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Beiträge zur Theorie der Richtungskorrelation.
Kurt Alder, ETH., Zürich.

13. XII. 51.

1. Einleitung.

Die verschiedenen Zustände eines Atomkerns können durch
folgende Grössen charakterisiert werden: Energie, Lebensdauer, Spin,
Parität, magnetisches Moment und elektrisches Quadrupolmoment.
Im Grundzustand sind die mechanischen, magnetischen oder
elektrischen Momente durch die bekannten Methoden (Ausmessung der
Hyperfeinstruktur) bestimmbar. Die Gesamtenergie des Kerns ist
aus der massenspektroskopisch oder anderweitig bekannten
Bindungsenergie berechenbar.

Für angeregte, kurzlebige Kernzustände versagen die für den
Grundzustand üblichen Methoden, und es müssen andere Wege
benutzt werden. Die Messung der Energiedifferenz zum Grundzustand
und teilweise auch die Messung der Lebensdauer ist direkten Methoden

zugänglich. Besonders die Betaspektroskopie ist schon seit langer

Zeit mit gutem Erfolg verwendet worden. Die Messung der
Lebensdauer mit Hilfe verzögerter Koinzidenzen wurde dagegen
erst in den letzten Jahren entwickelt. Die Bestimmung der
Spinwerte bzw. der Paritätsänderungen kann bis heute dagegen nur auf
indirektem Wege erfolgen. Zur Ermittlung der Spinwerte und der
Paritätsänderungen bedient man sich mit gutem Erfolg der Theorie
der y-Strahlen. Multipolordnung und Charakter der Strahlung können

aus den Konversionskoeffizienten, die jetzt genau berechnet
vorliegen (Rose, Spinrad, Goertzel1)), erhalten werden. Die
Schlüsse, die aus der Anwendung der Betatheorie gezogen werden,
sind dagegen meist nicht eindeutig. Sie gestatten aber oft gewisse
Fälle auszuschliessen. In manchen günstigen Fällen, besonders bei
leichten Kernen, können auch Kernreaktionen Angaben über Spin
und Parität liefern.

Eine eindeutige Zuordnung von Spin- und Paritätswerten zu den
gefundenen Kernzuständen ist jedoch in den wenigsten Fällen möglich.

Jede zusätzliche Aussage ist deshalb wertvoll. Die Messung der
Richtungskorrelation, die in den letzten Jahren zunehmende Be-
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deutung erlangt hat, vermag oft solche Angaben zu liefern und
zwischen verschiedenen Möglichkeiten eindeutig zu entscheiden. Wenn
von einem angeregten Kern zwei Teilchen sukzessive ausgesandt
werden, so hängt die Wahrscheinlichkeit für Emissionen von der
Lage der beiden Richtungen der emittierten Teilchen und der Spin-
und Multipolzuordnung ab.

Die erste Theorie der Richtungskorrelation stammt von Hamilton2).

Weitere Rechnungen sind von verschiedenen Autoren
durchgeführt, so von Yang3) über allgemeine gruppentheoretische
Eigenschaften, von Falkoff und Ling4) über Interferenzterme bei
Mischungen von verschiedenen Multipolordnungen, von Falkoff und
Uhlenbeck5) über Korrelation beliebiger Teilchen. Wenn von einem
oder beiden y- Quanten noch die Polarisationsrichtung gemessen
werden kann, so spricht man von Polarisationskorrelation. Hamilton,

Zinnes u.a.6) haben auch diesen Fall behandelt.
Die Resultate der verschiedenen Autoren ergeben, dass die relative

Wahrscheinlichkeit als Polynom in cos26>

W(0) 1 + A2 cos2 0 + Ai cos4 0 + • • • + A2k cos2* 0

dargestellt werden kann. 0 ist dabei der Winkel zwischen den beiden

Emissionsrichtungen. Für den höchsten Exponenten 2 k gilt
die Auswahlregel

"< 'P ^l, 12 IB,

wenn lx und l2 die Multipolordnungen der beiden Strahlungen und
IB den Spin des mittleren Niveaus bedeuten. Bei reinen Strahlungen
hängen die Konstanten nicht von Kernmatrixelementen ab, sondern
sind gruppentheoretisch durch Spin und Multipolzuordnung
bestimmt. Der Vergleich der gemessenen und berechneten
Korrelationsfunktion W(0) ergibt somit, wie bereits angedeutet, wertvolle
Hinweise auf Spinwerte und Strahlungscharakter.

Obwohl die Idee der Messung sehr einfach ist und die Theorie der
y-y-Korrelation schon seit 1940 durch Hamilton2) bereitgestellt
war, sind die ersten erfolgreichen und zuverlässigen Messungen doch
erst nach der Entwicklung des Szintillationszählers in den Jahren
1947 und 1948 durchgeführt worden. Nach diesen ersten Messungen
von Brady und Deutsch7) wurde die Methode rasch bekannt, und
heute bildet die y-y-Korrelation ein wertvolles Hilfsmittel für die
Kernspektroskopie8). Dagegen sind Korrelationen, bei denen eines
oder beide Teilchen Elektronen sind, experimentell viel schwieriger
zu messen. Dieses Gebiet der Richtungskorrelation besitzt deshalb
heute noch eine geringe Bedeutung, vermag aber im Prinzip z.B.
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über den Wechselwirkungsansatz in der Fermischen Betatheorie zu
entscheiden.

Die Annahme aller bisher zitierten theoretischen Arbeiten ist, dass
die Lebensdauer des mittleren Niveaus so kurz ist, dass eine Störung
des Zustandes nach Emission des ersten Quants nicht möglich ist.
Goertzel9) hat diese Annahme fallengelassen und in sehr
allgemeiner Weise den Einfluss der Elektronenhülle berücksichtigt.
Anderseits sind in einer Reihe von Messungen merkliche Anisotropien
der Korrelation festgestellt worden, obwohl die Lebensdauer des

mittleren Niveaus so gross ist, dass äussere Einflüsse sich bemerkbar
machen könnten. In diesen Fällen wird die beobachtete Korrelation
im allgemeinen nicht mit der berechneten übereinstimmen, so dass
ein Schluss auf die Spinwerte erschwert oder gar verunmöglicht
wird. Dagegen ist bei anderweitig bekannten Spinwerten die
Abweichung der experimentellen von der theoretischen Korrelation ein
Mass für die Wechselwirkung des Kernes mit der Umgebung (Hyper-
feinstruktur). Dieser Effekt, der einerseits für die Bestimmung der
„wahren" Korrelation störend wirkt, kann umgekehrt zur Bestimmung

weiterer Kerneigenschaften verwendet werden. Die Hyper-
feinstruktur gestattet ja bekanntlich, die verschiedenen Momente
zu bestimmen. Wichtig und der Rechnung bequem zugänglich ist
vor allem die Schwächung der Korrelation durch ein äusseres
magnetisches Feld. Daraus wird sich später die Möglichkeit ergeben,
das magnetische Moment im kurzlebigen mittleren Zustand zu
bestimmen.

Kehren wir zurück zur ungestörten Korrelation, die in der oben
angedeuteten Form geschrieben werden kann. Die Berechnung der
Koeffizienten A2k führt dann auf ausgedehnte numerische
Rechnungen. Gardner, Racah und Lloyd10) zeigten jedoch, dass diese

Rechnungen sich stark vereinfachen, wenn die Korrelationsfunktion
W(0) nach gruppentheoretisch einfachen und der Geometrie des

Problems angepassten Funktionen entwickelt wird. Für ungestörte
und unpolarisierte Korrelationen hat man z.B. W(0) nach
Kugelfunktionen (Legendresche Polynome) zu entwickeln:

W(0)=£anPn(eoS0).
n

Die an lassen sich dann durch geschlossene Formeln ausdrücken. Das
Ziel der vorliegenden Arbeit ist es, allgemeine Formeln für die
Korrelation beliebiger Teilchen aufzustellen (inklusive Polarisationskorrelation

und beliebige Mischung), wobei der Zwischenzustand durch
äussere Einflüsse gestört werden kann.
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2. Theorie der Riclitungskorrelation.

Nach Falkoff und Uhlenbeck5) schreiben wir für die relative
Wahrscheinlichkeit der Emission der beiden Teilchen

W(kxk2) SXS22J \E(AAR1 (M Bm) (Rm \H2 (k2)\ Cpf, (1)
l, p m

wo At, Bm, Cv die Wellenfunktionen für die entarteten Energieniveaus

des Anfangs-, Zwischen- und Endzustandes bedeuten. Hx(kx)
stellt den Energieoperator für die Emission des ersten Teilchens in
die Richtung kx dar. Sx, S2 sind Mittelungen über nicht gemessene
Spins, Polarisationen, Neutrinorichtungen.

h

h

Wird die Entartung der Energieniveaus im Zwischenzustand
durch eine äussere Wechselwirkung aufgehoben, so verändert dies
die Korrelation. Goertzel9) hat diesen Fall behandelt und erhält
für die relative Wahrscheinlichkeit

W(kx,k2)

g g y (Ai \HX (g| Bm) (Bm \H2 (k)\ C„) (Al \U\ (Pp BmP (Bm- \H2 (k)\ Cv)*
1 i2 l-t«)--'i ' ^ '

l,m,m .p "ifn

r ist die Lebensdauer des mittleren Niveaus, comm, die Energieaufspaltung

zwischen den Zuständen Bm und Bm- (dividiert durch %).

Für die weiteren Überlegungen nehmen wir an, dass die Kernspins
der drei Energiezustände IA, IB, Ic sind. Die dazugehörigen magnetischen

Quantenzahlen seien MA, MB, Mc.
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Wir betrachten Funktionen YLM(Ai-¦¦)*), die von Grössen A{
(Polarisationsgrössen) abhängen sollen und sich bei einer Drehung
des Koordinatensystems wie folgt transformieren :

YLM(DAv..)=ZDiM(aßy)YLm(Ai...), (3)
m

D soll die Drehung charakterisieren, die durch die drei Eulerschen
Winkel &,ß,y gegeben ist. D^m(ol, ß,y) ist der dazugehörige
Darstellungskoeffizient

Für die Wechselwirkung fordern wir aus physikalischen Gründen
Drehinvarianz. Dies führt dann offenbar auf folgenden Ansatz für
den Energieoperator

H=EaL EYLM(Xt---)Y£M(A,..), (4)
L M -L

wo die X{ sich nur auf den Kern und die At nur auf die emittierten
Teilchen beziehen sollen. Für das Matrixelement (Jm \H\ J'm') folgt
damit der Ausdruck

(Jm\H\J'm')=2JaL^(Jm\YLM(Xi...)\J'm')Y*M(Ai...). (5)
L -L

[Jm \YLU (Afa • •) | J'm'] kann aus allgemeinen gruppentheoretischen
Gründen in zwei Faktoren zerlegt werden :

(Jm \YLM (X,- ¦ -)| J'm') Cj'™LMf(J, J', L, Xv ¦ ¦), (6)

wo / von den magnetischen Quantenzahlen m, m', M unabhängig
ist. Der erste Faktor ist ein Clebsch-Gordon-Koeffizient, der die
Vektoraddition

J+L J' m + M m'

vermittelt. Da dieser Koeffizient immer dann verschwindet, wenn
obige Beziehungen nicht erfüllt sind, bleibt mit aLf aL

(Jm\H\ J'm') =£*LC->'™LMY*M(Ät. -)Mmm.^. (7)

Dieses Resultat in (2) eingesetzt, ergibt bei einer beliebigen Wahl
der z-Achse für die Korrelationsfunktion

W [Kx K2) - 2, oc£i a.Li vJß Mb Li m^ UIb m>b £2 M^ Jt£i Li (Kx)

ßr ß\ C*f& T „ C**f*T M pf\M* (k2) ^- (8)

*) Diese Funktionen sind eine Verallgemeinerung der polarisierten Kugelfunktionen

von Falkoff und Uhlenbeck5).
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wo abkürzungsweise gesetzt ist

Ki?' W «{Y*Mi (Av ¦ •) YLsih(Av • ¦)}. (9)

Die F^jP* (k) lassen sich noch weiter vereinfachen. Wir führen eine

Drehung des Koordinatensystems so aus, dass die Emissionsrichtung

in die z-Achse fällt. Die drei Eulerschen Winkel sind dann:

zt\
kfy*)

v. cp — n/2, ß &, y beliebig. Es kann y 0 gesetzt werden.
Wegen der Transformationseigenschaften der YLU ist

f^(»,<p)=edlm:™s<p-

mit

0.O)D£im.(?>---J,*,O)CE2 (10)

pmtm2 Timx m.
^LiL, (0)

S{Ylmi(Ai---k=z,y-0)YLami(Ai--.k=z,y 0)}. (11)

Die Formeln (8), (9), (10), (11) gestatten jede beliebige Korrelation
(inklusive Polarisationen und Mischungen) zu berechnen. Die
einzigen Unbekannten sind die modellabhängigen Kernmatrixelemente
xL,ßL,xmddieF^(0).

Wir wollen uns vorerst auf den Fall beschränken, dass keine der
Polarisationsgrössen At gemessen werde. S bedeutet dann die
Mittelung über alle At. Mitteln wir zunächst über alle möglichen Lagen,

Aus bekannten gruppentheoretischen Relationen der Darstellungskoeffizienten
[Appendix A (8), (4)] leitet man die folgenden Eigenschaften der F her:

/ Fj^'l1* d Q ô
M M òr t ¦ const ; const unabhängig von M,

+ L MMzJFll (ê) unabhängig von #.
- L

Diese beiden Sätze sind in Falkoff und Uhlenbeck5) zitiert.
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die aus einer speziellen Lage durch Drehung um k um den Winkel y
entstehen, so führt dies wegen der Transformationseigenschaften
der YLM auf ein Integral

/"• -]'ar-2xömimt, (12)
u

d.h. es muss
Fr1L?(o) Km.Fr:L?(o) (13)

sein. (13) ist äquivalent mit der Bemerkung (Hamilton2), Goert-
zel9), Falkoff und Uhlenbeck5), Lloyd11) und Lippmann12)),
dass sämtliche Interferenzterme verschwinden, wenn die 2-Achse in
die Richtung des einen Quantes gelegt wird. Aus der Herleitung
geht hervor, dass dieser Satz nicht mehr richtig ist, wenn
Polarisationen gemessen werden können.

(13) sagt weiter aus, dass Fj^)*1* nur von Min (Lx, L2) willkürlichen
Koeffizienten abhängt. Diese Bemerkung stammt ebenfalls von
Falkoff und Uhlenbeck5).

Die Formeln (8), (9), (10), (11) für die Richtungskorrelation
beliebiger Teilchen können noch vereinfacht werden. Die Summen
über magnetische Quantenzahlen tragen ja im allgemeinen nur
geometrischen Charakter und es muss daher möglich sein, diese explizit
auszuwerten. Dies führt auf sogenannte Racah-Koeffizienten, deren
Definitionen und Beziehungen mit anderen oft gebrauchten
gruppentheoretischen Relationen im Appendix zusammengestellt sind.

Speziell ist nach Appendix A (3), (7)

FLM^'(&,rp)

m, k gerade
(14)

(14) in (8) eingesetzt ergibt dann

w(%xk2) =2X>**z)*;oUx-1,&x,o)Dk;;(cp2--},&2,o), (is)

f
*) Dass in (14) nur über die geraden k summiert zu werden braucht, folgt aus

der Erhaltung der Parität. Es existieren nämlich zwei verschiedene Arten von
YL ^ (Ai ¦¦¦): solche, die bei einer Spiegelung das Vorzeichen wechseln und solche,
die invariant bleiben. Da man für die Wechselwirkung H ausser der Drehinvarianz
auch Spiegelungsinvarianz fordern muss, folgt, dass Parität YLM (Xi •••) Parität
YL w (Ai • • •) +- Paritätsänderung des betrachteten Übergangs ist : Diese Grösse ist
aber fest, so dass F^M» (k) S{Y*LiMi (Af ¦ •) Y^^ (A{ ¦ ¦ •)} eine gerade Parität

besitzt.
16
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wo die akik' sich wie folgt darstellen lassen:

o£** I*».II*'-III*'*\ (16)
fi pi \ i

Die drei Faktoren haben die folgende Bedeutung :

P> i/2 k\ + 1X *l, «1 (-1)1*-1** L2 W(IB IA kx LJL, IB) x
L,L,

4E^)Li-mCl%L>-mF^MÌ
I m J

IP- =Y2A\PT2JßLJl(-l)Ic-IB+LiW(IBIck2LpL3IB)x [(17)

x{i:(-i)is-mci3omX)_m^™(o)},

ttt*,*, _ ynIBMB nIBMB 1

" 7,4,. hMßh^'IBMBk2u l-iaiBB,r-
MB MB BU

fcj, fc2 gerade

3. Allgemeine Eigenschaften der Korrelationsfunktionen.

Die Formeln (15) sind Entwicklungen von W(kx,k2) in natürlicher

Weise nach Darstellungskoeffizienten. Die Auswahlregeln der
Racah-Koeffizienten (Appendix B) verlangen

\lA— 1b\<L1,2<\IA+Ib\ \IC — Ib\<L3.ì<IC + IB

0p2\p2IB \L1 — L2\p2klpLl + L2

0<2k2<2IB \L3-Li\<2k2pL3A-Li
(18)

Die ersten beiden Ungleichungen sind nichts anderes als der Satz
von der Erhaltung des Drehimpulses.

Ist coBB,x <p 1, d.h. die Störung des mittleren Niveaus klein, so

ergibt sich eine weitere Vereinfachung.
Es ist nämlich

lLlf -^AlVIBMBkUxL'IBMBk2lx~~0hk,.pk+x P-P
MBMB'

also

w^K)-EAikki p-IPZ)U(^-2^i'0)Dro(^-f>^.o
k.fi

2,2l+T^P-IPDU(9'1^-2-^i>0)DS/,(0,^,|-^
k, fi

(20)
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Die Summe über pt kann aus der Gruppeneigenschaft der
Raumdrehungen leicht bestimmt werden.

Es seien 0, 0, W die Eulerschen Winkel der zusammengesetzten
Drehung ST mit

T={cpx—*,ex,0},

S {o,0a.,~ç>a}.

Die Bedeutung des Winkels 0 lässt sich durch eine kleine Rechnung
leicht erhalten. Es ist 0 < (kx, k2).

Aus

EKAs)DriJT) Dli,AST) (21)

ergibt sich also

w(kx\) 2J PîèrpV-w-DU®,®,*)^
k gerade

E^+TIk-UkI)oo(O,0;O)
k gerade

E 2 k+p-p •n* p*(cos 0) Ea*Pk (cos e) • (22)
k gerade k gerade

Die Korrelationsfunktion ist speziell von der Lage der z-Achse
unabhängig. Sie ist eine Summe von Potenzen in cos26>. Der höchste
Exponent ist nach den Auswahlregeln (18) durch

Min {2IB, Max (Lx ¦+ Lz), Max (L3 + L4)}

begrenzt. Ist dagegen die Störung cor nicht mehr vernachlässigbar,
so hat man mit den allgemeinen Formeln (17) zu rechnen. Diese
können aber wie folgt interpretiert werden :

Wir entwickeln die ungestörte Korrelationsfunktion nach
Kugelfunktionen

W(k1k2)=Z;ak-2-k1+1 Y'fo) Y-"(fc2). (23)
k, n

Den Einfluss der Störung erhalten wir nun, indem jedes Glied (fc, pt)

mit einem Schwächungsfaktor G^ („attenuation factor") multipliziert

wird :

W(kxk2) =EakG'l-J+l- Y*"&) Yr(K), (24)
A, H

Gl (2k + l)Illlk (2kA-l)Y\CIjBm,1, 12 =-, - —. (25)k \ > I » \ < 7zJ,| IBm, kfi\ l-immm'T v ;
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Dies bleibt offenbar nur solange richtig, als unser Ausdruck

111^ ^,,, HI*'*2 (26)

ist. Neben dem oben betrachteten Fall cor ^1 gilt (26) auch dann,
wenn die Hyperfeinaufspaltung zwischen verschiedenen magnetischen

Quantenzahlen gleich gross ist (z.B. Aufspaltung im schwachen

Magnetfeld). Ist die Hyperfeinaufspaltung nicht äquidistant,
so müssen noch Interferenzterme berücksichtigt werden, die durch
den Schwächungsmechanismus erzeugt werden. Nach (17) ist

w&h) =EIklIp2m» *2

-, —=- Yk $i) fa
1

- - Yk~" (h) ¦ (27)1 2/ if£ " pkx+l hl V \/2k2 + l k° 2/

Wenn statt unpolarisierter Strahlung irgendwelche Grössen
(Polarisationen) zusätzlich gemessen werden, so wird der obige Formalismus

nur unwesentlich geändert.
In den Formeln (17) hat man einfach £ durch den Ausdruck

2J(-i)L^^ck'-X-mFp:c(0)\
'mimä

und Dq1^ durch D%*ifl zu ersetzen.

I*; y/2k1+l Z^L,A,(-^Iß + L2W(IBIAk1L.2/L1IB
L,Lt

x j E (-i)£'-m- c>p~x-mF?pm: (0)!

II* =V2hUZßLJl(-l)Ic-Ie + L+W(IBIck2LJL3IB) \(2%)

v y I -\\L, — m,nkzii, -nim,m, *X \ Zj \ P VL3m3L.,-mPL3Lt '

IH*1 *»= YqIbMb qIbMb 1

i'1 %r^i„ Ib^'bKi1 kBMBk2(* l-icoBB,r
MBMB

w(hK)-E<k,Di'4^~2'^0)DlU°'&2Y <p2

Die FBxlpp- (0) hängen natürlich jetzt noch von den gemessenen Polari-
sationsgrössen At--- ab.
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Für verschwindende Schwächung cor <p 1 lässt sich die Summe
über pt wie vorhin auswerten und erhält

W &K)=E Ykhr Ji ni D*- (*•0- *> • (29)

Die Eulerschen Winkel 0 und Ï7 sind vom speziell gewählten
Koordinatensystem abhängig. Dies ist nicht verwunderlich, da die
Polarisationsgrössen At--- ja auf dieses festgewählte System
bezogen sind.

Wählen wir als Koordinatensystem dasjenige, das als z-Achse die
Emissionsrichtung des einen Quants und als (z, y) -Ebene die Ebene
der beiden Quanten besitzt, so ist 0 0, ¥ 0. Wir haben

w(kxk2)=2; 2^i^dl2 (o,@,o)
*-, /<, /<2

(30)

zsk,
\

y

Schwächungen durch äussere Einflüsse können wie oben diskutiert
werden.

4. Diskussion der Sehwäehungserseheinungcn.

Die Korrelation kann durch irgendwelche äussere oder innere Felder

gestört werden. Als inneres Feld wollen wir das Magnetfeld der
Hülle am Ort des Kerns annehmen. Die Hülle werde durch den
Drehimpuls J charakterisiert. Er setzt sich mit dem Kernspin I zu einem
totalen Drehimpuls F zusammen. In den obigen Formeln hat man
jetzt unter den Al; Bm, Cv die Wellenfunktionen des gesamten
Atoms (Kern und Hülle) zu verstehen. Dabei ist aber zu beachten,
dass der Operator H nur auf die Kerneigenfunktionen wirkt.
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Wegen der (I, J)-Kopplung können aber die Kernmatrixelemente
der Form (At \HX\ Bm) leicht auf gewöhnliche Kernmatrixelemente
umtransformiert werden. Es gilt z.B.

(IAJF^\H\,IBJFßmß)=ZC}Xjs^^A\R,\hMB)CfjBjr
MAMB (81)

Diese und analoge Formeln in (2) eingesetzt ergeben unter
Berücksichtigung der Orthogonalitätsrelationen der Clebsch-Gordon-Koeffizienten

für III
111

m -ZUIBMBklß°IBMiB
riFm

Bk2pUIBMBJrX

pF'm' riF'r,pr m pj< m pj<
XL/IBMBJsUIBMBJs^IBMBJr 1-

1

% cojfmiF'm'
(32)

Diese Summe kann wieder durch Racah-Koeffizienten aufsummiert
werden :

III*.* <£ (2F + 1) W (IBJk1F/F'IB)W(IBJk2F/F'IB)
VJf'

1

jAj F'm'kiß F'm'kiM 1 I COpm.p'm'
(33)

Für äquidistante Hyperfeinaufspaltung ist III ^'*'2 von der Form
'k,k Also verschwinden die Interferenzterme und es bleibt

UV; Z(2F + 1) \W(IBJkF/F'IB)\2Z\C*Jl,kl\2 x_i(}
F,F' itm' lcüFm;Fm

Diese Formel ist nur solange richtig, als die äussere Wechselwirkung
die (I, J)-Kopplung nicht zerstört.

JL

Mmm

¦^rCOt

Für den Spezialfall H 0 kann die Summe über m, m' noch aus
geführt werden. Es ist

IIP 2k- TÈ
F,F'

(2F+DI2F'+l) \W(IB JkF/F'ip
1 + {coFpi t)2

(34)
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coFr r ist ein Mass für die Schwächung. III in Abhängigkeit von cor
ist eine monoton fallende Funktion.

Für cor <^ 1 kann jedoch III nicht verschwinden. Es bleibt

(HP),,in TIp-1i:(2F + l)2lIF(IiJJfcF/F/B)|2. (35)
F

Die obigen Formeln erlauben wieder eine einfache Interpretation.
Wenn die ungestörte Korrelationsfunktion in der Form

W(0) =2JakPk (cos 0)
k

vorliegt, so äussert sich der Einfluss der Hülle in einem
Schwächungsfaktor

Gt (2 fc + 1) IIP,

W(0)=£akGkPk(coS0).
k

Die Diskussion von Gk bzw. (Gk)inin in Funktion der Grössen cor,
IB, fc geschieht am besten für J 1/2. In diesem Fall lassen sich
die Racah-Kooffizienten leicht berechnen. Es ist

W[IB-jfcIB+ -jjIB + -jIBJ -2-QP+ l) (2PP+P,

1/(2IB+l-k) (2 Jb+F+2)

ph phPpPip-^-p^ppppp
w(t 1hT-1/T-i-1T\- 1 ]/jpk + l)n \±b 2Iv1b 2 / J-B + 2 *b) - 2WlB + L V IbPb + TY

wPPlt-piB-PB)= ' ; [(36)

]/(2IB + l-k)(2IB + k + 2)

n¦ — 1
fC (fc -\- 1) muk~l (2TgTTfa-t

y _ (COT)2

("iJmiii " 1

1 + {cor)2

k{k+l)
{2PbPW

(Gk)min für verschiedene fc und IB ist in der folgenden Tabelle
niedergelegt.

Aus der Tabelle ist ersichtlich, dass Glieder mit höheren cos" (9

empfindlicher geschwächt werden, als diejenigen mit niedrigen Po-
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tenzen. Ferner ist die Schwächung kleiner, je grösser der Spin IB
im mittleren Zustand ist.

2 4 6 8 10

1 0,33

Vi 0,52
2 0,76 0,20

5/2 0,83 0,44
3 0,88 0,59 0,15

Vi 0,90 0,68 0,34
4 0,93 0,75 0,48 0,11

Vi 0,94 0,80 0,58 0,28
5 0,95 0,84 0,65 0,40 0,09

Für ein äusseres Magnetfeld ohne Berücksichtigung eventueller
Ilülleneffekte kann der Schwächungsfaktor ebenfalls leicht berechnet

werden. Es ist nämlich

f»mm' rco rfiH/in rg/ikHjn (37)

(pt, g magnetischer Moment und g-Faktor des mittleren Zustandes ;

ptk Kernmagneton). Für Gk ergibt sich dann

nr L

K l — ir cor
(38)

Wenn wir das äussere Magnetfeld H senkrecht zur Ebene der zwei
Quanten anlegen, werden die Formeln besonders einfach

W(&,H)=TbT^^ / 4~i T 1-ir COT

,i r !>

(39)

wo & der AVinkel zwischen den beiden Quanten ist. Das magnetische
Feld H induziert eine Schwächung und eine Phasenverschiebung.
Für cot fa; 1 äussert sich dies in einer Rotation der Symmetrieachse
um den klassischen Präzessionswinkel 0 cor.

Wenn die beiden Zähler die beiden Partikel nicht unterscheiden
können, so wird der Schwächungsfaktor reell :

GJ-Tfi-^—+ '

K 2(1 — i r cot

1

1 +ir cor) l + (rcoT)2
(40)

Eine Messung von Grk mit gleich empfindlichen Zählern gibt somit
nur die Grösse, nicht aber das Vorzeichen des gyromagnetischen
Faktors des Kernes.
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Berechnung der Konstanten F™/™^ (0) für einige Spezialfälle.
Aus physikalischen Gründen verschwindet F^'^2(0), wenn es nicht

gelingt, die ^-Komponenten mx bzw. m2 des Drehimpulses ohne
Bahnimpuls (sondern nur durch Spin, Neutrinos usw.) wegzutragen.

Es ist also speziell

für Spin-O-Teilchen F^(0) =0, ausser m =0;
für y-Strahlen F^m" (0) 0, ausser m12 ± 1.

Spin-0- Teilchen.

2^(0) {^(0)^(0)}=1.
y-Strahlen.

- e+ für elektrische Strahlung

- — i e+ für magnetische Strahlung e+ e,

(Y1)* gewinnt man ohne weiteres:

Es ist

Es ist

(41)

%e„

Mit Y,-1

el-el mg-mg el-mg mg-el

mil 1 1 — i i

1 1 i — i

Sämtliche von l abhängige Grössen sind dabei zum Matrixelement
geschlagen. Daher sind die Matrixelemente von Falkoff und Ling
von den unsrigen verschieden. Es gilt

«,-ltei IP "¦l/ Falk-I.ing •

Wenn Polarisationen gemessen werden, können die zugehörigen
Ff/}1™"- (0) ebenfalls leicht angegeben werden. Dabei wollen wir das

Koordinationssystem, auf das die Polarisationsgrössen bezogen werden,

wie oben wählen [faAchse in Richtung des einen Quants,
(z, y)-Ebene Ebene der beiden Quanten].

cp bedeutet den Winkel, den der Polarisationsvektor mit der Ebene
der beiden Quanten einschliesst.

el-el mg-mg el-mg mg-el

tifa
e-i2V -<ri2f ie-i2*> ie~i2,p

TÏ ei2<p _ei2<p -fai2* -ie12*
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y-Konversion.
Für gewisse Fälle lassen sich auch hier die Konstanten F leicht

angeben. Insbesondere ist die Konversion eines s-Elektrons leicht
zu behandeln. Das durch Konversion ausgesandte Elektron bildet
mit dem in der K- Schale verbleibenden aus Paritätsgründen

a) bei elektrischer Konversion einen Singulettzustand;
b) bei magnetischer Konversion einen Triplettzustand.

Bei elektrischer Konversion verhält sich das Teilchen offenbar wie
ein Spin-O-Teilchen

Ftl/°(Q)=1 F,fm(0) 0 m 4=0;

wird das Elektron magnetisch konvertiert, so wird es in einer (l —1)-
oder (£ + l)-Welle ausgesandt.

Erfolgt die Emission in einer (/ +1)-Welle, so ist das F,fm gegeben
durch

Flr(o) \2jcili 1 jU; 1 m— ß y,-u(o)4
wo Xx die Triplettspineigenfunktion bedeutet. Dieser Ausdruck reduziert

sich aber sofort auf

(42)Fmm{ nlm j2
fa-10;lm •

Für die (i + l)-Welle ergibt die analoge Überlegun
2F,r(o) \c\ + 10;lm| (43)

Speziell ist noch daraus ersichtlich, dass F,f m(0) 0 ist, für m > 1.

Es ergibt sich dann nach den Tabellen von Condon und Shertlby
für die Clebsch-Gordon-Koeffizienten:

pll*ll Fll *ll
7 1

I l{l+V

fai Hl+21]

v l
l{l+1)

ß-Strahlung.
In der (Z 0)-Xäherung sind von Falkoff und Uhlenbeck die

Fp (ê) für erlaubte sowie verbotene Übergänge erster und zweiter
Art berechnet worden. Wir bestimmen aus jener Arbeit die F™ (0) :

1 1, 1 2,

Fx°(0) =1-P F2°(0) l + fi, + iJ2,

F±1(0) 1+P ^2±1(0)=|+^ + y^,
F^2(0)=~l+ptl--\fi.z
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Für die Bedeutung der X, ptx, pt2 siehe Falkoff und Uhlenbeck,
wo diese Parameter auch für die verschiedenen Wechselwirkungsansätze

berechnet sind.

Herrn Prof. Dr. W. Pauli und Herrn Prof. Dr. V. Weisskopf
möchte ich für ihr Interesse, das sie an dieser Arbeit bekundet
haben, meinen herzlichsten Dank aussprechen. Den Herren Dr.
H.Frauenfelder, Dr.R. Schafroth und meinem Freund E.Heer
danke ich für viele anregende Diskussionen.
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APPENDIX

A. Einige oft gebrauchte gruppentheoretische Relationen.

r,! (g-R,^-yi—iY V(i+P''(PK-)'-{j+P)ni-P)<-
n'nK rn z^\ xi {]-!i,'-x)\{f+n-i<,)\x\{K+p-ß)\

x e1»'« cos2j'+"-"'-2*(y/3) •sin2K+"'-"(y/3)e^'' (1)

EDÌ>AS)-DW»(T) Di',AST) (2)

K'Mßy) (-I)"""'Di^^ßy)* (3)

DL bildet eine unitäre Matrix (4)

Dno [crißr> \lirL+TYL^^ &
Y auf 1 normierte Kugelfunktion

Dl,ß(0,0,0) oli,tl (6)

J+i
T)J T)j _ X~<pkM + m T)k pkX + n ln\favfV um" Zj ^JMjm ''-'M + m.N + n ^JNjn \'J

k=\J- j\
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Dmn"Dmndlì — òji¦ oMmòNn 2j+i
pLu+v _ ]/{L+l-ì)\(L,-l+ì)\(l+ Ì-L)\ (L+n + v)\(L-ii-v)\
ulPlv - - ;-

;2V1)*T' + V2L+1

\/(L + l + ì+l)\ (l-fi)\ (1+[t)\ (l-v)\ (l+v)\

(L+ì+ix-p\ (l-fj, + p\
(L-l+l-x)\ {L+fx+v-p\ x\ {x + l-l-fi-v)\

2j ™nabß' ^nlb'ß °bb'Ar, i P fest
a, y

pcy^aabß'

26 + 1

a + b — e
t rtc — y

a + b — e

(8)

(9)

(10)

1) '^a-ab-ß
pcy I -t\a + b — c pcy*faa&/?~V L) '^bßaa.

'

2c+lpcy
^aabß -1)"- (P

26 + 1 ey«-«

1\b + ß 1/ 2c+1 pual> \ 2a+l Vb-ßcy

ECZ i,ß ¦ C7öbß ¦ Gììi * l/äc^+T 1/2ITT W (c b f à/a e) C« ,9 (12)

Gaabß — '

(H)

aßd

wo W(abcd/ef) der sogenannte Racah-Koeffizient ist, der von sechs

ganz- oder halbzahligen positiven Quantenzahlen abhängt. Dieser
Koeffizient kann aus folgender Formel berechnet werden.

=xvi)z
oj(abc d/e f)

(a+6+c + cZ + l-z)!
{a + b-e- z)\ {c + d-e-z)l {a + c- f-z)\ (b + d- f-z)\ x

X (b+d-f-z)lz\(e + f-a,-d + z)\{e+f-b-c + z)l

W(abcd/ef)
(a+b-e)\ (a + e-6)! (6 + e-a)! (c + d-e)! (c + e-rf)! {d + e-d)\ x
x{a + c-f)\(a+f-c)\(c + f-a)\{b+d-f)l{b+f-d)l{d+f-b)l

Vi

X
(a+b + e + l)\(c+d + e + l)\{a+c+f + l)\b + d+f + l)\ x

Xco(abcd/ef). (13)

Es gelten die folgenden Beziehungen:

W(abcd/ef) W(badc/ef) W(cdab/ef) W(acbd/fe)

(-1)«+/-«-" -TP(ebef/aä) (—l)« + '-»-e -TP(aefd/bc).

Die Racah-Koeffizienten verschwinden nur dann nicht, wenn die
vier Triaden

(ooe) (coe) (ac/) (oa/)

alle trigonometrische Ungleichungen der Form \a—b\ <c <a + b

erfüllen.
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B. Allgemeine Formeln für oft gebrauchte Racah-Koeffizienten.

Alle benötigten Racah-Koeffizienten sind von der Form

W(IBIAk,lJl2IB).
Meistens ist jedoch in praktischen Anwendungen

lx l2 oder lx l2pl \IA — IB\ lx oder lx — 1,

so dass man nur wenige Koeffizienten zu berechnen hat. Es ist

2l\2l\(2I+k+l)\{2I-k)\ IVa
W(I,l-l,k,l/lI) (21 +1)! (2 I +1) (21 + k +1)! (21- k)!

2I\2I\2l\2l\W(I I+lklllD-l- IP 2I12I12V.2U 1 Vi
vv {l,± + l,K,LIL±)-{ l) j(2/_;fc)!(2Z_;fc)!(2Z + /fc + l)!(2/ + Ä; + l)!j
W(I,I-l + l,k,l/lI) 2[2l(I + l)-k(k + l)(I-l + l)]x

f (2ü-l)!(2'-l)!(2/-ü;)!(2J + fc + 1)! Wa
X

(2 I + 2) i (21 + 2) (21 + k +1) (21 - k) J

W(I,I + l-l,k,ljlI) 2(-l)k[2lI-k (fc +1) (I + 0] x
f (2fal)!(2fal)!(27-l)!(27-l)! |V*

(21 + k +1) (21 + k +1) (21- k) (2 I- k)

TT (Z, JT—î, fc, I/Ï H-l, J) -=

-J9h(lr4-1\(T 1\ 2l\{2l + l)\(2I-k)\{2I + k + l)\
\ K n ' (2l-k + l)\(2l + k + 2)\(2I + l)\{2I + 2)\

W(I,lA-l,kl/l + l,I) (-l)k-1X
xÌ27fafc+1W? + / + 1ì 2»(2i + l)!2Z!(2J-l)! lVi
X \Z fc (fc + 1) (J + t + 1) (2/_i)I(2/ + fc + 1)|(2ï_fc + 1)|{aï + fc + 2)l}.

^(ijoji/j?j)={(2J+i)i(2/+i)r
W(IJ2FlFI) ^l^^-0j1,\SC(C+ l)-4I(I+ l)F(F + l)

C J (J +1) -F (F + 1) -1 (I + 1).

C. Allgemeine Formeln für Clebsch-Gordon-Koeffizienten.

lxA-l2 + k 2g

x (ïl+^_fc)!(ïl + t-y!(I1 + i_ïl)!
(Jj + ïa + i + l)!

r j 0 J^ fe (A: +1) - Z2 (?2 + 1) - Z± </! +1) ~ 10
"«¦-1 2 AA + D^A + iy Wj0

^040=0 ^ + ^ + fc 2g + l.
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Tabellen von Raeah-Kocffizienten.

Allgemein

W (J, J', 0, L/L, J) (2L+1)(2J + 1)

Dipolstrahlung.

J' W (J, J', 2,1/1, J)

J-l
J

J+l

\1 (J+l)(2J+ 3) |V2
130 J (2 J-l) (2 J+l) }

[ 1 (2J-1)(2J+3)]V2
1 30

' J (J+l) (2 J + l)J
[ 1 J(2J-1) |V2

130 (J+l) (2 J+l) (2 J +3) |

Quadrupolstrahlung.

J'

J-2

J-l
J

J+l

J + 2

W (J,.]', 2, 2/2, J)

-(J-5)

(2J-3)(2J+5)|

-(J+6)

_2_ (J+l)(2J+3) )x2
35~ ' -J"(2J-1)(2-J+TT
1 (2J + 3)
70 J(J + 1)(2J-1)(2J + 1)

1 1

70 J(J+l)(2J-l)(2J+l)(2J + 3)

1 2J-1 • iV'2
70" 'T(J+l)(2J+l)(2J + 3)

2 J(2J-1)
35

'
(JT1)(2J+1)(2J+3)

J' W (J, J', 4, 2/2, J

J-2

J-l
J

J + l

J + 2

1

630

_2
315

2

35-

!-2-
I 315

(J+l) (J+2)(2J+3)(2J + 5)

(J-1)J(2J-3)(2J"-1)(2J + 1

(J+2)(2J-3)(2J + 3)(2J+5) l1 :

(J-l)J(J+ l)(2J-l)(2J+i;
(J-l) (J+2) (2 J-3) (2 J + 5)

J(J+1)(2J-1)(2J+1)(2J+3T
(J-l)(2J-3)(2J-l)(2J + 5) IV:

J(J + l)(J+ 2)(2J+l)(2J+3)
(J-1)J(2J-3)(2J-1)

630(J+1)~(J+2)(2J+l)(2J+3)(2J+ 5)
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Oktopolstrahlung.

W(J,J',2,SßJ)

J-3

J-2

J+2

J+3

1 f 5 J+l (2J+3)
2 i 21

' ~PT~ '
(2 J-1) (2 J+1

3 f 5_ _1 (2 J+3) iVa
2 I2T "

J (J+1) (2 J-1) (2 J+l) J

3 l 5 1 (2J-1) 1V2

~2~ (W' J (J+l) '
(2 J+l) (2 J+3) I

jl_ f_5_ J 2J-1 1 Va

T I2T ' J+T '
(2 J+l) (2 J+3) j

J' W (J, J', 4, 3/3 J)

J-3
1 (J+l) (J + 2) (2J+3)(2J + 5)

154 (J-l)J (2J-3)(2J-1)(2J+1)J

J-2 Lf23-7nfJL (J+2) (2J+3)(2J+5) ]Va
3* ;\154 '

(J-1)J(J+1)
'

(2J-3)(2J-1)(2J+1)J

jj -4(30+7J){ 1 J-X (2J-3)(2J_1) !Va

J+3

3V '1154 J(J + l)(J + 2) (2J+l)(2J+3)(2J+5)
' 1 J(J-l) (2 J-l) (2 J-3) lVa

.154
'

(J + 2) (J+l)
'

(2J+5)(2J+3)(2J+1)

J' W (J, J', 6, 3/3 J)

/_3if 1 (J+l) (J + 2) (J+3) (2J+3)(2J+5)(2J+7)
2\3-7-11-13 J(J-l)(J-2) (2J+l)(2J-l)(2J-3)(2J-5).

(J+2) (J+3) (2J+3)(2J+5)(2J+7) IV2

J-2 - (5-2J)x

3-7-11-13 (J+l)J(J-l)(J-2) (2J+1)(2J-1)(2J-3)(2J
—1-5)|

J+2,-|(2J+7)x

(J-l) (J-2) (2J-l)(2J-3)(2J-5) \Vt
X

13-7-11-13 J(J+l)(J+2)(J + 3) (2J+l)(2J+3)(2J+5)(2J + 7).

Il f 1
_ J(J-l)(J-2) (2J-l)(2J-3)(2J-5) |Va+ 2 \3-7-ll-13 '

(J+l) (J + 2) (J+3)
'
(2J+l) (2 J+3) (2 J + 5) (2J + 7)J
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2i-Pol- Strahlung.

J' IF (J, J', 2,4/4 J)

J-4 2 f 7 J + l 2J + 3 IVa
3 155 J (2J-

2 J+3 IV:

!J-l)(2J + f)j
J-3 -1(J + 13)(7 1 2J+3 ^

6 v '(55 J(J+ 1) (2J-1)(2J + 1)

1 ,r fa, 7 1 2 J-l IVaJ+3 (J-12)

J + 4

6V '(55 J(J + 1) (2J+l)(2J+3)
2 f_7 J 2J-l |Va

"3" l~55~
' J+T "

(2 J + l) (2 J + 3) J

J + 4

IF (J, J', 4,4/4 J)

j 1 f 14 (J+l) (J+2) (2J+3)(2J+5) IVa

3(143' (J-l)J ' (2J-3)(2J-l)(2J+ l)j
1 if, o n I u (J + 2) (2J+3)(2J + 5) IVa

3| 6
(IV 3^)|143 (j_1)J(j + 1) (2J-3)(2J-1)(2J+1)

J+3 -i (20+3Jl(-y (Jfa^ (2 J-3) (2 J-l) IVa
6V M143 J(J + l)(J + 2)

' (2J+1)(2J+3)(2J + 5)J

14 J (J-l) (2 J-l) (2 J-3) ]Va-H 143 (J+l) (J + 2) (2J + l)(2J+3)(2J + 5)

J' It" (J, J', 6, 4/4 J)

j_4 - 1 (J+l) (J + 2) (J+3) (2J+3)(2J+5)(2J + 7) |Va
3 \5-1113 J(J-l)(J-2) (2J + 1)(2J-1)(2J-3)(2J-5)|
1

(67-17J)x
f 1_ (J + 2) (J+3) (2 J+3) (2 J+5)(2J+7) IVi

X to'- If-13 '
(J +1) J (J-l) (J-2)

'
(2J-+1) (2 J-1) (2 J- 3) (2 J- 5)J

- -i- (84 + 17J) x

J+:Jxf 1 (J-2)(J-1) (2J-l)(2J-3)(2J-5) IVa

J+4

(5-11-13 J(J + l)(J + 2)(J + 3) (2J + l)(2J+3)(2J + 5)(2J+7)

2f 1 J(J-l)(J-2) (2J-l)(2J-3)(2J-5) IV:

3 15-11-13 (J+l) (J+2) (J + 3) (2J+l)(2J+3)(2J + 5)(2J + 7) !"
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Interferenzkoeffizienten.

Dipol-Quadrupol-Strahlung.

257

J'

J-l
J

J+l

W (J, J', 2,1/2, J)

1 (J-l) (2 J+3)
10 J(2J-1)(2J+1)
_3 1

10" J(J+1)(2J+1)
J_ (J+2) (2 J-l)
Ï0~ '

PJ+1) (2 J+l) (2 J + 3)

Va

Quadrupol-Oktopol-Strahlung.

J' W (J, J', 2, 2/3, J)

J-2

J+2

(1 J-2 2 J + 3 \Vi
[14 J (2J-1)(2J+1)J
' 1 J+3 2J-1 }i/2
(14 J-l (2J+1)(2J+3)J

J' W (J, J', 4, 2/3, J)

J-2

J + 2

1 fl (J-2) (J+2) (2J+3)(2J + 5) ]Va

3(7 (J-l)J (2J-3)(2J-1)(2J+1)J
1 fl (J+3) (J-l) (2J-3)(2J-1) \V»
3 (7 (J + 2) (J + l)

'
(2J + 5)(2J+3)(2J + 1)J

(23 __ 24)-Polstrahlung.

J' W (J, J', 2, 3/4, J)

J-3

J+3

1(1 J-3 2 J+3 (1/2

2 |5 J (2J-1)(2J+1)|
1 f 1 J+4 2 J-l ]i/2
2 \5 J-l (2J+1)(2J+3)J

J' W (J, J', 4, 3/4, J)

J-3

J + 3

1(10 (J-3) (J+2) (2J+3)(2J+5) IVa
6(11 J(J-l) (2J-3)(2J-1)(2J+1)J
1 (10 (J + 4) (J-l) (2 J-3) (2 J-l) ]i/2
6(11 (J+2) (J+l) (2J + 5)(2J+3)(2J+1)J
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Clebsch-Gordon-Koeffizienten.

poo^10 10 ~ -v? °u 1-1 - n
p20
w10 10 n p20°11 1-1 - n
pOO
^20 20 ~ n /-fOO

°21 2-1 "- v »
/^00 -1/ 1

L/22 2-2 — 1/ g

p20^20 20 — - Vi /"(20
°21 2-1 ~ i/» /T20 "i/ 2

^22 2-2 ~ I/7
piO
"faO 20 — VS /-(40

°21 2-1 - Vi /nr-K) _ T / 1

°22 2-2- [/ 70

poo^30 30 ~ -n pOO
°31 3-1 - lrl

p20
*faO 30 ~ *fl p20°31 3-1 - "

2 |/ 7

piO'fao 30 — -p% pWU31 3-1 —
1 ,/~2~
2 [/ 77

cm - 10 l/ '
°31 3-1 - 5.-./CE

2 ^ 77"fao 30 lu y 3.7.11

poo'faO 40 ~
1

/"(00
'fai 4-1

1

""3

p20
"^40 40 ~ 3 ^ 77

9 l/^iifaTs

ri20
°41 4-1 ~

piO^41 4-1

6 |/ 77

plO 9 / 2
°40 40 2 |/ 7-11- 13

peo^40 40 —
3 |/ 11

/~r60
"fai 4-1 — -1 i/5:

30 |/ 11
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