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Allgemeine Theorie der Dimpfungsphinomene
fiir nicht-stationire Prozesse..

I. Grundlagen und Zusammenhang mit dem
S-Matrix-Formalismus

von E. Arnous*) und S, Zienau**).
Seminar fiir theoretische Physik, Universitat Zirich.

(20. TI1. 1951.)

Abstract: The damping theory of discrete states is adapted to the positron
. theory in an operator form. A solution of HEITLER’s integral equation can be
obtained in closed form and an operator is defined which combines the damping
constants and the elements of the collision operator, when written in energy re-
presentation. The formalism is the result of an ezact time integration of the
Schrédinger equation. The connection with the S-Matrix formalism is discussed.

Einleitung.

Der 1 letzter Zeit im Verstéandnis der Quantenelektrodynamik
erzielte Fortschritt ist bisher vorwiegend der Theorie der Wechsel-
wirkung zwischen freien Teilchen zugute gekommen. Man konnte
zeigen, dass die kovariante Formulierung der Pauli-Heisenbergschen
Theorie die von Tomoxaca?), FEynman?), ScuwINGER®) und an-
deren geleistet wurde, zur Grundlage einer allgemeinen Behandlung
von Stossprozessen zwischen Elektronen, Positronen und Photonen
gemacht werden kann%). In der Theorie derartiger Prozesse, bei
denen bekanntlich auch Erzeugungen und Vernichtungen von Teil-
chen eine Rolle spielen, kann man entweder die schon vor einiger
Zeit vorgeschlagene stationdare Methode von HeiTLER und PENG?)
benutzen, oder aber einen Formalismus der im wesentlichen auf
Heisenberg zuriickgeht und besonders neuerdings befiirwortet wird.

In diesem betrachtet man einen Operator, die sogenannte S-
Matrix, deren Elemente durch konsequente Anwendung der Sto-
rungsrechnung bis zu jeder vorgeschriebenen Ordnung in der Kopp-
lungs(Feinstruktur)-Konstante berechenbar sind. Fiir derartige
Rechnungen sind Regeln angegeben worden ,und es wird angenom-

*) Chargé de Recherches au Centre National de la Recherche Scientifique, Paris.
**¥) Travelling Fellow, University of London.
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men, dass alle in héheren Naherungen angetroffenen Divergenzen
durch die Idee der Massen- und Ladungsrenormalisierung elimi-
niert werden konnen. Die physikalischen Aussagen der Theorie,
z. B. Streuquerschnitte, sind iibrigens auch durch die gewohnliche
Storungsrechnung im Impulsraum berechenbar, wenn die Renor-
malisationstechnik hinzugezogen wird®). Es moge bemerkt werden,
dass der physikalische Inhalt des Heitlerschen Formalismus iden-
tisch mit dem der S-Matrix ist (bis auf geringfiigige Unterschiede
auf die wir noch zurtickkommen werden).

Anders steht es allerdings mit Problemen, bei welchen gebundene
Zustéande eine Rolle spielen. Es ist zwar gezeigt worden, dass die
Linienverschiebung, die von der Wechselwirkung mit der Strah-
lung herriihrt, in eindeutiger Weise in Ubereinstimmung mit dem
Experiment (Lamb-Retherford shift) berechenbar ist?). Aber bis
jetzt scheint kein Versuch gemacht worden zu sein, Fragen die mit
der Linienbreite verbunden sind (z. B. die hoheren strahlungstheo-
retischen Korrektionen zur Linienbreite) generell im Rahmen der
Lochertheorie und der Renormalisationsideen zu behandeln. Diese
Klasse von Problemen scheint grundséitzlich ausserhalb des Bereichs
der S-Matrix-Technik zu liegen*). Eine exakte Zeitintegration der
Schrodingergleichung  fiir diskrete Zusténde wurde schon von
HeirLer und Ma?®) publiziert. Der vorliegende Teil dieser Arbeit
enthilt eine Adaptierung dieser Theorie auf den Positron-For-
malismus. Da die Arbeit von HuirLEr-Ma wenig bekannt zu
sein scheint, werden wir alle Entwicklungen ab initio darzustellen
versuchen und benutzen von vorneherein einen auf die Positronen-
theorie zugeschnittenen Operatorenformalismus. Die Zusammen-
hinge mit der Dysonschen Methode werden wir ausfihrlich er-
ortern. Neben anderem enthilt die Arbeit auch eine neue, wie uns
scheint, besonders einfach motivierte Ableitung der Heitlerschen
Integralgleichung und deren Losung in geschlossener (operationeller)
Form. Ein Operator ©, genannt Dampfungsoperator, wird einge-
fihrt, mit der Eigenschaft, dass seine Diagonalelemente die Damp-
tungskonstanten geben, wihrend die Nichtdiagonalelemente den
Stossoperator darstellen. Dies wird moglich durch die von HerrLEr
und Ma eingefiihrte Darstellung im Energieraum. Fiir die Elemente
von D werden nach Potenzen der Feinstrukturkonstante fortschrei-
tende Entwicklungen angegeben. Im zweiten Teil der Arbeit wird

*) Die von KRAMERS angeschnittene Frage, inwieweit die Pauli-Heisenberg-
sche Quantenelektrodynamik prinzipiell in der Lage ist, der Wechselwirkung zwi-
schen Strahlung und Materie in den fiir Linienbreitefragen wichtigen, lingeren
Zeitintervallen Rechnung zu tragen, wird hier nicht beriicksichtigt.
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gezeigt werden, wie die divergenten Anteile von diesen Ausdriicken
auch hier durch Renormalisationen eliminiert werden kénnen. Die
kalkulatorische Handhabung der in dieser Arbeit dargestellten, vom
Ublichen etwas abweichenden Technik wird dort ebenfalls erortert
werden, und wir hoffen auch die strahlungstheoretischen Korrek-
turen zur Linienbreite explizit auswerten zu koénnen.

§ 1. Allgemeines.

Im folgenden werden gewisse singulére Operator-Funktionen ge-
braucht, deren Eigenschaften hier kurz zusammengestellt seien.

H, = ungestorter Hamilton-Operator.
— H M2t  H Rad { S,
H,Mat enthélt hier die Wechselwirkung mit dem &usseren Feld (z. B.
Kernpotential).
HS  Selbstenergieoperator.
H =H,— H"
H, = Hamiltonoperator der WechselWirkung Strahlung-Materie.

Die Form von HS und H; wird im zweiten Teil diskutiert werden;
alle Rechnungen sind davon unabhéngig, wenn nicht ausdriicklich
das Gegenteil bemerkt ist.

Diese Operatoren sind z. B. im Besetzungszahlraum des Elek-
tronen-Positronen- und Photonenfeldes erkldart zu denken.

@o = Schrodingerfunktional fiir den Ausgangszustand (Eigenfunk-
tion von H) zur Zeit t = (. Definiert wird nun

+ oo + o0
6(E—HO)E2%fe“(E“Ho)dtz—i~ [cost(E—Hop)-dt (1)
+ 00
§(E—HO)—=——75/ et (E-Ho) gt — —2mi o, (E—H,). 2)

0

Daraus folgt (e(t) = £+ 1,15 0)

_E_:fiﬁo — §(E—H,) +ind(E—H,)
oo + oo
:fsint(E—Ho)-dtz%/e f) et (F=Ho) 41 (3)

0 — 00
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Das Gleichheitszeichen ist im Sinne der Aquivalenz unter einem
Integralzeichen zu verstehen.

Diese Operatoren sind diagonal 1im Besetzungszahlraum oder,
was damit d&quivalent 1st, im System der Eigenfunktionen von H,,.
Wir brauchen ihre Eigenschaften

¢§(E—H,)-(E—H,) = 1. (Einheitsoperator) (4)
o (B~ Hy)- (B~ Hy) = 0. )
-1 —it(E— 1,t >0
2 ey (52 o
R 5 (E—H
s e sp-ny- (@

In (1)—(7) 1st K eine positive oder negative ¢-Zahl.

§ 2. Nicht-stationiire Losungen der Wellengleichung.

Fir nicht-stationdre Emissions- oder Streuprobleme geht man
bekanntlich von der zeitabhéngigen Schrodingergleichung mit
Randbedingung aus:

?;()(i(t) —(H,+H)R(), t>0 | ®)
R(0)=1. ]

wobei die Wellenfunktion zur Zeit ¢

Q(t) = R(t) g, (8)

wird. In der Dampfungstheorie sucht man eine nicht-stationdre
Losung und schreibt sie nach dem Vorgang von HerrLer und Ma
m Form einer Superposition von stationidren Ldsungen

R(t).ﬂ’;/ e~ ER(E)A(E)AE, 1>0. (9)
A (E) stellt die Dichte der stationdren Zustéinde im E-Raum dar,
und es geniigt A(l) diagonal*) anzunehmen.

*) Diagonal, d. h. in bezug auf den Besetzungszahlraum der Elektronen-Posi-
tronen und Photonen. Im folgenden soll der diagonale Teil eines Operators durch
einen Index d, der Teil ausserhalb der Diagonale durch n.d. gekennzeichnet
werden.
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Durch Einsetzen in (8) folgt
de(EAHO——H)RI(E)};(E)e‘“EH0, £>0. (10)

Iir ein festes E wére das Problem hiermit auf den iiblichen statio-
niaren Fall zurtickgefiihrt. Dieser wird gelost durch einen der Aus-
strahlbedingung gentigenden Ansatz, den man nach Dirac (siehe
z. B. Quantum Mechanics, 3rd. edtn., 1947, p.198) in unserer

Schreibweise
REY=1+&E-H,)- Uk

schreiben kann, wo U(E) ein Operator ohne Diagonalelemente ist.
Mit (4) erhélt man dann

[dE(E—H,—H+U—HEU)A(E)e"F=0, >0, (10)
wo ¢ fur §(E— H,), U fiir U(E) geschriebenist, eine Bezeichnung, die
weiter beibehalten wird. Zur Erfiilllung dieser Bedingung setzen wir

(K — H,~-H+U-H¢ U) A (E) = 1 (Einheitsoperator) (10”)

da sich die linke Seite von (10') dann auf 2 #d(f)-1 reduziert, was
fiir ¢ > 0 verschwindet. Es wird sich zeigen, dass durch (10") ge-
rade die Anfangsbedingung erfiillt wird wodurch die Losung ein-
deutig wird. Indem man den nicht-diagonalen Teil von (10”) ab-
sondert und Null setzt, folgt

U (B) = (H+H-£(E—Ho) U(E)), . (11)

Dies ist die bekannte Heitlersche Integralgleichung in Opera-
torenform. Um A(K) zu bestimmen, definiert man den diagonalen
Operator

I'EY=2+(H+HEU), : (12)

und aus dem diagonalen Teil von (10”) hat man
i -1
1(E)=(B-H,+ 5 I'(B)) . (18)
Das Schrodingerfunktional wird |

Q)= 557 [ABE e (1+£(E~ H)U(E)) (E—H, +%F(E))—ip°’
& - (14)
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oder wenn wir nach Eigenfunktionen von H, entwickeln
Q) =20, () e g,

bo (1) = Zl"z_/dE e (E*E()+ % Fom (E))hl, t>0

b,(f) =5y [AEHEP E(E—E )

A=+0

— 0

% : l =1 !
X DAf() (E) (E — Byt ) I'n/o (E)) ; (14%)

Die Normierung der Amplituden |by(8)|2 + 2 [by (8)|2 = 1 fiir jede
Zeit t wird im folgenden verifiziert werden. 4+

In der sog. Wechselwirkungsdarstellung hat man allgemein fiir
das Funktional

p(t)— o Q1) =Sty g, >0,

8(f) = 5= / dE &= FF0) (14-&(B—H,) U(E))( B~ Ho+ T(E)) ' (15)

Die Reihenfolge der Operatoren ist iibrigens hier wie oben wesent-
lich, denn H, kommutiert nicht mit U(E).

S(oo) 15t die S-Matrix und enthilt, wie wir sehen werden, auch
alle Dampfungseftekte. Es bleibt noch zu beweisen, dass dieser
Operator die Anfangsbedingung S(+ 0) = 1 erfallt. (Die Unitaritat
von S folgt dann aus der Wellengleichung in Wechselwirkungsdar-
stellung unter Berticksichtigung der Ilermitizitit von H).

Zum Bewels von lim S(t) = 1 wollen wir S(f) nun auf die negative

t—-+0

t-Achse fortsetzen. Man sieht sofort aus (10), (10"), dass der Ansatz
(10") so beschaffen ist, dass S(t) die Gleichung

1250 B +i6()1

fir alle, einschliesslich negative, t 1ost. S(t) ist also die Green’sche
Funktion zur Schrédinger-Gleichung mit Sprung 1 an der Stelle
t = 0. Weiter kann S(t) durch die Umformung

1+&(E—Hy) U (E) = g(E—HO){(E—HO+ 5 DB+ UE) —5 I (E))}

auf die Form

S =1 () —5 /iloloﬂe‘“(E—Ho)§(t'féf)(E-Ho+~:Z—F(E))1 (16)



Allgemeine Theorie der Dampfungsphinomene fiir nicht-stationiare Prozesse. 285

gebracht werden, wobei (6) benutzt ist. Vergleich mit (7) zeigt jetzt,
dass Iim S(t) = 0. Da in dem Intervall —oo < ¢ <0, S(f) der

t—— o0
homogenen Schridinger-Gleichung gehorcht, also auch normiert
bleibt, so folgt dass S(f) fiir ¢ < 0 tiberhaupt auf Null normiert 1st.
Folglich verschwindet S(f) in diesem Intervall identisch, also auch
Iim S(t) = 0. Es folgt dann sofort lim S(f) = 1%).

t——20 I—+0

Die Fortsetzung von S(t) auf die negative t-Achse ist hier zu rein
analytischen Zwecken erfolgt und hat natiirlich keinerlei physika-
lische Bedeutung. Ein anderer, unabhéngiger Beweis der Anfangs-
bedingung wird sich auch weiter unten ergeben. Aus (16) folgt auch
noch durch Fourierinversion, dass U (E) A(E) und I'(E)A(E) keine
Singularitdten in der oberen E-Halbebene besitzen (da die Singu-
laritaten von & (X — H,) alle in der unteren Halbebene liegen).

Es zeigt sich also, dass die Integralgleichung fir U(F) den Bewe-
gungsgleichungen mit Anfangsbedingung vollstindig dquivalent ist.

Aus (16) folgt noch

S(+00)=1 +/O:s (E—H,) (UE)— I'(B)) (E—Hy+ S I) 4B (1)

als Darstellung der S-Matrix im Energieraum.

3. Der Dimpfungsoperator und die Lésung der Heitlersechen Gleichung.

Wir definieren einen Operator D(E) der U und I" verbindet. U
wurde als nicht-diagonal vorausgesetzt, wiahrend 1" seiner Defini-
tion nach diagonal 1st. Die physikalische Bedeutung von U und I'
wird noch ersichtlich werden. Durch Einfithrung von (15) in die
Schrodingergleichung bekommt man die Formel

1r w , ; .
sai | B e (B~ Hy+5 I'(E))—H + U(E) — H-§(E—-H,) U (E)

; ' =1
m-;_r(E)} x (B—Hy+ T'(B)) ¢o=0, t>0.
Daraus folgt, dass der Operator
— 5 I'E)+ UE)-H-HE&E—H,)- U(E) (18)

*) Die Anregung zu diesem Beweis verdanken wir Herrn K. BLEULER.
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ein Nulloperator ist. Die nicht-diagonalen Elemente von (18) er-
geben die Heitlersche Integralgleichung

UE)={HA+E:D)},. (19)
wahrend fiir die Diagonalelemente
NEy=2i{H(1+&U)}, (20)
folgt. Wir definieren
DE)=H(1+&(E - H,) U(E)) (21)

und konnen schreiben

UE)={DE)}, .
I'E)=2i{D(E)}. (22)

Der Operator D(E) ist fiir einen bestimmten Wert des Parameters E
bekannt, wenn die Losung von (19), U(E) zur Verfiigung steht.
Diese Gleichung kann auch

{1-H &(E—-H,))UE)-H}, ;=0
geschrieben werden, oder auch in dquivalenter Form
(1-H&UE)-H=X, (199

wo X, ein zunidchst unbekannter Operator mit verschwindenden
Nicht-Diagonalelementen ist. Folglich

UE)=(1-H-§E-Hy)) " (H+X,)
woraus nun X, durch die Bedingung

{UE)}=0
bestimmt werden kann:

(U}a—{(1—H & Hu+ {(1—H 2 X4 = 0.
Also

Xo=—[{(1-H& "} {Q-H&H},

und endlich
UE)=(1-HE&E—Hy))'H

—(I-HeE-H))(1-H& ) (1-H&H),. (28)
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Damit haben wir eine explizite Lisung fiir U gewonnen. Es ist nun
leicht, eine Entwicklung von U(E) nach Potenzen der in H stecken-
den Kopplungskonstante zu gewinnen. Um dies zu tun, bemerken
wir, dass (1 —H&)-1H = H (1 —&H)-1, dass & diagonal ist und
entwickeln die Nenner in (28). Nach einiger Algebra folgt

U(B)=H, ,+ (HEH), . — (HE),  H,+ (HeHEH), ,
—H, , (EHE&H),  (HeHE),  Ho+ (HE), o (HEHa+ - -

oder auch

bis zur dritten Ordnung. Es ist konsequenter (28) in (21) einzu-
setzen, worauf als Entwicklung von D(E)

®(E):H (1 +5Hﬂ.d. +(§H (‘EH)n.d.)n.d."" s ) (25)

resultiert. Die Entwicklung (24) und die von [(E)

o7 [E)={H+HEH, , +HEHEH, 3), 0+ e (26)

kénnen dann direkt abgelesen werden. Der Operator I'(E) ist nicht
hermitisch, und seine hermitischen und antihermitischen Teile ha-
ben verschiedene physikalische Bedeutung. Wir notieren ihre Ent-
wicklung, wobei allerdings H als hermitisch vorausgesetzt wird:
(RI' = hermitischer Teil, Jm I" = antihermitischer Teil).

RI'E)=2a{HoH, , +Ho6(HPH, ,), .
+HP(HSH, ), 4+ }a (27)

- ﬂzH 6 (H 6Hn d.)n. d. (27’)

Wir fiigen noch die Ableitung einer anderen Formel fiir RI'(E) bei,
die weiter unten benutzt wird. Aus (21), D+(E) = H+ U+(E)-é*H
und entsprechenden Multiplikationen mit-—+ U+&*, 1&£U folgt durch
Addition

—iU+E*D(E) +iD+(E)EU =—iU+¢*H +iHEU,
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und indem man von beiden Seiten die Diagonale nimmt

BI'EY=(—eU+&*U +1U+EU),
oder ‘

RI(E)=2=(U+(E)8(E —Hy) U(E)),. (28)

§ 4. Die S-Matrix und ihre Entwicklung.

Der physikalische Inhalt der Theorie, d. h. die Aussagen, die sie
iiber Ubergangswahrscheinlichkeiten, Position und Breite von Spek-
trallinien und dergleichen machen kann, ist in den Operatoren U(E)
und ['(E) enthalten, deren Kenntnis im Prinzip auf der ganzen
reellen E-Achse notwendig ist. (Fir die wichtigsten physikalischen
Fragen spielen allerdings nur gewisse Werte von £ eine Rolle.) Wir
haben schon einen Operator S(t) eingefithrt, der die Transformation
des Anfangszustandes ¢,, t = 0 in den Zustand w(f) (Wechsel-
wirkungsdarstellung!) zur Zeit ¢ leistet. Es mag von Interesse sein,
aufzuzeigen, dass dieser Operator tatsdchlich eine Dysonsche Ent-
wicklung mit einer Anfangsbedingung zur Zeit t = 0 besitzt, wie
zZu erwarten wére:

Sihy=1+ (-fi)w/AH(t’)dt’ + (- i)zfdt’/dt”H(t’)H(t”) +eee (29)
0 0 0

WO
H(f) = et Ho H ¢~it Ho

(Warum jedoch diese Entwicklung allein keineswegs zur konsequen-
ten storungsméissigen Berechnung der Linienbreite, d.h. wvon
RI'(E) geniigt, soll kurz im zweiten Teil besprochen werden.) Aus
(17) folgt

oo

S(+o0) =1+ [8(E ~Ho) (U(E) — 5 T'B)) (E —Hy+ 5 I'E)) ki

— 00

— 1+ [ 8(E~H,) D(B)(1-& (5 — Hy) D (E)) "6 (E—H,)dE

=1+ ,/'1‘5(1*3 —H,) (DE+ DE D&+ DE Dyl Dyé +-+-)dE

— 0
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und mit Hilfe von (25) und (26)

S (+o0) =1 +fa(E—HO) (He HEHE+--dE  (30)

was man die Entwicklung der S-Matrixz vm Energieraum nennen
darf. In geschlossener Form schreibt sich diese Darstellung auch

S (c0) = /ooa (BE—H,) (1 —-Hé&B—H,)"dE . (80")

Die Form (30) ist nun aber mit (29) identisch, wenn dort ¢ - -+ .
Man betrachte z. B. das dritte Glied in (30):

d/?;Ea(E ~H,)H&E -H,) H:(E - H,)

y r 1 Ooi — 2 Wt (E— ’ Ooi " "
= (_ %)2.//‘ dE 275‘;[6 t(E Ho)dtfHe t(E Ho)dt H‘/‘e t"(E Ho)dt
— 00 — 00 0

/dE /dt /dt [dt” U+ B p—i(t+t t”)H0H( +t”) H(t )

ﬁoo()

— (i) /dt [dt' /ﬂdt”d(t+t’+t”) H(t + ") H ("
% § 3

_(— i)2fodtH(t)fH(t’)dt’.

So kann man (29) (fir t—> co) Glied fir Glied verifizieren und
das bedeutet nichts weiteres als die Transformation von (30) in die
Zeitdarstellung®). Ahnliche Transformationen in die Zeitdarstellung
existieren fir U(E) und I'(E). Im Gegensatz zum Iall freier Par-
* tikel beschreibt (29) oder (80) einen nicht-stationdren Prozess und
enthilt Ubergiinge bei denen die ungestorte Energle nicht erhalten
bleibt.

Man konnte zwar in (29) die Terme herausfinden, die zu der Ent-
wicklung von I'(E), (25), beitragen aber nicht in eindeutiger Weise.
In der Bereitstellung einer derartigen Entwicklung, die tiir die An-
wendung auf die Lochertheorie angepasst ist, geht der Démpfungs-

*) Fiir endliche ¢, vergleiche Anhang,
19
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formalismus von HertLeEr und Ma iiber den S-Matrix-Formalis-
mus hinaus.

Wir wollen hier noch einige Worte fiir den Fall freier Partikel
einfiigen und auf die erwdhnte Identitdt der Heitlerschen und der
Dysonschen Formulierungen zurtickkommen. Hier darf man die

Anfangsbedingung nach {= —oo verlegen und also den Ansatz
machen '
S(t)=1+ [ dB e=*=10) (B — H,) U'(E) (81)

der der Anfangs- und Ausstrahlungsbedingung gentigt, wenn U’(K)
keine Diagonalelemente besitzt. (Vgl. (7)). Durch Einsetzen in die
Schrodinger- Gleichung (Wechselwirkungsdarstellung!) folgt

U'(E)=H-6 (E—H,) + HE(E — Hp) U'(E)
und daraus mit der Definition U'(E) = U(E)é(EE — Hy).

UE)= H(l +£(E—HO)U(E))
oder
U=(1-H&'H=H+H&H +--- (32)

Der zweite Term in (23) erscheint hier nicht. Mit (31) ist aber U
als Operator mit verschwindender Diagonale festgelegt. Wenn (32)
einen derartigen Operator darstellt, folgt auch

I—=2i(H1+£&U)),=2i((1—-H& ' H),—0.  (32)

Der Realteil von I" hingt bekanntlich mit der Ubergangswahr-
scheinlichkeit pro Zeiteinheit zusammen (man ziehe Formel (28)
heran; oder vergleiche auch weiter unten) und bei unendlichem
Normierungsvolumen verschwindet RI" tatsédchlich. Die Forderung
(32") geht dartiber hinaus, indem auch ImI"= 0 ist. In der Tat
stellt nun (32) nur dann éinen Operator der gewiinschten Form dar,
wenn die Selbstenergie vom Stiérungsoperator abgezogen ist, so dass
z. B. (H,6H, — H%); = 0. Eine wrderspruchsfreie Formulierung der
Stosstheorie freier Partikel verlangt also die Einfithrung der Selbst-
energie(Massen)-Korrektur. (32) ist der schon frither fiir freie Par-
tikel abgeleitete Ausdruck fiir U. Man erhilt ihn als Grenzfall aus
der Darstellung (23) oder (19) fiir gebundene Partikel, wenn I" - 0.
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(Das zweite Glied von (28) enthilt namlich I" als Faktor, wie Ver-
gleich mit (32") zeigt.) Fiir ¢t > + oo erhélt man dann

S (o0)=1— zmﬁs(E —H,)UE)E —H,)dE

oo

—1-2ni [(OHO+0HEHO + - --)dE. (81%)

Man beachte, dass U nur fir einen scharfen E-Wert notwendig
1st. Durch Transformation in die Zeitdarstellung folgt

S(o0) =1+ (—1) fH(t)dH(—i)?fdtu/”dt’H(t)H(t’) +--- (817)

— 00

also die Dysonsche Entwicklung*). Es ist klar, dass diese Ent-
wicklung versteckt die Dampfungseffekte enthilt und nicht etwa
iiber die Heitlersche Theorie hinausgeht.

§ 5. Physikalisches.

Die Entwicklungen der §§ 2 und 8 sollen in der folgenden Arbeit
dem Problem der natiirlichen Linienbreite in der Positronentheorie
zugrunde gelegt und sie kénnen als die generelle Grundlage der
Dampfungstheorie gebundener Zustdnde betrachtet werden. Der
in Strenge zu beriicksichtigenden Impulsbilanz kann leicht Rech-
nung getragen werden, wir rechnen aber im folgenden mit einem
festen dusseren Potentialfeld.

Um den zweiten Teil der Arbeit vorzubereiten, seien hier in aller
Kiirze noch einige Formeln und Begriffe zusammengestellt, die mit,
der Linienbreite zu tun haben. Wir gehen in die Zeitdarstellung
zuriick und haben dann fir den Wert der Amplitude eines Zustandes

*) Da diese Entwicklung nicht storungsméssig unitir ist, stellt man manchmal
&S unitar durch einen hermitischen Qperator K mittels der Cayley’schen Formel dar,

. .P NOT—
K—-Hg
Letzterer kann stérungsméssig entwickelt werden und die Ausdriicke verschiedener
Ordnung, K(r), sind sehr leicht mittels der entsprechenden Ausdriicke in der S-

Entwicklung zu bilden. Es bleibt dabei aber noch eine Schwierigkeit von K(%) an
bestehen, auf die wir an anderer Stelle zuriickkommen.

K=(1_H )—chS(E—HO).
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A4 (Anfangszustand 0) nach unendlich langer Zeit (It - oo) — man
vergleiche Formel (14):

b ,(o0) =<A,S(oo)0>:<A,de6(E-—-HO)Z)(E)(E~H0+Tj-F)_]0>

und nach Ausfiihrung der doppelten Matrixsummation

o0

8(E—E,) <4, D(E)0>
b, (e0) f E—EBy+i/2 Tyl E) i

WO
FO/U(E):<():F(E)O>;
also
A, UH,) 0>
by (00) = 5— 4 i by(o0)=0. (83)
AA¢O "Byt 2 Lo (Ey)

Die Quantitat |b, (o0)|? wird in iiblicher Weise als Wahrschein-
lichkeitsdichte (kontinuierliches Spektrum!) interpretiert und fir
die Wahrscheinlichkeit, dass das zur Zeit ¢t = 0 im ZustandO befind-
liche System nach einer unendlich langen Zeit einen Ubergang in
die Zustinde 4 eines gewissen Intervalls ausgefithrt hat, wobel
seine (ungestorte) Energie F , fest in einem Intervall dF , liegt, hat
man

A, U(E ) 032 dE,
w(l ) dE , = Z Jf<m >2|_#7 (34)
(EA"E “'—"'Fo D(E‘l) +(RF0/0(EA)/2)2

A

(EA fest in dEA) .

Wenn der Anfangszustand O z. B. einem angeregten Elektron und
keinem anwesenden Lichtquant, der Endzustand 4 einem emit-
tierten Lichtquant und dem Elektron im Grundzustand entspricht,
so hat (34) die ibliche Form einer Emissionslinie. Allerdings 1st I
im Prinzip energie-(also frequenz-)abhingig. Man verifiziert auch,
dass JmlIo(E)/2 an der Stelle E = E, mit dem stationar berech-
neten Ausdruck fiir den Lamb-Retherford-shift fir das Ausgangs-
niveau 0 tbereinstimmt.

Zum Schluss sei noch die Formel fiir die Ubergangswahrschein-
lichkeit pro Zeiteinheit, z. B. fiir den Ubergang O - 4 abgeleitet
Dieser Begriff ist aber approximativ und beansprucht nur in der
Grenze verschwindenden I”s strenge Giiltigkeit.

Vergleich von (14) und (7) zeigt, dass (33) unter der Vorausset-
zung K, t > co giiltig ist. Wir nehmen von vorneherein 1"« E, an
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und beschrinken uns auf ein Zeitintervall, so dass F, t>1, I't<€1
gleichzeitig erfillt ist. Durch Benutzung der Darstellungen (der
imaginére Teil von I, sel vernachlissigt)

1
EA "Eo"'ipo/o(EA)/

[§(E4—Eg) |*=2lim :
E

At—:» o0

—2nt8 (B, —E,),

5 — &l ,—Ey), I'tL1,

—cos (H 4—Hy)t
(B 4 — Eo)?

folgt dann aus (33)

; 1
wA/O};:“‘hm 't—IbAlzz2n|UA/0(EA)i26(EA_EO)' (35)
At—+oo
I't—0

Man hat auch -
2 W= R FO/O(EO)

A,EA=E|)

wenn man (28) beriicksichtigt. Diese Ableitung ist nicht streng und
der Begriff Ubergangswahrscheinlichkeit pro Zeiteinheit hat eben
nur Giltigkeit, wenn die Linienbreite vernachliassighar ist*).

Fir freie Partikel wo I' = 0, ist (85) streng giiltig, wenn auf Vo-
lumen 1 normiert.

Die dieser Arbeit zugrunde gelegte Storungstheorie geht von den
durch den KEnergieaustausch mit der Strahlung unbeeinflussten
Energieniveaus aus. Das bewirkt, dass bei Einschaltung der Wech-
selwirkung die Atomzustdnde (auch der Grundzustand) an alle
Zustédnde (mit Strahlung) angekoppelt werden, welche dann mit
sehr kleiner Amplitude virtuell auftreten. Tn der Formel fiir b, (co)
sind diese virtuellen Zustdnde noch mit enthalten. Es wire zu
wiinschen, wenn auch hier zwischen ,,reellen und ,,virtuellen‘
Ubergiingen scharf unterschieden werden kénnte, dhnlich wie bei
freien Teilchen, wo dann die letzteren durch eine Bloch-Nordsiek-
Transformation in die ungestorten Niveaus absorbilert werden.

*) Im Rahmen des Formalismus dieser Arbeit kann eine Formel fiir
0

gefunden werden ohne die obigen Darstellungen von & bzw. &% heranzuziehen. In
der Grenze I'({ B, wird dann (35) erhalten, wenn noch gewisse Annahmen iiber
das Verhalten von U(E) gemacht werden, die wohl auch der obigen Ableitung
zugrunde liegen.
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Eine solche Trennung 1st aber nicht bei endlicher Linienbreite be-
kannt.

Bei der Interpretation einer Formel wie (34) muss deshalb, streng
genommen, eine gewisse Vorsicht angewandt werden. Die Elimina-
tion der virtuellen Zusténde hdngt eng mit der Subtraktion der
Selbstenergie zusammen. Dies wird austiihrlich in der zweiten Arbeit
gezelgt werden.

Die Formel (34) zeigt eine gewisse Unsymmetrie in bezug auf den
Anfangszustand, dessen Lamb-shift im Nenner enthalten ist, wéah-
rend die Linienverschiebung des Endzustands nicht auftritt. Diese
kann beseitigt werden (bis auf einen geringfiigigen Unterschied der
von der K, Abhangigkeit von Jmly,, (£ 4)/2 herrithrt, wiahrend der
stationdre Lamb-shift-Ausdruck Jm I, (Ey)/2 15t) wenn®) die
Lambverschiebung in die ungestorten Energieniveaus aufgenommen
wird. Beim Ubergang in die Wechselwirkungsdarstellung y-> e #*#0 ¢’
ist also zu H, ein Operator AE zu addieren, derart, dass (H® +
AE)y, die gesamte Selbstenergie des gebundenen Elektrons im
Zustand 0 darstellt. Die Wechselwirkung wird dann H — AE und
man tberzeugt sich, dass dadurch im wesentlichen der Term
Jm Iy0/2 aus dem Nenner von (34) verschwindet, wiahrend alle
auftretenden Atomenergien nun die verschobenen Niveaus sind.

Wir moéchten Herrn Professor W. HerrLer fiir seine Anregung
und wohlwollende Férderung im Laufe der Arbeit, wie auch fiir
die Uberlassung unpublizierten Materials herzlichst danken. Auch
Herrn Dr. K. BLevrgr sind wir fiir Diskussionen sehr verpflichtet.
Unsere Zusammenarbeit wurde durch Stipendien des Centre Natio-
nal de la Recherche Scientifique, Paris, und der Universitdt London
ermoglicht, wotiir wir diesen Institutionen bestens danken.
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Anhang.

Um die Entwicklung (29), § 4 fiir £ endlich zu gewinnen, geht man auf die Dar-
stellung (16) von 8(¢) zuriick. Durch Vergleich von (16) und (17) sieht man, dass
in diesem Fall die (30) entsprechende Formel

+ 0
SO =1— 5 f dBe-it(E-Ho) & (HE + HEHE + ...) (30')

lautet. Wir betrachten z. B. den Term

fo0 5] 00
= (i) 5— dE/ dt, / dtzfd%e""(‘*tl_tf‘t” (B=Ho) H (t,+1;) H (t,)
0 0

—_— o

) 0
o0 oo o0
= (—i)Zfdtlfdtzfdts 8ty + by + ta—t) H(ly+ 1) H (1)
0 0 0

Das #, Integral ist nur von Null verschieden wenn, t, = ¢{—t,—#; > 0, also

0 < ty+ t; < t. Da auch t; < f; + t;, bekommt man sofort durch die Transfor-
mation ¢’ = t,+4;,, t'=1,,

¢ ¢
(—i)zfdt' /dt” H(t'yH (",
0 0

‘womit das dritte Glied von (29) verifiziert ist.

Man liest aus (29) ab, dass S(f) = 1 wenn ¢ - + 0 geht, womit ein neuver Beweis
der Anfangsbedingung geliefert ist.
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