen Integrationen sind Funktionen von
02, Fiir 7-Mesonen (¢ = 275 Elektronenmassen) ist 62 ~ 0,022 < 1.
Um analytisch weiter rechnen zu koénnen, beschrinken wir uns auf
den Grenzfall

02 = 0. (88)
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Sollten einzelne Terme dann divergieren, so miisste man natirlich
Ausdriicke der Form In 6 usw. mitnehmen. Eine néhere Unter-
suchung zeigt jedoch, dass alle Ausdriicke (87a)—(87f) einzeln end-
lich bleiben, wenn man 6% = 0 setzt. Das steht im Gegensatz zur
Elektrodynamik?), wo man in den zu u#{ und (" analogen Termen
zunéchst eine endliche Photonmasse einfithren muss, da sie sonst
divergieren wiirden.

Auch im Grenzfall (88) macht die Ausfiihrung der Integrale (87 a)
bis (87f) den weitaus griossten Teil der ganzen Arbeit aus. Am lang-
wierigsten sind (87a) und (87c¢). (87b) ist erheblich einfacher,
(87d) und (87f) sind leicht. Viel hingt auch davon ab, in welcher
Reihenfolge .die Integrationen ausgefiihrt werden. Bei den ersten
Integrationen werden die Ausdriicke stets umfangreicher und spal- -
ten sich auf in Terme, die bei den letzten zwei Integrationen einzeln
divergieren, wenn man bis exakt zu den Grenzen integriert. Man

hat deshalb, soweit notlg,

1—¢&, U—E;
~

fdu/dfu . durch / du! dv....

€3
zu ersetzen. Fiir ¢, - 0 miissen sich alle Divergenzen innerhalb jedes
Terms ), ..., u¥ kompensieren, was iibrigens eine gute Kontrolle
tir alltiallige Rechenfehler bietet. Alle Integrationen sind analytisch
ausfiithrbar. Bei der zweitletzten Integration gewisser Terme stosst
man auf die Funktion

/ dc E,}ic (89)

Die bendtigten Eigenschaften dieser Funktion findet man z. B. in
Arbeiten von Powrrnnl®) und MrrcuHELL'?). Bei der letzten Inte-
gration erhélt man fiir alle Terme in (87a), (87b), (87¢) und (87f) —
abgesehen vom Faktor (1/2 #)* — rationale Resultate und Terme

der Form

()=, gl =—2 (90)

In uf sowie in u{® heben sich alle transzendenten Terme der Form
(90) am Ende weg. In (87c) stésst man noch auf das Integral

1
/'d?) Inv In (1 jd lnvln (L—9) :C(S)’ (91)

v

WO

£®) =3 S =1,202 (92)

n=1
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die Riemannsche {-Funktion vom Argument 3 bedeutet. Die Re-
sultate sind

B = (o) 3+
U = (21?)4 1 [S_l — -i— n2—C (3)] (93)
o =

Nach (84), (38), (85) und (93) erhélt man somit fiir das anomale
magnetische Moment in 2. und 4. Ordnung in der N&herung 62 = 0.

@ ,wa_ (21 fr 4[ﬂ___1_ o 1 sy _
P (72?) ~k+(ﬁ) 192 157 4 E@) | =

— — (V0,250 — (/7 )-0,166, (94)
2x 2n

in Kernmagnetonen e/2 M gemessen, wiahrend der experimentell
gefundene Wert,

Hexp = (+ 1,79268 + 0,00006) KM (95)

betriagt1®). Das magnetische Moment in 4. Ordnung hat also, wie
dasjenige 2. Ordnung, das falsche Vorzeichen, wenn man nur ein
neutrales Mesonfeld ankoppelt. Fiir den von LurtiNGERS®) ver-
suchsweise gebrauchten Wert von f3/4 7 ~ 36 wird pu®f2 ~ — 3,
pfl ~—22. Nun sind aber die experimentellen Werte der Kopp-
lungskonstanten selbst grossenordnungsmaéssig noch unsicher. Auf
jeden Fall miissen in einer Theorie mit y,-Kopplung die Effekte
4. Ordnung bei der Bestimmung der Kopplungskonstanten mit-
berticksichtigt werden*). Dann zeigt sich auch, dass man fir f2
wesentlich kleinere Werte bekommt15)19). Nehmen wir versuchs-
weise f? um einen Faktor 10 kleiner, so wird p®f2 ~ — 0,3,
N i~ — 0,2,

Die Resultate (93) stimmen in Vorzeichen und Grossenordnung
mit den entsprechenden Ergebnissen in der Arbeit von NAKABAYAST
und SaToll) iiberein, worin die magnetischen Momente der Nu-
kleonen 1n 4. Ordnung der pseudoskalaren Mesontheorie durch nu-

*) Vgl. hierzu R. P. FEyxmaxN, Phys, Rev. 76, Seite 783.
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merische Integration fiir 62 = 0,022 abgeschitzt werden. Immerhin
ergeben sich Abweichungen, die jedoch nicht mehr als etwa 159,
betragen, ausser im Falle von ,uff)_. wo sich ein Unterschied um einen
Faktor 3,5 ergibt.

Eine Moglichkeit, diesen Unterschied zu erkldren, konnte darin
liegen, dass die Approximation (88) schlecht ist. Wahrend in der
japanischen Arbeit ein maximaler Fehler von wenigen Prozent an-
gegeben wird, ist der Fehler, der durch das Nullsetzen von 62 ent-
steht, schwierig abzuschétzen. Er betriagt fir das magnetische Mo-
ment in 2. Ordnung etwa 59,. Nur im Ausdruck x{ kann man, wegen
der besonderen Form des Nennersin (87f) leicht zeigen, dass der
Fehler nicht mehr als etwa 19, betragen kann. Tatséchlich stimmt
p$P bis auf wenige Prozent mit dem entsprechenden Resultat von
NaraBavas1 und SAaro iiberein (abgesehen von einem Faktor 2, der
in der japanischen Arbeit fiir diesen speziellen Term, und nur fir
diesen, hinzukommt, weil dort auch Neutronen an das Mesonfeld
angekoppelt sind. Vgl. die Bemerkung hierzu in § 5 der vorliegen-
den Arbeit).

Eine zweite Moglichkeit konnte in der verschiedenartigen Renor-
malisierung der Kopplungskonstanten gesucht werden. Da in der
japanischen Arbeit keine Regularisierung verwendet wird, unter-
scheiden sich die Renormalisationskonstanten dort von den unsrigen
um endliche Summanden. Das hat dort z. B. zur Folge, dass das
Neutron vom geladenen Mesonfeld her eine endliche elektrische
Ladung ~ 2 bekommt (die mit 3 ¢; = 0 verschwinden wiirde), wo-

durch Ladungserhaltung und Eichinvarianz verlorengehen. Wahr-
scheinlich haben diese Differenzen bei der Renormalisierung jedoch
keinen Einfluss auf die Berechnung des anomalen magnetischen
Momentes.

Das Endresultat (94) stimmt mit demjenigen von NAKABAYASI
und Sato 1m Vorzeichen iberein. Beide Arbeiten kommen demnach
zu der Feststellung, dass das magnetische Moment des Protons
durch neutrale pseudoskalare Mesonfelder bis in 4. Ordnung nicht
richtig wiedergegeben werden kann. Nach NaraBAvast und Sarto
1st es in einer pseudoskalaren geladenen oder symmetrischen Theorie
moglich, das richtige Protonmoment zu erhalten, jedoch wird dann
das magnetische Moment des Neutrons falsch. Die besten Maglich-
keiten, um die Momente fiir Proton und Neutron in einer pseudo-
skalaren Theorie bis zur 4. Ordnung richtig zu bekommen, scheint
die Kombination einer symmetrischen mit einer neutralen Theorie
zu bieten. Man hat dann aber Werte der Kopplungskonstanten

22
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notig, die es wahrscheinlich machen, dass auch die Beitrdge noch
hoherer Ordnungen eine wichtige Rolle spielen.

Wahrscheinlich 1st auch von den in der kosmischen Strahlung
gefundenen V-Mesonen ein Beitrag zu den magnetischen Momenten
der Nukleonen zu erwarten; doch ist im Augenblick noch so wenig
tiber diese schweren Mesonen bekannt, dass es fiir eine Diskussion
ihres Einflusses zu friih ist.

Meinem verehrten Lehrer, Herrn Prof. Dr. W. Paurni, méchte
ich fiir sein dauerndes Interesse an dieser Arbeit herzlich danken.
Besonderen Dank schulde ich auch Herrn Dr. R. Jost fiir seine
wertvollen Ratschlige beim Beginn dieser Arbeit. Weiter bin ich
Herrn Prof. Dr. F. J. Dyson fiir eine aufschlussreiche Diskussion
zu grossem Dank verpflichtet und Herrn Prof. Dr. R. Kronig fiir
einige wertvolle Hinweise.
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