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Allgemeine Theorie der Dämpfungsphänomene
für nicht-stationäre Prozesse.

I. Grundlagen und Zusammenhang' mit dem
S-Matrix-Formalismus

von E. Arnous*) und S. Zienau**).
Seminar für theoretische Physik, Universität Zürich.

(20. III. 1951.)

Abstract: The damping theory of discrete states is adapted to the positron
theory in an operator form. A solution of Heitler's integral equation can be
obtained in closed form and an operator is defined which combines the damping
constants and the elements of the collision operator, when written in energy
representation. The formalism is the result of an exact time integration of the
Schrödinger equation. The connection with the S-Matrix formalism is discussed.

Einleitung.

Der in letzter Zeit im Verständnis der Quantenelektrodynamik
erzielte Fortschritt ist bisher vorwiegend der Theorie der Wechselwirkung

zwischen freien Teilchen zugute gekommen. Man konnte
zeigen, dass die kovariante Formulierung der Pauli-Heisenbergschen
Theorie die von Tomonaga1), Feynman2), Schwinger3) und
anderen geleistet wurde, zur Grundlage einer allgemeinen Behandlung
von Stossprozessen zwischen Elektronen, Positronen und Photonen
gemacht werden kann4). In der Theorie derartiger Prozesse, bei
denen bekanntlich auch Erzeugungen und Vernichtungen von
Teilchen eine Polle spielen, kann man entweder die schon vor einiger
Zeit vorgeschlagene stationäre Methode von Heitler und Peng5)
benutzen, oder aber einen Formalismus der im wesentlichen auf
Heisenberg zurückgeht und besonders neuerdings befürwortet wird.

In diesem betrachtet man einen Operator, die sogenannte S-
Matrix, deren Elemente durch konsequente Anwendung der
Störungsrechnung bis zu jeder vorgeschriebenen Ordnung in der Kopp-
hmgs(Feinstruktur)-Konstante berechenbar sind. Für derartige
Rechnungen sind Regeln angegeben worden ,und es wird angenom-

*) Chargé de Recherches au Centre National de la Recherche Scientifique, Paris.

**) Travelling Fellow, University of London.
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men, dass alle in höheren Näherungen angetroffenen Divergenzen
durch die Idee der Massen- und Ladungsrenormalisierung eliminiert

werden können. Die physikalischen Aussagen der Theorie,
z. B. Streuquerschnitte, sind übrigens auch durch die gewöhnliche
Störungsrechnung im Impulsraum berechenbar, wenn die Renor-
malisationstechnik hinzugezogen wird6). Es möge bemerkt werden,
dass der physikalische Inhalt des Heitlerschen Formalismus identisch

mit dem der S-Matrix ist (bis auf geringfügige Unterschiede
auf die wir noch zurückkommen werden).

Anders steht es allerdings mit Problemen, bei welchen gebundene
Zustände eine Rolle spielen. Es ist zwar gezeigt worden, dass die
Linienverschiebung, die von der Wechselwirkung mit der Strahlung

herrührt, in eindeutiger Weise in Übereinstimmung mit dem
Experiment (Lamb-Retherford shift) berechenbar ist7). Aber bis
jetzt scheint kein Versuch gemacht worden zu sein, Fragen die mit
der Linienbreite verbunden sind (z. B. die höheren strahlungstheoretischen

Korrektionen zur Linienbreite) generell im Rahmen der
Löchertheorie und der Renormalisationsideen zu behandeln. Diese
Klasse von Problemen scheint grundsätzlich ausserhalb des Bereichs
der /S-Matrix-Technik zu liegen*). Eine exakte Zeitintegration der
Schrödingergleichung für diskrete Zustände wurde schon von
Heitler und Ma8) publiziert. Der vorliegende Teil dieser Arbeit
enthält eine Adaptierung dieser Theorie auf den Positron-Formalismus.

Da die Arbeit von Heitler-Ma wenig bekannt zu
sein scheint, werden wir alle Entwicklungen ab initio darzustellen
versuchen und benutzen von vorneherein einen auf die Positronentheorie

zugeschnittenen Operatorenformalismus. Die Zusammenhänge

mit der Dysonschen Methode werden wir ausführlich
erörtern. Neben anderem enthält die Arbeit auch eine neue, wie uns
scheint, besonders einfach motivierte Ableitung der Heitlerschen
Integralgleichung und deren Lösung in geschlossener (operationeller)
Form. Ein Operator Î), genannt Dämpfungsoperator, wird eingeführt,

mit der Eigenschaft, dass seine Diagonalelemente die
Dämpfungskonstanten geben, während die Nichtdiagonalelemente den
Stossoperator darstellen. Dies wird möglich durch die von Heitler
und Ma eingeführte Darstellung im Energieraum. Für die Elemente
von î> werden nach Potenzen der Feinstrukturkonstante fortschreitende

Entwicklungen angegeben. Im zweiten Teil der Arbeit wird

*) Die von Kramers angeschnittene Frage, inwieweit die Pauli-Heisenberg-
sche Quantenelektrodynamik prinzipiell in der Lage ist, der Wechselwirkung
zwischen Strahlung und Materie in den für Linienbreitefragen wichtigen, längeren
Zeitintervallen Rechnung zu tragen, wird hier nicht berücksichtigt.
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gezeigt werden, wie die divergenten Anteile von diesen Ausdrücken
auch hier durch Renormalisationen eliminiert werden können. Die
kalkulatorische Handhabung der in dieser Arbeit dargestellten, vom
Üblichen etwas abweichenden Technik wird dort ebenfalls erörtert
werden, und wir hoffen auch die strahlungstheoretischen Korrekturen

zur Linienbreite explizit auswerten zu können.

§ 1. Allgemeines.

Im folgenden werden gewisse singulare Operator-Funktionen
gebraucht, deren Eigenschaften hier kurz zusammengestellt seien.

H0 ungestörter Hamilton-Operator.
H0Mat + #oRad + jjs

Jf?0Mat enthält hier die Wechselwirkung mit dem äusseren Feld (z. B.
Kernpotential).

Hs Selbstenergieoperator.
H =HX-HS.
Hx Hamiltonoperator der Wechselwirkung Strahlung-Materie.

Die Form von Hs und Hx wird im zweiten Teil diskutiert werden;
alle Rechnungen sind davon unabhängig, wenn nicht ausdrücklich
das Gegenteil bemerkt ist.

Diese Operatoren sind z. B. im Besetzungszahlraum des
Elektronen-Positronen- und Photonenfeldes erklärt zu denken.

cp0 Schrödingerfunktional für den Ausgangszustand (Eigenfunk¬
tion von H0) zur Zeit t 0. Definiert wird nun

+ oo + oo

d{E—H0) ~ f eit{p-'ao)dt ^- fcoat(E—H0)-ät (1)

£(E-H0)s-t / eit(E-Ho)dt -2niô+(E-~H0). (2)
u

Daraus folgt (e(t) ±1, t $ 0)

P
E-H,0 C(E~H0)+Ì7zò(E-H0)

[sin t (E - H0) ¦ dt =-jj fe (t)eu(E-H°) dt (3)
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Das Gleichheitszeichen ist im Sinne der Äquivalenz unter einem
Integralzeichen zu verstehen.

Diese Operatoren sind diagonal im Besetzungszahlraum oder,
was damit äquivalent ist, im System der Eigenfunktionen von H0.
Wir brauchen ihre Eigenschaften

| (E - H0) ¦(E — H0) 'l. (Einheitsoperator) (4)

ô(E-Ho)-(E-Ho) 0. (5)

-ip\ f «-it(E-B°)HE-H0)dE rpt)={l\><l- (6)
— CO

-~-\ \ime-»P-»°) HE~H0) l(E~Ho)
t—> — oo

In (1)—(7) ist E eine positive oder negative c-Zahl.

§ 2. Nicht-stationäre Lösungen der Wellengleichung.

Für nicht-stationäre Emissions- oder Streuprobleme geht man
bekanntlich von der zeitabhängigen Schrödingergleichung mit
Randbedingung aus:

dR(t) (H0 + H)B(t), t>0 |
dt v ° ' "-'"w """ (8)
E(0) 1.

wobei die Wellenfunktion zur Zeit t

Q(t) B(t)cp0 (8')

wird. In der Dämpfungstheorie sucht man eine nicht-stationäre
Lösung und schreibt sie nach dem Vorgang von Heitler und Ma
in Form einer Superposition von stationären Lösungen

B(t) ~ fe-itEB(E)?.(E)dE, t>0. (9)
— oo

X (E) stellt die Dichte der stationären Zustände im E-Raum dar,
und es genügt X(E) diagonal*) anzunehmen.

*) Diagonal, d. h. in bezug auf den Besetzungszahlraum der Elektronen-Positronen

und Photonen. Im folgenden soll der diagonale Teil eines Operators durch
einen Index d, der Teil ausserhalb der Diagonale durch n. d. gekennzeichnet
werden.



Allgemeine Theorie der Dämpfungsphänomene für nicht-stationäre Prozesse. 283

Durch Einsetzen in (8) folgt
oo

fdE(E-Ho-H)B(E)?pE)e-itE=0, t>0. (10)
— oo

Für ein festes E wäre das Problem hiermit auf den üblichen stationären

Fall zurückgeführt. Dieser wird gelöst durch einen der
Ausstrahlbedingung genügenden Ansatz, den man nach Dirac (siehe
z. B. Quantum Mechanics, 3rd. edtn., 1947, p. 198) in unserer
Schreibweise

B(E) 1 + HE-H0)-U(E)
schreiben kann, wo XJ(E) ein Operator ohne Diagonalelemente ist.
Mit (4) erhält man dann

00

fdE(E-Ho-H+U-HÇU)A(E)e-itE 0, t>0, (10')
— oo

wo | für Ç(E — H0), V für U(E) geschrieben ist, eine Bezeichnung, die
weiter beibehalten wird. Zur Erfüllung dieser Bedingung setzen wir

(E- H0 - H + U - H £ U) X (E) 1 (Einheitsoperator) (10")

da sich die linke Seite von (10') dann auf 2 nò(t) ¦ 1 reduziert, was
für t > 0 verschwindet. Es wird sich zeigen, dass durch (10")
gerade die Anfangsbedingung erfüllt wird wodurch die Lösung
eindeutig wird. Indem man den nicht-diagonalen Teil von (10")
absondert und Null setzt, folgt

U(E) (H + H.è(E-H0)U(E))n.d_. (11)

Dies ist die bekannte Heitlersche Integralgleichung in
Operatorenform. Um X(E) zu bestimmen, definiert man den diagonalen
Operator

r(E) 2i(H + Hiü)d (12)

und aus dem diagonalen Teil von (10") hat man

X(E) {E-H0 + Ì-r(E))-\ (13)

Das Schrödingerfunktional wird
00 -i

ü{t) ^±jdEe-iEXl+S(E~H0)U(E))(E-H0A-^F(E)) cp0,

t>0, (14)
— OO
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oder wenn wir nach Eigenfunktionen von H0 entwickeln

Q(t) ZK(t)e~iEnt<Pn
n

oo

b0(t) ±fd11e***>-*>(E-E0+±r0l0(E))-\ t>0
— oc

— CO

h/ ® PTn jdEe"P^P(E~EA) x

xUAI0(E)(E-E0 + ^rolo(E))-] (14')

Die Normierung der x4mplituden \b0(t)\2 + 2J \bA(t)\2 1 für jede
Zeit t wird im folgenden verifiziert werden. A^°

In der sog. Wechselwirkungsdarstellung hat man allgemein für
das Funktional

f(t) eitHoü(t) S(t)cp0 t>0,
OO

S(t)=i-fdEe-PE^o)Ç1+pE^H0)P(E))(E--H0+-lr(E)):\l5)
—oo

Die Reihenfolge der Operatoren ist übrigens hier wie oben wesentlich,

denn H0 kommutiert nicht mit U(E).
8(oo) ist die S-Matrix und enthält, wie wir sehen werden, auch

alle Dämpfungseffekte. Es bleibt noch zu beweisen, dass dieser
Operator die Anfangsbedingung S(+ 0) 1 erfüllt. (Die Unitarität
von 8 folgt dann aus der Wellengleichung in Wechselwirkungsdarstellung

unter Berücksichtigung der Hermitizität von H).
Zum Beweis von lim S(t) 1 wollen wir S(t) nun auf die negative

i-Achse fortsetzen. Man sieht sofort aus (10), (10'), dass der Ansatz
(10") so beschaffen ist, dass S(t) die Gleichung

i--S^ H(t)S(t) + ió(t)-l
für alle, einschliesslich negative, t löst. S(t) ist also die Green'sche
Funktion zur Schrödinger-Gleichung mit Sprung 1 an der Stelle
t 0. Weiter kann S(t) durch die Umformung

1 + f (E-H0)U(E) Ç(E-H0){(E-H0+y F(E) + U(E) —j- F(E)

auf die Form
+ 00

S(t) v(t)--éïfdEe-it(E-Ho)ï(V~Yr){E~Ho+ir(E))-1 (16)
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gebracht werden, wobei (6) benutzt ist. Vergleich mit (7) zeigt jetzt,
dass lim S(t) 0. Da in dem Intervall — oo < t < 0, 8(t) der

t^-— oo

homogenen Schrödinger-Gleichung gehorcht, also auch normiert
bleibt, so folgt dass S(t) für t < 0 überhaupt auf Null normiert ist.
Folglich verschwindet S(t) in diesem Intervall identisch, also auch
lim S(t) 0. Es folgt dann sofort lim S(t) 1*).

Die Fortsetzung von 8(t) auf die negative t-Achse ist hier zu rein
analytischen Zwecken erfolgt und hat natürlich keinerlei physikalische

Bedeutung. Ein anderer, unabhängiger Beweis der
Anfangsbedingung wird sich auch weiter unten ergeben. Aus (16) folgt auch
noch durch Fourierinversion, dass U(E) X(E) und F(E)X(E) keine
Singularitäten in der oberen .E-Halbebene besitzen (da die
Singularitäten von p(E — H0) alle in der unteren Halbebene liegen).

Es zeigt sich also, dass die Integralgleichung für U(E) den
Bewegungsgleichungen mit Anfangsbedingung vollständig äquivalent ist.

Aus (16) folgt noch

oo

S(+oo) l+Jo(E-H0) (U(E)-ir(EJ) (E-Ho+^ry'dE (17)
— oo

als Darstellung der S-Matrix im Energieraum.

3. Der Dämpfunjjsoperator und die Lösung der Heitiersehen Gleichung.

Wir definieren einen Operator D(E) der TJ und F verbindet. U
wurde als nicht-diagonal vorausgesetzt, während F seiner Definition

nach diagonal ist. Die physikalische Bedeutung von U und F
wird noch ersichtlich werden. Durch Einführung von (15) in die
Schrödingergleichung bekommt man die Formel

^IfdEe-iEt{(E-H0+±F(E))-H + U(E)-H.i(E--H0)U(E)
— oo

-ir(E)}x(E-Ho + -^r(E))~1cPo 0, t>0.

Daraus folgt, dass der Operator

-4 F(E) + V(E) - H-HÇ(E-H0).U(E) (18)

*) Die Anregung zu diesem Beweis verdanken wir Herrn K. Bleuler.
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ein Nulloperator ist. Die nicht-diagonalen Elemente von (18)
ergeben die Heitlersche Integralgleichung

U(E)={H(l + iU)}n_d_ (19)

während für die Diagonalelemente

r(E) 2i{H(l + iV)}d (20)

folgt. Wir definieren

V(E) H(1 + HE-H0)U(E)) (21)

und können schreiben

77(E) {V(E)}n.d.

r(E) 2i{V(E)}d. (22)

Der Operator :T)(E) ist für einen bestimmten Wert des Parameters E
bekannt, wenn die Lösung von (19), U(E) zur Verfügung steht.
Diese Gleichung kann auch

{(l-H.HE-Ho))U(E)-H}n.d 0

geschrieben werden, oder auch in äquivalenter Form

(l-Hï)U(E)-H Xd (19')

wo Xd ein zunächst unbekannter Operator mit verschwindenden
Nicht-Diagonalelementen ist. Folglich

U (E) (1 - H. S (E - ff«,))"1 (H + Xd)

woraus nun Xd durch die Bedingung

{U(E)}d 0

bestimmt werden kann :

{U}d {(l-Hi)-1H}d + {(l-Hi)-1}dXd 0.
Also

Xd - [{(1 - H i)-i}d]-i{(l^Hi)-iH}a
und endlich

U(E) (1~HÇ(E-H0))-1H
-(l-HHE-H0))-i(((l-Hi)-%)-i((l-Ht;yiH)d. (23)
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Damit haben wir eine explizite Lösung für 77 gewonnen. Es ist nun
leicht, eine Entwicklung von 77(1?) nach Potenzen der in H steckenden

Kopplungskonstante zu gewinnen. Um dies zu tun, bemerken
wir, dass (1 — Rp)~x H H (1 — S H)'1, dass | diagonal ist und
entwickeln die Nenner in (23). Nach einiger Algebra folgt

P(E)=Hn,d+(HpH)n.d-(HipdHd + (HiHm)n.d.

~Hn^(miH)d-(Hmi)n.dHd + (Hipd,(Hi)dHd+...

oder auch

v(E)=Hn,d + (Hmn;dp.d.+(Hi(Hmn.d.)n.dyn.d. (M)

bis zur dritten Ordnung. Es ist konsequenter (23) in (21)
einzusetzen, worauf als Entwicklung von T>(E)

V(E)=H(lA-mn.d+(m(iH)n.d)n.d + ---) (25)

resultiert. Die Entwicklung (24) und die von F(E)

^F(E) {HA-Hmn.d+HHHmn.d)n.d + - ¦ ¦}„ (26)

können dann direkt abgelesen werden. Der Operator r(E) ist nicht
hermitisch, und seine hermitischen und antihermitischen Teile
haben verschiedene physikalische Bedeutung. Wir notieren ihre
Entwicklung, wobei allerdings H als hermitisch vorausgesetzt wird:
(Br hermitischer Teil, JmF antihermitischer Teil).

Br(E) 2n{HôBln,d+E-ô(BPBn.d)n_d.

+ EP(RôRn^d + ...}d (27)

LJmr(E)={H+HPHnd+HP(HPHn^)n^

-nmdiHdH^)^ (27')

Wir fügen noch die Ableitung einer anderen Formel für Br(E) bei,
die weiter unten benutzt wird. Aus (21), X)+(E) H A- U+(E)-i*H
und entsprechenden Multiplikationen mit — i TJ+i*, HU folgt durch
Addition

- iU + Ç* X>(E) + iT>+ (E) f V - i 77 + !*H + iH i 77,
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und indem man von beiden Seiten die Diagonale nimmt

BT(E) (-iü+i*U +iü+iü)d
oder

Br(E) 2n(U+(E) ò (E -H0)U(E))d. (28)

§ 4. Die S-Matrix und ihre Entwicklung.

Der physikalische Inhalt der Theorie, d. h. die Aussagen, die sie
über Übergangswahrs'cheinlichkeiten, Position und Breite von
Spektrallinien und dergleichen machen kann, ist in den Operatoren U(E)
und r(E) enthalten, deren Kenntnis im Prinzip auf der ganzen
reellen E-Achse notwendig ist. (Für die wichtigsten physikalischen
Fragen spielen allerdings nur gewisse Werte von E eine Rolle.) Wir
haben schon einen Operator S(t) eingeführt, der die Transformation
des Anfangszustandes cp0, t 0 in den Zustand y>(t)

(Wechselwirkungsdarstellung!) zur Zeit t leistet. Es mag von Interesse sein,
aufzuzeigen, dass dieser Operator tatsächlich eine Dysonsche
Entwicklung mit einer Anfangsbedingung zur Zeit t 0 besitzt, wie
zu erwarten wäre:

t t r
S(t) 1 + (-*) fH(t')dt' + (-i)2 /'dt' fdt"H(t')H(t") + ¦¦¦ (29)

Ô 0 0

wo

H(t) eitHoHe-~itH°.

(Warum jedoch diese Entwicklung allein keineswegs zur konsequenten

störungsmässigen Berechnung der Linienbreite, d. h. von
BF(E) genügt, soll kurz im zweiten Teil besprochen werden.) Aus
(17) folgt

oo

S(+c*) l + [ô(E-E0)(F(E)-^r(E))(E-H0 + -lIF(E)y1dE
— co

oo

l+fò(E-H0)V(E)(l-HE--H0)5)d(E)yHE-H0)dE
— co

co

1 + fô(E -H0) (3)£ + 3)f 3)dl + 3)£ 3),! ©,£ + •• •) dE
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und mit Hilfe von (25) und (26)

CO

S(+oo) l-t-fô(E-H0)(Hè + HÇH£+---)dE (30)
— oo

was man die Entwicklung der 8-Matrix im Energieraum nennen
darf. In geschlossener Form schreibt sich diese Darstellung auch

00

S (oo) f ô (E - H0) (1 - H Ç(E -Hq))-1 dE (30')
— CO

Die Form (30) ist nun aber mit (29) identisch, wenn dort t-i* + oo.
Man betrachte z. B. das dritte Glied in (30):

oo

fdEô(E-H0)HS(E-H0) Hi(E-H0)
oo oo

i)2 f dE-1- feu(E~Ho)dt fHeu'(E-H°)dt'H feuPE-Bo)dt"
— OO —CO

oo oo oo oo

i)2

IT"{-^~[dE [dt [dt! [dt"e^t+t'+t")Ee~i(t+t'+t")BoH(t'+t")H(t")
— co —co 0 0

oo CO CO

(-i)2 [dt [dt' [dt"ô(t + t' + t")H(t' +1") H(t")
-oo 0 0

oo t

(-i)2 fdtH(t) [H(t')df.
0 0

So kann man (29) (für t fa co) Glied für Glied verifizieren und
das bedeutet nichts weiteres als die Transformation von (30) in die

Zeitdarstellung*). Ähnliche Transformationen in die Zeitdarstellung
existieren für 77(E) und r(E). Im Gegensatz zum Fall freier
Partikel beschreibt (29) oder (30) einen nicht-stationären Prozess und
enthält Übergänge bei denen die ungestörte Energie nicht erhalten
bleibt.

Man könnte zwar in (29) die Terme herausfinden, die zu der
Entwicklung von r(E), (25), beitragen aber nicht in eindeutiger Weise.
In der Bereitstellung einer derartigen Entwicklung, die für die
Anwendung auf die Löchertheorie angepasst ist, geht der Dämpfungs-

*) Für endliche t, vergleiche Anhang.
19



290 E. Arnous und S. Zienau.

formalismus von Heitler und Ma über den S-Matrix-Formalis-
mus hinaus.

Wir wollen hier noch einige Worte für den Fall freier Partikel
einfügen und auf die erwähnte Identität der Heitlerschen und der
Dysonschen Formulierungen zurückkommen. Hier darf man die
Anfangsbedingung nach t — oo verlegen und also den Ansatz
machen

4- oo

S(t) l+ I'dE e-u(E-Bo) f(E -H0)V'(E) (31)

der der Anfangs- und Ausstrahlungsbedingung genügt, wenn 77' (E)
keine Diagonalelemente besitzt. (Vgl. (7)). Durch Einsetzen in die

Schrödinger-Gleichung (Wechselwirkungsdarstellung!) folgt

77' (E) H ¦ ô (E - H0) + H ^ (E - H0) 77' (E)

und daraus mit der Definition V'(E) U(E)ò(E — H0).

77(E) fl(l + HE- H0)U(E))
oder

U (l-Hi)-1H=HA-HCH + --- (32)

Der zweite Term in (23) erscheint hier nicht. Mit (31) ist aber 77

als Operator mit verschwindender Diagonale festgelegt. Wenn (32)
einen derartigen Operator darstellt, folgt auch

F 2i(H(l + 'ü))d 2i((l-Hè)-iH)d=0. (32')

Der Realteil von r hängt bekanntlich mit der Übergangswahrscheinlichkeit

pro Zeiteinheit zusammen (man ziehe Formel (28)
heran; oder vergleiche auch weiter unten) und bei unendlichem
Normierungsvolumen verschwindet BF tatsächlich. Die Forderung
(32') geht darüber hinaus, indem auch ImF 0 ist. In der Tat
stellt nun (32) nur dann einen Operator der gewünschten Form dar,
wenn die Selbstenergie vom Störungsoperator abgezogen ist, so dass

z. B. (HX£HX — Hs)d 0. Eine widerspruchsfreie Formulierung der
Stosstheorie freier Partikel verlangt also die Einführung der Selbst-
energie(Massen)-Korrektur. (32) ist der schon früher für freie
Partikel abgeleitete Ausdruck für 77. Man erhält ihn als Grenzfall aus
der Darstellung (23) oder (19) für gebundene Partikel, wenn 77 -> 0.
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(Das zweite Glied von (23) enthält nämlich 77 als Faktor, wie
Vergleich mit (32') zeigt.) Für t fa + oo erhält man dann

S(°°) l-2ni Ò(E-H0) 77(77) Ò(E -H0)dE
— CO

oo

l~2ni [(oHô + ÔH£HÔA----)dE. (31')

Man beachte, dass 77 nur für einen scharfen 77-Wert notwendig
ist. Durch Transformation in die Zeitdarstellung folgt

S(oo) l + (-t) / H(t)dt+(-i)2 I dt I dt'H(t)H(t') + (31")
-oo — oo

also die Dysonsche Entwicklung*). Es ist klar, dass diese
Entwicklung versteckt die Dämpfungseffekte enthält und nicht etwa
über die Heitlersche Theorie hinausgeht.

§ 5. Physikalisches.

Die Entwicklungen der §§ 2 und 3 sollen in der folgenden Arbeit
dem Problem der natürlichen Linienbreite in der Positronentheorie
zugrunde gelegt und sie können als die generelle Grundlage der
Dämpfungstheorie gebundener Zustände betrachtet werden. Der
in Strenge zu berücksichtigenden Impulsbilanz kann leicht Rechnung

getragen werden, wir rechnen aber im folgenden mit einem
festen äusseren Potentialfeld.

Um den zweiten Teil der Arbeit vorzubereiten, seien hier in aller
Kürze noch einige Formeln und Begriffe zusammengestellt, die mit
der Linienbreite zu tun haben. Wir gehen in die Zeitdarstellung
zurück und haben dann für den Wert der Amplitude eines Zustandes

*) Da diese Entwicklung nicht störungsmässig unitär ist, stellt man manchmal
S unitär durch einen hermitischen Operator K mittels der Cayley'schen Formel dar,

K= [l - H pi^hö)~1h61e~Ho) '

Letzterer kann störungsmässig entwickelt werden und die Ausdrücke verschiedener
Ordnung, JT(«), sind sehr leicht mittels der entsprechenden Ausdrücke in der S-
Entwicklung zu bilden. Es bleibt dabei aber noch eine Schwierigkeit von ÜT(4) an
bestehen, auf die wir an anderer Stelle zurückkommen.
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A (Anfangszustand 0) nach unendlich langer Zeit (71 fa oo) — man
vergleiche Formel (14) :

oo

bA(oo) <A,S(œ)0}=<^A,JdEÔ(E-H0)T>(E)(E-H0 + 4Iry1oy
— co

und nach Ausführung der doppelten Matrixsummation
oo

h fr^\ f ô(E-EA)<A,V(E)0y^ (°°) J E-EB+i/2rolo{E) m
— OO

rM(E)-<0,r(E)0>;
wo

also

Die Quantität \bA (oo)\2 wird in üblicher Weise als
Wahrscheinlichkeitsdichte (kontinuierliches Spektrum!) interpretiert und für
die Wahrscheinlichkeit, dass das zur Zeit t 0 im ZustandO befindliche

System nach einer unendlich langen Zeit einen Übergang in
die Zustände A eines gewissen Intervalls ausgeführt hat, wobei
seine (ungestörte) Energie 77^ fest in einem Intervall dEÄ liegt, hat
man

W(EA) dEA V ^T^ ™
A (Va-Eo-^y r»»(£i)j +{RppEA)l2f

(EA fest in dEA)

Wenn der Anfangszustand O z. B. einem angeregten Elektron und
keinem anwesenden Lichtquant, der Endzustand A einem
emittierten Lichtquant und dem Elektron im Grundzustand entspricht,
so hat (34) die übliche Form einer Emissionslinie. Allerdings ist 77

im Prinzip energie-(also frequenz-)abhängig. Man verifiziert auch,
dass JmT70/0(77)/2 an der Stelle 77 770 mit dem stationär berechneten

Ausdruck für den Lamb-Retherford-shift für das Ausgangsniveau

0 übereinstimmt.

Zum Schluss sei noch die Formel für die Übergangswahrscheinlichkeit

pro Zeiteinheit, z. B. für den Übergang Ofa A abgeleitet.
Dieser Begriff ist aber approximativ und beansprucht nur in der
Grenze verschwindenden T^'s strenge Gültigkeit.

Vergleich von (14) und (7) zeigt, dass (33) unter der Voraussetzung

77^ £-> oo gültig ist. Wir nehmen von vorneherein 77 <« 770 an
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und beschränken uns auf ein Zeitintervall, so dass EA tp>l, rt<p 1

gleichzeitig erfüllt ist. Durch Benutzung der Darstellungen (der
imaginäre Teil von rolo sei vernachlässigt)

ea-eJppea)I2 ^Hea-e0), rt<i,

folgt dann aus (33)

\fi(~F TP \ |2 Olim 1-COS(EA-Eo)t
\PEA~E0)\ =1 hm j

Ep-^00

27ttò(EA-E0),

wAI0 limy\bA\2=2n\UA/0(EA)\2ò{EA-E0). (35)
EAt-^-oo
rt^o

Man hat auch

E wAio=Broio(E0)
A, EA Ea

wenn man (28) berücksichtigt. Diese Ableitung ist nicht streng und
der Begriff Übergangswahrscheinlichkeit pro Zeiteinheit hat eben

nur Gültigkeit, wenn die Linienbreite vernachlässigbar ist*).
Für freie Partikel wo F 0, ist (35) streng gültig, wenn auf

Volumen 1 normiert.
Die dieser Arbeit zugrunde gelegte Störungstheorie geht von den

durch den Energieaustausch mit der Strahlung unbeeinflussten
Energieniveaus aus. Das bewirkt, dass bei Einschaltung der
Wechselwirkung die Atomzustände (auch der Grundzustand) an alle
Zustände (mit Strahlung) angekoppelt werden, welche dann mit
sehr kleiner Amplitude virtuell auftreten. In der Formel für bA (oo)
sind diese virtuellen Zustände noch mit enthalten. Es wäre zu
wünschen, wenn auch hier zwischen „reellen" und „virtuellen"
Übergängen scharf unterschieden werden könnte, ähnlich wie bei
freien Teilchen, wo dann die letzteren durch eine Bloch-Nordsiek-
Transformation in die ungestörten Niveaus absorbiert werden.

*) Im Bahmen des Formalismus dieser Arbeit kann eine Formel für

-^-<.o,s+(t)Ay<.A,S(t)oy

gefunden werden ohne die obigen Darstellungen von f bzw. f2 heranzuziehen. In
der Grenze i~X« E0 wird dann (35) erhalten, wenn noch gewisse Annahmen über
das Verhalten von U(E) gemacht werden, die wohl auch der obigen Ableitung
zugrunde liegen.
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Eine solche Trennung ist aber nicht bei endlicher Linienbreite
bekannt.

Bei der Interpretation einer Formel wie (34) muss deshalb, streng
genommen, eine gewisse Vorsicht angewandt werden. Die Elimination

der virtuellen Zustände hängt eng mit der Subtraktion der
Selbstenergie zusammen. Dies wird ausführlich in der zweiten Arbeit
gezeigt werden.

Die Formel (34) zeigt eine gewisse Unsymmetrie in bezug auf den
Anfangszustand, dessen Lamb-shift im Nenner enthalten ist, während

die Linienverschiebung des Endzustands nicht auftritt. Diese
kann beseitigt werden (bis auf einen geringfügigen Unterschied der
von der EA Abhängigkeit von Jm770/0 (EA)/2 herrührt, während der
stationäre Lamb-shift-Ausdruck Jm F0I0 (770)/2 ist) wenn*) die
Lambverschiebung in die ungestörten Energieniveaus aufgenommen
wird. Beim Übergang in die Wechselwirkungsdarstellung y-?-e~itHo xp'

ist also zu 770 ein Operator AE zu addieren, derart, dass (Hs +
AE)0I0 die gesamte Selbstenergie des gebundenen Elektrons im
Zustand 0 darstellt. Die Wechselwirkung wird dann 77 — AE und
man überzeugt sich, dass dadurch im wesentlichen der Term
Jm 770/0/2 aus dem Nenner von (34) verschwindet, während alle
auftretenden Atomenergien nun die verschobenen Niveaus sind.

Wir möchten Herrn Professor W. Heitler für seine Anregung
und wohlwollende Förderung im Laufe der Arbeit, wie auch für
die Überlassung unpublizierten Materials herzlichst danken. Auch
Herrn Dr. K. Bleuler sind wir für Diskussionen sehr verpflichtet.
Unsere Zusammenarbeit wurde durch Stipendien des Centre National

de la Recherche Scientifique, Paris, und der Universität London
ermöglicht, wofür wir diesen Institutionen bestens danken.
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Anhang.

Um die Entwicklung (29), § 4 für t endlich zu gewinnen, geht man auf die
Darstellung (16) von 8(t) zurück. Durch Vergleich von (16) und (17) sieht man, dass

in diesem Fall die (30) entsprechende Formel

-f oo

S(t) 1 — ^-r [dEe-it(E-H0)ç(HÇ + HÇHÇ + (30')

t. Wir betrachten z. B. den Term

+ 00
1

2 ni-je-U
— OO

(E-Ho)SHSHS

+ 00 OO OO CO

(-»)• 2nJ dE 1 dtx 1 dt2 dt3i

— OO 0 0 0

OO OO OO

(fa)a [dtx [dtz [dt3 ô (*! + t2 + t3-1) H(t2 + ta) H(t3)

0 0 0

Das tx Integral ist nur von Null verschieden wenn, tx t —12 —13 > 0, also
0 < i2 + t3 < t. Da auch t3 < t3 + t2 bekommt man sofort durch die Transformation

t' t2 + t3 t" t3

t t'

pi)2 [df [dt" H{t')H(t"),
0 ô

womit das dritte Glied von (29) verifiziert ist.
Man liest aus (29) ab, dass S(t) -> 1 wenn t -> + 0 geht, womit ein neuer Beweis

der Anfangsbedingung geliefert ist.
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