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Nuclear Spectrosecopy with Harmonie Oscillator Wave-Functions -
by Ig‘a.l Talml*), Swiss Federal Institute of Technology (Zurich).

(20.IX. 1951.)

Zusammenfassung: Die Beschrinkung auf harmonische Zentralpotentiale ermog-
licht die Entwicklung einer neuen (vom iiblichen ‘Slaterschen Verfahren verschie-
denen) Methode zur Berechnung der Matrixelemente der Wechselwirkung zwischen
den iusseren Nukleonen im Schalenmodell, welche insbesondere auch den Fall
nichtzentraler Krifte in einfacher Weise zu behandeln gestattet. Als Anwendung
wird gerechnet: Die Ordnung der Niveaus in der j®-Konfiguration, fiir einige
physikalisch interessante Fille; die von der Spin-Bahn-Kopplung zwischen den
Nukleonen herrithrende Dublettaufspaltung, und die Lage der untersten Terme
von Li7 bei Beriicksichtigung von Spin-Bahn-Kopplung und Tensorkraften.

TIntroduction.

The discovery of the “magic numbers” and the general success
of the shell model in explaining many experimental facts about
nuclei have led theoretical physicists to work with the methods of
atomic spectroscopy in the calculation of nuolea,r levels. In this at-
tempt three main dlfflcultles are encountered :

(a) The form of the. interaction potenmal and 1ts exchange character
are not sufficiently known. In addition, the form of the wave-
functions can be only guessed. These facts make necessary the
examination of various forms of the potential.

(b) There exists a lack of sufficient experimental information about
nuclear spectra. There are only a few excited states for which
* the spin and parity assignments have been carried out. Whereas
in atomic spectroscopy it was possible from the vast amount of
- experimental material to determine easily the several parameters
used to describe the atomic levels, here these parameters must

- be mathematically evaluated.

(¢) Non-central ihteraction’s, such as tensor forces, must here be
taken into account, whereas in atomic spectra such 1nteract10ns
give a neghglble small contrlbutlon | '

*) Hebrew Un1vers1ty, Jerusalem, Israel.
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Thus, the Slater method, used in atomic spectroscopy, is not
practical in nuclear spectroscopy, because:

(a) one must work with different potentials, each of which must be
expanded in a series of Legendre polynomials, for which the
coefficients are usually complicated functions;

(b) this fact makes impractical the calculation of the matrix ele-
ments, which now must be completely carried out; and

(c) for non-central interactions the method looses even its formal
simplicity and becomes very much involved.

In the first part of this paper an alternative method is suggested
and developed. Although this method is confined to the use of
harmonic oscillator wave-functions, this limitation does not seem to
be too serious in view of the fact that the form of the wave-functions
cannot be determined if the interaction is not known. We use these
wave-functions only as a model in order to learn the results for
various types of interactions. That our choice of wave-functions is
reasonable 1s seen from the rough agreement of the level order in the
oscillator potential with that found experimentally. In any case, one
would not expect the exact form of the wave-functions to have a
decisive effect on the results. Due to the separability of the potential
of two nucleons moving in the central field of a (8-dimensional)
harmonic oscillator in the relative and center-of-gravity coordinates,
1t 1s possible to write the wave-functions of two interacting nucleons
as a finite sum of products of functions which depend on these co-
ordinates. This transformation makes 1t possible, when calculating
matrix elements to integrate immediately over the center-of-gravity
coordinate, of which the interaction energy is usually independent.
What remains is only to calculate matrix elements of the interaction
energy (which may be a complicated function of the relative co-
ordinate and of the relative momentum), in a scheme of wave-func-
tions written in terms of this coordinate.

After a survey of the shell model and the Slater method (§ 1,2),
the proposed method 1s described and discussed (§3). In §4 the
transformation of the wave-functions from the coordinates of the
two nucleons to the relative and center-of-gravity coordinates 1s
considered. The Slater method can be regarded as an approximation
procedure in the neighbourhood of the long range limit, whereas our
method can serve as a good approximation method in the short
range limit, which might be looked upon as the proper approxima-

tion in the case of nuclear spectroscopy (this point 1s discussed
in § 6).
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In the second part of this paper the determination of the ground
state of the y” configuration is treated. An empirical rule, stated by
MavyEr?), is that the total angular momentum J of the ground state
1s equal to zero if n is even, and equal to § if n 1s odd. This rule was
then derived theoretically by Mayer2) and Racan?®) for Majorana
forces in the case of d-type interaction, or, better said, in the short
range approximation. A few cases, however, were found experimen-
tally where this rule does not hold. KuraTe?) and others have sug-
gested that these deviations could be explained by considering the
effect of the finite range of the forces. It has already been pointed
out by the author?) that potentials more singular than that used by
Kuraru give different results. With the method described in this
paper this problem can be treated quite generally. After the ex-
amination of several interaction potentials it can be concluded that
for physically admissible values of the parameters (range of the
forces and extension of the wave-functions), the order of levels is
that given by the short range approximation. The break down of
the above rule may be due to perturbations from other configurations
or to the action of tensor forces.

In § 5 we present the problem and show how our method may be
applied to obtain directly the values of the energy levels which are
already calculated in the Slater method. The dependence of the
results on the form and range of the potential is treated in § 6 for
the (ds.)® configuration. In § 7 the configuration (f;)® is treated
and discussed. The configuration (gy,)® is treated in § 8. In several
nuclel in which these configurations appear (according to the shell
model), the spin of the ground state is not that predicted by the
77-coupling scheme in the short range limit. These cases are especially
interesting as they may give direct information about the nuclear
interactions (in contrast to the other odd-even nuclei whose level
schemes have been classified, in which only the states of the single
nucleon are observed, thus giving information about the central
field only and providing no direct information about the nuclear
forces).

The third part of this paper deals with mutual spin-orbit inter-
actions. An interesting problem is whether the spin-orbit interaction,
introduced by Case and Pa1s®) in order to explain the results of
scattering experiments, can give for heavier nuclei sufficientsplitting
between the states 1 =1 + 1/2 and § = [ — 1/2 (of a single nucleon)
- to satisfy the requirements of the shell model. We state the problem
and calculate matrix elements of the mutual spin-orbit interaction
in § 9. A few cases of a single nucleon outside closed shells are treated
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in § 10, and the resulting doublet splitting is calculated. With reason-
able values of the parameters an order of magnitude of a few MeV
i1s obtained. The results are, however, very sensitive to the nuclear
radius in the interesting region.

In the fourth part of the paper the Li? nucleus is dlscussed In
this nucleus only one excited state has been found in the energy
region between the ground state and several MeV. As early experi-
ments showed that this excited level has a compound nature, 1t was
suggested by Incris?) that it may be composed of the four excited
levels of the jj-coupling configuration (pss)3 Pse » Which may per-
haps coincide (but he was not able, using only central forces, to
obtain such a coincidence). Our method was used to take account
also of tensor forces and to check whether their contribution may
bring coincidence of those excited levels. The (pgs)y Papp configu-
ration is treated in § 12 for the case of central interactions with the
various exchange operators. The term values were calculated by the
sum method combined with the use of the quantum number of the
total 1sotopic spin. In § 13 the matrix elements of the tensor forces
interaction for this configuration are calculated. The results (§ 14)
show that, for reasonable values of the Interaction parameters it 1s
possible to obtain such a coincidence.

As recent experiments have shown that a spin 1/2 for the excited
level is compatible with the known facts8), the natural explanation
arose that the two lowest states are the ‘components of a 22P state
(in LS-coupling). LS- couphng for Li7 is not in contradiction with
the shell model, as Li? is a light nucleus; it is believed that only for
heavier nuclei does jj-coupling take place. It is known that neither
the Thomas interaction nor the magnetic spin-orbit interaction can
give sufficient splitting between the components of the 22P ground
state. The splitting which results from the Case and Pais interaction
is calculated for the 22P state of the configuration p} pp (§ 15). The
result is of the right order of magnitude but the splitting obtained
is again very sensitive to the nuclear dimensions.

I. The Method of the Harmonic Oscillator Wave-Funections.
§ 1. The shell model. |

The term ““nuclear spectroscopy’ is well defined in experimental
physics; it means the measurement of nuclear spectra, their classifi-
cation, and level assignment. Onthe other hand in theoretical physics
this term does not usually mean “‘the theory of nuclear spectra”,
but 1s more limited. It is mostly used in the sense of “the use of
the methods of atomic spectroscopy in explaining nuclear spectra .



Nuclear Spectroscopy with harmonic Oscillator Wave-Functions. 189

In the past many attempts have been made to apply the methods
of atomic spectroscopy to the calculation of nuclear energy levels.
Meanwhile more experimental material has been gathered, espe-
cially in the region of high excitation energies, and the theories which
successfully explained these facts were statistical in their nature.
Only in the last few years has it become clear that there are regulari-
ties in the nuclei which are not of a statistical nature (magic num-
bers). Various ‘““shell models’ (which arein fact the former Hartree
approximations) have been proposed, the most successful of which
1s the one based on the strong spin-orbit interaction?)?). This model
does not only explain the magic numbers and the spins of the ground
states of nuclei, but can also be applied to the classification of level
schemes in the low energy region'?). It appears that experiment now
forces the theoretician to accept a theory which he earlier abandoned
and for the validity of which there are not Vet sufflclent theoretwal
grounds.

The basic assumption of any shell model is that the average field
which acts on a single nucleon can be approximated by a central
field in which the nucleon has a definite state (characterized by
quantum numbers n and ). The nucleons occupy the lowest states
and may form closed shells. A magic nucleus is a nucleus which
contains closed shells only. The characteristics of the ground state
are determined by the interaction of the nucleons outside the closed
shells. This interaction energy 1s usually taken as a perturbation on
the zero order energy, which is the sum of the energles of the single
nucleon in the central field. The zero order energy 1s the same for
all the states of a given configuration (i.e., the nucleons outside
closed shells occupy definite states of the central fleld) In addition
to the central field actmg on the nucleons there can also be an inter-
action of the spln of a nucleon with its orbital angular momentum
(the usual spin-orbit interaction). If this is large compared to the
mutual interaction of the nucleons, the spins (i.e. total angular
momenta) of the nucleons ; are good quantum numbers. Thus every
nucleon has a definite n, [, and 4. This is the jj-coupling scheme
which 1s postulated in the shell model of M. G. MAYER.

To the zeroth order the wave-functions of the nucleons are pro-
ducts of the wave functions of the single nucleon in the central field.
The wave-functions of the nucleons in the states nyly, nyls, ...,
T U, With other quantum numbers a;, a5, ..., @, (where a, for
example, could be the magnetic quantum number m) is:

V(%1 Tos oens Tm) = Vayny 1, (21) Vaynyly(%a) « -+ Ya,, nmlm(wm) (1)
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The zero order energy is degenerate, since it is the same for all
the states of the configuration. If the mutual interaction of the
nucleons 1s taken into account this degeneracy is partly removed,
as known from perturbation theory. The first order energies are
then the eigenvalues of that part of the interaction energy which
belongs to the configuration.

The appropriate zero-order wave-functions are definite linear com-
binations of the wave functions v, determined by the quantum
numbers of the interaction energy (these are, for example L and S
in the case of Russel Saunders coupling, J in the case of §j-coupling,
etc.). Therefore the matrix elements of the interaction energy is a
sum of matrix elements (4 | V| B). The interaction energy has the
form 3 V;; where V;; = V,;(x;, x;) describes the interaction of the

i<
t-th and j-th nucleons. In evaluating the matrix elements of one
of these terms we can integrate over the coordinates x;, [ + 4,1 * 4,

and obtain:

f f = f Yo, (1) Y, (T2) - - - Y, (T) Vi (i, T5) yp, (21) pp (%) - - -
g o wbm(mm) dx, dxy. .. ALy, =g b Oa,b,- - -

(2)

«+0a; 1b, 1 0a, b,y O, b, 5a3-+1 Biprt e da,, b, %
x f [ v, (i) v, (@) Vij (@i, @) vy (20) vy (2)) dwi da;.

Therefore the matrix elements of ¥V in the zero-order scheme are
the sums of matrix elements of the type (2). The coefficients depend
only on the operators commuting with the interaction energy
(quantum numbers) and may be calculated without the explicit
knowledge of the interaction, as they are independent of the exact
form of the wave functions. There are well developed methods for
obtaining them, as given by Conpon and SHorTLEY!?), G. RAcAH!?)
and others. The explicit dependence on the form of the interaction
1s contained in the matrix elements which we shall consider in some
detail.

§ 2. Survey of the Slater Method.

The important feature of the matrix element

[0 va @) Via(i—r) w3, (1) 0, () Bro Py (9

1s that the y are functions of 7; and 73, and ¥V, is a function of
r; — T3. The usual way of treating such expressions in atomic spectro-
scopy was developed by J. Suater!3), who expressed V(r; — 73) as
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a function of r; and 7;. The procedure is to expand V(r; —73) in a
series of Legendre polynomials, the argument of which is the angle
wy5 between r; and 73 with coetfficients which are functions of ||
and |)r3]

V(ﬂ — ”'_;) = ]g fr(rys1e) B (cos wyp) - (4)

P (cos wy,) can be expanded in a finite sum of products of spherical
harmonics which are functions of ¥;, ¢; and &;, @, respectively
(these are the polar angles of 77 and 73). At this stage the angular
integrations can be performed, and a sum of radial integrals

R*(ay, a5, by, b f [ Ray(rs) Ra(rs) fulryr5) B, (r1) Ro(rs) drydry (5)

remains, the coefficients of which are products of two integrals of

the type f 6, 0,0, d cos ¥ (only finite number of these coefficients
do not vanish for definite a;, a5, by, by). We shall mention in this

work the F'* only, but all the considerations are true mutatis mu-
tandis for the G* too

[F*(ay, a) = B¥(ay, ay, 01, 05)  G*(ay, ay) = B¥(ay, Gg» Og» ay)] -

This procedure is very useful in atomic spectroscopy because
there the interaction is given by Vi, = €?/|r; — 73| and there exists
the simple expansion: :

1 o

=X Blosow)  ro=Min(ryn) . =Max(n,n)

‘7'1 —7”2[ k=0

The wave functions are not easy to compute, and their radial part
is the only indeterminate factor of the F*. In fact, the atomic
spectroscopists did not bother themselves with the calculations of
the I'*, as In any case many energy levels were measured, so that
1t was easy to evaluate the I'* from some of them, and check whether
these values of the Slater parameters really gave the other levels as
well. In nuclear spectroscopy, on the other hand, this is impossible
as there are usually only very few levels measured and classified.
Therefore if one 1s to use the Slater-method, the F'* must be mathe-
matically evaluated. Even for the central forces, however, we do
not know the exact form of the potential. We should therefore
calculate the energy levels for different forms of the potential. How-
ever even In simple cases such as the Yukawa potential, the calcula-
tion of the F; 18 so comphca,ted that Slater-method is of little
practical value.
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For complicated interactions, such as tensor forces and mutual
spin-orbit interaction, the expansion is very complicated and of
practically no value (an example of such an expansion is given in
a paper of MArvIN14)).

§ 8. The alternatiwe method for the oscillator wave functions.

To overcome these difficulties we make use of the fact that the
Interaction energy depends only on the relative coordinate ¥ =7,—17,
and our procedure is to express also the wave functions as functions
of 7 = 7, — 7, and the other coordinate R = (r; 473 )/2 (the coordin-
ate of the center of gravity of the 1% and 224 nucleons). This
transformation enables us, when calculating matrix elements, to
integrate immediately With respect to B, and we are left with a
single integration of f P’ (r) V(r) py(7) d® which can usually be

carried out without dlffleultles
This coordinate transformation is always possible, but the func-

tions of 7 and R generally turn out to be very complicated. The
success of this procedure depends on the proper choice of the wave-
functions. The best choice would be that one which allows us to
expand the wave-function y, (7,) ¢, (7,) in a finite sum of products

of functions which depend on 7 and R respectively. This would

certainly be the case if the potential of the central field, which is

the sum V,(r?) + V(r?), is also separable in the coordinates » and E.
The condition for such a decomposition is:

Ve(r?) +V,(rd) = U(R?) + W(r?). (6)
Putting r = 0 we obtain:
' 2V.(R?) = U(R?) + const.
and puttlng E = 0 we obtain:
2V,(r?) = W(4r?) + const.

If we now put in (6) 2> =72 so that B2 =72 cos?a, r> =4 r; sin? «
where 2 « 1s the angle between 7, and 7, we obtain:

2V,(r3) =2V (ricos?a) +27V, (4 o1 Zm Ot) + const.
Differentiation with respect to « yields:
0=—272cosasina V(12 cos? o) + 2 7% sin & cos & V; (1] sin? o)

or: :
V. (rfcos?a) =V, (r]sin®«)
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which means V, (r?) = .const. = 4,1.e. V,(r?) = 4 r? + const. There-
fore the only potential (possessing a derivative) which satisfies this
condition is the harmonic oscillator potential :

wr: + wrgz—;(él w?* R? 4+ w?r?),

Taking the wave functions of the harmonic oscillator we can de-
compose every wave-function v, (r7) v, (r;) into a finite sum of

terms of the form _wl(ﬁ) wy(7) (where v, , p, are essentially functions
of the same kind as v, , v,).

In order to utilize this method we must, therefore, use a very
special form of the wave functions. This is not such a serious limi-
tation, however, as the exact form of the potential and hence of the
wave-functions, is not accurately known. We shall therefore be
satisfied with the harmonic oscillator wave-functions, using them
as model wave-functions, in order to learn the behaviour of, say,
the energy levels in terms of the nuclear radius, range, magnitude
and form of the potential.

Compared with other model wave-functions, it seems that physi-
cally, those of the harmonic oscillator are quite good, as the order of
levels in the shell model is roughly that of an oscillator potential well.

The potential of a single nucleon bound harmonically, besides
being in a central potential, is separable also in Cartesian coordi-
nates. Therefore every function of the three dimensional oscillator
can be given as a product of three wave-functions of the one dimen-
sional oscillator depending on the Cartesian coordinates «, y, and z.
This representation of the wave-functions has been extensively
used!?)16), The coordinates used in this work are, however, the polar
coordinates, and the wave functions are therefore a product of a
function of r and a spherical harmonie. :

The radial parts of the wave functions
p (r,0,9) = 0L Y (9, 9)

are easily calculated, and can be shown to be of the form:

2,
Rnl(T) = an e 2 ' ’rZJrI VUni (’)")
where N, ;1s a normalization factor, and v,,;1s an a__ssocia.ted Laguerre
polynomiall?) (properly normalized):

Uy (1) = szi%t +3 (vr?)

13
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v 1s given by » = wm/h, and m and o appear in the Hamiltonian
of the harmonic oscillator:

H:ﬁL (p2+m?w?r?),

The explicit expression for these L.%Y% 1, is

I n 21+
Lk ale )=£(_ 1)r 2 (fc) @2kt ¢

With this definition the normalization factor becomes:
N2 — 2142 (2 1+ 2 n+ 1)1 pHH3/2
Van![(214+1)11]2
The first few functions are:

forn =0
R;(T):Nle_%Tzr"H and N?=

V;”H'IQIH
Yal-3--@1+21) °

forn =1
=1y and N2, /2R @LY
+3 Yal-3--(1+210)
forn = 2
4 4 »?
bu=l—gs” tems e
and N2, — Vot 212143 214+6)

Yral-3e (14+210)

These are the only wave-functions which will be used in the follow-
ing. All of them satisfy:

| B2,r) ar =

0

the Y™ (&, ¢) should therefore also be normalized to unity.
We shall have to calculate integrals of the form

InzﬁfRﬁl(r)V r) dr
0

The integrals I,; with n = 0 can be expressed as sums of integrals
Iy; which we shall write simply as I,. The respective formulae are:

2l+3 2l+5

I = Li—@U+3) Iy + —5—Li4s
21 21 21+3) (21 21+5)(61+13
Fo ( +3)8( +5) Iz— 21+ )2( +5) ( + )4( +13}
201+5)(21+7 21+7)(21+9
I,,_ BEDEIEN oo @ ElY § o

2 8
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We shall not need here formulae for higher n, but they can be easily
calculated. These I;, as we shall see later, replace the F;, of the
Slater method, but unlike the latter can be calculated by a simple
integration. |

§ 4. The transformation to the relative and center of gravity coordinates.

The zero-order Hamiltonian of two nucleons moving in the field
of the oscillator potential 1s:

H_—ﬂ(p1+m2w2 )+—(p2+m2a) r3) -

We make now the canonical coordinate transformation:

Pa— Py

=

=1, P =

which introduces the relative coordinate and the center of gravity
coordinate of the two nucleons, with the respective momenta. The
Hamiltonian expressed in terms of the new variables is:

H= (P2 + M*0?RY) + 15@ + p w?r?)
where:
M=2m, p=gm.

This 1s the IHamiltonian of two harmonic escillators with masses M
and u. The solution of the corresponding wave-equation can be
written as a product of wave-functions of the two oscillator poten-
tials depending on E and r respectively. The angular momenta and
the number of nodes which characterize these wave functions will
be calied L, A and N, n respectively.

If we want o express the wave-function wp, (71) v, (7,) of two
nucleons with definite quantum numbers n, [; m; and ny [, m,, as

a sum of products wﬂ}&(ﬁ) ™, () we must find out what values of
N, L, M and n, A, m should be taken into account. It 1s obvious
that the integrals (quantum numbers) of the system must have the
same values on both sides. We thus have the following restrictions:

(1) The z-component of the orbital angular momentum.
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(2) The energy.
R (2n1+li‘+2 n2“+ L+8) =ho@ N.+L+2n+/14&3),
which implies
2n, +2ny + L +1,=2N+2n+ L+ 4.

(8) The symmetry. Instead of the wave-function ym, (ry) g (r3)
(in the case that n,, [;, m,, differ from n,, l,, My) 1t 18 useful to take
the symmetric and anti-symmetric combinations:

l/2 (%l l y)?’tgla( ) -+ y"n, ll( ) '/):?fzz(”":)) (7)
Vﬁ-(wnJl ) i, (1) — ity (1) v, (r) (8)

which are multiplied by +1 and (—1) respectively under the trans-
formation r; - 75, 15 - 77 (which induces the transformation ¥ > —7,
R 7), and therefore wL(ﬁ) p 4(7) is multiplied by (—1)4 (the parity
of w,4(r)]. Therefore:

Symmetrical (antlsymmetncal) wave- functlons contain only even
(odd) values of A in their eXpansmn

(4) Parity. The transformation r; > —7; corresponds to ¥ > 2R

R—>r/2 The radial part of the function wL(R) p4(r), which is the
only part that changes, is f()/2» R) g(}/¥ r/)/2) (the factors 2 and 1/2
multiplying the » of the oscillator potential come from M = 2 m,
u = m|2). Therefore it is changed under the transformation accord-
ing to:

(W5 ([ 37) > 1725 3)al) 5 28) = 1) 3 otz e

and consequently:
pi(B) 94 (r) — vy (7) va(R).

In the same way it is seen that the transformation r, — — 73 or
¥ —> —2 R, R >—7/2 results in:

—

'/’L(":D Y 4 (—’F) e (T— -1_)L+A V’L(F) va(R) .

As aresult, the expansion of vy, (1) iplz(r;) should contain pr(R) pA(7)
and v, (%) w4(R) only in the combination: '

i (B) pu(F) + (— 1)y, (7) wa(B). (9)
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It is multiplied in the transformation r; - —17; by ( 1)4, and in
the transformation 7, > — 7 by ‘

(=DM (= 1) = (— Dt (= 1) = (— D

(s 2N +2n+ L+ A=2n +2ny + 1 +1).
When we build the symmetric and antisymmetric functions, we
see that if [; and I, are both even or both odd (and hence L and 4

have the same property) both v (R) w.(¥) and w(7) q,u_,l(R) may
enter into those functions, and therefore only in the combination
(9). If one of I, I, is even and the other is odd, the symmetric func-

tion contains only wp(R) p(7 ) (Wlth A even and L odd) and the
antisymmetric function contain only A(R) p(7). Therefore the co-
efficient of wL(ﬁ) y4(7) in the symmetric function should be (—1)4

times the coefficient of v (R) v, (7 7) in the antisymmetric function.

Subject to the above conditions, the transformation is most con-
veniently calculated in the following manner. The ‘wave-functions
(7) and (8) are written down in the case cpl =@y =@ = @, It is

then easy to express them as functions of R and 7 and compare
these expressions with a linear combination of the admisgible wave-

functions w%L(E) w™,(7) (according to the above conditions). By
equating respective coefficients, the factors of this expansion may
be easily found. When doing so no account should be taken of the
exponential factor, as

SER R st~ (YRT) _ R R e

IL. On the Order of Levels in j " Configurfltions. ‘

§ 5 The evaluation of Slater parameters for the harmonic osczllator
wave-functions. '

The method described in I will now be used to obtain some results
on level spacings and especially on the order of levels in a few
interesting cases together with a discussion of their dependence on
the range and form of the potentlal An important problem in the
shell model based on strong spin-orbit coupling, which leads to the
jj-coupling scheme, is the determination of the spin (total angular
momentum) of the ground state of the 4™ conflguratlon It was
pomted out by FEENBERG!®) that for n — 2 the spin of the ground
state is zero (for Majorana forces). His argument was generalized
by Racan!®) who showed that for any n the ground state has the
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minimum spin allowed by the Pauli principle, namely (for an odd =)
3/2 in the case of three particles (or holes) in a shell, and 1/2 in
other cases. This result is apparently in contradiction with the
empirical rule that the spin of the ground state is equal to the spin
of the odd nucleon. However, Racan’s argument was based (as that
of FEENBERG) on the long range approximation, in which one as-
sumes that the interaction potential can be approximated by a
square well in the region where the amplitudes of the wave-functions
are important. On the other hand, results of Mayrr?) showed that
with a d-potential the spin of the ground state 1s J = 5 if » 1s odd
and J = 01f n 1s even. (This is in fact a short-range approximation,
where one assumes that the potential is different from zero only in
a region so small that the change of the wave-functions in that
region 1s small compared to the wave-functions themselves.) This
result was subsequently proved by Racan?®) in a general way.

If we pass continuously (i.e. by a continuous change of some
parameters) from the short range limit to that of the long range,
we see that the order of levels changes continuously, and for different
values of the parameters one obtains different spins of the ground
state. The dependence of the spin of the ground state on the range
of the potential has been treated in some special cases by Kurata?)
and the author?). In the following, our method is used to obtain
general results which are applicable to every potential, and addi-
tional interesting forms of the potential are treated.

The method of the harmonic oscillator wave functions can be
combined with the vast amount of results calculated in atomic
spectroscopy: in these results all the energy levels are expressed in
terms of the F';; on the other hand it is possible to express them in
terms of the integrals I;. It is therefore always possible to write
down the F'; as functions of the I,. This allows us to calculate the
values of the F';, when using any potential, by first computing the
values of the I, by direct integration. The use of this procedure
makes all the formulae derived in the F,, formalism useful for calcul-
ations of the energy levels.

If one 1s interested in central interactions only, it 1s not necessary

to calculate the wave-functions of the configuration in terms of R
and 7, as only the Slater parameters F;, are required and with the
above transformation they can be directly calculated in terms of
the I,.

The F* (which differ only by a constant factor from the I';) are
defined by:

F*(ay, ay) = /f Rﬁl (r1) Ri (ra) fx(res r2) dry dry
0

0
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where the f(r;,r,) are the coefficients of the expansion (4).
The f;, are therefore given by

[u(ry, me) = 2k+1 fV |) Pr(cos wyy) d cos wyy

(the factor 2/2 k + 1 1s the square of the normalization factor of the
Legendre polynomials), and thus:

+1c>ooo

e 2k+1 / / ., R;I(’“ﬂ R, (1)
o =1 2 s X
10 0 "1 T2

X B, (cos wyy) 12 dry 13 dry d cos wy, .

This expression can be integrated also over other angles d2 of which
the integrand is independent, thus completing 72 r2 dry dry d coswy,
to the differential of the volume element in the space of the vectors

7; and 7,. We obtain, after multiplication by a proper normalization
factor N,

2
F*(ay, a,) = 2k+1 ffT/ r, —1.]) — B, (Tl) R r2) 2%

7 Py (cos culz) d ryd3ry.  (10)

This integral can now be transformed to an integral over Rand 7.
As V(|ry —17|) is a function of |7 | only, it remains to express

RZI (ry) R (7'2)

e re

P, (cos wy,)

in terms of B and 7. This is always possible with the help of the
relation o 1
T1 72 €08 @1g = (ry, 7)) = (4 B2 —r?¥).

The result is a function of R, r and the angle « between the vectors
R and ¥ — (R, r, o). So the above expression becomes:

F* — M;—lNgf/V(fr) we(R, 7o) PR asr = 2EFL N, x
1 o0

i T <
. ~,/ "1/ f/V(r) @x(B,r,0) R2d Br®drdcosad Q' = ew WY

2
0
+]
<
-1

1 co

ffv 9u(R,7,0) REARr2dr d cos o. (11)
0 0
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Where dQ’ stands for the differentials which form with R2 dRr2 dr
X dcos o the volume element d3R d3r; the integrand is independent
of them and the integration results merely in the dropping of the
normalization constant N,. The integration over « can be easily
done and it 1s then possible to carry out the E-integration, which
leaves I'* expressed in terms of the r-integrals —I,. In this way
the Slater parameters are calculated in terms of simple integrals
without bothering about the expansion of the potential in a series
of Legendre polynomials and without the complicated integrations
in which such an expansion results.

In order to see how this procedure works, we give explicitly the
expression of 7% 1% P(cos wy,) in terms of R, » and «. This expres-
sion results from the calculation of a configuration in which I; = I,
(and therefore k 1s even). Putting

L, (cos wyp) = Zczn cos®" wy,

n=0
= 2 m, we obtain:
om
“ 15 B, (cos wyy) = 3 Cop ri-2n rk=2n g3n 120 082" wyy =
n=10
m m
4 R2—r2\20 4R2—7'2

_ 2,2\ m—
_ZC2H(T1 o)™ 7’L( ) Z ( )

n=0 n=
x[ 4R2—r2)2+R2T2 }m”

4

Use was made here of the relation

4 R%2—r2

Ari= (270 )+ B — (R, r)’zz(‘*Rz“"z

4

) —i— R2 ?"2 sin? «

As an example we evaluate in detail F'? of the configuration p2:

+1 oc oo

Fée= Nt Sf//V eV (ri+13) ( cos wlz__é_) X

—-10

X r7dryr5dry d cos wyy =
2

(e o e

- % ((4 R:—ra) + B®r* sin® “)] R2dRr?drd cos o =
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vv? 8 2|1 4]/%15 ]/:'?
V T2 _ , 4)
( ) f r)e [4(V§;(2v)316+4VM°2v'4T)

_5Yn-3 r2]rzdrm<l/;”28)2x

620 (2028 V-3,
w Bl L 4)n-15  Ya I R L2 A
£\ V202016 Yoz 024 ° 4y20-20-4 32 (52716 °

5]/7_'53 V.‘I_E3 | 25
C6)2v@us VW(v/2)2811J =13 (Lo + L) —2 L]

In this way the F* for the configurations d», f*, and ¢g" were
obtained; these are later used in the discussion of the jj-coupling
configurations (ds)3, (f;2)3, and (g;,2)%

§ 6. The (ds5)® configuration with various potentials.

The simplest configuration where the short and long range ap-
proximations give different results is (ds5)%. In the d-limit the state
with J = 5/2 is the ground state, and in the long range limit the
state with J = 3/2 1s the lowest. If one passes from one limit to the
other a cross-over of these two levels occurs. This case is also of an
experimental interest as a J = 3/2 state of the configuration is
postulated?) for the ground state of Na?!. This case was treated by
Kuratu?) who used oscillator wave-functions and a Gaussian po-
tential. It was also calculated by the author?) using the Slater
method with Coulomb field wave-functions and a Yukawa potential.
The results were different, since the Gaussian potential can be well
approximated by a square well when its range is increased, whereas
the Yukawa potential has a singularity at the origin and does not
yield the long range limit when its range tends to infinity. We shall
discuss in this paragraph the cross-over and its dependence on the
range and form of the potential.

The energy states of the configuration (dys,)™ were calculated by
INnGr1s2%) in the case of ordinary (WieNER) forces between the
particles. The calculation of the levels in the case of Majorana inter-
action can be carried out in the same manner (an example of such
a calculation is given later in the case of Li7).

*
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The results are:

72 L, 1329 4‘
E9/2 F " 5-49 F "“ZZTF
4 651 "
gy = 5 -49. 5 - 441 B
3 " 627
0 _ - 4
Bigp =5 F° + 5 - 441 .

The sign convention 1$ that the F, are positive and the Majorana
potential is attractive (negative) in symmetrical states.

From the definition of the F; it follows that in the short range
limit F'* = (2k + 1) Fy, while in the long range approximation
F’“ < F,. From these relations the order of the levels J = 5/2 and

= 3/2 in the two limits can be immediately seen. We calculated
the F*in terms of the I; using the procedure of § 5 with the follow-
ing results:

35K = S (I, + 1)+ (L4 I+ 21,
1 9 1 1
7.3EF2=EE(IO+I4)—?(11+13)_?12

3

7' 5‘4§F4= ‘E(IO—!— 14) —'*4—(11—1“13) + —8'“ 12.

Remark: In the above results only the combination (I,+1,), (I;+ I3) appear,
thus forming with I, three independent parameters which replace F, F,, and F,
of the Slater method. The reason for this fact can be seen as follows: In the wave-
function ¥y, (r1) ) (r3) the product :rll rk appears as a factor, and therefore when

we express it as a function of 7 and R the sum of the powers of B and r in every
term 1s equal to l;+1I,. The transformation: rl—-+—r1 which induces r-—>—2 R
R — r/2 transforms, as we have already seen, ]/2 v R) |/v/2 r) into
[(yv/27r) g(Y2v R). As a result, to every term in which R™ ¢ ZHﬂ ™ appears
there corresponds another term which has the same a,ngular part and contains
pm Rhth—m g4 factor. When the angular and R- -integrations are performed
these two terms give in the r-integration the integrals T Lkt ,, and I, with the
same factors. Therefore only the combination (I,,+ I it l—tit) appears in the result.
It should be remembered that there exists only one set' of the I; the comblnatlons
of which form the F; and G;, of the various conflgur&tlons ‘

Putting these values in the above formulae we obtain the energy
levels expressed by the I,:

" 1 117 165 255
Eglzzég( g Qo+ o).+ (I1+13)“—I)
' 1 7 63 ' 157
Byp =5 (~ 15 Qo+ L) + - (I + I) — 33 I)

1 156
Em=gbqgm+h) 2L+ 1) — g L)
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From the definition of the I, it is seen that in the short range
approximation I; < I, (I > 0) (because for I > 0, R, vanishes at
the origin), and in the long range limit all the I, are equal.

This property of the I; makes our method useful for approxima-
tions in the short range limit. In the first approximation only the
coefficient of I, should be calculated (use is made of this fact in
§ 15). On the other hand the Slater method can serve as an ap-
proximation in the long range limit. Near this limit F'’* < Fo(k > 0),
so that the first approximation is given by F°. From this point of
view these two methods are complementary, and hence it is natural
to work with the I, in nuclear spectroscopy where there are good
reasons to believe that the short range approximation is justified.

We have mentioned before that the cross-over should depend not
only on the range of the potential but also strongly on its form.
A flat potential like a square well or the Gaussian potential give the
long range limit as its range tends to infinity, but a potential which
is singular at the origin does not yield the long range limit even if
its range tends to infinity (the important parts of the potential are
in the neighbourhood of the origin). The I, (I > 0), though they are
no longer zero, do not approach the value of I, (alternatively the
Fx | > 0, are smaller than F° but do not tend to zero). As far as
the order of the levels is considered, such potentials represent an
intermediate case between the two limits.

We shall compare potentials in which the range parameter ap-
pears In the same manner but their forms are different, namely:

(a) the Gaussian potential V eriine which for r, > cogives the long
range limit (this potential was used by Kuraru?));

(b) the potential V e=""" [rry which gives in the limit r, il oo the
- Coulomb potentlal and

(c) the potential V 8_7'2/"“ / frz/”r Wthh 1s still more smgu}ar at the
origin. . o |

Although the difference in behaviour was already noteds), we
discuss it again as we shall use here the same wave-functions for all

of them. The I, correspondmg to these potentlals are calcula,ted
to be:

) oo s ek “a e | : 00 1\ ‘
: _ o 5 2 |
(a) Il . lefe—vrz V(,r) /rz 142 d,r e le -V /e (1’ 7o )7" ’)”2 12 d'r -

0 0 k " e :

S },2‘7' \NI+3/2
- V(1+12)
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fo'e) 1

(b)y I,= N?fe_”fz Fir) vttt gp— NE V?"ofe (V o )T r2i+l dyp—
; ,

0

2
1!
= va il (2 PR L
9 Vn + A V” 1
fore] i (1’-}- Ls) r2
() I,= N?fe—”z Vir) p2oigy — N7 V'rgfe L R
0 0
2 A% \l+%
=P sy )
A 1s defined by A = 7y }/»; it is the ratio of the potential range to
1/yv which determines the extension of the wave-function. If A
tends to infinity it may be seen that I, of the Gaussian potential are
all equal, while in the limit 2 - oo for the case (b) (which gives the
Coulomb potential), I, is proportional ton# I!; and in case (¢) I, is
proportional to 2/2 1 + 1.

The cross over of the levels J = 5/2 and J = 3/2 occurs where
the I fulfil the equation:

M (Ip+ I)—86(L,+I) +2,=0. (13)

Relative to the value of I, the values of the I in the three cases are:

@ I~ ()

27
%ll.

B Lo~ ()

1 JERRY’
© L ~57 (1+12) :

Using these relations we find that the cross over ocecurs in case (a)
at the value 4 = 1-:326, whereas in case (b) it occurs only at 4 = 4-34.
The effect of the form of the potential appears more pronounced
In case (c); in this case no cross-over occurs as A varies from zero
to infinity. [For the left hand side of (13) for 4 = 0 1s positive,
and 1t remains so even when the I, attain their maximum value
~1/21+1).]

This strong dependence on the form shows that for such problems
1t is not enough to consider the range only. Potentials of different
forms which may be adjusted to fit some condition will not usually
give here the same results.

In the preceding section we discussed the effect of the form of
the potential on the order of the levels and the place of the cross-

and
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over, using the same wave-functions; we shall now give the results
for the Yukawa potential using harmonic oscillator wave-functions
and compare them to those obtained with the Coulomb field wave-
functions?).

For the Yukawa, potentlal V(r) = Ve [riry, the I, are calcu-
lated as follows:

o0 . s 0]
I,=N? /V(T) g="" p2l2 gdy'= N2 V?”O/ e~ 2kl gy —
0 0
N2

V,‘, plt1

Vlfe‘fa 5/Z§2H1d§

where &=)vr and A=)v r,, We introduce the constant g=1/2 1
and z = ¢ + u, and obtain:

N2 s
Va e fe*x (x — u)2*tide.
V[,»plﬂ
H

This gives for the integrals which we need:

Iy=

I, =V [—V?-——Q/,c(lw@(,u))e”z]
=mV/1[ (1+ &7 —2#( +M)(1 QD(M))M}
[ (143 w2+ 5 8 — 2 (g + 5 1% + 5 1) %
x (1— @ (w)e”
[—2;— 1-|—— 2-{—3# i ,L&)

—2 (fg+35u2+ U +6#)(1— () e

2
=
_2_

z

8
12 1
14:ﬁ§V'1[V (1+325y2+15u4+—-~u + 51 )~
—24 (135 + 15 2+—#4+IM6+—M ) (1= (w))e”]

@ 1s the error function

D(x) = e /Pe—tzdt

These values of I, for various values of u were substituted into
formulae (12), (13) to give the level spacings corresponding to each u.
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The cross-over of the levels J = 5/2 and J = 3/2 occurs at a value
A=9, Le. for vy/r, =9 V2 ~ 18 where r, = )2 » is the parameter
appearing in the wave function of a single d-nucleon. This should
be compared to the value ry/r; ~ 10, obtained with the use of the
Coulomb field wave-functions, where r appears in these functions
in the exponent: R,(r) = N, ¢l e, :

It 1s interesting to see that the results are essentially the same,
thus supporting the opinion that the exact form of the wave-func-
tion 1s not very important.

The results of this paragraph show that the appearence of the
spin 3/2 in the ground state of Na2! is unlikely to be due only to the
effect of Majorana forces, as the value of 4 which should then be
assumed is too big, especially if we assume that the potential is a
““deep hole” potential, such as that of Yukawa, rather that a
flat one.

§ 7. The configuration (fm)i”.

This configuration [and equivalently (f;.)%] has six states with
spins J = 15/2, 11/2, 9/2, 7/2, 5/2, 3/2. For Majorana forces in the
short range approximation the state with J = 7/2 1s the ground
state, and in the long range limit the state with J = 8/2 is the
lowest ; above it lies J = 5/2 and the state with J = 7/2 is next to
it. The cross-over of these three states was found by Kuratu4) who
used a Gaussian potential. We shall in the following discuss this
configuration using also other forms of the potential.

The matrix elements of the Majorana interaction in the (j;, 7.,
m;, m;) scheme were found in the way described in §12. The
integrals J(m,, my; mg, m,) were calculated in terms of the Slater
parameters F';, by the usual method. As there are no two states with
equal J 1n this case the sum method was used to obtain the energies
of the various states with the following results:

By — — 90 Fy + 2700 F, + 7020 F, + 7974 F
B,y = — 62 Fy+ 1580 F, + 2736 F, + 42302 Fy
Eyy = — 51 Fy+425 F, + 6201 F, + 82765 F,
2 = — 42 F, +1610 F, + 6930 F, + 82082 Fy
B,y — —35F, + 665 F, — 2588 I, + 80717 F,

E,, = — 80 Fy— 660 F, + 4752 F, + 50622 F:

(14)

&
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The F, in the'above expressions are défined‘ by:

Fo 'F m pr i F" | o _"521,15

Fo= '}'2 * N, 5272’ 4 32 ’72 112 3 Fe= 3272112 13é k

Using the method described above these F* are expressed in the
terms of I; as 1s given in the following formulae:
5577 % e
B8 = -oiy o + Is) — 6 (I + Ig) + 15 (Ip+ 1,) — 20 I]

F4=‘..297 [18(Ly+1g) — 84 (L + 19 + 19 (I, + 1) +4 I;]

2240
Fro 2 448 a5 143 (Lo + 1) —66 (I + 1) — 15 (I, + 1) — 124 ;)]
HL 2240 [429 (Lo + L) +198(1, + I) + 3887 (I, + 1,) + 212 I5).

Taking the Gaussian potential we obtain the following résults
which are in agreement with those of Kurarm: for 2 < 1-27 the
lowest state is J = 7/2; at 2 = 1-27 the level with J = 5/2 becomes
the ground level and is the lowest one in the region 1-27 < 12 <1-85;
for A > 1-85 the J = 3/2 state is the ground state. Thus there is a
region where the ground state has the spin 5/2. The configuration
(f72)™ 1s predicted by the shell model for all nuclei having N or Z
(neutron or proton number) between 20 and 28. The only odd-even
nuclei in this region, of which the spins have been measured are the
following odd-proton nuclei: 218045 and ,.Co%? have the spin 7/2
as requiréd by the shell model, ,,V?3! has also the spin 7/2 whereas
osMn?% has the spin 5/2. It was suggested!) that the ground state
of the last nucleus is a J = 5/2 state of the (f;2)® configuration.
KuraTa4) tries to explain the occurrence of the 5/2 ground state by.
suggesting that r, of the nuclear forces and r; of the nucleon orbit
satisfy 1-27<<A<1-35. Even for the Gaussian potential such a value
of r1s too big i1f one determines r, roughly from the nuclear radius,
but a more serious objection is raised if we consider potentials which
are singular at the origin. Taking the potential V(r) = Ve=""""/y/r,
we find that for 2 < 8-8 the ground state is J = 7/2, at 1 = 8-8 a
cross-over of thls Wlth the J = 8/2 level occurs and for 4 > 3-8 the
ground state is JJ = 8/2. The level J = 5/2 crosses the level J = 7/2
only at 4 = 9-5 where J = 3/2 is already lower. We see that here
the use of a ~ 1/r potential not only shifted the points of cross-
over but changes completely the situation: there 1s no more any
region of A where J = 5/2 is the ground state. As far as scattering
experiments are concerned, there is no indication that the Gaussian
potential is better than the Yukawa potential. If one considers it
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just as a model the above calculations show that the results depend
strongly on the model used and it is a little bit early to draw from
them any physical conclusions. We must conclude that it is not
likely that the effect of Majorana forces can alone explain the ap-
pearance of the 5/2 ground state of Mn?®5,

§ 8. The configuration (gyp)®.

This is the simplest configuration j” in which two states with the
same J appear. The states of the (gy)® configuration are: two states
with J = 9/2 and eight more states with J = 21/2, 17/2, 15/2, 13/2,
11/2,7/2, 5/2, and 3/2. The sum method cannot give the term values
of the two J = 9/2 states but only their sum. The separation of
these energies can be dore by diagonalization of the energy matrix,
but with the elaborate methods of Racan®?) this becomes much
easier. One can define two states with J = 9/2, one with the Senior-
ity v = 1 and the other with » = 3. As the interaction energy does
not commute with the Seniority operator, there is a non-vanishing
matrix element connecting these states and the energies of the
ground J = 9/2 and of the excited J = 9/2 states can be found by
diagonalization of the two-rowed matrix.

The energy levels with J + 9/2and J = 9/2, v =1, J = 9/2, v=3
as well as the matrix element V connecting the last two states were
calculated by Racau?! in terms of the Slater’s F';,. We write here
down only the results for J <C9/2 as the other levels lie above these
and are of less physical interest.

Type of force
Wigner forces Majorana forces
St factors of factors of
Fo}ﬁ_‘_zlfzt ’ F | Fy F, [ F, ‘ F, 1 F [ Fy

J=9/2 v=1| 3 | 33| 1287 429 | 2431|- 8/9 | 407/14 |24453/14| 1144 |24739/18
J=9/2 v=3| 3 |43|- 93-163 -3417- 8/9 | 75/14| 3153/14 1014 | 7879/18

Viy429 |0 |- 1 105- 31 51| O 1/2 |- 105/2 312 - 512

J=T7/2 | 3 | 56|-1488 -595 |-2295— 7/9 | 100/7 | 3336/7 | 542 [12379/9

J=5/2 | 3 |-14] 962-728 -2652-56/81 613/63|-4693/7 |5629/9 69992/81

J=3/2 | 3 |-24-1488| 417 |-4947 -17/27 —284/21 | 4272/7 | 2518/315089/27

The F,, are defined by :
FO :FO,
4 Fe F 16 1
Fo=goqrer Fa=1rr  Fo=grremer

T3 13

Iy = 112132172 °
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The two states with J = 9/2 are given by the solutions of the
secular equa,tion as follows:

b= (Eslyz + Ef ) — [(Eé)/Z — ngz)z + 4 V22
B = 3 (El o T B /2) +5 [(Eg/z E5p)*+4 Vv,

If one examines the values given above it appears that | V| is small
in comparison to |Eds, — E§,| (it vanishes both in the short range
and the long range limits where v = 1 and v = 8 are exactly the
ground and excited states with J = 9/2). Therefore it 1s sufficient
to take only the first term of the expansion in powers of V/| Egs—Eds|
(which 1s the second approximation of perturbation theory). This
gives:

| & Ve
By = Hl =Kg, + -
9/2 9/2 9/2 ’
/ 'sz ’3/2! E;m ngz
| & ¥a
I _ '3
Eg/2 - E 9/2 -+ E B \ - E9f2 El Es
l 9/2 9/2 9/2 9/2

The (gg0)* %7 configurations are of a special interest, since it was
observed by GorLpuABER and SunyAr?%) that in nuclei which have
such a configuration according to the shell model there is a state
with spin 7/2 and even parity. This state, 7/2+, lies in a few cases
under the level J = 9/2 which is usually observed in these nuclel
(and described as gy, according to the shell model) and above it
in the other cases. An assignment g,, for this level is in contrast
with the shell model as this state (of the single nucleon) should lie
1-2 MeV above the gy, state (because of the strong spin-orbit inter-
action). GoLpHABER and Sunvar??) assume therefore that this state
1s the J = 7/2 state of the (gy,)" configuration.

The general method described in § 5 was used to obtain the F'*
expressed in terms of the I;; the results are:

Fo= 126413218 (Lo + Ig) —8 (I; + I;) + 28 (I, + Ig) —
Fo= 11615’2% [17 (Iy + Ig) — 76 (I, + I;) + 116 (I, + I¢) —
— 52 (I3 + I5) — 10 1] :
143
Fi= o (255 (Iy + Ig) — 480 (I + I;) + 68 (I, + L) —

— 82 (I, + I,) + 878 1,]

14
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F2=—[1105 (I, + I) — 260 (I, + I,) + 52 (I, + I,) —

— 764 (I, + I,) — 266 1,]
o= 806 so60 (12155 (Iy+ Lg) + 5720 (I, + I;) + 10868 (I, + Ig) +
+ 6248 (I3 + 1) + 10658 1,].

With the help of these formulae we calculated the order of the
levels, for ngner and Magorana forces with the potentlal V(fr)
=Ve=""I""[riro. As.is seen in the table above, the coefficient of F in
the case of Wigner forces, i1s larger for the state J = 7/2 than for
the other states. Therefore in the long range approximation this is
the lowest state up to the long range limit where all the levels
coincide. As the potential used does not yield this limit, the resulting
order of the levels 1s: 9/2¢, 7/2, 5/2, 3/2, 9/2¢. The spacing of the
levels 9/29 and 7/2 1s, for 4 < 1-5, smaller by a factor ~ 4 than the
distance between the 9/29 and the 5/2 levels. For Majorana forces
with the same potential the lowest state 1s 9/29 up to 4 = 3-2 where
a cross-over of this level occurs with the J = 3/2 level, which is the
ground level for 2 > 3-2. The 7/2 level does not cross the 9/2¢ for
any A. When a potential of the form (1 + Pm) V(r)/2 is used (equal
Wigner and Majorana forces), the situation is like that in the case
of Wigner forces, except that the levels 9/27 and 7/2 are not so close.
Also for the Gaussian potentlal Vir ) = V =" there is in the case
of Majorana forces no region of 4 in which the ground %tate has

= T7/2.

,The question of the relative spacings of the other levels J = 5/2
and J = 3/2 is critical in this case because they should be found
experimentally if they are not much higher. In order to clarify this
point, we shall refer to an 1nterest1ng case discussed by GOLDHABER
and SUNYAR?2), ;K188 has an even number of protons and 47 neu-
trons which are eqmvalent to three holes in the gy sub-shell. The
spin of the ground state 1s measured to be 9/2. The isomeric transi-
tion 1s from a p,;, state not to the ground state but to a low lying
7/2+ state, 9 keV above the ground 9/2 state. The distance between
the levels p;o and 7/2+ 1s 32-2keV. If a state with J = 5/2 or

= 8/2 were lying in this spacing, not too close to the upper state,
a tran51t1on to it would have been preferred upon the observed
transition. ~

It is interesting that the 7/2 state is close to the ground state also
for small 4, so that perturbations from other configurations or tensor
forces and other non-central interactions may bring it still lower.
This question, however, should be considered in more detail.

- 16128



Nuclear Spectroscopy with harmonic Oscillator Wave-Functions. 211

TII. Mutual Spin-Orbit Interaeﬁ_onS. '

§ 9. Matriz elements of the mutual spin-orbit interaction.

It is well known that neither the Thomas interaction nor the
magnetic spin-orbit interaction are b1g enough to account for the
wide separation between the states j =1+ 1/2 and j=1—1/2
of an odd nucleon as required by Mayer’s shell model. Case and
Pa1s®) introduced in a phenomenological way a strong spin-orbit
interaction, in order to preserve charge symmetry of the nuclear
forces in analyzing high energy nucleon-nucleon scattering. They
also made a very rough estimation and found that this interaction
could give a doublet splitting of the right order of magnitude neces-
sary for the shell model. ‘ :

Although there is not yet a conclusive evidence for the existence
of such a strong spin-orbit interaction, it is interesting to calculate
the effects of such an interaction in cases of a single nucleon outside
closed shells. ‘ !

The spin-orbit interaction of CASE and PAIS was assumed to be

of the form: - o . .
Vie= V(| r |) (3 12) (17)

where $Wand 3® are the spms of the two mteractmg nucleons and
Ly 1 their relatlve angular momentum

Bl — (p,—P)) X (1, — 7)) .

It is immediately seen why it is extremely difficult to use here the
Slater method. Such interactions were generally treated®) with the
simplification of summation over all nucleons but one, so that

2 V(|r;—r)| 59 + 50, L; ) became V(ry) 5V L,) (in the case

of an odd number of nucleons).

Using the method described above the solution of' the problem
becomes very simple, as.L12 1s exactly the A introduced before. To
obtain the matrix elements, the operator (§®+35®, L,;) is applied

to a wave-function (R) v,4,(7); this yields a sum of functions of
the same > type. When we multlply this sum by another wave-func-

tion y L.Z(R) y.4,(7) and integrate (the integration on the R-coordinate
can be immediately done) we obtain the result as a sum of the

integrals I, [of course, I, will not appear as A 27 ) vanishes].

In order to calculate the matrix elements of (17) it is more con-
venient not to work with the 4, and 4, components of a vector,
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but instead with the combinations 4, = 4, + 1 4,. With this nota-
tion (17) can be written in the form:

V)5 60+ A+ (sm+s<2)>A ) 4], (18)

The wave-functions with definite n,, l; and n,, l, in the (m,;, m)-
scheme are:

(mf, mz) = (my, my) 6 (:l: ';—;[0'1) d (ﬂ: ?!02) =
1

Lla,)

where o; and o, are the spin coordinates of the nucleons 1 and 2.
The operators s, , s_, and s,, when applied on these functions, give,
as 18 well known:

Sy 0(mglo) = (%—m ms) 0(—mg| o)

s_d(mg|o) = (%-{—ms) 0(—m4lo) 8,0 (m,|o) = m, 6 (m,lo).

The corresponding equations for a general L are:
Ly yi=(0Fm}(Qxm+DEp=t LyP=myl.

As (17) is linear in §®™and §@, the only non-vanishing matrix ele-
ments are those which connect states differing at most in one of
the spin eigenvalues. As an example we calculate

J(mi, my) ‘_—aza‘/f(’”h M) * 5(—; k"l) 0 (*““12“02) Via(my,mp) X
<85 o)o (-3
= l;;f] (my, mg)™ (17

x A, (mq, my) 0 (‘lial) o (—;«

02) g5y 491y =
1 1

)0 (=] V0 (7 - 3)
0y) d3ry d3ry = 0

(19)
J(m;, m)) // V(r) (mq, my)* A, (my, my) d®r; d3 7y

my ) —]/ V(r) (mq, my)* A, (my, my) d®ry d3r,

J(m, my) =~//Vr ) (mq, my)* A, (mq, my) d3 1y d3r,y
K(m,my) ﬁ——/./Vfr) (mq, mo)* A, (Mg, mq) d37; d375.
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These matrix elements will be used later on. If there is a difference
in one of the spin values, 4, and /4_ may appear; for example:

Z/j » My )* Vig(mi, my) d3ry dry =
=ffV(fr) (my, my) *7./14, (my, my) d2ry d3ry .

§ 10. Doublet splitting for a nucleon outside closed shells.

We shall have to calculate matrix elements of 18) in the (m;, m,)-
scheme and make applications for the doublet splitting for a nucleon
outside closed shells (the effect of this interaction on the energy
levels of Li? will be treated later). If the doublet splitting in such a
case 1s large compared to the interaction energy between two
nucleons in this unfilled shell, the jj-coupling scheme would result.

We start from the (m,, m,)-scheme and use the sum method to
obtain the energies of the doublet components. We use the fact that
M, (as well as J) is an integral, and also the Landé interval rule
which holds for these interactions. This rule states that the energy
of the state 25T1L, is equal to
J(WJ+1)—~L(L+1)—8(§+1)

5 .

¢(S, L)

The expansion of the wave-functions (7), (8) in terms of the wave-

functions v (R) 9,(7) is easily calculated by the method described
above. The results we need are given in the Appendix. We treat the
following cases:

A. A single p-nucleon outside the closed s-shell.

The wave-functions are (m*; 0t0~; 0+0-) where the last two
quantum numbers refer to two s-protons, the other two to two
s-neutrons and the m=* refers to the odd p-nucleon. When computing
the diagonal matrix elements which belong to these functions we
see that the only non-vanishing contributions come from the ps-
terms. These are exchange terms if the two nucleons have the same
charge, and ordinary terms otherwise. The matrix elements were
calculated with the help of formulae (19). For example:

J (4 1+,01) — K (+ 1+, 0+)=/'fv( (1, 0)* A, (1, 0) ddr, dor,
B f /ﬂV(”“)‘ pr () w8 (R)* A, wE'(r) pY(R) d*rd® R =
= [V0) wE0)* A,y &7 =
=+ Vo v 0 w0y dor =+ Iy
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and similar calculations for other matrlx elements. The results for
the ps-diagonal elements are:’

J(£14,00)—K(£1+, 09 =+, J(£1+09)=F5]
o J0%09) = K(0+,01) =0
J(£1-,0)—K(£1-,0)=F L, J(x1-0) =F 41,
J(OO) K(OO)O'

Wlth these results we bulld the followmg table:

| M, . Wavé-fun ctioﬁ " ' ‘ps dlajgonal matrix elements | Sum ‘of_ ‘the
| e ordinary | exchange | energies
§ | 00000 |, 0h) | (00
1‘_;‘ (07507075 0F 0-) (0, 0%) © (0, 04) | _ i |
(173 07 05 0% 07) (1=, 0-) ' = 07y 41,

As M; is an integral the following equations can be written:

v »

E(Pyy) =5 LI -
3
BB +ECRy = - 54

from which it follows:
2 3
E ( 3/2) - 11'
E(By=—8L
in accordahce with the iﬁterva,l rule. The splittih.g is é:ccondingly:
AE = 2

?Il .

B. A hole in the p-shell and a closed s-shell.

The relevant pp-matrix elements are calculated to be:

J(£ 14,09 — K(£ 1+,0%) = £ I,
J(0+, 0+) — K (0+,0%) = 0 = J (£ 1+, T1+) — K(+1+, F1+).
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For the configuration s4p5 the corresponding table is:

Sum of the .
. energies Total
ps ordinary’ps exehangeipp exchange| ps ‘ pp

: - Di trix el
M, Wave-functions - Diagonal matrix elements

3 o akoy | anoh | (00
(1+, 17, <1+, 0+,0~;| (1~,07) | (1, 0°) | 1~ 07) |-371, |-%1,| 21,
0t0—; 0t0) ‘
(—1+’ O+) (_1+: 0+) (_1+’ O+)

From this table we obtain E (?P;,) = — 2 I,, and with the help
of the interval rule E( P1/2) = 4 I The doublet 1s mverted and

the Sphttmg 182 _
AE =6 1,.

C. A single p-proton outside a closed s-shell and a closed neutron
p-shell.

The additional matrix elements for thls case are (ordlnary)

JA+, 1) =1, J(1+ 0% = ;;11 n Z_[2 J(0+, 0%) = J(1+,—1+) =0

from which we obtain:

pp (ordinary) | - O ———
M J Wave-functions diagonal Sum of energles .. Total

elements pp ps

(1+; 1+’ lw’ d+’ O—’ _1+’ (1+ 1+) (1+ O+) i'I1 + % 12
-1=;0%,0—; 0+ 07)

rojae
[Nt

I, ‘£L+%h

This table gives

E(Py) =1 + 31,
and o
E(2P1/2) = _%11_2—12
Hence the splitting 1s: |
) PR ALY

4 %
D. A single d-nucleon outside the closed s- and p-shells.

The relevant matrix elements are:

ds
J (2, 0+) — K(2+’ 0+) = I, | J ',(2"’: 0+) = ';_11 + “12“ I,
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dp
9
J@+ 1) —K@H1) = L+ 3L, J@ 1) =c L+ L+41
J@+H 0 —K@H0) =3 L+ 21, J@,0)=aL+3L+31
1 1 ;
J@+, — 19 —E(@—1¥) =~ L+ Iy o= =2 L — L+ > I,
1 :
J@—1%) =2 L — 2L+~ I,
with the help of which we obtain:
diagonal matrix elements sum of Total
M, Wave-functions i dp energies .
ord. } exch. | ord. ‘ exch. ds dp
3| (2F; 1%, 17, 0%, 07, |(2+,01) (2+,01) (2,1F) | (2%,17)
A+, 215 1+, 15,
0t,0-, -1+, -17;
0+, 0—; 0+0-)
+ Ot
(2+,0%) |(2+,0t) % I, %112»;912 %ZIII
@19 2H1h| T2 | L+l
Therefore
15 21 45 63

and the splitting is:
75 105
AE = T Il + T 13 .
We thus see that:

for p-nucleon interacting with the 4 s-nucleons, the splitting is
= 115

for p-proton interacting with the 4 s-nucleons and the 6 p-
neutrons, the splitting is

21 15
ThtThs

for d-nucleon interacting with the 4 s-nucleons and the 12 p-
nucleons, the splitting is

kil
8

105



Nuclear Spectroscopy with harmonic Oscillator Wave-Functions. 217

Case and Pars gave in their paper®) an estimated form of the
potential V(r) to suit the experimental data of the scattering:

Vi) =V, = F

0y dx =

where z = r/r,.

The values of r, and V,, were given roughly as 7, ~1,1x10-12 cm,
Vy ~24 MeV. Using this potential the I; can be easily calculated.
The result 1s:

where

For this value of r, and reasonable value of J¥ the I;, | > 2, are
much smaller than I;. The integral is very sensitive to the value
of p (and for a fixed value of r;—to the value of }/»). Some interest-
ing values are: "

=10 12 1383 14 2,0
I, =1,16 0,57 0,40 0,31 0,07 MeV

We can fix the value of » by determining the nuclear radius in

terms of 1t:
o0 ,
R2 =2 = lefe—z’””’ r2litidy = 2:‘;}3 .

0

Using the relation B ~ 1-5x A3 1013 ecm we obtain for the cases
considered:

A. AE ~4 MeV C. AE ~2MeV D. AE ~ 35 MeV.

The first case cannot give any information on He® or Li% as there
are no bound states for these nuclei. It is interesting to see that
with the parameters roughly determined from the scattering ex-
periments the order of magnitude of a few MeV may be obtained as
required by the shell model (although this calculation should not be
considered more than an estimate).
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IV. The Low States of Li“.

§ 11. The La™ nucleus.

The most striking fact about the Ii7 nucleus is the existence of
only one low lying level, 0-48 MeV above the ground state, and the
absence of any other level up to a few MeV. The most natural ex-
planation of such a situation is that of the LS-coupling scheme,
where the ground state and the first excited level are assumed to be
the components of a 2P. However, various reactions were believed
to point out that the excited level has a more complicated character
and 1n certain reactions it behaves like a level with a spin 5/2. It was
therefore suggested by Inaris?) that the j7-coupling scheme might
give the right explanation. In this scheme the ground level of the
configuration (pse)} psep has J = 3/2 and there are four higher
levels with the spins 1/2, 5/2, 7/2 and another 3/2 (which lies some-
what higher than the other three). If there are only Wigner forces
between the nucleons the levels J = 1/2, 5/2, 7/2 coincide, and 1t
was assumed by Ixcris that the excited level might be such a com-
pound one. However, even a rough coincidence did not result from
his caleulations and the situation became still worse when Majorana
forces were included too23). There exists, however, another possibil-
ity, that such a coincidence of the first excited levels would result
from the effect of non-central forces, such as tensor forces, and hence
in the next sections the calculation of the configuration (pse) % Psiep
18 carried out in the extreme jj-coupling, taking into account tensor
forces and mutual spin-orbit interactions in addition to the central
forces.

Recent experimental results show that the assignment J = 1/2
to the excited level of 1i7 is very probable®), and therefore the ex-
planation could be once again based on the LS-coupling scheme?4).
The splitting of the two levels should then arise from the spin-orbit
interactions. As the Thomas term gives too small a contribution,
we calculate the splitting due to the Case and Pais interaction. It
should be mentioned that the lack of other levels below 5 MeV 1s
not very well understood in either coupling scheme. Such calcu-
lations should therefore, not be interpreted as successful explanation
but only as a preliminary survey of the various possibilities.

§ 12. The configuration (ps) % Psep with central forces.

The energy values of the various states of the jj-coupling scheme
can be calculated by the sum method from the diagonal matrix
elements of the (j;, 75, m;, m;)-scheme, in the same way as in



Nuclear Spectroscopy with harmonic Oscillator Wave-Functions. 219

atomic spectroscopy. The wave-function of a single nucleon with
given n, [, 1 = | + 1/2 and m; 1s given by:

ot = @1 (s, 3
+(l—m§+%)7}fu(nlmj—i——%—!1)5(—%10‘1)] (20)

(the phases are fixed according to Conpon and SHORTLEY??)), or

briefly: |
1) 6(—%@01).

u(nlﬂ'mfll)mfu(nlmj—%]g) o L]

2
Forl =1 and j = 3/2 the f and g are:

1
al)—i—gu(nlmfr?

3 1 1. | 3
S ) T | TT | T2
f 1 ]/._2_ 1 0
s : YEE 3 I‘_;., 3 —_—
|4/ | /2 |
g 5 Vs |
|

We define the integral JJ and the exchange integral K of the inter-
action by:

J(nLjme, w'l'§m)) = 3 [ [ub(nljm[1) uu' V' my’|2) %

xVigu(mljm;|1) u(n'l'§'m,|2) d3ry d3r,
o (21)
Knljm;,n'U'j m;) = Zj/u*(nljmjll)u*(n’l’j’mj'|2)><

0y Oy

xVigu(nlgm;|2)u®m U'gm;|1) d3ry d3r, .

Exchange operators can be defined for the various central inter-
actions in terms of the spin-exchange operator P, and the space-
exchange operator P,.

Type of force

WIGNER HEISENBERG |
(ordinary) Msgorana (char. exch.) Brrng
I Pm - Pm PC' PU'

When the summation over the spin coordinates is carried out there
remains a sum of integrals on space coordinates only, the coefficients
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of which are products of f, g (of m;), and of f', g’ (of m;). For ordinary
(Wigner) interaction we obtain (the common », [, and j were dropped
out) :

! ! ]- ’ 1 1 ’ 1 ‘1
J(mj,mj)=f2f2.](mj_ Uz Mm;— - mj_—)—}—

9 M T 2 2
—i—fzg'zJ(m,- _%, m;' —f—%; mj-——wflz—, m;’ +%)+
+f’2g2J(m,-+%,mj’—%-; m; +% ; mj’—-%)+
—‘—gzg’zJ(mj%_—%,m,-’—sz;;m,-+—;—,m,-’—l—~1§-) (22)

1 1 1 1
K (m;, m;") = fzf'zJ(mj—?, ma"——g ; ’ma"*—g: {mi—?)-i‘
| ,
PR

m5+%)+

4 ! 1 ’ ]
+2ff g9 J(mr—?,ijr 5

' 1 P | . 1 i\
—;ngng(mj—}-?,mj +‘§§mf+?’ma'+§')

where J are the integrals on space coordinates defined by:

J (my, my; mg, my) =

T 70 w* ma1) o (ma]2) v mal) w (myf2) dry @Sy (23

some of them are the integrals encountered with among the matrix
elements in the (m,;, m;’)-scheme, e.g.

J (my, my; my, my) = J (my, my)
J (my, My ; My, my) = K (my, my) .

It 1s easy to see that in order to obtain the matrix elements of
the Majorana interaction, which is spin-independent in the above
representation, we must take the same coefficients as in (22) and
only multiply V(r) in (23) by the operator P,. This results in a
change in the order of the last two quantum numbers in J(m,, m,,
mg, my) which thus becomes J(m;, my, m,, ms). [This therefore
transforms J(my, m,) iInto K(m;, m,) and vice versa.]

In order to obtain the matrix elements of the Bartlet interaction,
we must exchange the spin coordinates in (21). This can be achieved
by first doing an exchange of both the space and the spin coordi-
nates and then another space exchange. As a result J? has the same
coefficients as KW but the last two quantum numbers are exchanged.
This means:

g9 = B¥ gnd EB=J%,
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The matrix elements of the Heisenberg interaction should be
related to those of the Wigner interaction in the same way, but for
a change 1n sign:

JHE = — K" and K% =-—JW,

It 1s therefore enough to calculate the case of ordinary forces. This
gives the matrix elements in the (j;, 75, m;, m;)-scheme:

J (5. 5)=J11) K (5. 5)=K(11)
(5 5)=5 I 0) + 5 J(1, 1) K(3,5)=35K(0
I3 —5)=5I LD+ 2I(1,0) K5, —5)=5K1-)
I (5. —5)= I, —1) K(g,—5)=0
nggzgﬂam+iﬂLm+éﬂLD

K(3.3)= Kmm+ J@m+iK@n

2°2
J(l —}J:~4KOO) 2 J(1,0) 42 J(0, 1) +5 J(1, 1)

4
9

1{(%,__;) 2 K(1, 0) 4= K(0,-1) + 5-J(0,0;-1,1) .
The matrix elements in the scheme (m,, m;'), 1.e. J(my, my, my, Mmy)
are easily calculated in terms of the I, from the wave-functions of
the pp-configuration A 3; they are (for ordinary forces):

ﬂLn:145+19 J(1,0) =+ (I, + I) +5 Iy
JO,0 =2 (Iy+ L) — 5L, J(1,—1) =5 I+ L)
E(1,1) = %(+Q) K(1,0) =5 (L+1)— 31

1 1
K(O: O):Z(IOJFIz)_“Z_Il K(L—l):“g(Io“i"Iz)_Il
J(©0,0; —1,1) = — Ty + L) +3 I .

To pass from a direct to an exchange integral in this scheme the
mntegrals I which arise from functions symmetric in the (space)
coordinates of the two nucleons (those of even A, like I, I,, I,
etc.) should be kept unchanged, while those arising from antisym-
metric functions (odd 4, like I;) should be multiplied by —1. In
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terms of these matrix elements the diagonal elements of the (71, 7,
m;, , m;)-scheme can be written down.

In order to calculate the energy levels we write down the matrix
elements corresponding to the various M, [when writing (m;, , m,,;
m;,) —m; and m;, are the two neutrons’ quantum numbers and m;;,
1s the proton quantum number]|. We obtain the following table:

Diagonal matrix elements
M, States in the (m;, m;,; m; )-scheme :
- exchange ‘ ordinary
T @ $:3) (% 3) (3:8)E:3)

335 D@1~ GHE-H| B P EDE-DG D
@ BBG-5DE D0 -5 3.9 E-D)| GDE DG -HE -
GG G-PE-DEIE-D
L @305 D50 5D @ DE D G- DG DA - DG
349 |G- G-DEDE-DEY

(é s _%) (%: - %) (%5_%)

Thus we see that there are 5 independent states, namely those
with oJ = 7/2 and J = 5/2, the two with J = 3/2 and the one with
J = 1/2. The sum method can only give the sum of the two states
with J = 3/2 but here we can separate the two levels with the help
of another quantum number—the isotopic spin 7. 2 neutrons and

1 proton have the projection 7,

1/2 of the isotopic spin 7, and

therefore the states may have either 7 = 1/2 or v = 3/2. The states
which have v = 3/2 are also the states of the configuration (ps.)3
(v, = 8/2). Now (ps)3 has only one state—J = 8/2 (v = 8/2) the
energy of which can be immediately obtained from an analogous

table:
u States in the Diagonal matrix elements
7
(my, » my, , my,)-scheme exchange ordinary
3 (3,4, -%) (536 -2 E -3 =

The sum of these energies is the energy of the state J = 3/2,
T = 3/2. When this energy is subtracted from the energies of the
two states with J = 3/2, which 1s obtained from the other table,
the value of the level J = 3/2, v = 1/2 is left.
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Using the values given above for the matrix elements we obtain
the following values of the energy levels:

State@ WIGNER - MAJORANA HEISENBERG BARTLET

: l
J=%|7t=3 R+ L)+ 4L |} To+ L5 1, | $Lo+ L)+ 4 I | -3yt 1) +31,
J=F|t=%| Iy+I,+1; Iy+1,-1, -3+ )+ 1, | LT+ 1)+ 1
J=%|7=%| Li+I,+1, I+ 1,-21, =3+ )+ LI +1)+% 1,
J=%|v=% L+Ltli | Lil-30 -3+ D)+L | 3L+ D)3,
s 4 %(Ioﬂz);%llé%(Ia+12)~§-11 Yy+ 1) -3 1, | -%(Ig+I)+ 51,

The same results expressed in terms of the Slater integrals are:

T~ Type of
T~ force WieNER MAJORANA HEISENBERG BARTLET
State T~ |
J=3% | v=4| 8F,-5F, | -3F,+%4F, | 3F,—5F, 2F,-2F,
J=1 | t=1 3F,—-3F, Fo+T7F, -6 F, 2F,—4 F,
J=§ | v=1 | 8 F,—3F, 2F,+2F, -6 F, LF,—3F,
J=4% | =1 | 3F,-3F, | -3 F,+2F, ~8 F, TR+ 2 F,
J=3 | =1 | 3F+1F, 4F,+ 2 F, +4 F, 3F, -0 F,
The connection between the I; and the I 1s given by:
. A 1
or
o 1 1

(Only the combinations I, + I, appears, and thus there are only
two parameters I, + I, and I; replacing Fy and F,.)

In the short range limit — I, = 0,1 > 0 (or F'? = 5 F), the results
for Wigner forces and Majorana forces coincide, because then only
space-symmetric functions contribute to the energy (the same ap-
plies for HrisenBERG and BarTLET, except for a change in sign).

It 1s interesting to note that in the long range limit, when all the
I, are equal (F'* =0, k > 0), the term values of the Heisenberg
interaction vanish for = = 1/2. This fact can be explained 1n a
general way. With the help of the isotopic spin 7 the Heisenberg
Interaction can be written as:

(i), k)
5V = 2 O ED

1<k <k
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If V(|]7¥;—7|) has a constant value in the region where the wave-
functions differ from zero, we can put it out of the integral sign
when calculating the energy, and what remains is the diagonal value
of the operator > [1+4(7®, 7%)]/2 belonging to the state consid-

i<k
ered. This value can be immediately found as follows (it is an eigen-
value 1f the total isotopic spin 7 is a quantum number of the given

state):
T= X+ (L+4(79,7%) = 3 L4 370, 7w) - 20-D

i<k 1<k i<k .
+7(t+1) —nt @Y+ 1) =1 (v+1) + %—n
o 3
7@ (T(%)_i_ 1) =T

This 1s the factor of F, or I, when I, = I, in any state with given
n and 7. In the above case n = 3 and we obtain:

3 1 . e 1_
T=+5 =g T=5 T=0.

The coefficients of I for Bartlet forces (and jj-coupling) can be
evaluated in the same way was used by Racaul?). He evaluated
the diagonal value of 3 (1 — Pi¥)/2, and therefore, in order to obtain

i<k
the diagonal value of 3’ Pi*, the value he obtained should be multi-
1<k

plied by —2 and to 1t n (n — 1)/4 should be added. The result 1s:
nn-1)  ni(+1)-J(J+1)

4 ) (21+1)2

§ 13. Matrix elements of the Tensor Forces Interaction.

The interaction energy in the case of tensor forces is:

D A @A Y AT S
Vo= Sy Vir) = [E20 800 Lo ey vy ¥ =757 (29
It appears also in atomic spectroscopy as the magnetic spin-spin
mteraction. Also here the development in a series of spherical har-
monics 1s complicated and would not be practical to work with. The
tensor forces play an important role in nuclear physics. They have
been used to explain the quadrupole moment of the Deutron and,
very extensively, in the analysis of scattering experiments. They
may also give, in second approximation, a contribution to the doublet
splitting.

By our method it i1s quite a simple matter to obtain matrix
“elements of the interaction (24). It consists, in fact, only of the
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computation of matrix elements of spherical harmonics with | = 2,
which can be done generally by the use of the Gaunt formula?®), or
else by direct integration. The operator Sy, of (24) can be written as:

_'(1)?_’(2)? 120 3@ (o @1 o0 o@ (Lain2 1
(s ,~T)_(s ,7>—§(3‘),5<))w(s(.’3_ —}-sh)s+)(7{sm P

4@ (0082 9— )_|_ (s s”)s("))sm ¥ cos P et P+
1
+ 5 (s P + s 5) sin P cos Fe~?+ ¢ s‘” s@ x

x sin2 & e2t? + . 8(1 5% gin? e ¥ =

— 1/45 sV — (s‘i) gL gl s{f))] YO ) —

(s @ 4 s @) YO (9, @) +

(25)

1/15

1
+ s 68?4 5D YU (9, ) +

D 6@ YD, ) .

1 1
— (1) o(2) (2) -
- I/i5 S Y2 ('29', (P) + VE J

In order to obtain the matrix elements in the (51, 95, m; , m;)-
scheme we use the wave-functions A 3. S, operates on the spin
coordinates of the two nucleons, with respect to which the sum-
mation can then be carried out, and what remains 1s a sum of
integrals on the r-coordinate with products of f, g, ', ¢’ as coef-
ficients. The angular integration can be easily done and the radial
integrals can be expressed mn terms of the I,. In addition to the
integrals met with before, there appears also:

2 2 (3 5
Iy00= N, Nlofv("“) Ry (r) Byo(r) dr =|/5‘ (711“512).
0

I, does not appear in these sums because S,, contains only spherical
harmonics of order 2 [as a result of subtracting (s@, §®)/3].

We shall give here the results for the configuration (psi)% Psep-
The exchange integrals K are easily derived from the direct integrals
J by an exchange of only the space coordinates of the two nucleons
(multiplication with P,). This means that integrals arising from
symmetric functions (even 4, like I,, I, 44, etc.) remain unchanged,
while those which arise from antisymmetric functions (odd 4, like I)
are multiplied by —1. This is a result of the fact that the operator
S, 1s diagonal with respect to the total spin (of the two nucleons) S,
and that its eigenvalue for the singlet state (S = 0) is zero. There-

15
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fore only that part of the wave-function which 1s in the triplet
state contributes to the matrix elements, and that part 1s sym-
metrical with respect to the two spin coordinates. Thus instead of
spin and space exchange, space exchange alone 1s sufficient to obtain
the K from the J integral. This 1s clearly seen in the results:

5 3)= "1
3 1 1 1
g 5= e le—a

'3 il 1 5 1 5 1 1
- 5)= sl —nge a5 )/ 3 o= — sao o g e

3 3 1 1 11/5 1
I(5 “7)=—6611—25512“‘93]/2—12,102512
11
J(?’?): 1134 405V Iy 0= 1351 +1261

1 1 1 25 2 1
J(ﬁ’"_)ﬂaol 5968 | 81ol/ Iy10= 135 11— 195 12

2 2
K(%%):_ 412 L

E(z g)=—mk ‘54“12

2.t 1/
K(%’*%):_eloll 553 1 910 I/z Ly 0= Il+?:2""12
K(%’%):”Tgéfl: 1;61

K(";”*‘%):"é;ol 2268 8101/ Ly 10= 11_’1;'612'

When treating the tensor forces as a perturbation on the strong
spin-orbit interaction which gives rise to the 79-coupling scheme, the
sum method can be used to determine the first order contributions
to the energy levels. This i3 done in the same manner as in the case
of central forces. We give here the results for an ordinary potential
and a potential which is multiplied by the operator P, (this simply
replaces J by K and vice versa). The I, in the following table are
12 times those defined above, as it i1s customary to define S;, as
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3/r2(c™, 7) (6@, r)—(dW, ¢@) which is 3 - 4 = 12 times the opera-
tor Sy, in (24).

| ’ . Potential with
State Ordinary potential
: : space exchange
—3 =3 2L -3
— 1T — x 3 1 _1 2
=T =14 | +L-31, 1L,-31,
=% =% | ~dhLtdrl 32114‘@[
I =5 =% | -15hLth —13 Lt 1,
J =3 T=1y% 314 ‘ -1¢8 L

The matrix elements of the mutual spin-orbit interaction (17) can
be calculated with the help of those in the (m;’, m;)-scheme. The
wave-functions (20) are used and the matrix elements are the sums
of matrix elements in the (ml, m,"}-scheme, with coefficients which
are products of f, g, ', and g¢'. Here it is seen, much better than in
the (m,, m,")-scheme that the K integrals differ from the J only by
the sign of the I, arising from space antisymmetric functions. The
reason for it is the same as in the case of the tensor forces. The
operator (§104+5®, A) is diagonal with respect to the magnitude
of the total spin S (S = 5@+ 5®) and its eigenvalue in the singlet
state is zero. [In the (m;, m;’)-scheme this fact manifests itself in
the vanishing of the matrix elements when ms, = 4= 1/2 ms, = +1/2].
The results are:

d3A)=n IE)-Shebh a3 Y=t
B0 EH-h ()i
K(E 4=k K3 3)-—tnebh K(G-d-dnedy

3
, 2 g)=
K(i ~3)=0 K(i,_l_)zijz K(}i,~;—):%12.

From these matrix elements the first order contributions to the
energy levels of the configuration (pss) % P32 » can be calculated with
the help of the sum method. These contributions are:

N’ 7 E i 3
T s : >

‘ | - i
. | 3L

1don

Bo=1
,
e

o=
o=
I~
-
+
¥
~
[
ol
I~y
[y
+
u‘_.
wojua
ey
(%)
l
c,ol_n
e~y
—
_I_
Py
b
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§ 14. Numerical results.

In order to obtain numerical results we have to evaluate the I,.
We assume that the potential of the interaction between the nucleons
has the radial dependence of the Yukawa potential. The general
formulas for the I; in this case were given in § 6.

The value of }/», which measures the extension of the wave-
functions, can be roughly determined from the Li?-Be? Coulomb
energy difference. This gives: 1/)/v ~ 2:4x10-13 cm.

The value of ryof the Yukawa potential can be taken from the ana-
lysis of scattering experiments; it is between 1-1 and 14 x 10~*3cm.
This determines roughly 4 ~0-5, u ~1. For 4 = 0-5, u = 1 the
following values are obtained:

I,= 0137V I, = 0040 V I,=0014 V.

For the tensor forces we take the same radial dependence as for the
central iteractions, with the same results for the I,.

We shall now show that there are certain values of the interaction
parameters for which the four excited states (or three of them)
nearly coincide. Such a possibility can only mean that the inter-
pretation in terms of the jj-coupling scheme could have been con-
sistent with the existence of a low-lying compound level, if this were
experimentally verified.

| Exchange operator i Exchange operator
State | (1+ P2  (L+Py) (3+}Po)2
¥ =0] yﬁ3§ y=4 ly=0] y=6 | y=8
J=57v=254| 068 | 128 (198) | 1-48 (2-18) | 0-68 | 1-88 (2:55) : 2-28 (2-98)
J =1 1:00 | 1-30 (1-80) | 1-40 (1-90) | 1-50 | 2-10 (2-60) | 230 (2-80)
J =3 0-88 1 1-26 (1-76) | 1-38 (1-88) | 1-30 | 2:05 (2-55) | 2-30 (2-80)
J=1 075  1-23 (1-73) [ 1-39 (1-89) | 1-10 | 2-06 (2-56) | 2-38 (2-88)
J=35 =4 138 2:34(2:04) [ 2:66 (2:36) | 1-86 | 3-80 (3-50) | 4-40 (4-10)

For the case in which an exchange operator (1 + P,)/2 multiplies
the potential, the coincidence of the higher levels can be achieved
by adding a tensor force with an exchange operator —P,. If we
take the exchange operator of the central forces to be

F0+B)(5+5B)=5(3W+5M—3H+ 5B

where W, M, H, and B are the exchange operators of the Wigner,
Majorana, Heisenberg, and Bartlet interactions respectively, a co-
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incidence can also be attained with the same form of the tensor
forces. The results are given in the preceding table where the energy
values are expressed in units of V/7 and V is the constant of the
Yukawa potential in the case of central forces. The corresponding
constant for tensor forces is y V.

If V is equal to 7 MeV the above energies are in units of MeV.
The spacing between the ground state and the excited (compound)
level 1s then of the right order of magnitude but bigger than the
observed 0-48 MeV. If the contribution of the mutual spin-orbit
interaction is added, this difference decreases. The term values so
corrected are given in the above table in parentheses.

Obviously there are enough parameters to explain the coincidence
and the level spacing. The above calculation points out that with
reasonable values of them agreement can be achieved, but as long
as more exact values of the interaction parameters (magnitude and
range of the potential, exchange character, etc.) cannot be fixed
with the help of other experiments, no decisive conclusion can be
drawn.

§ 15. Splitting of the (p} pp)22P ground state due to

spin-orbit interaction.

As already noted the new experiments favour the assignment
J = 1/2 for the first excited level of Li?, It became also clear that
the level is quite sharp and there are no other levels in its close
neighbourhood®). The explanation in terms of the LS-coupling
scheme seems therefore plausible. There 1s also some evidence that
the ground state of I1.i¢ is 3S; which means that in that nucleus
LS-coupling exists. The configuration p} pp in the LS-coupling
scheme was treated by Wiener & FEENBERG27)28), and by HunD?29).
For Wigner and Majorana forces the lowest state is a 2P with
7 = 1/2. According to this the two lowest levels of Li? should be
interpreted as the two components of this doublet with J = 3/2
and J = 1/2. With this interpretation the problem still exists where
are the other levels of this configuration, specially the next 2F
(r = 1/2) which should not be as high as 5 MeV (for reasonable
values of the parameters). We shall calculate the splitting of the
ground 2P, arising from the mutual spin-orbit interaction of the
type introduced by Cast and Pars, as it is well known that the
Thomas interaction and the magnetic spin-orbit interaction give
too small a contribution (a splitting can arise also from tensor
forces, but only in the second approximation).
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The energy of the ground 2P is for Wigner and Majorana forces:

11 5

8F,+18F,=, (I,+ 1) — oI,

(in the notation of Hunxp it 18 3 A + 2 B where 4 = F + 4 I, and
B = 3 F,). This energy 1s not degenerate (some of the energy values
of higher states are twice and thrice degenerate), and thus it is
possible to find the wave-function of the ground state by direct
diagonalization of the energy matrix in the scheme (m,,, m;,; m;,).
The energy 1s not degenerate also in the short range limit, so that
we may calculate the energy matrix in this limit, which makes the
calculation simpler.

The wave-function of the ground 2P (or the ground 22P in the
notation @*FDESHI, ) in the state M; = 8/2 is a linear combination
of those wave-functions (mit, mi; m;-) for which

' 1
M,g:msl+ fm32+m33= it 3 and M mmll+m12+ml3 4= 71,

There are 8 such functions [in the notation (mm& m 5 *s) 1 and 2

are the neutrons numbers and 3 1s the proton number] and they
are listed below:

Y= (1%, —1+;17) y,= (17, -1%;1%)  p,=(1-,0%+;0%)
yy = (1, 075 07) ws = (1%, 17;—1%) 33 =(0%, 0; 1)
= (1, —1-;1%) = (1, 0-; 0%

|

With these functions the energy matrix in the short range limit,
where only I, is different from zero, can be built and the diagonal-
1zation carried out.

The energy matrix in units of 1/4 1.

4 | -1
~1 | 4 -
6 -2 | 2 -1 | 0 -1
~2 | 6 |2 0 |=1 | 1
| 2 |-2| 6 |-1] 1] o
“1 | o |-1] 6 |-1
B
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The matrix is already reduced and the value of 11/4 I, of the
energy of the ground 2P is an eigenvalue of the 6-row matrix. The
corresponding wave-function is a linear combination of the 6 func-
tlons ys, ws, Y5, Ye» Yo, Ye the coefficients of which are the com-
ponents of the eigenvector of the 6-row matrix which belongs to
the eigenvalue 11. The linear equations are easily solved with the
following results for the coefficients (after normalization to unity):

2 2

22 v —E_——, . I R« S e T .
Ml%Mfﬁmmﬂﬂlﬂﬂvﬁﬂ,KFH
2
ol I, T 1+ 0-; o+)+f:(1 0+; 0+
jis =i /i )~
— + 0-: 1+
1/15 0+, 0-; 14) .

The diagonal matrix elements of the mutual spin-orbit interaction
which belongs to this wave-function can be now calculated with the
help of the matrix elements in the (m,, m;)-scheme. In order to
obtain the total splitting this function should be multiplied by the
wave-functions of the 4 s-nucleons and so the contribution of the
interaction of the p- with the s-nucleons will be added to the inter-
action of the 3 p-nucleons themselves. The calculation is per-
formed in the same way as in cases B and C above. The results are:

Energy of the Energy of the Total
sp-interaction pp-interaction
el =5l 158 L= I, ‘ YL+51,

This 1s the energy of the state 22P;),:
1 !
BE(RY — 1+ 1

the Landé interval rule yields

B(2Pg) = —1—51

so that the splitting is:
3
AE == *‘2—' I]. _|" 12 ¥

The integral I, was already calculated with the potential given
by Case and Pars. The value of J» can be roughly fixed by the
determination of the Coulomb energy difference between Li? and
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Be” in terms of it. This gives for the splitting the order of magnitude
of ~1MeV. The smaller level spacing in Be” can be explained by
considering the Coulomb expansion. It is not possible to make more
exact statements as the value of I, is very sensitive to the values
of the parameters. Although this should not be considered as an
exact determination of the energies, it is interesting to see that the
right order of magnitude is obtained.

The author would like to express his deep gratitude to Prof.
W. Pavuwl, under whose guidance this work has been carried out,
and also to Prof. M. VErpr and Dr. M. R. ScaarroTH for helpful
discussions.

ArPPENDIX.

Expansion of the wave-functions of two nucleons.

(0, 0) = ¥4(R) v)() ' Al
pPSs.
(£1,0,=7 {(il 0) + (0, £ 1)} = 9 (R) %o(r)
(0, 0), ~%(R) o (r) A9
(£ 1,00 = 5 {( 1,0) = (0, = 1)} = — w0 W (B)
(0, 0)q = — 9} (r) w3 (R)
pp.
(21 £1) =5 (v2*(B) v () — w52 (1) ¥ (B))
(41,0, “ﬁ (p5" (R) w)(r) — v (r) w3 (R))
(+1,0), wwl ) () — v () $) ()
0, 0 = o (WO(R) v3(r) — v (1) v3(R)) —
0, 0) ]/s(‘/’( W (r) — w3 () vy (1)) As

V6 (‘PIO 1/)0 ¥ — 1:0(1)0(7") WS(R))
(1, F1), = W(WZ(R wo (r) — v3(r) 9§ (R)) +
+ 7 () ¥0) — () v(R))

(1, Fla= 5 0 (B) w7 () — i 0) 97 ()




(m, 0),

(+2,0
(+1,0),

(0, 0),
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ds.

e (V’z (R) 1100 (T) + "/’?271(7") 7!’0( ))

m——2 —1,0,1,2.
)a= iI(R) j:1()
l/ - (i 2(r) + »E(r) ) (R))

) 4 i) v H(R))

V* (‘Pl

dp.
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A4

Only the symmetric functions are listed, the antisymmetric func-
tions are obtained from them by interchanging R and r.

(42, 1), = V2 p3(R) ir) — S v (R) vs20)

(£2,0, = iwgﬂ(R) Y1) + 5 ¥3(R) v2(r) —
_Vé £1(R) pEl(r)

(£1, +1),= V_ pE2(R )wg(r)——;:w?(R) pE2(r)

(i&?l)sﬂmw{fl(fi) vy (1) — V?» ——pE(R) yiy(r) +
+ Vl i (R) v ()~-—V’1t;wf1( ) 9l (r) +
+ 5 pTHR) vE2(0)

(4 1, 0), 1ﬁp T)+Tw11(R) oo (r) —

— 5 i B w0 *%W%I(R) v
0, + 1), lﬂu )= V2 9 (R) ylolr) +

I

i (B) v () +‘g' vy

— yFU(R) p#2(r) — —— 40 (R) p’

V3

H(R) vy
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(£1, Fl)= 5 ;#’g(R) o () - i (B) yio(r) +

~ /2 ¥hB) R0 — 5= (B) vh) ~
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