Zeitschrift: Helvetica Physica Acta

Band: 25 (1952)

Heft: I-II

Artikel: Über einige Bandenspektren der Radikale PbCl, PbBr und PbJ

Autor: Wieland, K. / Newburgh, R.

DOI: https://doi.org/10.5169/seals-112302

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über einige neue Bandenspektren der Radikale PbCl, PbBr und PbJ

von K. Wieland*) und R. Newburgh**).

(24. IX. 51.)

Summary: New ultraviolet band systems $(B \leftarrow X)$ of PbCl, PbBr and PbJ have been obtained in the absorption spectra of the thermally decomposed vapours of PbX₂ (X = Halogen). In addition, the hitherto missing visible system $(A \leftarrow X)$ of PbJ has been observed in emission and, faintly, also in absorption. From a vibration analysis of the four new band systems, from predissociation phenomena occurring in all systems (B-X), and from fluorescence experiences made by Popov with the vapours of PbX₂, the following most probable values (less probable values in brackets) for the dissociation energy of the radicals PbX can be deduced: PbF 3.22 (3.57), PbCl 3.05 (3.40), PbBr \sim 2.5, PbJ 1.98 (1.63)-volts.

I. Einleitung.

Die zweiatomigen Radikale PbF, PbCl und PbBr besitzen im sichtbaren Spektralgebiet je ein Bandensystem $(A \longleftrightarrow X)$, das von Morgan¹) in Emission und von Rochester²) in Absorption vermessen und analysiert worden ist. Rochester³) hat ferner bei PbF in Absorption mehrere ultraviolette Bandensysteme B-X, C-X, D-X, E-X und F-X erhalten, bei denen mehrfach Prädissoziationserscheinungen auftreten. In Emission kann nur der langwellige Teil von System B-X erregt werden.

In den Absorptionsspektren der überhitzten Dämpfe von PbX_2 (X = Halogen) konnten wir, ausser dem bereits bekannten System B - X von PbF, auch für PbCl, PbBr und PbJ das entsprechende ultraviolette System $B \leftarrow X$ (mit violett-abschattierten Banden) photographieren. Ausserdem liess sich für PbJ in Emission, schwach auch in Absorption, das bisher noch fehlende sichtbare System $A \longleftrightarrow X$ (mit rot-abschattierten Banden) auffinden. Über die Vibrationsanalyse dieser vier neuen Bandensysteme soll im folgenden berichtet werden⁴). Aus einem Vergleich der ultravioletten Systeme B - X untereinander, die alle Prädissoziationserscheinungen und zum Teil starke Vibrationsstörungen aufweisen, lassen sich Angaben über die Grösse der Dissoziationsenergie der Radikale PbX gewinnen.

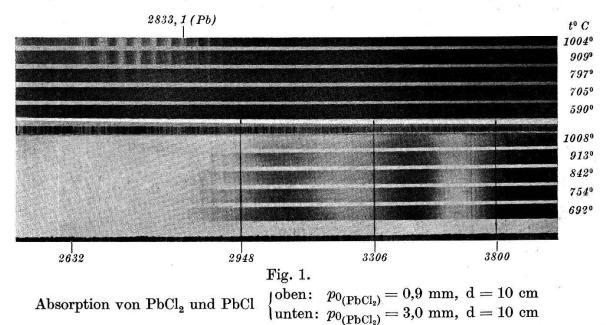
^{*)} Zur Zeit University of California, Dept. of Physics, Berkeley.
**) M.I.T., Dept. of Chemistry, Cambridge (Mass.)

II. Experimentelles.

Für die Absorptionsaufnahmen wurden kleine abgewogene Mengen der Salze PbX₂ in 10 cm lange evakuierte Quarzrohre von bekanntem Volumen eindestilliert, in einem elektrischen Ofen auf 600—1000° C erhitzt und mit Prismenspektrographen grosser Dispersion (grosses Quarzmodell von Hilger und Zwei-Prismen-Glasmodell von Halle) photographiert. Die Verwendung sehr kleiner Konzentrationen von PbX₂ (3 bis 10·10⁻⁵ Mol/1) erwies sich als wesentlich, da nur dann die Bandenspektren der zweiatomigen Radikale beobachtet werden konnten. Bei grösseren Konzentrationen würde das interessierende Spektralgebiet von den kontinuierlichen Absorptionsspektren der dreiatomigen Dämpfe (siehe Butkow⁵)) überdeckt werden.

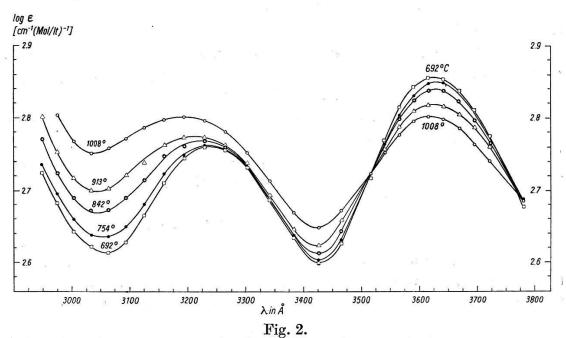
Für die Emissionsaufnahmen wurde ein mit wenig Salz beschicktes Entladungsrohr aus Quarz verwendet, welches Aussenelektroden besass und sich in einem elektrischen Ofen auf Rotglut erhitzen liess. Die Erregung erfolgte mit einem Diathermieapparat oder, besser, mit einem speziell konstruierten Röhrensender.

III. Ergebnisse.

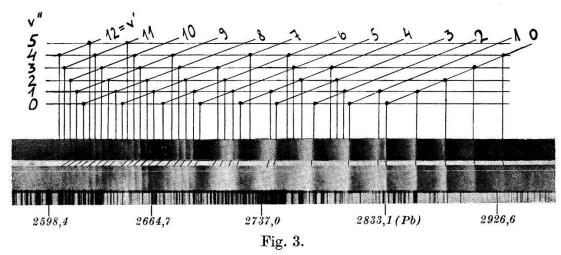

Sämtliche Messdaten sind in den Tabellen 1—4, alle Molekülkonstanten, die sich aus den Kantenformeln ergeben, in Tabelle 5 zuammengestellt.

1. PbCl, System $B \leftarrow X (\lambda \lambda 2960-2590 \text{ Å}).$

Figur 1 zeigt zwei typische Serien von Absorptionsaufnahmen, die bei je einer bestimmten Konzentration*) von PbCl₂-Dampf in Abhängigkeit von der Temperatur erhalten worden sind. Infolge der thermischen Dissoziation von PbCl₂ in PbCl + ½ Cl₂ wächst die Absorptionsstärke der PbCl-Banden mit steigender Temperatur beträchtlich an, was bei der kleinen Konzentration $p_0 = 1$ mm*) besonders gut erkennbar ist. Das kontinuierliche Absorptionsspektrum von PbCl₂ mit seinen drei Intensitätsmaxima bei 3638, 3250 und 2670 Å⁵) tritt erst bei der höheren Konzentration $p_0 = 1$ mm in Erscheinung. Dass auch in diesem Spektrum eine merkliche Intensitätsveränderung mit der Temperatur Platz greift, lassen die in Figur 2 wiedergegebenen Extinktionskurven erkennen.


^{*)} Hier und im folgenden wird die Konzentration durch den Nulldruck $p_0=273/T\cdot p_T$ charakterisiert. $p_0=1$ mm entspricht also einer Konzentration von $5.865\cdot 10^{-5}$ Mol/1.

Wir hatten ursprünglich gehofft, die mit steigender Temperatur abnehmende Gleichgewichtskonzentration an PbCl₂-Dampf aus quantitativen Extinktionsmessungen ermitteln zu können. Mit Hilfe einer von Sulzer⁶) abgeleiteten Formel müsste es im Prinzip möglich sein, die Veränderung des kontinuierlichen Absorptionsspektrums von PbCl₂ in einen nur durch die Temperatur bedingten und in


einen nur durch die Dissoziation bedingten, d. h. nur von der Konzentration abhängigen Anteil zu zerlegen. Der bei den Kurven von Figur 2 auftretende temperaturunabhängige Schnittpunkt⁷) macht es von vornherein wahrscheinlich, dass der temperaturbedingte Anteil bei weitem überwiegt, dass also in unserem Falle eine nennenswerte Konzentrationsabnahme von PbCl₂ absorptionsspektrographisch

nicht nachgewiesen werden könnte. Eine thermodynamische Überschlagsrechnung

Absorptionskurven von $PbCl_2$ -Dampf. $c = 1,76 \cdot 10^{-4} \text{ Mol/1}, d = 10 \text{ cm}.$

bestätigt dies: danach dürfte der Dissoziationsgrad des Gasgleichgewichtes $\mathrm{PbCl_2} \rightleftharpoons \mathrm{PbCl} + \frac{1}{2} \, \mathrm{Cl_2}$ bei $1000^{\circ} \, \mathrm{C}$ und $p_0 = 3$ mm nur etwa 3%, derjenige des Gasgewichtes $\mathrm{PbCl_2} \rightleftharpoons \mathrm{Pb} + \mathrm{Cl_2}$ sogar weniger als 0,05% betragen. Übrigens konnten wir bei mehrfacher Wiederholung der Extinktionsmessungen mit derselben Konzentration nie genau die gleichen Absorptionskurven erhalten, offenbar infolge einer allmählichen Reaktion der heissen Salzdämpfe mit der Quarzwand.

PbCl, System $B \leftarrow X$ in Absorption. Oben: PbCl³⁷; unten: natürliches PbCl.

Figur 3 zeigt eine vergrösserte Wiedergabe der Absorptionsbanden von PbCl ($t=950^{\circ}$ C, $p_{0}(\text{PbCl}_{2})=1$ mm, d=10 cm). Infolge der Verwaschenheit gerade der stärksten Bandkanten mit v'=1-5, sowie infolge der Unauffindbarkeit des Chlorisotopeneffektes im Spektrum des natürlichen PbCl (untere Aufnahme in Figur 3), liess sich eine sichere Vibrationsanalyse erst mit Benützung von 92% angereichertem PbCl³ (obere Aufnahme in Figur 3) durchführen*). Die für PbCl³ gültige Kantenformel wurde aus den kurzwelligen verhältnismässig scharfen Bandkanten (mit $v' \geq 5$) gewonnen und mittels des Isotopenfaktors $\varrho = \sqrt{\mu^{35}/\mu^{37}} = 0.9766$ auf diejenige für PbCl³ umgerechnet. Für alle Banden mit v' = 0, 1, 2 (und eventuell 3) bestehen erhebliche Differenzen zwischen den gemessenen und berechneten Frequenzwerten ($\nu_{\text{beob.}} - \nu_{\text{ber.}}$) (siehe Tabelle 1), was wir auf eine durch Prädissoziation verursachte Vibrationsstörung im oberen Zustand B zurückführen.

2. PbBr, $System B \leftarrow X (\lambda \lambda 3012-2075 \text{ Å})$.

Es gelten ähnliche experimentelle Verhältnisse wie beim Bleichlorid. Die optimalen Bedingungen für das Erscheinen der Absorptionsbanden von PbBr sind etwa: $p_0(\text{PbBr}_2) \sim 1$ mm, $t^0 \sim 1000^{\circ}$ C

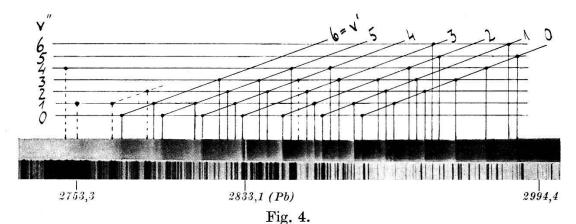
^{*)} Für die Überlassung von 92% angereichertem $\rm HCl^{37}$ -Gas sind wir Herrn Professor Clusius sehr zu Dank verpflichtet.

Tabelle 1. Gemessene Kantenwerte von PbCl, System $B \longleftarrow X$ in Absorption natürliches PbCl (= PbCl³5) 92% angereichertes PbCl³7

			001 (= 1)	(5)			, ,	angereren		
v', v"	Ia)	Auss.a)	λ (Å)	$ u(\mathrm{cm}^{-1}) $	beob. -ber. (cm ⁻¹)	Ia)	Auss.a	λ (Å)	ν(cm ⁻¹)	beob. -ber. (cm ⁻¹)
14,5	*					1 0	us us	2577.2 83.9	38790 690	- 3.5
16,8			81			1	ms	88.6	620	-3
15,7						1	us	92.4	563	-2
9,0	. 0	33.00	2591.0	38584	1.15	$\frac{1}{2}$	1	2596.6	38500	-5.5
13,5	1	uss	94.9	525	+1.5	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	ms	2600.3	445	-3.5
	1	us	W45004787450454	E control over 3	+2.5		ms	04.4	385	$-3.5 \\ -4.5$
12,4		us	99.1	463	+0.5	2	ms			$-4.5 \\ -0$
11,3	1	us	2603.1	404	+2	2	ms	08.1	330	450
10,2	1	us	07.2	344	+2.5	2	ms	12.2	270	-0.5
						0	Linie?	14.4	38239	
14,7)	2	us	11,3	284]+2.5	$ _2$	us	15.9	216	$\{-6.5$
9,1			20		+3.5	J _				1+5.5
9,1		Linie?	14.3	38240						_
13,6						2	ms	2619.8	38160	-2
8,0	1	us	2616.1	38214	-5			900 00 900	9275-2274	200
12,5	2	us	19.0	171	+3.5	3	ms	24.0	098	-3.5
11,4	3	ms	23.6	104	-1.5	4	ms	28.0	039.5	-1
10,3	3	ms	28.0	041	-2	3	ms	2632.3	37978.5	-0.5
9,2	3	ms	32.1	37981	+0.5	3	ms	36.4	919.5	+2
8,1	2	ms	36.5	918	+0.5	2	ms	40.7	857	+1.5
12,6	1	uss	39.8	870	-5	1	us	43.6	816	+1
7,0	1	uss	40.9	854	0					
11,5	3	ms	44.0	810	-1	3	ms	48.2	750	-2
10,4	4	ms	48.4	747	+0.5	4	ms	52.7	686	-3
9,3	5	ms	53.0	682	-1	5	ms	57.0	625	-1
8,2	4	ms	57.6	617	-0.5	4	ms	61.5	561	-1
7,1	3	ms	62.0	555	+3	3	ms	66.0	498.5	0
6,0	1	uss	66.6	490	+3.5	1	us	70.8	431	-3
10,5						0	us	2672.8	37403	+2
9,4	3	ms	2674.0	37386	+0.5	2	ms	77.5	337	+1
8,3	4	ms	78.9	317	-2	4	ms	82.3	270	-1
7,2	4	ms	83.5	253	+1	3	ms	87.0	205	-0
6,1	3	ms	88.7	182	-2.5	3	ms	92.0	136	-3
5,0	2	us	93.3	118	+1	2	us	96.7	072	-1
7,3	2	uss	2704.8	36961	+7	2	uss	2708.0	36916	+2.5
6,2	4	us	10.2	887	+2.5	5	us	13.3	844	-2
5,1	6	us	15.7	812	-3	6	us	18.7	771	-7
9,6		_				2	us	19.6	759	-2.5
4,0	2	us	20.5	747	+1.5	2	ms	23.2	710	+0.5
8,5	4	us	21.6	732	+4.5	4	ms	24.5	693	0
7,4	1	us	27.4	654	-3	2	us	29.6	624	0
6,3			_,	501		1	uss	34.6	557	+2.5
5,2			46			6	uss	40.4	480	-5
4,1	1	uss	2743.0	36446	+2.5	`	400	50000 GEO. S. C.		1-8
8,6	•	ALUI)	2.10.0	55110	"	7	uss	45.9	407	$\left\{ +1\right\}$
3,0	7	us	48.3	376	+4	5	us	2750.4	36348	+3.5
7,5		415	40.0	510	1 32	3	uss	51.5	333	-1.5
6,4	1	uss	55.2	284	- 5.5	2	us	57.0	260	-4.5
, x	•	400	00.4	201	0.0	4	4.5	01.0		1.0
				<u> </u>	l		I		I	

Tabelle 1 (Fortsetzung).

 $PbCl^{35}$


PbCl³⁷

v', v"	Ia)	Auss.a)	λ (Å)	$v(\mathrm{cm}^{-1})$	beob. -ber. (cm ⁻¹)	Ia)	Auss.a)	λ (Å)	$v(\mathrm{cm}^{-1})$	beob. -ber. (cm ⁻¹)
4,5						. 2	uss	57.7	252	-0.5
5,3	2	uss	60.4	216	-1	2	us	62.0	195	+1.5
4.2						1	uss	67.3	125	+3.5
2.0	7	us	75.6	018	+22	8	us	2777.0	36000	+22.5
5,4						1	uss	84.2	35906	+ 2.5
4,3						2	uss	89.9	833	+ 3.0
(3,2)	2	uss	2793.7	35784	(+14)	2	uss	94.0	35780	(+23)
1,0	6	ms	2804.1	652	+34	7	ms	2804.5	647	+39
(2,2)						2	Linie?	25.1	387	(-2,5)
1,1	4	ms	2827.7	35354	+38	5	ms	2827.8	35353	+39.5
	10	Pb	2833.1	287		10	Pb-Lin.	2833.1	287	
(0,0	3	ms	33.8	278	+40)	(3	ms	33.9	277	+40)
3,4						1	uss	41.5	182	+7
2,3						1	uss	46.0	127	+29
0,1	5	ms	2858.1	34978	+42	5	ms	2857.7	34983	+40.5
0,2	4	ms	82.9	677	+41	4	ms	82.1	687	+38
1,4						1	uss	2900.2	470	+31
0,3	3	ms	2908.0	378	+40	3	ms	06.6	394	+38
1,5	1	ms	25.9	168	+42	1	us	24.4	185	+34
0,4	2	ms	33.4	080	+39	2	ms	31.1	107	+39
1,6	1	uss	51.7	33869	+37	1	us	48.8	33902	+37.5
0,5	1	us	59.2	783	+37	1	us	56.3	816	+36.5

a) in den Tabellen 1-4 bedeuten:

Auss.: Aussehen der Banden s (scharf), ms (mittelscharf), us (unscharf), uss (sehr unscharf).

(vgl. Figur 4). Auch hier sind die Bandkanten nirgends ganz scharf, diejenigen mit $v' \ge 5$ sind sogar sehr unscharf (siehe Tabelle 2). Aus

PbBr, System $B \leftarrow X$ Absorption.

der für PbBr⁷⁹ aufgestellten Kantenformel erhält man diejenige für PbBr⁸¹ mittels des Isotopenfaktors $\varrho = \sqrt{\mu^{79}/\mu^{81}} = 0,991$.

I: okular geschätzte Intensitätswerte 0-10.

Tabelle 2. Kantenwerte von PbBr, System $B \leftarrow X$ in Absorption

						i			1		1	
v',v''	I	Auss.	λ (Å)	$v(\mathrm{cm}^{-1})$	beob. -ber.		v',v''	1	Auss.	λ (Å)	$v(\mathrm{cm}^{-1})$	beob. -ber.
1,8*	1	uss	3011.6	33195	+1		4,2	4	s	2843.4	35159	+ 1
2,9*	2	uss	3006.5	33252	+4		3,0*	9	s	2831.2	35310	+ 1
0,6	3	us	2999.6	33328	+3		3,0	9	s	30.7	35317	+ 1
1,7	3	us	2994.5	33385	+3		4,1*	2	us	2827.6	35355	- 1
0,5	4	ms	2981.7	33528	+1		5,2*	3	us	2823.7	35404	+ 2
1,6	2	us	2976.7	33585	+3		6,3	3	us	2919.4	35457	0
0,4	5	S	2964.0	33728	-1		7,4	2	us	2815.7	35504	+ 1
0,4*	5	s	63.5	33734	-2		4,0*	8	ms	2811.3	35560	- 1
0,3	6	s	2946.1	33933	0		4,0	8	ms	2810.5	35571	+ 1
2,5	1	ms	2936.6	34043	+4		5,1*	7	us	2807.8	35605	- 1
3,6	0	us	2932.4	34092	0		5,1	7	us	2807.1	35614	- 2
0,2	6	S	2928.5	34137	0		5,0*	7	us	2791.6	35811	0
1,3	2	ms	2924.0	34190	0		5,0	7	us	2790.8	822	0
2,4	4	S	2919.5	34242	0		6,1*	7	us	2787.8	35860	+ 5
0,1	5	s	2911.1	34341	-3		6,1	7	us	2787.3	35868	+ 2
1,2	7	S	2906.7	34393	-1		7,2	2	uss	2783.4	35917	+ 6
2,3	4	s	2902.2	34447	+2		6,0*	3	uss	2772.0	36064	+ 5
0,0	4	S	2893.8	34547	-2	, r	6,0	3	uss	2771.4	36073	0
1,1*	9	S	2889.8	34598	-1		7,1	5	uss	2768.3	36113	- 3
4,4	2	ms	2876.4	34755	+5		8,2	4	uss	2764.3	36165	+ 6
1,0	6	s	2872.6	34802	-1		8,11*)	_		0740.0	00000	∫ + 10
2,1	7	S	2868.4	34853	-2		8,11	2	uss	2749.6	36359	1 - 6
3,2	3	ms	2864.2	34904	0		10,3*	4	uss	2744.9	36421	-11
4,3*	0	us	2860.4	34950	0		11,4*	3	uss	2741.1	36472	- 1
5,4	2	ms	2856.1	35003	+1		12,4*	2	uss	2723.4	36708	- 7
2,0*	9	s	2851.8	35055	-2		13,4*	0	uss	2705.6	36950	- 6
2,0	9	· s	51.4	35060	-2							

Die mit * markierten Werte gehören zu PbBr⁸¹, alle übrigen zu PbBr⁷⁹.

3. PbJ.

a) Das ultraviolette System $B \leftarrow X$ ($\lambda\lambda$ 3086—2753 Å). Dieses lässt sich im Temperaturbereich 700—1000° C am besten bei einem Nulldruck $p_0(\text{PbJ}_2)$ von nur \sim 0,5 mm beobachten. Wiederum sind die

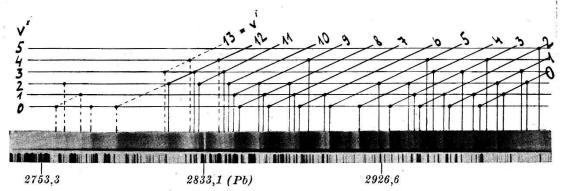
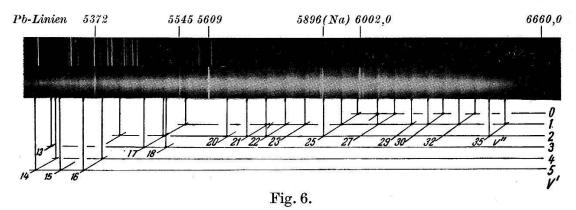


Fig. 5. PbJ, System $B \leftarrow X$ in Absorption.

Bandkanten ein wenig, im kurzwelligen Gebiet (mit $v' \ge 11$) sogar sehr unscharf (vgl. Figur 5). Die kurzwelliger als λ 2785 Å liegenden, ausnahmslos diffusen Banden gehören vermutlich zu einem anderen System, sie würden sich nur unter Zulassung sehr grosser Vibrationsstörungen in das System B-X einordnen lassen (siehe Tabelle 3).


Tabelle 3. Kantenwerte von PbJ, System $B \leftarrow X$ in Absorption

v',v''	I	Auss.	λ (Å)	$v(\mathrm{cm}^{-1})$	beob.		v', v"	Ι	Auss.	λ (Å)	$v(\mathrm{cm}^{-1})$	beob.
0,7	1	us	3085.7	32398	0		7,0	3	$_{ m ms}$	66.1	34880	- 1
1,8	1	us	82.0	32437	-2		8,1	4	ms	63.3	34914	+ 2
	0	us	78.9	32470	_		9,2	7	s	61.0	34942	- 3
0,6	2	ms	70.9	32554	-1		8,0	2	ms	2850.4	35073	+ 1
1,7	1	us	66.6	32600	+4		9,1	5	s	48.0	35102	- 2
0,5	3	$\mathbf{m}\mathbf{s}$	3056.1	32712	0		10,2	5	ms	45.3	35135	- 1
0,4	4	ms	41.3	32871	-1		11,3	6	ms	42.8	35166	- 2
0,3	4	ms	26.8	33029	0		12,4	2	ms	40.2	35199	- 1
2,5	2	us	19.9	33104	-4		11,2	3	ms	29.9	35327	0
0,2	4	ms	12.1	33190	+2		12,3	4	ms	27.4	35358	- 1
1,3	5	ms	08.8	33226	-1		(13,4?)	7	us	25.5	35382	- 8
0,1	3	ms	2997.9	33347	0		12,2	2	us	2814.8	35516	- 2
1,2	6	s	94.1	33389	+3		13,3	3	us	13.0	35539	- 9
3,4	2	us	87.5	33463	+1		12,1	0	us	2802.3	35675	- 2
$4,\!5$	2	us	84.0	33502	+2		14,3	0	us	2797.2	35739	+ 2
1,1	5	ms	79.9	33548	+3		(12,0?)	6	us	2789.0	35844	+ 7
2,2	1		77.0	33581	-2		14,2	1	uss	84.9	35897	+ 1
3,3	3	s	73.5	33621	0	1	(13,0?)	5	us	77.0	36000	-26
1,0	2	ms	65.6	33710	+5		(14,1?)	6	us	72.2	36062	+ 6
2,1	7	s	63.1	33739	-3			2	us	67.9	36118	
4,3	2	us	2956.2	33817	0			3	us	64.5	36162	
5,4	2	us	53.3	33851	-2		(14,0?)	4	ms	60.2	36219	+ 3
2,0	5	ms	48.9	33901	-2		(15,1?)	2	us	58.0	36248	+ 4
3,1	3	$\mathbf{m}\mathbf{s}$	45.6	33939	0		(16,2?)	1	uss	55.7	36278	+ 6
4,2	4	ms	42.3	33977	+1	81		1	uss	52.8	36316	
6,4	1	us	35.8	34052	+5		1	3	us	2748.5	36373	
3,0	8	S	31.7	34100	+1			1	uss	43.0	36445	
5,2	3	S	25.6	34171	0			2	uss	40.1	36484	
4,0	10	S	2915.0	34295	0			1	uss	37.8	36515	1
5,1	0	uss	11,5	34336	+6		ii.	2	uss	33.1	36577	
7,3	1	us	06.0	34402	+2			2	uss	2728.9	36634	
5,0	9	S	2898.6	34489	-1			0	uss	17.9	36782	
6,1	7	ms	95.4	34527	+2			0	uss	16.7	36798	
9,4	3	ms	87.1	34627	0			0	uss	12.5	36856	
6,0	4	S	82.4	34683	-2			0	uss	04.5	36964	
7,1	6	ms	79.5	34718	-1		i	0	uss	00.4	37020	
8,2	4	us	76.4	34756	+4			0	uss	2690.3	37159	
11,5	0	us	68.7	34849	-3			0	uss	80.0	37302	9

b) Das sichtbare System $A \longleftrightarrow X$ ($\lambda\lambda$ 6510—4417 Å). Alle Versuche, die ultravioletten Systeme $B \longleftrightarrow X$ von PbCl, PbBr und PbJ auch in Emission zu erregen, schlugen fehl, vermutlich infolge der bei

diesen Systemen auftretenden Prädissoziationserscheinungen. Dagegen konnte mit einem mit Bleijodid beschickten Entladungsrohr ein ausgedehntes System (A-X) von rotabschattierten Banden erhalten werden, dessen langwelliger Teil in Figur 6 abgebildet ist.

Dieses System ist bereits früher von Popov und Neujmin⁸) bei der Photodissoziation von PbJ₂-Dampf im Fluoreszenzlicht beobachtet, aber nicht näher untersucht worden. Inzwischen hat auch Rao⁹) die Banden in einer elektrischen Entladung photographiert.

PbJ, System $A \longrightarrow X$ in Emission.

Die von ihm mitgeteilten Messdaten weichen allerdings erheblich von unseren in Tabelle 4 angegebenen Werten ab, und seine Vibrationsanalyse kann nicht richtig sein.

Bei Nulldrucken von 1-3 mm PbJ₂ und Temperaturen bis zu 1100° C konnten wir die meisten Banden des kurzwelligen Teiles von System A-X schwach auch in Absorption beobachten. Die Intensität des Systems A-X dürfte 5-10mal kleiner sein als diejenige des Systems B-X.

Die Vibrationsanalyse von System A-X erwies sich als nicht ganz einfach, wegen der ungewohnten Intensitätsverteilung mit Intensitätsmaximum bei grossen v''-Werten, wegen des Fehlens eines messbaren Isotopeneffektes und schliesslich wegen der störenden Anwesenheit zahlreicher Bleilinien im Emissionsspektrum. Die in Tabelle 4 angegebene v'-Numerierung ist daher nicht ganz sicher, sie muss möglicherweise um +1 erhöht werden.

Der ungewöhnliche Aufbau des Systems, der durch eine starke Verschiebung nach grossen Atomkernabständen der flachen oberen Potentialkurve A bedingt ist (vgl. Figur 7d), kommt im Deslandres-Schema deutlich zum Ausdruck. Man versteht leicht, warum die langwelligen Banden (kleine v', grosse v''-Werte) in Emission besonders stark, in Absorption dagegen, selbst bei 1100° C, überhaupt nicht auftreten.

35		6	4											1	3													
34								100						F	r L		_	n,										•
33				7											ioo		-	$_{\rm glic}$										
32	9	7												1	र्		•	ω E										
31															<u> </u>	ion .	ť,	b B B										
30	7	8												`	y .	SSIL	nte	eru										
29		6													ms	됩.	pac	ieri										
28															yste	Ħ.	peo L	an c										
27	10	8						1	e e			27 - 30		3	S 1	() [d [-	7	4		γ			Ý			
26	-						10 10							7	ae] :	pti	, .	<u> </u>					X 9 9				
25	(8)	10	9		5										ima ;	e e	sor	$\frac{1}{2}$										
77							- 6							7	Sche	zert A	A P	agar †	3									
23		10											1		y-89 .	tsn.	H -	raeı Y	Ψ ≓									
22		ග	6 €										1	7	Destandres-Schema des Systems (A—A) von Fost.	Intensitätswerte (0—10) in Emission,	auch in Absorption beobachtet,	ieni Imol	() daten Atominie Veruecki.									
2		(6)	8											,	sta.	ten,	ରି	8 - 7	3							*		
202		~	8			4						2		4	ž ,	r r			_									
<u>ق</u>			9			-	8	8																				
8			9	9														1										
4		5	4	5					6				-	-														
9					4	60		7	(S)				_															
5			3	0		4	m		~															8				
14					6	4		2																				
<u>E</u>					Q	2	က	8			⊗			-							8							
27		7		⊗	_	-	6	2			~				<u>\$</u>													
=				\sim				2	2	-					$\langle 2 \rangle$	13.												
9						2	⊗	2		2	$\widehat{\Xi}$	Ê			*\(\alpha\)			1	1									
တ								_	-	-	-	⟨ 2 ⟩ ⟨ 1 ⟩			$\langle 1 \rangle \langle 2 \rangle$		0											
8						7.50		-		_		% % % % % % % % % %	*_	*_	* ⟨ 1 ⟩										0			*
_							$\widehat{\Xi}$				*	× *⟨ : ⟩	*_	* <u>(o)</u>	*2		-				(O)	0		9		- 6		*
							~					<i>></i> (•)	*_	*(-)	*_	$\widehat{\Xi}$	*~	*0			⟨1⟩ *			<u> </u>				*
9		-				N.					* <o></o>	~	*	*_	0	<u>-</u>	*_	*_		<u> </u>	~	0		~		1		
2											*(=)		*0		0	*0				<u> </u>	(0)		(0)	12				
_							p 1		-		<u> </u>			<u> </u>		0				~		*0	~	*0	*	*0		H
2														11/	11 3				_	-		18/5/2019		yes (100)				
3 4 5										Ĵ.		_		*_		0		0	0		*			*0		10.000	3	l
4 5										(E)				*(=)	0	0		0	<u>©</u>		*0			*0	95			
2 3 4 5								40			*(1)			*(1)	0	0		0	<u>(0)</u>		*0			*0	0.		3	

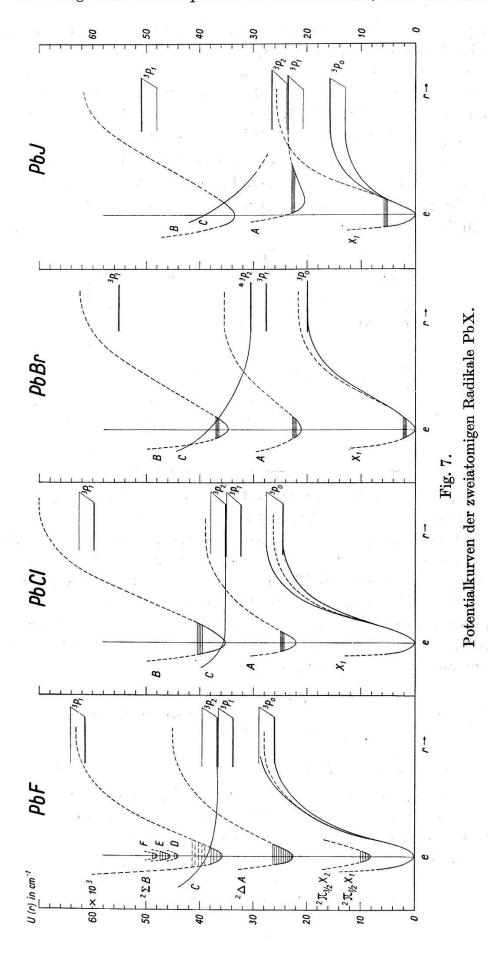
Tabelle 4. Kantenwerte von PbJ, System $A \longrightarrow X$ in Emission.

v', v"	I	Auss.	λ (Å)	$v (\mathrm{cm}^{-1})$	beob. -ber.	v', v"	I	Auss.	λ (Å)	$v \text{ (cm}^{-1})$	beob. -ber.
1,35	3	us	6509.9	15357	+1	6,12	3	s	5147.1	19423	+2
2,35	4	us	6452.3	15494	+2	12,16	1	s	5129.4	19490	0
0,32	6	ms	6388.4	15649	+1	7,12	2	s	5115.5	19543	0
1,32	7	ms	6333.4	15785	-2	5,10	2	Li?	5098.8	19607	0
3,33	7	ms	6284.8	15907	-4	7,11	2	ms	5075.8	19696	-1
0,30	7	s	6273.8	15935	-2	6,10)	1110			$\int +3$
1,30	8	S	6218.7	16076	0	10,13	2	ms	5066.0	19734	0
1,29	9	s	6162.8	16222	0	10,10	1	m	5064.4	19740	,
0,27	10	S	6105.9	16373	$-\frac{0}{2}$	8,11	2	s	5045.3	19815	0
0,26		8	0100.0	10	$\left -\frac{2}{4} \right $	7,10	2	S	5035.6	19853	+1
1,27	8	S	6052.3	16518b	-4 + 4	9,11	1		5016.9	19927	-3
	,		5995.3	16675b		9,11		ms	5008.1	19962	- 3
0,25 1,25	10		and the second second second	16806	+5	7.0	1	us		20007	-1
			5948.6		-2	7,9	1	us	4996.9		1 1000
2,25	6		5899.1	16947	+2	13,13	1	us	4985.6	20052	0
1,23	10	S	5845.7	17102	-3	9,10	2	S	4978.0	20083	-2
4,25	5	ms	5811.3	17203	-4	8,9	1	ms	4967.8	20124	-2
1,22	9	S	5795.5	17250	-4	7,8	1	us	4957.0	20168	+4
1,21	9	s	5746.5	17397	$\left\{-6\right\}$	6,7	} 1	s	4950.3	20195	$\left\{-4\right\}$
2,22	J				1+7	10,10	J				$\left\{-2\right\}$
2,21	8	S	5699.0	17542	+3	9,9	1	s	4939.3	20240	-1
2,20	8	S	5650.7	17692	+2	11,40	} 1	s	4923.3	20306	1 0
2.19	7	Li?	5603.8	17840	0	14,12	J	5			0
2,18	6	ms	5557.1	17990	-1	10,9	1	s	4912.6	20350	-3
1,17	5	S	5551.5	18008	+2	9,8	1	S	4900.8	20399	+2
5,20	4	uss	5527.9	18085	+5	11,9	} 2	s	4886.2	20460	$\int -2$
3,18	6	S	5516.0	18124	0	14,11		8			(0)
2,17	4	$\mathbf{m}\mathbf{s}$	5510.4	18142	-1	10,8	1	s	4875.5	20505	-4
3,17	5	S	5470.1	18276	+1	11,8	} 2	s	4849.3	20616a	$\int -2$
6,19	3	s	5445.4	18359	+5	14,10] -	8	4040.0	and the second of the second o	1+1
2,15	3	Li?	5419.7	18446	-1	10,7	1	us	4837,3	20667a	+2
7,19	3	us	5410.3	18478	+3	12,8	1	s	4824.7	20721a	-3
4,16	4	S	5386.4	18560	+2	11,7	1	Li?	4813.3	(20770a)	$\int -4$
3,15	2	s	5380.3	18581	+1	14,9	} 1	TIT.	4015.5	(207704)	1-1
5,16	3	us	5350.1	18686	+1	13,8	1	us	4801.0	20823a	-4
11,20	2	us	5323.6	18779	0	12,7	1	s	4788.4	20878a	-2
5,15	4	ms	5306.7	18839	+2	17,10	1	s	4782.9	20902	+5
4,14	3	ms	5299.3	18865	+2	11,6	1		4770 E	20930a	[-1
8,17	3	ms	5291.2	18894	-2	14,8	1	s	4776.5	20950ª	1+3
7,16	2	us	5280.3	18933	+3	16,9	0	us	4768.1	20967	+5
6,15	3	us	5272.0	18963	+2	10,5	1				1+2
5,14	4	s	5263.1	18995	+5	13,7	0	us	4764.7	20982a	1
4,13	2	ms	5255.9	19021	+4	12,6	1	S	4752.2	21037a	` 0
8,16	1	0341000000			1-2	14,7	2	s	4741.6	21084ª	+1
3,12	2	S	5249.0	19046	+5	10,4	l Y				1+2
5,13	2	ms	5221.3	19147	+3	13,6	1	S	4729.0	21140a	1 0
4,12	1	ms	5214.8	19171	0	12,5	0	ms	4716.6	21196a	+1
7,14	2	ms	5196.9	19237	+2	14,6	1	us	4706.6	21241a	+1
6,13	3	S	5188.0	19270	+2	16,7	1	us	4699.5	21273	-1
5,12	1	ms	5179.6	19301	+3	13,5	1	us	4692.9	21303a	+5
12,17	1	S	5170.5	19335	-3	15,6	1	45			$\int +2$
7,13	3	S	5156.1	19389	0	9,2	1	us	4684.9	21339	$\left\{ -4\right\}$
,,,,,	J		0100.1	10000	1	0,2	1		[1	, ,

Tabelle 4 (Fortsetzung). Kantenwerte von PbJ, System $A \longrightarrow X$ in Emission.

v', v"	I	Auss.	λ (Å)	$v (cm^{-1})$	beob. -ber.	v',v''	I	Auss.	λ (Å)	$v(\mathrm{cm}^{-1})$	beob. -ber.
12,4 14,5 16,6 15,5 17,6 14,4 16,5 13,3 20,7 15,4 17,5 10,0 13,2 20,6	0 0 2 1 0 0 1 1 0 0 0 1 1 1	us ms Li? s ms ms s ms ms	4682.3 4671.8 4664.2 4650.7 4646.0 4637.1 4629.6 4624.5 4617.9 4610.2 4590.5	21351 ^a 21399 (21434 ^a) 21496 21518 ^a 21559 21594 ^a 21618 21632 21649 ^a 21685 ^a 21778 ^a	$ \begin{array}{c} -2 \\ +1 \\ +3 \\ +1 \\ -4 \\ +3 \\ +5 \\ +4 \\ -2 \\ -4 \\ +5 \\ +1 \end{array} $	15,3 19,5 23,7 21,6 24,7 27,8 15,2 19,4 23,6 14,1 13,0 20,4 27,7(?) 17,2 21,4 18,2 22,4 27,6(?) 21,3 20,2 23,3 24,3 25,3 23,2	0 0 0	us u	4582.9 4576.0 4572.7 4561.8 4555.0 4550.8 4542.9 4539.4 4537.8 4524.8 4522.0 4512.0 4508.3 4506.7 4494.4 4490.7 4475.6 4459.5 4446.8 4433.7 4421.6 4416.7	21814 21847a 21863 21915 21948a 21968 22006 22023a 22031 22094 22157 22175 22183a 22243 22243 22243 22337a 22418a 22482a 22548a 22610a 22635a	$ \begin{array}{r} +3 \\ -6 \\ -1 \\ +7 \\ -3 \\ -6 \\ -2 \\ +1 \\ -2 \\ +1 \\ -2 \\ +1 \\ -2 \\ +3 \\ -5 \\ +3 \\ -5 \\ +7 \\ +8 \\ +3 \\ -1 \\ -6 \\ -3 \\ \end{array} $

a = Auch in Absorption beobachtet.


b = Durch Atomlinie verdeckt.

Li = Bedeutet Linie.

IV. Diskussion der Ergebnisse.

Ein Vergleich der vier neuen Bandenspektren mit den früher schon bekannten der zweiatomigen Bleihalogenide führt zu dem in Figur 7 dargestellten Termschema, das wir im folgenden näher begründen wollen.

PbF. Besonders aufschlussreich sind die von Rochester³) näher untersuchten Prädissoziationserscheinungen im System B—X. In Emission treten nur Banden mit den Vibrationsquantenzahlen v'=0 und 1 auf, sie sind völlig scharf (Rotationsstruktur). In Absorption erscheinen noch scharfkantige Banden bis v'=3, Banden mit v'>3 fehlen. Kurzwelligerseits anschliessende unscharfe Absorptionsbanden wurden von Rochester in ein neues System $C \leftarrow X$ eingeordnet, in welchem aber die Vibrationsterme G(v'=0)

und G(v''=0) nicht vorkommen. In Anbetracht dieser merkwürdigen Lücken halten wir es für wahrscheinlich, dass die Banden des Systems C—X einfach die kurzwellige Fortsetzung von System B-X bilden, allerdings mit erheblichen Vibrationsstörungen in den Termen $G(v' \ge 4)$. Die v''-Numerierung bleibt dieselbe, v'(B) aber wird = v'(C) + 4, Banden mit v'(B) = 4 fehlen.

Mit dieser Deutung ergeben sich folgende Differenzen zwischen den von Rochester beobachteten (von ihm in System C-X eingeordneten) Frequenzwerten ν_{α} und den von uns aus Formel (B-X)berechneten Werten ν_R

$$v_C - v_B \text{ (in cm}^{-1)}$$
:

 v''

1 2 3 4 5

 $v'(B)$

1 2 3 4 5

 $v'(B)$

4 — — —

5 +22 +20 +16

6 +33 +33 +33

+33

Unabhängig von der Richtigkeit unserer Deutung muss jedenfalls eine starke Störung im Term B bei $v' \geq 4$ vorhanden sein*). Deshalb nehmen wir an, dass eine Abstossungskurve C die stabile Potentialkurve B bei v'=4 schneidet und zwischen v'=1 und v'=2 in den Atomterm T_a ausläuft, wie in Figur 7a dargestellt. Wir sind der Meinung, dass die Kurve C die Termhöhe $T_{0,0}$ (B) + G'(1) kaum unterschreiten dürfte, wegen der Schärfe der Emissionsbanden mit v'=1. Unter dieser Annahme ergibt sich für die Dissoziationsenergie des Grundzustandes:

$$\left. D_{0} < T_{0,0} \left(B \right) + G' \left(2 \right) - T_{a} \\ > T_{0,0} \left(B \right) + G' \left(1 \right) - T_{a} \\ \right\} = 36\,600 \pm 300 - T_{a}$$

mit $T_{0,0}(B) = 35695$ und G'(1) = 605 cm⁻¹, G'(2) = 1205.

Die in Frage kommenden Atomterme T_a sind in bezug auf Pb die drei tiefsten: ${}^{3}P_{0}(0)$, ${}^{3}P_{1}(7817)$ und ${}^{3}P_{2}(10648 \text{ cm}^{-1})$, in bezug auf F nur der Grundterm ${}^{2}P_{3/2}$. Damit erhalten wir für $D_{\mathbf{0}}$ die drei Werte: 36600, 28780 und 25950 (\pm 300) cm⁻¹.

^{*)} Nach der Deutung von Rochester würden ja für $v' \geq 4$ überhaupt keine Banden von System B—X mehr auftreten.

Molekülkonstanten von PbCl, PbBr und PbJ^a)

Molekül	Isotope	${ m Term}^{ m b})$	Te	νο,ο	ω_e	$x_e\omega_e$	$Dissoz.$ -Energie $D_0 ({ m Volt})$ lin. wahr extrapol. scheinl	Energie Volt) wahr- scheinl. ^e)	Referenz
	(Cl35)	$X(^2H_{\frac{1}{2}})$	0	0	303.6°) 296.5	0.875°	3.24	≤ 3.05	ROCHESTER ²), diese Arbeit
PbCl	$\left\{\begin{array}{c}\text{Cl}^{35}\\\text{Cl}^{37}\end{array}\right\}$	$A(^2\Delta)$	21865.0	21827.6 21828.5	228.8 223.5	$0.795 \\ 0.758$	2.03		Rochester ²)
	$\begin{pmatrix} \text{Cl}^{35} \\ \text{Cl}^{37} \end{pmatrix}$	$B(^2\Sigma)$	35198.8	35238.0 35237.1	382.1 373.2	1.05	4.29	Marie Marie Paris	diese Arbeit
	$\left\{\begin{array}{c} Br^{79} \\ Br^{81} \end{array}\right\}$	$X(^2H_{\frac{1}{2}})$	0	0	207.5 205.6	0.50	2.66	~ 2.5	Morgan ¹), diese Arbeit
PbBr	$\left\{egin{array}{c} \mathrm{Br}^{79} & \ \mathrm{Br}^{81} \end{array} ight\}$	$A(^2\Delta)$	20884.3	20856.8 20857.1	152.5 151.1	0.40^{d} 0.39^{d}	1.81		$Morgan^1)$
9	$\left\{egin{array}{c} { m Br}^{79} \ { m Br}^{81} \end{array} ight\}$	$B(^2\Sigma)$	34523.7	34549.0 34548.8	258.2 255.9	0.60	3.42	and the second s	diese Arbeit
		$X(^2\Pi_{\frac{1}{2}})$	0	0	160.5	0.25	3.18	1.98	Jima Aultoit
PbJ		$A(^2\Delta)$ $B(^2\Sigma)$	20529.0 33488.0	20519.5 33507.1	$142.0 \\ 198.7$	$\begin{array}{c} 1.50 \\ 0.35 \end{array}$	0.41 3.48		diese Arbeit

a) Über die Molekülkonstanten von PbF siehe Rochestera?).

Die Termbezeichnung erfolgt in Analogie zu derjenigen von PbF nach Rochester³)

c) Morgan¹) gibt folgende, wenig verschiedene Werte an: $\omega_e'' = 304.2$, $x_e \, \omega_e'' = 0.89 \, \mathrm{cm}^{-1}$.

d) $y_e \, \omega_e = -0.028$.
e) Wahrscheinlichste Werte auf Grund der hier gegebenen Diskussion. Die wahrscheinlichsten Werte für PbF sind: 3,22 (3,57) Volt.

Der erste Wert ist unwahrscheinlich gross, die beiden anderen dagegen sind a priori gleicherweise möglich. Da die aus den Schwingungsquanten des Grundzustandes linear extrapolierte (im allgemeinen noch zu grosse) Dissoziationsenergie nur 27650 cm⁻¹ beträgt, so möchten wir den dritten abgerundeten Wert:

$$D_{\rm 0}({
m PbF}) = 26000 \, (\pm \, 400) \, {
m cm^{-1}}$$

als den wahrscheinlichsten, daneben aber auch den höheren Wert $D_0 = 28800 \ (\pm \ 400) \ \mathrm{cm^{-1}}$ als durchaus möglich ansehen. Dementsprechend ist in Figur 7a die dem tieferen Dissoziationswert entsprechende Lage der Atomterme (Kurve C führt zu $\mathrm{Pb}(^3P_2) + F(^2P_{3/2})$) durch dicke Linien, die andere mögliche Lage der Atomterme (C führt zu $\mathrm{Pb}(^3P_1) + F(^2P_{3/2})$) durch dünne Linien dargestellt worden.

PbCl, PbBr und PbJ.

Die Systeme $B \leftarrow X$ dieser drei Moleküle lassen sich, wie bereits erwähnt, in Emission überhaupt nicht erregen, sie bestehen durchgehend aus mehr oder weniger unscharfen Banden. Deshalb muss hier die für die Prädissoziation verantwortliche Abstossungskurve C sicher unterhalb der Termhöhe $T_{0,0}(B)$ auslaufen. Unter Berücksichtigung ferner der früher erwähnten Stellen grosser Unschärfe und der Vibrationsstörungen im Term B dürften die Schnittpunkte der Kurven C mit den Kurven B etwa so, wie in den Figuren 7b, c, d dargestellt, liegen.

Aus der Ungleichung $D_0 > T_{0,0}(B) - T_a(C)$ ergibt sich mit $T_a = 10648$ bzw. = 7817 cm⁻¹ lediglich je ein *oberer* Grenzwert für die Dissoziationsenergie des Radikals PbX im Grundzustand (siehe Tabelle 6).

Tabelle 6.

Molekül	$T_a = 10648 \mathrm{cm}$ (Pb, 2P_2)	1-1	$T_a = 7817 \text{ cm} \ (ext{Pb, } {}^2P_1)$	-1	G'' ($v_{ m r}$ lin. ex	
	cm ⁻¹	Volt	cm ⁻¹	Volt	cm ⁻¹	Volt
PbF^{1})	$=25950(\pm300)$	3,22	$=28780(\pm300)$	3,57	27650	3,43
\mathbf{PbCl}	< 24590	3,05	< 27420	3,40	26180	3,24
\mathbf{PbBr}	< 23900	2,96	< 26730	3,31	21450	2,66
PbJ	< 22860	2,83	< 25690	3,18	25680	3,18

¹) Die vollständigkeitshalber mitangeführten Werte für PbF folgen aus der weiter oben besprochenen Gleichung $D_0 = T_{0,0}(B) + G(1) \pm 300 - T_a$.

Der Vergleich dieser oberen Grenzwerte mit den aus den Schwingungsquanten G''(v) des Grundzustandes linear extrapolierten Dissoziationswerten (vgl. Tabelle 6) führt, wie bei PbF, zu einer Bevorzugung der kleineren $(T_{0,0}-T_a)$ -Werte (mit $T_a=10648~{\rm cm^1}$), welche jedoch bei PbCl, PbBr und PbJ noch merklich grösser als die richtigen D_0 -Werte sein können.

Nun kann andererseits aus den Fluoreszenzversuchen von Popov und Neujmin⁸)¹⁰) ein, allerdings ziemlich unsicherer, unterer Grenzwert für die Grösse D_0 gewonnen werden. Bei Bestrahlung der auf rund 500° C erhitzten Dämpfe von PbX₂ mit ultraviolettem Licht der Frequenz v_i wird als Fluoreszenzstrahlung das Bandenspektrum $A \rightarrow X$ von PbX mit mehr oder weniger gut definierter kurzwelliger Grenze v_{fi} emittiert. Bedeutet D_{I} die Energie (in cm⁻¹), die zur Abtrennung eines Halogenatoms X aus dem Molekül PbX₂ benötigt wird, und E_{th} die thermische Energie, die bei 500° C mit rund 1000 cm⁻¹ eingesetzt werden kann, so gilt

$$D_{I} \leq (v_{i} - v_{fl}) + E_{th}.$$

Das Gleichheitszeichen gilt offenbar nur dann, wenn die Zerfallsprodukte keine kinetische Energie besitzen (vgl. z. B. Photodissoziation von $\operatorname{HgCl_2^{11}}$). Bei Kenntnis der atomaren Bildungswärme*) $Q_a = D_I + D_0$ ergibt sich daher ein unterer Grenzwert für die Dissoziationsenergie D_0 des Radikals PbX aus der Gleichung:

$$D_0\!\ge\!Q_a\!-\!(\nu_i\!-\!\nu_{\mathit{fl}})-E_{\mathit{th}}.$$

In Tabelle 7 sind die für die Auswertung dieser Gleichung benötigten Energiewerte (in cm⁻¹) zusammengestellt. Die so abgeschätzten unteren Grenzwerte sind mit einer ziemlich grossen Unsicherheit behaftet. Sie können möglicherweise, selbst wenn keine Strahlungsenergie in Form von kinetischer Energie verloren geht, 2000—3000 cm⁻¹ zu gross, aber nicht sehr viel zu klein sein.

Durch Vergleich der oberen Grenzwerte (aus Tabelle 6) mit den unteren Grenzwerten (aus Tabelle 7) erhält man für PbCl, mit $T_a = 10648$ cm⁻¹, den eng eingegabelten Wert.

$$D_{\rm 0} \; (PbCl) = 24600 \ {\rm cm^{-1}}$$

Mit kleinerer Wahrscheinlichkeit, nämlich mit $T_a = 7817$, ist jeder D_0 -Wert zwischen 27400 und ~ 25000 cm⁻¹ möglich.

^{*)} $Q_a=$ Bildungswärme des gasförmigen Moleküls Pb $\mathbf{X_2}$ aus den gasförmigen Atomen bei 0^{0} K.

Für PbBr, mit $T_a = 10648$, erhält man die grobe Eingabelung $23\,900 > D_0 > 17850$, so dass wir als wahrscheinlichsten runden Wert nur

$$D_0(PbBr) = 20000 \ (\pm 2000) \ \mathrm{cm^{-1}}$$

angeben können. Der mit $T_a = 7818$ berechnete D_0 -Wert ist gegenüber dem Fluoreszenzwert so viel zu gross, dass er nicht in Frage kommt.

_					_
T	0	h	~ 1	10	7.
~	n.	.,	-		

Un	tere Gre	nzwerte D_{0} (in	cm ⁻¹) a	us Fluor	eszenzve	rsuchen vo	on Popov
Mole- kül	$Q_a^{\ a}) \ (0^0 K) \ { m cm}^{-1}$	erreg. Linie v_i (nach 8) u. 10)) cm $^{-1}$	(A-X) $kurzw.$ $Ende$ $Å$	Deutg. c) v', v"	$\begin{vmatrix} v_{fl} = \\ T_{0,0} \\ +G'(v') \\ \text{cm}^{-1} \end{vmatrix}$	$\begin{array}{c} D_{\mathbf{I}} \leqq \\ (\nu_i - \nu_{fl}) \\ + E_{th}{}^{\mathrm{d}}) \\ \mathrm{cm}^{-1} \end{array}$	$\begin{vmatrix} D_0 \geq \\ Q_a - (v_i - v_{fl}) \\ -E_{th} \\ \text{cm}^{-1} \end{vmatrix}$
$ PbCl_2 $ $ PbBr_2 $ $ PbJ_2 $	50700 44000 34500	49340 (Zn) 47600 (Zn) ^b) 42980 (Fe)	4100 4433 4450	13,1 11,0 23,2	24660 22550 22900	25680 26150 21080	25000 17850 13400

- a) Berechnet aus den normalen Bildungswärmen (Q_f) nach Bichowsky und Rossini¹²) für PbCl₂ und PbBr₂ bzw. nach Roth und Bertrams¹³) für PbJ₂, aus den Sublimationswärmen nach Kelley¹⁴) und aus den bekannten Dissoziationswärmen der Halogene¹⁵).
- b) Stärkste Zn-Linie im kurzwelligen U.-V. (keine näheren Angaben bei 10)).
- c) Bande (v', v'') die dem kurzwelligen Ende des in Fluoreszenz erregten Systems $A \longrightarrow X$ am nächsten kommt.
- d) Thermische Energie $E_{th} \sim 1000 \text{ cm}^{-1}$ bei 500° C.

Dasselbe gilt in vermehrtem Masse für PbJ, trotz der zufälligen Übereinstimmung des mit $T_a = 7817$ berechneten Wertes mit dem aus $G''(v)_{\text{max}}$) extrapolierten Wert*). Bei alleiniger Berücksichtigung von $T_a = 10648$ erhalten wir zunächst nur die grobe Eingabelung $22900 > D_0 > 13500$ cm⁻¹. Nun kann man aber aus den stark konvergierenden Schwingungsquanten des Terms A, welche bis G'(27) = 2700 cm⁻¹ beobachtet sind (vgl. Tabelle 4), einen ziemlich genauen (vermutlich oberen) Grenzwert $D'_0(A) = 3290$ cm⁻¹ extrapolieren. Aus der Gleichung

 $D_0 = T_{0,0}(A) + D'_0(A) - T_a(A)$ erhält man, je nach dem Bleiterm 3P_2 , 3P_1 oder 3P_0 , der $T_a(A)$ zugeordnet wird, die drei Werte: 13160, 15990 oder 23810 cm⁻¹. Unter Berücksichtigung der oben

^{*)} Dass dieser letztere Wert tatsächlich viel zu gross sein muss, ergibt sich aus einem Vergleich mit dem entsprechenden Wert für PbBr, der mehr als 4000 cm⁻¹ kleiner ist.

angegebenen groben Eingabelung darf als wahrscheinlichster, ziemlich genauer (oberer) Grenzwert

$$D_{\bf 0}(PbJ)=15990~{\rm cm^{-1}}$$

angesehen werden. Doch liegt auch der kleinere Wert 13160 cm⁻¹ im Bereich der Möglichkeit.

Die Kenntnis möglichst genauer Dissoziationswerte für die Radikale PbX, zusammen mit der Kenntnis der Bildungswärmen der Moleküle Pb X_2 , bildet die Grundvoraussetzung für eine thermodynamische Berechnung der Dissoziationsgleichgewichte von Pb X_2 . Mit den hier abgeleiteten Daten ergibt sich, dass oberhalb etwa 1000° C Pb X_2 -Dampf (X = Cl, Br, J) überwiegend nach der Gleichung

$$PbX_2 \rightleftharpoons PbX + \frac{1}{2}X_2$$

zerfällt.

Vergleichshalber sei auf die Moleküle HgX₂ hingewiesen, die praktisch ausschliesslich nach der Gleichung

$$HgX_2 \rightleftharpoons Hg + X_2 \text{ zerfallen}^{16}$$
).

Die vorliegende Untersuchung ist in den Jahren 1947-49 im Physikalisch-Chemischen Institut der Universität Zürich ausgeführt worden. Dem verstorbenen früheren Vorsteher Professor H. von Halban verdanken wir die Bereitstellung der Institutsmittel sowie sein freundliches Interesse. Die Stiftung "Jubiläumsspende der Universität Zürich" hat uns, wie früher schon, in grosszügiger Weise einen finanziellen Beitrag gewährt, aus welchem ein Hochfrequenzsender zur Erregung lichtschwacher Spektren gebaut werden konnte. Dafür sind wir dieser Stiftung, für die Konstruktion des bewährten Röhrensenders Herrn Professor F. Tank (ETH.) sowie seinem Assistenten Herrn G. Weibel zu bestem Dank verpflichtet. Dank schulden wir auch dem Aluminium Fonds Neuhausen, aus dessen Mitteln die benötigten elektrischen Öfen und Quarzapparaturen angeschafft werden konnten. Endlich möchten wir der wertvollen Hilfe gedenken, die uns aus kritischen Diskussionen mit Professor E. Miescher (Basel) erwachsen ist.

Literatur.

¹⁾ F. Morgan, Phys. Rev. 49, 47 (1936).

²) G. D. Rochester, Proc. Roy. Soc. London 153, 407 (1936).

³⁾ G. D. ROCHESTER, Proc. Roy. Soc. London 167, 567 (1938).

- 4) Eine vorläufige Notiz findet sich in Helv. Phys. Acta 22, 591 (1949).
- ⁵) K. Butkow, Phys. Z. Sow. 4, 906 (1933).
- 6) P. Sulzer, Helv. Phys. Acta 23, 531 (1950).
- 7) A. HERCZOG und K. WIELAND, Helv. Phys. Acta 21, 6 (1948) und 22, 552 (1949).
- 8) Popov und Neujmin, Phys. Z. Sow. 2, 394 (1932).
- 9) P. T. RAO, Ind. I. Phys. 23, 321 (1949).
- ¹⁰) Popov, Acta Physicochem. URSS **4**, 159 (1936).
- 11) K. WIELAND, Helv. Chim. Acta 24, 1285 (1941).
- ¹²) F. R. Bichowsky und F. D. Rossini, Thermochemistry of Chemical Substances, Reinhold Publ. Corp., New York (1936).
- ¹³) A. Roth und Bertrams, Z. phys. Chem. 179, 445 (1937).
- ¹⁴) K. K. Kelley, U.S. Bureau of Mines (Washington), Bull. Nr. 383 (1935).
- ¹⁵) G. Herzberg, Spectra of Diatomic Molecules, Von Nostrand Comp., New York (1950).
- ¹⁶) K. WIELAND und A. HERCZOG, Helv. Chim. Acta 32, 889 (1949).