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Beitrdge zur Theorie der Richtungskorrelation.
Kurt Alder, ETH., Ziirich.
13. XII. 51.

1. Einleitung.

Die verschiedenen Zustinde eines Atomkerns kénnen durch fol-
gende Grossen charakterisiert werden: Energie, Lebensdauer, Spin,
Paritat, magnetisches Moment und elektrisches Quadrupolmoment.
Im Grundzustand sind die mechanischen, magnetischen oder elek-
trischen Momente durch die bekannten Methoden (Ausmessung der
Hyperfeinstruktur) bestimmbar. Die Gesamtenergie des Kerns 1st
aus der massenspektroskopisch oder anderweitig bekannten Bin-
dungsenergie berechenbar.

Fir angeregte, kurzlebige Kernzustiinde versagen die fiir den
Grundzustand iiblichen Methoden, und es miissen andere Wege be-
nutzt werden. Die Messung der Energiedifferenz zum Grundzustand
und teilweise auch die Messung der Lebensdauer ist direkten Metho-
den zuginglich. Besonders die Betaspektroskopie 1st schon seit lan-
ger Zeit mit gutem Erfolg verwendet worden. Die Messung der
Lebensdauer mit Hilfe verzogerter Koinzidenzen wurde dagegen
erst in den letzten Jahren entwickelt. Die Bestimmung der Spin-
werte bzw. der Paritidtsinderungen kann bis heute dagegen nur auf
indirektem Wege erfolgen. Zur Ermittlung der Spinwerte und der
Paritdtsinderungen bedient man sich mit gutem Erfolg der Theorie
der y-Strahlen. Multipolordnung und Charakter der Strahlung kon-
nen aus den Konversionskoeffizienten, die jetzt genau berechnet
vorliegen (Rose, SpiNnrap, Gorrtzienl)), erhalten werden. Die
Schliisse, die aus der Anwendung der Betatheorie gezogen werden,
sind dagegen meist nicht eindeutig. Sie gestatten aber oft gewisse
Falle auszuschliessen. In manchen giinstigen Féllen, besonders bei
leichten Kernen, kénnen auch Kernreaktionen Angaben iiber Spin
und Paritét liefern.

Eine eindeutige Zuordnung von Spin- und Paritdtswerten zu den
gefundenen Kernzustinden ist jedoch in den wenigsten Fallen mog-
lich. Jede zusétzliche Aussage ist deshalb wertvoll. Die Messung der
Richtungskorrelation, die in den letzten Jahren zunehmende Be-
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deutung erlangt hat, vermag oft solche Angaben zu liefern und zwi-
schen verschiedenen Mdéglichkeiten eindeutig zu entscheiden. Wenn
von einem angeregten Kern zwei Teilchen sukzessive ausgesandt
werden, so héngt die Wahrscheinlichkeit fiir Emissionen von der
Lage der beiden Richtungen der emittierten Teilchen und der Spin-
und Multipolzuordnung ab.

Die erste Theorie der Richtungskorrelation stammt von HamIL-
ToN?%). Weitere Rechnungen sind von verschiedenen Autoren durch-
gefiihrt, so von Yana?®) iiber allgemeine gruppentheoretische Eigen-
schaften, von FFaLkorr und Ling?) tiber Interferenzterme ber Mi-
schungen von verschiedenen Multipolordnungen, von FaLkorr und
UnLeNBECK?) Giber Korrelation beliebiger Teilchen. Wenn von einem
oder beiden y-Quanten noch die Polarisationsrichtung gemessen
werden kann, so spricht man von Polarisationskorrelation. ITamir-
TON, ZINNES u.a.%) haben auch diesen Fall behandelt.

Die Resultate der verschiedenen Autoren ergeben, dass die rela-
tive Wahrscheinlichkeit als Polynom in cos?@®

W(0)=1+ A,co82 O+ A, cos* O+ -.-+4,, cos*" O

dargestellt werden kann. @ ist dabei der Winkel zwischen den bei-
den Emissionsrichtungen. Fir den hichsten Exponenten 2k gilt
die Auswahlregel

e < ks bys d g

wenn [, und [, die Multipolordnungen der beiden Strahlungen und
I, den Spin des mittleren Niveaus bedeuten. Bei reinen Strahlungen
héngen die Konstanten nicht von Kernmatrixelementen ab, sondern
sind gruppentheoretisch durch Spin und Multipolzuordnung be-
stimmt. Der Vergleich der gemessenen und berechneten Korrela-
tionsfunktion W () ergibt somit, wie bereits angedeutet, wertvolle
Hinweise auf Spinwerte und Strahlungscharakter.

Obwohl die Idee der Messung sehr einfach st und die Theorie der
y-y-Korrelation schon seit 1940 durch IHaminTon?) bereitgestellt
war, sind die ersten erfolgreichen und zuverlassigen Messungen doch
erst nach der Entwicklung des Szintillationszihlers in den Jahren
1947 und 1948 durchgefiithrt worden. Nach diesen ersten Messungen
von Brapy und Drurscu?) wurde die Methode rasch bekannt, und
heute bildet die y-v-Korrelation ein wertvolles Hilfsmittel fiir die
Kernspektroskopie®). Dagegen sind Korrelationen, bei denen eines
oder beide Teilchen Elektronen sind, experimentell viel schwieriger
zu messen. Dieses Gebiet der Richtungskorrelation besitzt deshalb
heute noch eine geringe Bedeutung, vermag aber im Prinzip z.B.
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tiber den Wechselwirkungsansatz in der Fermischen Betatheorie zu
entscheiden.

Die Annahme aller bisher zitierten theoretischen Arbeiten ist, dass
die Lebensdauer des mittleren Niveaus so kurz ist, dass eine Storung
des Zustandes nach Emission des ersten Quants nicht moglich ist.
GoerrzeL®) hat diese Annahme fallengelassen und in sehr allge-
meiner Weise den Einfluss der Elektronenhiille berticksichtigt. An-
derseits sind in einer Reihe von Messungen merkliche Anisotropien
der Korrelation festgestellt worden, obwohl die Lebensdauer des
mittleren Niveaus so gross ist, dass dussere Einflisse sich bemerkbar
machen konnten. In diesen Fallen wird die beobachtete Korrelation
im allgemeinen nicht mit der berechneten iibereinstimmen, so dass
ein Schluss auf die Spinwerte erschwert oder gar verunméglicht
wird. Dagegen ist bei anderweitig bekannten Spinwerten die Ab-
welchung der experimentellen von der theoretischen Korrelation ein
Mass fiir die Wechselwirkung des Kernes mit der Umgebung (Hyper-
feinstruktur). Dieser Effekt, der einerseits fiir die Bestimmung der
,,wahren** Korrelation storend wirkt, kann umgekehrt zur Bestim-
mung weiterer Kerneigenschaften verwendet werden. Die Hyper-
feinstruktur gestattet ja bekanntlich, die verschiedenen Momente
zu bestimmen. Wichtig und der Rechnung bequem zugénglich ist
vor allem die Schwichung der Korrelation durch ein dusseres ma-
gnetisches Feld. Daraus wird sich spéater die Moglichkeit ergeben,
das magnetische Moment im kurzlebigen mittleren Zustand zu be-
stimmen.

Kehren wir zuriick zur ungestorten Korrelation, die in der oben
angedeuteten Form geschrieben werden kann. Die Berechnung der
Koeffizienten A,, fiihrt dann auf ausgedehnte numerische Rech-
nungen. GARDNER, Racan und Lroyp!?) zeigten jedoch, dass diese
Rechnungen sich stark vereinfachen, wenn die Korrelationsfunktion
W(®) nach gruppentheoretisch einfachen und der Geometrie des
Problems angepassten Funktionen entwickelt wird. Fiir ungestorte
und unpolarisierte Korrelationen hat man z.B. W( &) nach Kugel-
funktionen (Legendresche Polynome) zu entwickeln:

W (@) =3 a, P, (cos 6).

Die a,, lassen sich dann durch geschlossene Formeln ausdriicken. Das
Ziel der vorliegenden Arbeit ist es, allgemeine Formeln fiir die Kor-
relation beliebiger Teilchen aufzustellen (inklusive Polarisationskor-
relation und beliebige Mischung), wobei der Zwischenzustand durch
dussere Einfliisse gestort werden kann.
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2. Theorie der Richtungskorrelation.

Nach Farkorr und UnLeNBECK?®) schreiben wir fir die relative
Wahrscheinlichkeit der Emission der beiden Teilchen

W (Jy Jeg) = 1 S, X | XA Hy (k)| Bo) (B |Hy (k)| C1)% (1)

wo A;, B,,, C, die Wellenfunktionen fiir die entarteten Energie-

—

niveaus des Anfangs-, Zwischen- und Endzustandes bedeuten. H,(k,)
stellt den Energieoperator fiir die Emission des ersten Teilchens in

die Richtung k, dar. Sy, S, sind Mittelungen iiber nicht gemessene
Spins, Polarisationen, Neutrinorichtungen.

1

1y

Wird die Entartung der Energleniveaus im Zwischenzustand
durch eine dussere Wechselwirkung aufgehoben, so veréndert dies
die Korrelation. GorrTtzEL?) hat diesen Fall behandelt und erhilt
fiir die relative Wahrscheinlichkeit

W (kg b) =
A, |H, (k)| B,,) (B,, | Hy (k)| C,) (A, |Hy (k)] B,,/)* (B, |H, (k)| Cp)*
&&Z(Z“H)(»(Mﬂﬁwml)([“”“-w

L,m,m’,p

7 18t die Lebensdauer des mittleren Niveaus, w,,, die Energieauf-
spaltung zwischen den Zustéinden B,, und B,, (dividiert durch 7).

Fiir die weiteren Uberlegungen nehmen wir an, dass die Kernspins
der drei Energiezusténde I,, I, I, sind. Die dazugehorigen magne-
tischen Quantenzahlen seien M, Mes My
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Wir betrachten Funktionen Y ,(4;---)%), die von Grossen A4;
(Polarisationsgrissen) abhéngen sollen und sich bei einer Drehung
des Koordinatensystems wie folgt transformieren:

YLM D A ZDLM Y (Ai' : ) . (3)

D soll die Drehung charakterisieren, die durch die drei Eulerschen
Winkel «, 8,y gegeben ist. DL («, 8,) ist der dazugehorige Dar-
stellungskoeffizient. ' _

Fir die Wechselwirkung fordern wir aus physikalischen Griinden
Drehinvarianz. Dies fithrt dann offenbar auf folgenden Ansatz fiir
den Energieoperator

H = ZG’L ZYLM ) Ypau(4ie), | (4)
M=—1L
wo die X, sich nur auf den Kern und die 4; nur auf die em1ttlerten

Teilchen beziehen sollen. Fiir das Matrlxelement (Jm |H| J'm’) folgt
damit der Ausdruck

(Jm [H|J"m) “”%1“1, E(Jm | Y, 0 (X o) ' m) Yeu (d;--+). (5)

[Jm | Y4 (X;--+)| J'm’] kann aus allgemeinen gruppentheoretischen
Griimden in zwei Faktoren zerlegt werden:

(T [V (Xge - ) T m) =Co 0y f (1, L X -), (6)

wo f von den magnetischen Quantenzahlen m, m’, M unabhingig
1st. Der erste Faktor ist ein Clebsch-Gordon-Koeffizient, der die
Vektoraddition

f—}-f=f m-M=m'

vermittelt. Da dieser Koeffizient immer dann verschwindet, wenn
obige Beziehungen nicht erfiillt sind, bleibt mit a;f = «,,

(Jm |H| J'm’) :Zach;iTiM Y;M (i Vs i - (7)
Dieses Resultat in (2) eingesetzt, ergibt bel einer beliebigen Wahl
der z-Achse fir die Korrelationsfunktion

IL,M, I,M, MM, 7
= 200,90, CrlA st oo, Criait o, o, Fr 0, (1)

Ip Mg Ip M'p M, M, 1
ﬂL3ﬂL OIoMcL M 010M0L4M4 FL L (k )l—ia)BB,‘[’ (8)

*) Diese Funktionen sind eine Verallgemeinerung der polarisierten Kugelfunk-
tionen von FALKOFF und UHLENBECK?®).
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wo abkiirzungsweise gesetzt ist
Fit (k = S{Y} 5, (Ai++) Yy, (4 )} (9)

Die F4Y (i) lassen sich noch weiter vereinfachen. Wir fiihren eine
Drehung des Koordinatensystems so aus, dass die Emissionsrich-
tung in die z-Achse fallt. Die drei Eulerschen Winkel sind dann:

= @ —n/2, =, y beliebig. Es kann y = 0 gesetzt werden.
Wegen der Transformationseigenschaften der Y ;; ist

F5 (9, @) Z DY, (g— 59,0 Dh . (9— 5, ,0) O (10)
mit
Cpp=Frm(0) =
—S{YE, (A k=2,y=0)Y,, (4, k=2y=0}. (@11)

Die Formeln (8), (9), (10), (11) gestatten jede beliebige Korrelation
(inklusive Polarisationen und Mischungen) zu berechnen. Die ein-
zigen Unbekannten sind die modellabhingigen Kernmatrixelemente
%, B, und die Fitfk;ua (0).

Wir wollen uns vorerst auf den Fall beschrinken, dass keine der
Polarisationsgrossen 4; gemessen werde. S bedeutet dann die Mit-
telung tiber alle 4;. Mitteln wir zunéchst tiber alle moglichen Lagen,

Aus bekannten gruppentheoretischen Relationen der Darstellungskoeffizienten
[Appendix A (8), (4)] leitet man die folgenden Eigenschaften der # her:

[ FM 2 Mz A2 =0y 4 Oy 4 - const; const unabhangig von M,

Z F%ILW (#) unabhangig von &.

Diese beiden Siatze sind in Farkorr und UHLENBECK?®) zitiert.
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die aus einer speziellen Lage durch Drehung um % um den Winkel y
entstehen, so fiilhrt dies wegen der Transformationseigenschaften
der Y, auf ein Integral

2n
/ei(ml—-mz)?d},= 278, (12)

.
Freiy (0) = 6,0, Frr (0) (13)

sein. (13) 1st dquivalent mit der Bemerkung (HaminTon?), GOERT-
zeL?), FaLkorr und UnLenBrckS), LLovyp!!) und Lippmanni?)),
dass samtliche Interferenzterme verschwinden, wenn die z-Achse in
die Richtung des einen Quantes gelegt wird. Aus der Herleitung
geht hervor, dass dieser Satz nicht mehr richtig ist, wenn Polari-
sationen gemessen werden konnen.

(13) sagt weiter aus, dass F})"; nur von Min (L, , L,) willkiirlichen
Koeffizienten abhingt. Diese Bemerkung stammt ebenfalls von FaL-
KOFF und UHLENBECK?Y).

Die Formeln (8), (9), (10), (11) fiir die Richtungskorrelation be-
liebiger Teilchen kénnen noch vereinfacht werden. Die Summen
iber magnetische Quantenzahlen tragen ja im allgemeinen nur geo-
metrischen Charakter und es muss daher moglich sein, diese explizit
auszuwerten. Dies fithrt auf sogenannte Racah-Koeffizienten, deren
Definitionen und Beziehungen mit anderen oft gebrauchten gruppen-
theoretischen Relationen im Appendix zusammengestellt sind.

Speziell 1st nach Appendix A (3), (7)

d.h. es muss

B (9, 9)

:Z gk wiu,%m CLY o tom Dkug— My, 0 (‘P — %, 7, 0) (—1)y™= Fpre (0)-
m, k gerade

(14)
(14) in (8) eingesetzt ergibt dann

W (k, ky) = gDy (pr—39:,0) Dﬁég(fpz—%,ﬁz, 0), (15)

7

*) Dass in (14) nur iiber die geraden k summiert zu werden braucht, folgt aus
der Erhaltung der Paritit. Es existieren namlich zwei verschiedene Arten von
Y, 4y (4;-+-): solche, die bei einer Spiegelung das Vorzeichen wechseln und solche,
die invariant bleiben. Da man fiir die Wechselwirkung H ausser der Drehinvarianz
auch Spiegelungsinvarianz fordern muss, folgt, dass Paritat ¥ ; ,, (X, ---) = Paritit
Yo, -% Pantatsa,nderung des betrachteten Ubergangs ist: DIGSB Grosse ist
aber fest so dass FM1 ME S{Y* Toap, Ay ) Y g (A )} eine gerade Pari-
tat besitzt. i

16
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wo die afi®: sich wie folgt darstellen lassen:
afiks — I8, TT%. [1T% %, (16)
Die drei Faktoren haben die folgende Bedeutung:
I =2k +1 3wy af (— 0Bt w(1, 1k, Ly/L, L)
L, L,

T DB OR B O,

I = 2%, +1 3 B, 87, (— D' B MW (I, Tk, Ly Ly L) L (17)

Lo La
X{Z(_ L,, mCE?mLJ mFL”:}rz(O)}’
k]ko IB IBM o ];__
HI‘“ ZCI MBklﬂcfﬂMBkzﬂ "”’BBT

Mp My

ky, ky gerade

3. Allgemeine Eigenschaiten der Korrelationsiunktionen.

Die Formeln (15) sind Entwicklungen von W(El,gz) In natir-
licher Weise nach Darstellungskoeffizienten. Die Auswahlregeln der
Racah-Koeffizienten (Appendix B) verlangen

iI —IBl\ lIA_!_IB] IIC_IB\<L34\<\ 0+I
0<2k1 <21, |L,—L,| <2k, <L, + L,y (18)
0<2k, <21, |L,—L,| <2k, <L, + L,

Die ersten beiden Ungleichungen sind nichts anderes als der Satz
von der Erhaltung des Drehimpulses.

Ist wgpt <1, d.h. die Storung des mittleren Niveaus klein, so
ergibt sich eine weitere Vereinfachung.

Es 1st namlich

Fiks Ig M Iy Mp ZIB+1
L —J&Zﬂ;CIBMgkmOIﬁMBkW Otk sl (19)
BB
also
—_ —> 1 i, B 2 A 7 "
W(klkz):w 51 IR TFDE (9, — 5,8, 0) DAY g %,32,0)=

— e D (1= 3. 2,0) D, (0, 0 S ).

(20)
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Die Summe iiber x kann aus der Gruppeneigenschaft der Raum-
drehungen leicht bestimmt werden.

Es seien @, @, ¥ die Eulerschen Winkel der zusammengesetzten
Drehung ST mit

- p 3000

S {O ﬁz,”“ 992}

Die Bedeutung des Winkels @ ldsst sich durch eine klelne Rechnung
leicht erhalten. Es 1st @ = < (kl, kz)

Aus
ZDm 8 D, (T)=Dg , (8T) (21)

ergibt sich also
Wk ky) =D 2k+ I*. I1*. D§0(@, e,V =

k gerade
1
=2 2 k+TIk' I1*Dg, (0, 6, 0) =
k gerade
zklfflk I1* Py(cos @) =} a; Py (cos 0). (22)
k gerade k gerade

Die Korrelationsfunktion ist speziell von der Lage der z-Achse un-
abhéngig. Sie ist eine Summe von Potenzen in cos?@. Der hochste
Exponent ist nach den Auswahlregeln (18) durch

Min {2 I;, Max (I, + L), Max (L, +L,)}

begrenzt. Ist dagegen die Stérung ot nicht mehr vernachlassigbar,
s0 hat man mit den allgemeinen Formeln (17) zu rechnen. Diese
konnen aber wie folgt interpretiert werden:

Wir entwickeln die ungestorte Korrelationsfunktion nach Kugel-
funktionen

W(l_‘;1 ki) Zak 2k+ 1 ka( o) Y (Zz) . (23)

Den Einfluss der Stérung erhalten wir nun, indem jedes Glied (k, )
mit einem Schwichungsfaktor G# (,,attenuation factor”) multipli-
ziert wird:

W (k, k) Za G - Zk - V() Y (k) (24)
WO Y
Gi= @k + 1) T = @k +1) 3 0™, P (25)

W, T
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Dies bleibt offenbar nur solange richtig, als unser Ausdruck
III54— 6, , ITI%: (26)

15t. Neben dem oben betrachteten Fall wtr <€ 1 gilt (26) auch dann,
wenn die Hyperfeinaufspaltung zwischen verschiedenen magneti-
schen Quantenzahlen gleich gross ist (z.B. Aufspaltung im schwa-
chen Magnetfeld). Ist die Hyperfeinaufspaltung nicht dquidistant,
so miissen noch Interferenzterme berticksichtigt werden, die durch
den Schwéichungsmechanismus erzeugt werden. Nach (17) st

W (k) = S TRIIRIIEe L yed)— L Yo#(k,). (27

CYAED) B ey YR e Y F). @D
"

Wenn statt unpolarisierter Strahlung irgendwelche Grossen (Polari-

sationen) zusitzlich gemessen werden, so wird der obige Formalis-

mus nur unwesentlich geéndert.

In den Formeln (17) hat man einfach 3’ durch den Ausdruck

Wiy My

{ PN Vil o SO g (0)}

und Df, durch D}, zu ersetzen.

s — 2k, +1 %:%a;a (— )l det Loy (1,1, % L, /L, 1)
| Zenmmennn, L m o)
I =12k L 36,6 (= )0 W Loky Ly Ly L) X U o)
X{m,gm( Dh=mOpm FL’?SL’?‘(O)}
IITk e — Mggfgﬁgkw JIfB%BAm 1—@

ahiks — Th 1% [Tk

,u

W ey ) = %’:‘iﬁ:uDii‘m (71— 3 210) Dk, (0,95 5 — )
Hy Mo

Die F7"/ (0) hiingen natiirlich jetzt noch von den gemessenen Polari-
sa,tlonsgrossen A;--- ab.
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Fir verschwindende Schwichung wt <€ 1 ldsst sich die Summe
iiber u# wie vorhin auswerten und erhalt

W (ke key) = 2k@-1k IT% Dt (B, 0,¥). (29)

M1 o

Die Eulerschen Winkel @ und ¥ sind vom speziell gewdhlten Ko-
ordinatensystem abhingig. Dies ist nicht verwunderlich, da die
Polarisationsgrissen 4,--- ja auf dieses festgewihlte System be-
zogen sind.

Wéhlen wir als Koordinatensystem dasjenige, das als z-Achse die
Emissionsrichtung des einen Quants und als (2, y)-Ebene die Ebene
der beiden Quanten besitzt, so 1st @ = 0, ¥ = 0. Wir haben

W (I, k) sz;lkmm 0,0,0). (30)

M1 [
| ST

AZE/_(T

Schwichungen durch dussere Einfliisse konnen wie oben diskutiert
werden.

4. Diskussion der Schwiichungserscheinungen.

Die Korrelation kann durch irgendwelche dussere oder innere Fel-
der gestort werden. Als inneres Feld wollen wir das Magnetfeld der
Hille am Ort des Kerns annehmen. Die Hiille werde durch den Dreh-
impuls J charakterisiert. Er setzt sich mit dem Kernspin I zu einem
totalen Drehimpuls F' zusammen. In den obigen Formeln hat man
jetzt unter den A,;, B,,, C, die Wellenfunktionen des gesamten
Atoms (Kern und Hiille) zu verstehen. Dabei ist aber zu beachten,
dass der Operator H nur auf die Kerneigenfunktionen wirkt.
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Wegen der (I, J)-Kopplung kinnen aber die Kernmatrixelemente
der Form (4, |H,| B,,) leicht auf gewshnliche Kernmatrixelemente
umtransformiert werden. Es gilt z. B.

F, my, 1
Ly J By, |H |1y Eymg ZCIA,,};J gs Ly My |H IIBM)C] ”ﬂ? Jr
(31)
Diese und analoge Formeln in (2) eingesetzt ergeben unter Bertick-

sichtigung der Orthogonalitatsrelationen der Clebsch-Gordon-Koef-
fizienten fir I11

kike IBMB [ M Fm
III/”' ZCIBMBA”IIU, IBMBkzﬂolBMBJT

Fm F'm F'm’ 1 ‘
< Cp g JsOIBMBJsCIBMi;JT iopr o (82)

Diese Summe kann wieder durch Racah-Koeffizienten aufsummiert
werden :

L * = 3@ F41) W (Ll b FJE L) W (5 I 1)
1111’
X 2057‘?”7& A[MO_{W:H« kg.u 1

Fir dquidistante Hyperfeinaufspaltung ist III%" von der Form
Oy, - Also verschwinden die Interferenzterme und es bleibt

1 —

=V OF ;' wm’

(33)

e 1

"?’wﬁm F '

It = X @F +1)|W (I, J e F/F 1)[2 3 |4

F, ¥ mm’

m' ku

Diese Formel ist nur solange richtig, als die ussere Wechselwirkung
die (I, J)-Kopplung nicht zerstort.

Fir den Spezialfall H = 0 kann die Summe tber m, m’ noch aus-
gefiithrt werden. Es ist

g . A (2F +1)(2F + 1) |W (IgJ kF/F’ Ip)|?
III - 2]6 1 2 V 1+((J)FF"C)2 -

(34)

L
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wp T 15t ein Mass fiir die Schwichung. I1T in Abhéingigkeit von wt
1st eine monoton fallende Funktion.
Fir wv <1 kann Jedoch III nicht verschwmden Es bleibt

(I1I%) .o :mi“ D RF+1)*|\W(I,JEF|FIy2. (35)
7

Die obigen Formeln erlauben wieder eine einfache Interpretation.
Wenn die ungestorte Korrelationsfunktion in der Form

Z a, P, (cos

vorliegt, so dussert sich der Einfluss der Hiille in einem Schwi-
chungsfaktor

G, = (2k+1) IIIF,
W(0) =)} a,G, F,(cos 6).
k
Die Diskussion von G, bzw. (G}), in Funktion der Grossen wr,

Iy, k geschieht am besten fiir J = 1/2. In diesem Fall lassen sich
die Racah-Koeffizienten leicht berechnen. Es ist

— AT 1 e e
B) T 2(Ig+1)(2Ig+1)

V@I, +1—Fk) 2I,+k+2)

W(IﬁékIB+—é—-/IB+—;—I

1oy 1 Tk(k+1)
W (IB g byt / Iy=5 B) 2@+ VIB(IBJFI)
i | 1 Ck(k+1)
W(IB"z"] B~ 2/IB+2 ) 2(2IB+1)VIB(IB+1)
; ; 36
W(Bz Tp - z/I 2 B) 2p+1) 21p+1) (o

VeI, +1—k @QIL,+k+2)
k(k+1)

Ge=l—gr 1 T
_ (wr
T =g tw

k(k+1)
(G min =1— @Izt 1)

(G fir verschiedene k und I, L‘at n del folgenden Tabelle
niedergelegt. '

Aus der Tabelle ist ersichtlich, dass Glieder mit hoheren cos” @
empfindlicher geschwicht werden, als diejenigen mit niedrigen Po-
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tenzen. Ferner ist die Schwichung kleiner, je grosser der Spin I,
im mittleren Zustand ist.

k
_[B = | 2 4 6 8 10
1 0,33 |
3y 0,52
B ’ 0,76 | 0,20 |
5/, 0831 0,44
3 0,88 | 0,59 | 0,15
7, 0,90 | 0,68 | 0,34
4 0,93 | 0,75 | 0,48 | 0,11
%, L 0,94 | 0,80 | 0,58 | 0,28
5 0,95 | 0,84 | 0,65 | 0,40 | 0,09

Fiir ein dusseres Magnetfeld ohne Berticksichtigung eventueller
Hilleneffekte kann der Schwichungsfaktor ebenfalls leicht berech-
net werden. Es 1st ndmlich

Wy =T =ruH[Ih=rqu H/Rk (87)

(#, g magnetischer Moment und g-Faktor des mittleren Zustandes;
u; Kernmagneton). Fir G, ergibt sich dann

G= . (38)

Wenn wir das dussere Magnetfeld H senkrecht zur Ebene der zwel
Quanten anlegen, werden die Formeln besonders einfach

W (9, H)= Y'b,—— e, (89)

l-irwt

wo ¢ der Winkel zwischen den beiden Quanten 1st. Das magnetische
Feld H induziert eine Schwichung und eine Phasenverschiebung.
Fir ot < 1 dussert sich dies in einer Rotation der Symmetrieachse
um den klassischen Prézessionswinkel @ = wr.

Wenn die beiden Zahler die beiden Partikel nicht unterscheiden
kénnen, so wird der Schwichungsfaktor reell:

a1 1 1 1

= § [T T~ Tr R ™ A0
Eine Messung von G, mit gleich empfindlichen Zéhlern gibt somit
nur die Grosse, nicht aber das Vorzeichen des gyromagnetischen
Faktors des Kernes.
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11 Mo

Berechnung der Konstanten F7'7 (0) fiir evnige Spezialfille.

Aus physikalischen Griinden verschwindet Fj'7*(0), wenn es nicht

gelingt, die z-Komponenten m; bzw. m, des Drehimpulses ohne
Bahnimpuls (sondern nur durch Spin, Neutrinos usw.) wegzutragen.
Es 1st also speziell |

fiir Spin-0-Teilchen E%™(0) =0, ausser m =0;

fiir y-Strahlen 7™ (0)=0, ausser m; , =+ 1.
Spin-0-Teilchen.
ot F1(0) — {¥2(0) %2 (0)} - 1. (41)
y-Strahlen.

Es 1st Yi~e. fir elektrische Strahlung

Y!~—ie, fir magnetische Strahlung ¢ =e,+1e,.

Mit Y; ' = — (Y})* gewinnt man ohne weiteres:
el-el mg-mg el-mg mg-el
Fl 1 1 sl i
prw , ) 1 N 1 i _ _@

Samtliche von [ abhiingige Grossen sind dabei zum Matrixelement
geschlagen. Daher sind die Matrixelemente von Farkorr und Line
von den unsrigen verschieden. Es gilt

* = V2 [+147" (al) Falk-Ling *

Wenn Polarisationen gemessen werden, kénnen die zugehorigen
2™ (0) ebenfalls leicht angegeben werden. Dabei wollen wir das
Koordinationssystem, auf das die Polarisationsgrossen bezogen wer-
den, wie oben wihlen [2-Achse in Richtung des einen Quants,
(2, y)-Ebene = Ebene der beiden Quanten].

@ bedeutet den Winkel, den der Polarisationsvektor mit der Ebene
der beiden Quanten einschliesst.

el-el mg-mg el-mg mg-el
lell;l 6~—?',2t)9 —_e 29 e 29 je— 129
Flj} g2 —et2® —ie'2? g @b P

|
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v-Konversion.

Fir gewisse Fille lassen sich auch hier die Konstanten I leicht
angeben. Insbesondere ist die Konversion eines s-Elektrons leicht
zu behandeln. Das durch Konversion ausgesandte Elektron bildet
mit dem in der K-Schale verbleibenden aus Paritdtsgriimden

a) bel elektrischer Konversion einen Singulettzustand ;

b) beil magnetischer Konversion einen Triplettzustand.

Bei elektrischer Konversion verhalt sich das Teilchen offenbar wie
ein Spin-0-Teilchen
Y (0) =1 F2% () =0 m+0;

wird das Elektron magnetisch konvertiert, so wird es in einer (I —1)-
oder (I+1)-Welle ausgesandt.
Erfolgt die Emission in einer (I +1)-Welle, so ist das F;'™ gegeben

durch . .
E?ﬁnm (O) = ‘205T1/¢;17n— " l7l—1, H (0) Xl,m—-,u\2’
M

wo X, die Triplettspineigenfunktion bedeutet. Dieser Ausdruck redu-
ziert sich aber sofort auf

Fl}nm (O) = %Oiflo;lmi?‘- (42)
Fiir die (I+1)-Welle ergibt die analoge Uberlegung
B (0) = ,Cﬂ 1 0;1m§2' (43)

Speziell 1st noch daraus ersichtlich, dass F7™(0) = 0 ist, fiir m > 1.
Es ergibt sich dann nach den Tabellen von CoNnpoN und SHERTLEY
fiir die Clebsch-Gordon-Koeffizienten :

11 00 | -1-1
‘ 7 ' oy 7
a LI+ I ., L+
-1 | =5 l | -
N A(ES S . | T+
I+1 e @+1) S e

p-Strahlung.

In der (Z = 0)-Néherung sind von Farkorr und UnLeNBECK die
F™ (9) fir erlaubte sowie verbotene Uberginge erster und zweiter
Art berechnet worden. Wir bestimmen aus jener Arbeit die F;" (0):

Ll [—2,
F(0) =1-—1, FP(0) = 1+ p+ g,

. ) ;
FEHO) =144,  FFH0) =5+ py + 5 Mo

i 6 1 1
EZJ,Z (0) — 3 & Mlggﬂz'
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Far die Bedeutung der 4, u,, uy siche Farkorr und UHLENBECK,
wo diese Parameter auch fiir die verschiedenen Wechselwirkungs-
ansétze berechnet sind.

Herrn Prof. Dr. W. Pavrnr und Herrn Prof. Dr. V. WEIsskopPF
mochte ich fiir thr Interesse, das sie an dieser Arbeit bekundet
haben, meinen herzlichsten Dank aussprechen. Den Herren Dr.
H.FraveNrELDER, Dr. R. ScmarroTH und meinem Freund E. HEer
danke 1ch fir viele anregende Diskussionen.
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APPENDIX

A. Einige oft gebrauchte gruppentheoretische Relationen.

v VG G G+ u) G- p)!
Do (0B7) = 2( 1) (G—p =) G+ p—n) ! (e’ — )

»

X ei#'® gog2itu—un—2x (%ﬁ) S (;ﬁ) e (1)
ZD (8)-Di . (T)=D?, ,(8T) (2)
M( afy)=(—1)*"*DL,_, («fy)* (3)
Di, , bildet eine unitére Matrix (4)
e
Dy (By) = |55t YE (B ) Q
Y auf 1 normierte Kugelfunktion '

D, ,(0,0,0) =46, (6)

i X kN
D3y D =2 5t Dt ion Covind (7)

=[J—jl
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4
/})HA dS?::é.-dvméNn§j§T— (8)

ohEt _ WL+ll)u;l+DWHJ.M'w+y+) t (B gy}

lﬁ.l/ll’ B e e e gy - X
VLA T+T+ 1) (= ) G+ )t G— )t (T4 )!
yrotis (Lt+l+p—n)! (- p+x)!
% 1 I -
Z( V2L+1(L I+1—3)! (L+,u+v ) x! (x+1— l—,u—v}! (9)
e - . 2c¢+1
ZO{,:; bp O((oc v 6bb’ 9 b]r:l* ‘8 feSt (10)

o, ¥
o
Clrpp=(=1)"P=¢. 0527,
. +b— v
G = (=1 Tl
R VST S ugn . (11)
C pp=(—1)" “]/2,,“ 8 < A

ey . ] 2C+1
Caabﬁ*(_l) 2a+1 Cgoiﬁcy

205 Ot Ol o= V2T 1VZAT 1 W (ebfdjac) Oy (12)
afo

wo W(abed/ef) der sogenannte Racah-Koeffizient 1st, der von sechs
ganz- oder halbzahligen positiven Quantenzahlen abhdngt. Dieser
Koefﬁment kann aus folgender Formel berechnet werden.

w (abedlef) =

- (-1 5 (@+b+te+d+1-2)!
_Z @+b—e—2)!(c+d—e—2)! (@a+c—f—2)!' (b+d—f—=z)
X b+d—f-2)'2'(e+f—a—-d+2)!(e+f-b— c—|—z)

W(abcdlef) =
(@+b—e)! (@a+e—b)!(b+e—a)! (c+d e)l(c+e—d)! (d+e—d)!x |V
= | xX(@+e—fl@a+f-e)t(c+f—a))lb+d—H'(b+f-d)! (d+f-b)! X
(@+b+e+1)! (c+d+e+1)! (a+c+f+1)'b+d+f+1 )X

X w(abed/ef). (13)
Es gelten die folgenden Beziehungen: ‘

Wiabcedlef) =W (bade/ef) = W (cdablef) = W (acbd/fe)
=(—1)°" 1= W(ebcflad) = (—1)* """ W(aefd/bc).
Die Racah-Koeffizienten verschwinden nur dann nicht, wenn die

vier Triaden (abe) (cde) (acf) (bdf)

alle trigonometrische Ungleichungen der Form |a—b| <¢ <a+1b
erfiillen.
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B. Allgemeine Formeln fiir oft gebrauchte Racah-Koeffizienten.

Alle benotigten Racah-Koeffizienten sind von der Form

W(IzI1,k1/,1,).
Meistens 1st jedoch in praktischen Anwendungen
li=lyoder!l, =1,+1 |\I,— Ip| =1, 0derl,—1,

so dass man nur wenige Koeffizienten zu berechnen hat. Es ist

B 21121 (2 I+k+1)1 (21—K)! 1y
WAL I—1k L) "“{(2I+1)!(2I+1)!(2l+k+1)!(2l—k)!}

; 211211211211 Us
WL I+1LE LT = (—1)* :(Zl—k)!(2l—k)1(2l+k+1)! (2I+k+1)!}
W(ILI—1+1,kiD)=2[21(I+1)—kF+1) (I —1+1)]x
{ @QI-1)1 (21-1)1 (2T —F)! 2T +k+1)! }1/2
!

CI+20 @I+ 2l+k+1)! (2I-Fk)
W(LI+1—1,kI01) =2(—1* 21—k E+1) (I+1)]x

0 @1-1)1(21-1)1 (2 I-1)1 (2I-1)! 1y
{(21+k+1)!(2l+k+1)! 21— F)! (2I—ic)!}

W(,I-1LkI1l+1,1) =
B 21 (21+1) (2I—k) 2T +F+1)! 1p
- {Qk(k"'“l) (I—1) (21—k+1)!(2l+k+2)!(2[+1)!(21+2)!}

W(LI+LkYL+1,1) = (—1)F1x
211214+ 1)12 11 (21—1)! 1y
X{% (b+1) (I+1+1) (ZI—k)!(21+k+1)!(2l~ls+1)!(2l+lc+2)!}

1 /g
2F+1)(2I1+1) }

W(IJOF/FI)~{

2F-2)! (21 —-2)1\Y2
W(IJ2F/FI)x{E2F+3;;gI+3;;]/[SC(C+1)»4I(I+1)F(F+1)

C=J(J+1)—FF+1)—II+1).

C. Allgemeine Formeln fiir Clebsch-Gordon-Koeffizienten.
ll + lz + k == 2 g

OF0  _(__{y—k ¢
nono = (—1) V2k+1(g—ll)!(g—la)!(g*k)lx

Xl/(zl+42—k)z(zl+k_zz):(zz+k_l1)z
G+l +k+1)!

S N A A HoRo

Clano=0 L+l +k=2g+1.
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Tabellen von Racah-Koeffizienten.

W(J,J',0,L/L,J) =

Allgemein

1 /g
CLrTBJ+ 1)}

Dapolstrahlung.

W(J,J%, 2,11, J)

K
!
[

30 J@2J-1)2J+1

1 (J+1) (2J +3) }1/2
)

1 @J-1EJ+3))4%
30 (J+1)(2J+1)}

1 J (ST —1] | Ve
30 (J+1)(2J+1)(2J+3)]

Quadrupolstrahlung.

W(J O % 2/2 J)

J+1

J+2

—(2J-3)

) (2J+

— (4 8) -

(T 1y{8d4 3) 1j
"I EBI-T1) (2. Jﬁ)‘}
(2J+3) s
T EIT-1) 2 J+1)}
1

2J-1 /g
CJ(J+1)(2T+1) (2T +3) ]
J2J-1) s
W+ 2J+1) (2T +3) }

|
asm aH 3|~ Sw af!w

e
it
5{
3
Las

W(J J', 4, 2/2 J

J+1

J+2

/s
T @T=1) @F+1) (2J+3)}

(J+1HJ+2M2J+3 2J+5

I =-1)J2J=-3)2J-1)2J+1

)
(J+2)(2J-3)(2J+3)(2J+5) }1/2

W=D J T+ (2J-1)(2J+1)

J—1) (J+2) (2J—3) (2 +5) }1/2
)

CJ+nEI-118J+D B+ 3

J—1)(2J-3)(2J-1)(2J+5) }1/2

@RI @I+ 1) (BT +3)

(J—1)J @J—-3)(2J-1)

630 (J

/g
+D)(J+2)2J+1)(2J+3) (2J+5) }
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Oktopolstrahlunyg.
W(J,J’,2,3/3J)
1{5 J+1 (2J+3) 1y
221 J '(2.]_1)(2.]+1)}
L3 {5 1 (2J+3) 1y
221 JWJ+1L) (2J—1)(2J+1)}
| 3 { 5 1 2J-1) 1/
| 22 T+ (2J+1)(2J+3)}
| 1(5 J 2J-1 1,
7 ?{ﬁ‘ JF1 (2J+1)(2J+3)}
W (J,J’,4,3/3J)
| { 1 (J+1)(J+2) (2J+3) (2J+5) }1/2
| 154 (J-1)J ~(2J=-3)2J-1)2J+1)
T e 1 (J +2) 2J+3)(2J+5) 1y
5 (23 7J){154 (J—I)J(J+1)"(2Jd3)(2J-—1)(2J+1)}
1 1 J-1 2J-3)(2J-1) 1y
T3 (30”']){154 TUTD T2 @T+1) 2T+3) (2J+5)}

J+31 {1 JJ-1)  (2J-1)(2J-3) ____}1/2
| 154 (J+2)(J+1) (2J+5)(2J+3)(2J+1)
\ W (J,J’, 6, 3/3J)

J_gl{._ 1 (JH)I+2J+3)  (2J+3)(2T+5)(2I+T) }112
2BT 113 JU-1) (-2 @J+1)@JI-1)(2J-3)@2J-5)
'3
-~ (6—-2J) x
2
X{_M; U+ EU+3) (@J+3)@J+5)(2T+7) }1/2
S BT T+ DT (-0 (T-2) @J+1) 2T -1)2J-3)(2T-5)

2
e (B T
‘ 3
x{1 =) I=-2) 2J-1)(2J-3)(2J-5) }1/2
’ 3-7-11-13 J(J+1) (J+2) J+3) @J+1)(2J+3)(2J+5)(2J+17)

J+3é;_{ 1 JU-)I-2) (2J-1)(2J-3)(2J-5) }1/2

2371118 T+ (J+2) (J+3) (2 +1) (2T +3) (2T +5) (2] +7)
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24- Pol-Strahlung.

! W(J,J, 2, 4/4J)
2 (7 J91 - 2J+3 g
J—4 3{5_5%__3.“(._1]___13%5}
1 7 1 2J+3 s
J=3 g E18) {5_5 T+ (2J-“"1)(2J+1)}
1 (7 | 9 J—1 1y
44 '6'(‘]"12){35“’J(J+1)"C2J+1)(2J+3)}
2rq J 0 | 1s
J4 ‘s{E"Tf (2J+1)(2J+3)}
J’ WJ,J, 4, 4/4J)
— EOR——
J_4f 1 { 14 (J+1)(J+2) 2T+3)2T+5) e
31143 (J-1)J (2J-3) (2J—1)(2J+1)}
1 14 (J +2) (2 J+38) (2 +5) 1s
J-3 6(17_3J){143 “WT-=0FJ+1) @J=3) (2J—1)(2J+1)}

? 1 14 {J 1) 2J-3)(2J-1) 1
J+5 ‘_6"(20+3J){W'J(7+1) J+2) (2J+1)(2J+3)(2J+5)}
T4 _}_{ﬁliﬁ__._]_’(J—_l)__ (2J-1)(2J-3) 1/

3 143 T+1) (J+ )'(2J+“1)(2J+3)(2J+5)}
F W (J,J’, 6,4/4.J)
o 43{__ L (J+)(J+2)(J+3) (2J+3)2J+5)(2T+7) |
T3 511-13 T J(J-1)(J-2) (2J+1)(2J-1)(2J-3)(2J-5)|

1

& (67-17J) x
5 8 ><{ 1 (J+2) (J+3) (2J+3)(2J+5) (2J+7) 1y

B B5-11.-18 T+ -1 -3 Cd+1)CI-1)12Jd—5) (2J—5)}
- % (84 +17J) %
Fu8 ><[ 1 (i 2y {J —1) (2J-1)(2J-3) (2J-5) '
3 5.11.13 J(J+1)(J+2)(J+3) (2J+1) (2J+3)(2J +5) (2J+7)}
i 43{ 1 J(J—1)(J—2) 2J-1)(2J-3)(2J-5) |V
* | 315-11-13 (J+1)(J+2)(J+3) (2J+1)(2J+3) (2J+5)(2J+7)}
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Interferenzkoeffizienten.

Dipol-Quadrupol-Strahlung.

J’ | W(J 7', 2,1/2,J)

1 (J- 1)(2J+3) O\
J-1 {‘ﬁ J Bl — 1)(2J+1)}

3 1 1y
! {i—o'J(J+1)(2J+1)}

1 J+2)(2J—1) i
I+l _{10' T+ 2J+1) (2J+3)}

Quadrupol-Oktopol-Strahlung.

J’ W(J,J’,2,2/3,.J)
1 J-2 2J+3 1y
—d {*1“4“' J '(2J—1)(2J+1)}
i J+3 | 2J-1 1y
Pl "{14'7;1' (2J+1)(2J+3)}
J’ W, J’,4,2/3,J)
79 11 J+2) (2J+3) (2J+5) 1y
317 (2T -3) (2J-—1)(2J+1)}
T2 ;{1 (J+3 (J 1) (2J-3)(2J-1) }1/2
317 (J+2)(J+1) 2J+5)(2J+3)(2J+1))
(23 — 24)- Polstraklung.
J’ W (J,J’,2,3/4,J)
1(1 J-3 2J+3 1y
4 2 {”5“' J'“(2J—1)(2J+1")‘}
; 1 (1 J+4 2J-1 1y
ks _"2‘{3' T-1 (2J+1)(2J+3)}
J’ W(J,J’, 4,3/4,J)
P l[_.ljl F —8) (J +2) (2J+3)(2J+5) s
6 |11~ J(@J-1) (2J-3) (2J—1)(2J+1)}
743 Hi{ﬂ_ (J+4)(J-1) 2J-3)(2J-1) s
6 |11 (J+2)(J+1) (2J+5)(2J+3) (2J+1)}

257
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Clebsch-Gordon-Koeffizienten.

/1
00 —_—

Chow= — 3
20 _ ] 2
C10 10 g

45/ 1
00 - =
020 20 7 5

4/18
40
020 20 35
00 1/ 1
030 30— /* 7
: 1/ 1
20
Cos= 2 21
1 /2
Cs030=—3 | £
(80 _ 10 7 ik
30 30 — 3.7.11
1
00
Cih 40 = N

S
2 ]/7.1171‘3‘

00 —
011 1-1

=
=

20 —
Cll11= V‘@;"

Col o1 =— ]/é_ C3o 5=
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