
Zeitschrift: Helvetica Physica Acta

Band: 24 (1951)

Heft: II

Artikel: Röntgenuntersuchungen über die Seignetteelektrizität von
Bariumtitanat

Autor: Känzig, Werner

DOI: https://doi.org/10.5169/seals-112212

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-112212
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Röntgenuntersuchungen über die Seignetteelektrizität
von Bariumtitanat

von Werner Ranzig (Physikalisches Institut der ETH. Zürich).

(24. I. 1951.)

Summary. The transition of untwinned ferroelectric BaTi03-crystals from the
cubic (unpolarized) phase into the tetragonal (polarized) phase has been investigated

by measurements of the integrated reflections (001) and (0 kO) as a function
of temperature.

Near the transition-point fluctuations diminish extinction. This effect leads
to a sharp peak of the extinction-sensitive reflections. The changes of the mosaic-
structure are discussed.

The variation of the structure-factors with temperature could be determined
for the high-order reflections (001). The Debye-factor behaves quite normally
in the cubic phase. There is no evidence for a loosely bound Ti-ion.

At and below the Curie-point variations of the structure-factors were observed
which can be accounted for by a shift of the atomic positions together with
anomalous variations of the thermal amplitudes.

A discussion of the Lorentz internal field is given in terms of Slater's theory.

I. Einleitung.

1. Übersieht über die wichtigsten experimentellen Tatsachen.

BaTiOg-Kristalle sind seignetteelektrisch. Die Kristallstruktur
ist einfach im Vergleich zu den Strukturen der schon länger
bekannten Seignetteelektrika, Seignettesalz und KH2P04. Es besteht
darum einige Hoffnung, zu einem quantitativen Verständnis der
Seignetteelektrizität von BaTi03 zu gelangen.

BaTi03 kristallisiert nach dem Perowskittyp1). Jedes Ti-Ion ist
oktaedrisch von 6 O-Ionen umgeben. In den verbleibenden
Zwischenräumen liegen die Ba-Ionen (Fig. 1). Dieses Gitter hat die
Tendenz zur elektrischen Selbstpolarisation, was interessante
dielektrische Anomalien und drei Phasenumwandlungen zur Folge
hat. Betrachten wir das Verhalten des Kristalls bei sinkender
Temperatur :

Im Gebiet T > 120° C ist der Kristall kubisch und hat die
Raumgruppensymmetrie 0^/Pm3m. Die Dielektrizitätskonstante
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steigt mit fallender Temperatur hyperbolisch an (Curie-Weiss-
Gesetz)2)3). Die Unendlichkeitsstelle, die sich aus der Hyperbel
ergeben würde, wird nicht ganz erreicht, indem vorher (bei 120° C)
die erste Phasenumwandlung eintritt4) : Der Kristall polarisiert sich
von selbst (spontan) in einer der 6 Kantenrichtungen der Elementarzelle.

Die Doppelbrechungsänderung zeigt5), dass die spontane
Polarisation vom Wert Null auf einen endlichen Wert springt und
dann stetig weiter ansteigt. Die direkte Bestimmung der spontanen
Polarisation aus den dielektrischen Hysteresiskurven ergibt indes
lediglich einen steilen Anstieg an Stelle des Sprunges, was den
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Anordnung der Ionen im BaTiOyKristall nach Megaw1).

Mängeln dieser Methode zuzuschreiben ist6)7). Die spontane
Polarisation ist mit einer spontanen Deformation verknüpft: Das
Gitter streckt sich in der Polarisationsrichtung (im folgenden als
c- oder [001]-Richtung bezeichnet) und zieht sich senkrecht dazu
(a-Bichtungen [010] und [100]) zusammen. Der Kristall wird
tetragonal8). Die Deformation Ac ist proportional zum Quadrat der
Polarisation und somit als eine Folge des quadratischen
Piezoeffektes zu betrachten6). Bei Zimmertemperatur beträgt das
Achsenverhältnis c/a 1,01. Die Raumgruppensymmetrie in der
tetragonalen Phase ist C4„/P4mm.

Die Umwandlung spiegelt sich auch in den Dielektrizitätskonstanten

wider6) : Die hohe spontane Polarisation (bei Zimmertemperatur
erreicht sie 16-10~6 Clb/cm2) bewirkt eine dielektrische Sättigung

des Kristalls in der [001]-Richtung, wodurch die
Dielektrizitätskonstante vom Spitzenwert emax ~ 104 auf den 20. Teil hin-
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unterspringt. In den Richtungen senkrecht zur Polarisation (a-
Richtungen) bleibt die Dielektrizitätskonstante über 3000. Die
Tendenz zur Selbstpolarisation in der a-Richtung bleibt erhalten,
wie der neue Anstieg von ea mit sinkender Temperatur zeigt. Dies
führt zu einer zweiten Phasenumwandlung in der Gegend von 0° C.

In einer der o-Richtungen tritt eine neue Komponente der
spontanen Polarisation auf, indem die spontane Polarisation von der
[001]-Richtung in die [011]- oder [101]-Richtung umspringt. Der
Kristall nimmt dadurch rhombische Symmetrie an5). Die
Sättigungserscheinungen bewirken wieder eine entsprechende Änderung
des Tensors der Dielektrizitätskonstanten. In der zweiten a-Richtung

(die noch keine Komponente der spontanen Polarisation
enthält) bleibt die Neigung zur Selbstpolarisation wieder bestehen,
was bei — 70° C zu einer dritten Phasenumwandlung führt :

Die spontane Polarisation springt in die [lll]-Richtung um. Der
Kristall wird trigonal.

Die spontane Deformation entspricht in allen Phasen einer
Streckung in der Polarisationsrichtung5). Alle drei Umwandlungspunkte

liegen bei steigender Temperatur höher als bei sinkender
Temperatur. Diese thermische Hysteresis ist unabhängig von der
Geschwindigkeit der Temperaturänderung und beträgt etwa 2° C

bei der 120°-Umwandlung, 12° C und 17° C bei den tieferen
Umwandlungen. Durch hydrostatischen Druck9), durch elektrische
Felder7) und durch Einlagerung von Sr-Ionen an Stelle der Ba-
Ionen10) können die Umwandlungspunkte verschoben werden.

Die spontane Polarisation hat in den drei polarisierten Phasen
mehrere Einstellmöglichkeiten. Der Makrokristall ist infolgedessen
im allgemeinen verzwillingt : Er besteht aus einem Gefüge von
Domänen („Weiss'sehen Bezirken") mit verschiedener
Polarisationsrichtung11)12)13)14)15)5). Alle drei Phasenumwandlungen sind
bei steigender Temperatur mit einer positiven Anomalie der
spezifischen Wärme verknüpft15)16).

2. Die Theorien der Umwandlungen in den BaTiC>3 -Kristallen.

a) Phänomenologische Theorie.

Eine phänomenologische Theorie, welche die drei Phasenumwandlungen

befriedigend erklärt und beschreibt, wurde von Devonshire

entwickelt17). In Anlehnung an die Müller'sehe Theorie des
Seignettesalzes fasst Devonshire die Symmetrieänderungen als
piezoelektrische Deformationen auf. Eine Umwandlung von einer
Phase in die andere tritt dann ein, wenn die Gleichgewichtswerte

12
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der Freien Energien der beiden Phasen gleich gross sind. Die Theorie

gilt für den einheitlich polarisierten Kristall, für einen einzelnen
Weiss'sehen Bezirk. Die drei Umwandlungen sind nach Devonshire

thermodynamische Umwandlungen erster Art. In kompliziert

verzwillingtem Material treten Spannungen auf, welche die
Umwandlungen unscharf machen.

b) Molekulare Theorien.

Die bisherigen theoretischen und experimentellen Untersuchungen
weisen darauf hin, dass die Neigung des BaTi03-Gitters zur

Selbstpolarisation dem gleichzeitigen Auftreten von drei Umständen
zuzuschreiben ist:

1. Die Elektronenpolarisierbarkeit der O-Ionen in Ti-O-Verbin-
dungen ist ausserordentlich hoch18).

2. Die Geometrie des Gitters verursacht ein inneres Feld, welches
z. B. bei einer Polarisation in der [001]-Richtung (in Fig. 1 vertikal)
am Orte der Oj-Ionen und der Ti-Ionen aussergewöhnlich hohe
Werte in der Polarisationsrichtung annimmt19)20)21). Denkt man
sich in einem kleinen Volumelement eine schwache Polarisation
erzeugt, z. B. infolge der Deformation durch die elastischen Wellen
der Gitterschwingungen, so wirkt diese durch ein hohes inneres
Feld auf die 0T- und die Ti-Ionen zurück. Die Polarisation verstärkt
sich also selbst. Wenn die Polarisierbarkeiten gewisse kritische
Werte erreichen, dann tritt Selbstpolarisation ein.

3. Es sind temperaturabhängige Polarisierbarkeiten vorhanden.
Drei Möglichkeiten sind bis jetzt diskutiert worden:

a) Die Zunahme der Volumpolarisierbarkeit mit sinkender
Temperatur infolge der Schrumpfung des Gitters könnte die
Selbstpolarisation erklären22). Diese Deutung steht aber damit im
Widerspruch, dass eine künstliche Verkleinerung der Gitterkonstanten
durch hydrostatischen Druck9) oder durch Einlagerung von Sr-
Ionen an Stelle von Ba10) die Umwandlung von der kubischen
in die tetragonale Phase zu tieferer Temperatur verschiebt, und
dass die Selbstpolarisation in Richtung der (kürzeren) a-Achse erst
bei tieferer Temperatur erfolgt (0°-Umwandhmg).

b) Mason und Matthias23) nahmen an, dass die potentielle Energie

des Ti-Ions im Oktaeder 6 Minima habe, die vom Zentrum aus
um die Strecke ô gegen die O-Ionen verschoben sind. Das Ti-Ion
würde sich dann im wesentlichen wie ein permanenter Dipol vom
Moment 4eô mit 6 Einstellmöglichkeiten verhalten. Durch ganz
allgemeine Betrachtungen lässt sich aber zeigen, dass eine solche
Theorie den Experimenten widerspricht21)24).
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c) Zu einer temperaturabhängigen Polarisierbarkeit führt auch
das Modell des anharmonischen Oszillators, welches Devonshire17),
von Arx19), Anderson25) und Slater21) unabhängig voneinander
durchgerechnet haben: Das Ti-Ion schwingt in einem Potential
V(r) B r2 + C r4, wobei r den Abstand vom Oktaederzentrum
bedeutet. Die einzelnen Oszillatoren sind nur durch das Lorentz'sche
innere Feld gekoppelt und werden im übrigen als unabhängig
betrachtet. Das Modell erklärt zwanglos das dielektrische Verhalten
in der kubischen Phase. Es versagt aber bei der Beschreibung des

Anstieges der spontanen Polarisation, indem es (wie die Langevin'-
sche Theorie) einen kontinuierlichen Anstieg P(T) Const. ]/T — ©
voraussagt, während die Experimente eine sprunghafte Änderung
ergeben.

Die Möglichkeiten a) und b) lassen sich mit Sicherheit aus-
schliessen. Das Modell des anharmonischen Oszillators muss noch
verbessert werden:

a) Das Potential V(r) ist abhängig von der Deformation des

Kristalls und somit auch von der Polarisation.
ß) Die einzelnen Oszillatoren dürfen nicht als unabhängig

angenommen werden. Sie sind nach der Born'schen Methode der
Gitterdynamik zu behandeln.

Eine solche verbesserte Theorie liegt noch nicht vor.

3. Das Ziel der vorliegenden Arbeit.

In den molekularen Theorien spielen die thermischen Schwingungen

der Ionen und deren Verschiebung im polarisierten Kristall
eine wesentliche Rolle. Weder über die optischen noch über die
akustischen Zweige der Gitterschwingungen liegen aber experimentelle

Arbeiten vor. Über die Verschiebungen der Ionen gibt es nur
rohe Abschätzungen, die sich zum Teil widersprechen: Danielson,
Matthias und Richardson26) geben auf Grund von Weissenberg-
aufnahmen für die Verschiebung des Ti-Ions aus der Oktaedermitte
bei Zimmertemperatur 0,16 Â an. Danielson und Rundle27)
schätzen später, dass diese Verschiebung kleiner sei als 0,1 Â. Kay,
Wellard und Vousden28) entnehmen hingegen ihren
Röntgenaufnahmen, dass sich die Ti-Ionen und die 0TTonen (siehe Fig. 1)
gegeneinander verschieben. Als obere Grenze für diese Verschiebungen

geben sie an: 0T: z < 0,13 Â, Ti: z < 0,05 À. Die genaue
Kenntnis dieser Verschiebungen ist aber von Interesse, da man daraus

auf die Ladungen der Ionen21) und damit auf die Art der
chemischen Bindung schhessen kann.
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Um auf experimentellem Wege etwas über die thermischen
Schwingungen und über die Lage der Ionen zu erfahren, haben
wir die Temperaturabhängigkeit des integralen Reflexionsvermögens

für die Interferenzen (001) bis (0010) und (010) bis (080) im
Temperaturgebiet von 15° C bis 300° C gemessen. Dabei wurden
auch Anomalien in der Extinktion festgestellt, welche über die
Mosaikstruktur Aufschlüsse geben.

II. Experimenteller Teil.

1. Die Kristalle.

Für die Messung des integralen Reflexionsvermögens eignen sich
nur unverzwillingte, spannungsfreie Einkristalle. Dünne, klare, fast
farblose Kristallplättchen, die nach unserer Methode15) aus einer
Schmelze gezüchtet wurden, standen zur Verfügung. Die Betrachtung

im Polarisationsmikroskop zeigt, dass die tetragonale Achse
einheitlich senkrecht zur Plattenebene steht. Diese Prüfung genügt
aber nicht: Die Untersuchung der Reflexionskurven ergab, dass
scheinbar unverzwillingte Plättchen oft aus einzelnen Kristalliten
bestehen, die bis um 1° gegeneinander verdreht sind. Die
Änderungen der Mosaikstruktur, die während der Umwandlung von der
kubischen in die tetragonale Phase (und umgekehrt) stattfinden,
können an solchen Kristallindividuen nicht quantitativ erfasst
werden, da sie nicht reproduzierbar sind. Von etwa 10 optisch
einwandfrei befundenen Kristallen eigneten sich zwei zum
quantitativen Studium der Mosaikstruktur. Die Kristalle stammen aus
verschiedenen Zuchten und unterscheiden sich in ihrer Reinheit.
Tabelle 1 gibt einen Überblick über einige Daten.

Tabelle 1.

Krist.
Nr.

Fläche Dicke

Widerstand
zwischen

aufgedampften
Ag-Blektroden

bei 120° C

Umwandlungspunkte

Temp,
steigend
± 0,05° C

Temp.
fallend

± 0,05° C

Thermische

Hysteresis
°C

150
77

107 ü
>109ß

117,80
121,75

116,55
119,78

1,25
1,97

Eine Bearbeitung der Kristalle ist ausgeschlossen, da die geringste
mechanische Beanspruchung zur Zwillingsbildung führen kann15).
Kristall Nr. 1 zersprang im Laufe der Untersuchungen, bevor ein
vollständiger Satz von Messungen durchgeführt war. Alle aufgeführ-
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ten Messungen, die sich auf die Mosaikstruktur beziehen, sind am
Kristall 2 durchgeführt worden, sofern nichts anderes vermerkt ist.
Die übrigen Kristalle zeigten im wesentlichen dieselben charakteristischen

Erscheinungen. Die Interferenzen, die unempfindlich sind
gegen Änderungen der Mosaikstruktur, verhalten sich bei allen
Kristallen quantitativ gleich.

2. Das Spektrometer.

Das von Német29) entwickelte Ionisationsspektrometer eignet
sich vorzüglich zur Messung von Änderungen des integralen
Reflexionsvermögens. Es wurde für unsere Zwecke umgebaut. Die
grundsätzliche Anordnung und Schaltung ist in Fig. 2 dargestellt :

Die gefilterte Mo^-Strahlung passiert das Spaltsystem SS. Ein Teil
des Primärstrahls wird durch den feststehenden Kalkspatkristall

FP54

fcsrrfji
S 5

üh_i HmiT^
Hf *fn

FPS4

Fig. 2.

Grundsätzliche Anordnung und Schaltung des Ionisationsspektrometers.

Kx in die Ionisationskammer Ix abgezweigt. Der andere Teil fällt
auf den zu untersuchenden Kristall K2, der mit konstanter
Winkelgeschwindigkeit oszilliert. Der Oszillationswinkel ist kontinuierlich
variierbar. Der von K2 reflektierte Strahl fällt in die Ionisationskammer

I2. Die Ionisation ist hier im Zeitmittel proportional zum
integralen Reflexionsvermögen und unabhängig von der
Oszillationsfrequenz. Die Elektrometerröhren sind ausgesuchte Exemplare
FP 54 mit möglichst gleichen Eigenschaften. Sie bilden die Zweige
einer Brückenschaltung und sind zusammen mit den
Gitterableitwiderständen in evakuierten Behältern an die Ionisationskammern
angebaut. Die Verstimmung der Brücke wird durch ein Galvanometer

von besonders guter Nullpunktskonstanz angezeigt. Der
Ausschlag ist genau proportional zur Änderung der Ionisation in
einer der beiden Kammern, wie mit geeichten Filtern nachgeprüft
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wurde. Die Zeitkonstanten der beiden Elektrometer werden durch
die veränderliche Kapazität C einander angeglichen. Der Wert von
20 sec ist gross gegenüber der Oszillationszeit des Kristalls K2.
Schwankungen der Primärintensität und der Stromquellen wirken
sich nicht aus, wenn die Brücke im Gleichgewicht ist. Der
Nullpunkt erweist sich nach einer Anlaufszeit von einigen Stunden als
vollkommen stabil. Änderungen des integralen Reflexionsvermögens

von 0,5% können selbst bei schwachen Reflexen noch
festgestellt werden. Als Strahlungsquelle dient eine abgeschmolzene
Strukturröhre mit Mo-Antikathode. Sie wird mit konstanter,
geglätteter Gleichspannung betrieben. Die Heizung ist stabilisiert.
Schwankungen der Hochspannung werden von Hand nachreguliert.

3. Der Kristalltrager.

Der Kristallträger soll folgenden Forderungen genügen:
1. Die Interferenzen (001) (symmetrische Reflexion an der Ebene

der Platte) und die Interferenzen (OfeO) und (MX))*) (symmetrische
Reflexion durch die Kristallplatte hindurch) müssen erzeugt werden
können, ohne dass Teile des Primärstrahls oder des abgebeugten
Strahls auf den Kristallträger fallen.

001)

(biro)

Ansicht scnhilt o-o

Kg. 3.

Konstruktion des Kristallträgers.

2. Die Temperatur des Kristalls muss genau gemessen werden
können.

3. Der Kristall darf mechanisch nicht geklemmt werden, er soll
sich frei ausdehnen können.

4. Es sollen elektrische Felder angelegt werden können.

*) (0&0) und (hOO) sind völlig gleichberechtigt, so dass wir im folgenden nur
noch von (OkO) sprechen.
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Die in Fig. 3 dargestellte Konstruktion erfüllt diese Forderungen
weitgehend. Der Kristall K ist ein wenig grösser als das
rechteckige Fenster des Kristallträgers aus Messing. Die versilberten
Broncefedern F, die auch als Spannungszuführungen dienen, halten
den Kristall durch leichten Druck fest. Die Auflagepunkte sind
so gewählt, dass keine Biegemomente auftreten, welche zur
Zwillingsbildung führen könnten15). Das Thermoelement ist unmittelbar
neben dem Kristall in eine Bohrung des Kristallträgers eingelötet.
Die ganze Einrichtung befindet sich in einem dickwandigen kupfernen

Hohlzylinder mit schlitzförmigen AI-Fenstern, der aussen eine
Heizwicklung trägt. Die Thermospannung wird mit einem
Kompensationsapparat gemessen.

Der Querschnitt des Primärstrahls wird so gewählt, dass er ganz
vom Kristall aufgefangen wird. Vor der Ionisationskammer I2 ist
ein System von gekreuzten Spalten angebracht, welches so justiert
wird, dass nur die zu untersuchende Interferenz in die Kammer
gelangt.

4. Die Justierung.

Am Umwandlungspunkt tritt eine sprunghafte Änderung der
Gitterkonstanten auf8)5). Der Oszillationsbereich des Kristalls wird
daher zum voraus so eingestellt, dass auch nach der Umwandlung
die Reflexionslage innerhalb des Oszillationswinkels liegt. Die
Verschiebung der Reflexionslage fälscht dann die Messung nicht, da
der Kristall mit konstanter Winkelgeschwindigkeit oszilliert. Die
Ionisationskammer I2 wird so justiert, dass sie auch die verschobene
Interferenz empfangen kann.

Der Oszillationsbereich wird durch Aufnahme der Reflexionskurve

festgelegt: Der Kristall wird durch die Reflexionslage
gedreht, und in jeder Winkelstellung wird die Intensität des
reflektierten Strahls gemessen. Die „Breite" der Reflexionskurven zeigt,
dass die Mosaikblöcke bei Zimmertemperatur nicht mehr als 2'
gegeneinander verdreht sind.

- 5. Die Anomalie der Reflexionskurven.

Nähert man sich dem Umwandlungspunkt, so verbreitert sich
die Reflexionskurve zuerst langsam, dann immer schneller. In
einem kleinen Temperaturintervall, das je nach Kristallindividuum
0,1° bis 1°C breit ist, beträgt die Breite der Reflexionskurve etwa
35', dann sinkt sie fast plötzlich wieder auf den ursprünglichen
Wert. Figur 4 zeigt eine Folge von Reflexionskurven, die bei stei-



184 Werner Känzig.

gender Temperatur aufgenommen wurden. Die bei einer festen
Kristallstellung reflektierte Intensität schwankt am Umwandlungspunkte

bei konstant gehaltener Temperatur auf und ab, als ob sich
der Kristall in heftiger Wellenbewegung befände. Die reflektierten

iiprc

122fie°C

12t27°C

12183°C

h H

Kg. 4.

Reflexionskurven (002) aufgenommen bei steigender Temperatur. Divergenz des

Primärbündels 5'. (Die Abstände zwischen den einzelnen Kurven sind willkürlich;
Strahlung: ix"a-Dublett von Mo.)

Spektrallinien sind unscharf und verdoppelt (Fig. 5). Es tritt noch
eine zweite Gitterkonstante auf. Der Kristall pendelt bereichsweise
zwischen der polarisierten und der unpolarisierten Phase hin und

121,50° C 121,72° C 121,75° C 122,01° C 122,50° C

Kg. 5.

Äa-Dublett vom oszillierenden Kristall in der Ordnung (004) reflektiert. Auf¬

genommen bei steigender Temperatur.
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her. Die Verbreiterung der Reflexionskurven ist aber bei den
niedrigen Ordnungen viel grösser, als den Schwankungen der
Gitterkonstanten entsprechen würde. Das bedeutet, dass sich der Kristall
vorübergehend in gegeneinander verdrehte Bereiche aufspaltet
(Zwillingsbildung).

6. Die Messung der Änderung des integralen Reflexionsvermögens mit
der Temperatur.

Zu Beginn der Messung wird die Intensität, die in die
Kompensationskammer fällt, durch einen Querspalt so eingestellt, dass die
Brückenschaltung im Gleichgewicht ist (Galvanometer stromlos).
Dann muss festgestellt werden, welcher prozentualen Änderung des

integralen Reflexionsvermögens eine bestimmte Abweichung des
Galvanometers von der Ruhelage entspricht. Bei den stärksten
Interferenzen kann diese Eichung mit AI-Filtern bekannter
Absorption erfolgen. Bei den schwächeren Reflexen muss die störende
Strahlung berücksichtigt werden, die neben der Bragg'schen
Interferenz in die Messkammer fällt :

1. Die temperaturunabhängige inkohärente Streustrahlung;
2. die diffuse thermische Streustrahlung;
3. reflektierte Strahlung aus dem kontinuierlichen Spektrum.

Der Anteil 1 an der Ionisation kann mit genügender Genauigkeit
bestimmt werden, indem die Ionisationskammer so verschoben
wird, dass der Interferenzstrahl gerade nicht mehr hineingelangt.
Der Anteil 2 ist in der Nähe der Reflexionslage am grössten und
kann daher nicht eliminiert werden. Der Fehler fällt aber nicht ins
Gewicht, da die thermische Streustrahlung sehr schwach ist gegenüber

der Bragg'schen Reflexion. Die Fehlerquelle 3 kann
weitgehend eliminiert werden, indem die Betriebsspannung der
Röntgenröhre unter der doppelten Anregungsspannung der Mo-K-Serie
gehalten wird.

Kleine Änderungen des integralen Reflexionsvermögens werden
aus der Abweichung des Galvanometers von der Nullage bestimmt.
Bei grossen Änderungen wird die Brücke durch bekannte AI-Filter
wieder annähernd ins Gleichgewicht gebracht. Dabei muss berücksichtigt

werden, dass auch die Störstrahlung durch die Filter
geschwächt wird.

Es wird bei sehr langsam laufender Temperatur gemessen. Eine
Korrektur infolge der endlichen Anzeigezeit des Elektrometers ist
dann nicht anzubringen. In der Nähe des Umwandlungspunktes
beträgt die zeitliche Temperaturänderung weniger als 1° C pro
Stunde.
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7. Die Messergebnissc.

Die Figuren 6, 7 und 8 zeigen die gemessene Abhängigkeit des

integralen Reflexionsvermögens von der Temperatur. Der Wert
bei Zimmertemperatur ist für alle Interferenzen willkürlich gleich

1 100 r
tar(08o)o 320°C280160 200 240

° =100 r
fürf06d)o 280°C200 240

9 100 r
für pSOJO mo 200 240 2B0°C

Ç =100
für l040lo 120 160 200 240 280°C

Ç =100
für (130)0 120 200 240 280°C

100

200 240 280 320°C

120 160 200 240 280 320°C

für (010)0 ~~*~40~

für 1)20} 0 40

Kg. 6.

Temperaturabhängigkeit des integralen Reflexionsvermögens für die Interferenzen
(OfcO). Der Wert bei Zimmertemperatur ist willkürlich gleich 100 gesetzt. Der

Abstand zweier Abszissen entspricht Art 100.

100 gesetzt. In Fig. 6 und Fig. 7 ist aus Gründen der Übersichtlichkeit

nur die Messung bei sinkender Temperatur eingezeichnet. Sie
unterscheidet sich von der Messung bei steigender Temperatur im
wesentlichen nur dadurch, dass die Anomalie am Umwandlungspunkt

infolge der thermischen Hysteresis verschoben ist (Tab. 1).
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Die auffallendsten Anomalien sind folgende:
a) Alle Interferenzen mit Ausnahme der hohen Ordnungen (00/)

zeigen ein scharfes Maximum des integralen Reflexionsvermögens.
Die Spitze fällt zusammen mit dem plötzlichen Abfall der
Dielektrizitätskonstanten7) und dem sprunghaften Anstieg der spontanen
Polarisation. Die entsprechende Temperatur wird im folgenden als
Umwandlungspunkt bezeichnet.

1=100
für (106) 0

9=100 r

240 2B0°C200120

fürfo05)0 40 80 160. 200 240 280°C

1=100
für Mo 120***^. 160 200 240 2B0°C

9 =100

für b03) 0 40 80 120~ 160'—~*ÜO'——^240 ^280°C

120 160 200 240 320°C

120 160 200-" 240 *^280

9 =100

tür(00l} 0

9=100
für IÒ02) 0

Kg. 7.

Temperaturabhängigkeit des integralen Reflexionsvermögens für die Interferenzen
(001) bis (006). Der Wert bei Zimmertemperatur ist willkürlich gleich 100 gesetzt.

Der Abstand zweier Abszissen entspricht Aq 50.

b) Die hohen Ordnungen (001) zeigen mit Ausnahme von (007)
am Umwandlungspunkt eine plötzliche Änderung des integralen
Reflexionsvermögens.

c) Die ungeraden hohen Ordnungen (001) zeigen etwa 10° C
unterhalb des Sprungpunktes eine weitere Anomalie in Form eines
gerundeten Buckels.

Die Anomalien a) und b) zeigen thermische Hysteresis (vgl.
Fig. 14). Beim Erwärmen des Kristalls machen sich ferner
Nachwirkungen der Umwandlung bei den niedrigsten Ordnungen
bemerkbar, indem in der kubischen Phase die Kurven für steigende
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Temperatur etwas über denjenigen für sinkende Temperatur liegen.
Erst etwa 100° über dem Ümwandlungspunkt fallen sie innerhalb
der Messgenauigkeit zusammen.

Um zu untersuchen, ob die plötzliche Änderung des integralen
Reflexionsvermögens der hohen Ordnungen (00/) den Charakter
einer Diskontinuität habe, wurde im Temperaturgebiet der
Umwandlung mit extrem langsam laufender Temperatur (bis 0,3° C

pro Stunde) gemessen. Fig. 8 a zeigt das Ergebnis für die Interferenz

1 100

fürfaof)

9= 100
fur

M
9= mo
für &0$

1= 100
türfxno) ^

120 160 200 320°C

Kg. 8

Temperaturabhängigkeit des integralen Reflexionsvermögens für die Interferenzen
(007) bis (0010). Der Wert bei Zimmertemperatur ist willkürlich gleich 100 gesetzt.
Der Abstand zweier Abszissen entspricht Aq 10. Die gestrichelte Kurve ent¬

spricht den Gitteränderungen nach Fig. 17 und Fig. 18.

(008) : Die Änderung ist nicht diskontinuierlich, sondern nur auf
ein kleines Temperaturgebiet zusammengedrängt. Die Spitzen des

integralen Reflexionsvermögens sind noch andeutungsweise
vorhanden. Auf die Spitzen folgt ein Minimum, das bei sinkender
Temperatur sehr scharf und tief ist.
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119.78° C

118 119 120 123 124

Fig. 8 a.

Verlauf des integralen Reflexionsvermögens für die Ordnung (008) im Temperaturgebiet

der Umwandlung. (Die Spitze des Minimums liegt bei sinkender Temperatur
bei q^. 68.) Der Wert bei Zimmertemperatur ist willkürlich gleich 100 gesetzt.

• steigende Temperatur ° sinkende Temperatur

III. Die Auswertung der Messungen.

Die spitzenförmige Anomalie des integralen Reflexionsvermögens
ist bei den niedrigen Ordnungen sehr hoch. Mit steigender Ordnungszahl

nimmt sie ab (Fig. 6, 7). Es kann sich deshalb nur um eine mit
laufender Temperatur (nicht zeitlich!) vorübergehende Extinktionsänderung

handeln. Die Interferenzen (00 /) werden von dieser weniger
beeinflusst als die Interferenzen (OfeO). Bei den hohen Ordnungen
(00 /) macht sich deshalb die Extinktionsanomalie fast nicht mehr
bemerkbar (Fig. 8). Die Änderungen im integralen Reflexionsvermögen

sind also hier vor allem durch Änderungen des Strukturfaktors*)

zu erklären. Diese sind nicht gross, so dass sie bei den
niedrigen Ordnungen (001) und bei allen untersuchten Ordnungen (OfeO)

gegenüber den Extinktionseffekten vernachlässigt werden können.
Es ist also möglich, die Änderung der Extinktion und die

Änderungen des Strukturfaktors getrennt zu diskutieren.

*) Unter dem Strukturfaktor verstehen wir im folgenden den für die thermische
Bewegung korrigierten Strukturfaktor.
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1. Die Anomalie der Extinktion.

Die Anomalie der Extinktion am Umwandlungspunkt sei
charakterisiert durch das Verhältnis des Spitzenwertes des integralen
Reflexionsvermögens q zum ungestörten Wert, der sich am besten
von der kubischen Phase her für die Umwandlungstemperatur
extrapolieren lässt. Dieses Verhältnis soll ausführlich diskutiert
werden :

Wir nehmen zuerst an, dass sich die BaTi03-Kristalle verhalten
wie reale Mosaikkristalle. Bei symmetrischer Reflexion an der
Oberfläche einer unendlich dicken Platte gilt dann:30)

wobei

Q-Th(pq)/pq
S 2(/t + g-Q-Th(pq)/pq) <¦ I

Q (^y.X>.N2.1 + ooal2n@ \F2\ (2)^ \ m c2 / 2 sin 2 © ' ' x '

p Anzahl der Netzebenen, die ungestört aufeinanderfolgen.

q Reflexionsvermögen einer solchen Netzebene.

Führt man die Dicke d der ungestörten Schicht, d. h. der Mosaikblöcke

ein, so wird:
„ „ 2 Q d2 cotg & ,ospsga _iL^ (3)

Es bedeuten:
N Anzahl der Elementarzellen pro cm3

0 Bragg'scher Winkel.
|.F|2 Strukturfaktor (korrigiert für thermische Bewegung).

/j, Linearer Absorptionskoeffizient des Kristalls.
g Darwinscher Sekundärextinktionsfaktor.
X Wellenlänge der einfallenden Strahlung.

Hat die Platte eine endliche Dicke t, so ist zu (1) noch ein Korrekturfaktor

a hinzuzufügen:

a jl_e sine } (4)

Der Faktor Th (pq)/pq trägt der Tatsache Rechnung, dass nicht
das ganze Volumen der Mosaikblöcke am Beugungsvorgang
teilnimmt (primäre Extinktion). Der Darwinsche o-Faktor
berücksichtigt, dass der Primärstrahl am Orte der tiefer liegenden Mosaikblöcke

durch Reflexion an parallel darüberliegenden Blöcken an
Intensität eingebüsst hat (sekundäre Extinktion), g hängt darum
eng zusammen mit dem gegenseitigen Verdrehungswinkel a der
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Mosaikblöcke. Für eine Gauss'sehe Winkelverteilung um eine
Vorzugslage gilt nach Ott31) :

2g\7i

g ist unabhängig von der Wellenlänge und von der Ordnungszahl.
Bei symmetrischer Reflexion durch eine Kristallplatte der Dicke

t hindurch gilt an Stelle von (1) :

Q. l/l(pq) .___l^.e cose gs
e * pq cos 0 v '

Es soll nun versucht werden, die vorübergehende Änderung von
q durch Änderungen von g und p zu erklären.

1. Ansatz: Nur die sekundäre Extinktion, d. h. der a-Faktor ändere.

Dieser Ansatz ist der nächstliegende, denn die Verbreiterung der
Reflexionskurve weist darauf hin, dass die Verdrehung der Mosaikblöcke

gegeneinander am Umwandlungspunkte vorübergehend
zunimmt. Nach (5) nimmt dann g ab, und q nimmt nach (1) und
(6) zu.

Sei qx der Spitzenwert des integralen Reflexionsvermögens und
q2 der ungestörte Wert*). Für die Interferenzen (OkO) gilt dann
nach (6) :

ln e±_ - (a __a \. n ¦
Th{pq) lln

Q2 ~^2 gV * pq cos©
woraus folgt

I \ _ oos ® i ä?i ct\

(g2 — gx) kann bestimmt werden : qx/q2 wird den Messungen (Fig. 6)
entnommen. Q lässt sich nach (2) mit genügender Genauigkeit
berechnen, indem die bekannten Atomlagen der kubischen
Phase1) in den Strukturfaktor eingesetzt werden. Die Korrektur
für die thermische Bewegung wird aus der Temperaturabhängigkeit
der hohen Ordnungen (00/) berechnet (siehe S. 201). Benützt man
nun die Beziehung (3), so lässt sich (g2 — gx) A g als Funktion
der Dicke d der Mosaikblöcke auftragen. Da g unabhängig von der
Ordnung k ist, so schneiden sich die Kurven für die verschiedenen
Ordnungen in einem Punkte, wenn der Ansatz 1 genügt. Fig. 9

zeigt, dass dies nicht der Fall ist.

*) Sinngemäss verwenden wir die Indizes 1 und 2 auch für g und später für p.
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Daraus darf aber noch nicht geschlossen werden, dass der
Ansatz 1 auch bei den Interferenzen (00/) versagt. Die Extinktion
braucht nicht isotrop zu sein, obwohl die Elementarzelle kubisch
ist. Der plattenförmige Habitus des Kristalls weist schon darauf
hin, dass die Mosaikblöcke nicht würfelig sein können. Der Ansatz 1

soll darum auch an den Beflexionen (001) nach demselben
Verfahren geprüft werden. Nach (1) gilt:

gl ß + g2QTh(pq)/pq
Q°. ft + ffiQTh(pq)/pq (8)

Die Korrektur für endliche Plattendicke kann vernachlässigt werden.

gx lässt sich nach (5) aus der Breite der Reflexionskurve
abschätzen. Die mittlere Verdrehung a der Mosaikblöcke ist am
Umwandlungspunkt am grössten (Fig. 4) und beträgt hier etwa 20',

(old) (oso) boi(001)

Ad-10
[020]

bea)

(003)

u 4 3 12 « 20 24 28 32fl

Fig. 9.

(<72-<7i) als Funktion von d, ber. nach (7).

8 12 « 20 24 28 32fJ

Fig. 10.

0/2 (d) berechnet nach (9).

was einem o-Wert von 49 entspricht. Q beträgt bei der stärksten
Interferenz (002) 77,2-10-3 cm-1. gxQ-Th (pq)/pq ist somit stets
kleiner als 3,8 cm-1 und kann gegen pt, das sich aus den
Atomabsorptionskoeffizienten zu 191 cm-1 berechnet, vernachlässigt
werden. Aus (8) wird somit:

H + g2QTh(pq)!pq
o2

Setzt man hier die gemessenen qJqz-Werte ein (Fig. 7), so lässt
sich mit Hilfe von (3) g2 als Funktion von d auftragen. Fig. 10 zeigt,
dass sich kein g2 und d finden lässt, das für alle Ordnungen gilt.
Der Ansatz 1 genügt also auch bei den Interferenzen (00/) nicht.
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Es muss darum auch eine Änderung der primären Extinktion
angenommen werden:

2. Ansatz: Die primäre und die sekundäre Extinktion ändern sich.

Wie oben gezeigt wurde, gilt am Umwandlungspunkt gxQ <P, pi,
d. h. die sekundäre Extinktion kann gegen die lineare Absorption
vernachlässigt werden. Wir nehmen nun als Extremfall an, dass

am Umwandlungspunkt auch die primäre Extinktion praktisch
verschwinde, d.h. dass pxq<p.l und somit Th (pxq)/pxq==\l- Für
die Interferenzen (OkO) gilt dann nach (6):

Th(p2q)ln-£i-=~ln
02 ui ^ cos©

(10)
p2q

' "' " costs) p2q x '

g2 lässt sich auch hier als Funktion der Dicke d der Mosaikblöcke
darstellen. Fig. 11 beweist, dass auch der zweite Ansatz nicht

<Jy10-J

-25T-—fe*2fa^
oT35

32jl

Fig. 11.

g2 (d) berechnet nach (10).
Fig. 12.

(d) berechnet nach (11).

genügt. Nimmt man an, dass am Umwandlungspunkt die primäre
Extinktion nicht ganz verschwinde, so erhält man alle Zwischenstufen

zwischen Ansatz 1 und Ansatz 2. Nie aber schneiden sich
die Kurven g2 (d) auch nur andeutungsweise in einem Punkt. Die
üblichen Formeln für den realen Mosaikkristall versagen also bei den
Interferenzen (OkO).

Für die Interferenzen (001) gilt nach (1) für den Ansatz 2:

gi
62

1

Th(p2q)/p2q
ri + g2-Q-Th(p2q)/p2q

(11)

Fig. 12 zeigt, dass hier annähernd ein gemeinsamer Schnittpunkt
der Kurven g2 (d) existiert bei d2 3,6 pt und g2 <p. 103. Ausserhalb

13
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der Anomalie beträgt also die mittlere Ausdehnung der ungestörten
Gitterbezirke in der [001]-Richtung 3,6 pi. Am Umwandlungspunkt
verfeinert sich die Einteilung in ungestörte Bezirke vorübergehend
so weit, dass die primäre Extinktion vernachlässigt werden kann,
d. h. es wird pxq <p 1. Nach (3) kann damit eine obere Grenze für
die Lineardimension dx in der [001]-Richtung dieser „feineren
Mosaikblöcke" angegeben werden. Man erhält dx < 10~5 cm. g2 <^ 103

bedeutet, dass sich die sekundäre Extinktion auch ausserhalb der
Anomalie nicht bemerkbar macht, indem gx-Q-Th (p2q)/p2q -p. pt.
Für die Anomalie der Reflexionen (00/) gilt somit nach (11):

P1- î (121
Q2 Th(p2q)/p2q v >

Tabelle 2 zeigt, dass die mit d2 3,6 pi berechneten qx/q2-Werte
mit den beobachteten Anomalien gut übereinstimmen. Ausserhalb

Tabelle 2.

Vergleich der nach (12) berechneten gj/gj-Werte mit den experimentellen Werten.

(hkl) (001) (002) (003) (004) (005) (006) (007) (008) (009) (0010)

QilQt ber.

QiIQî exP-

3,04
3,0

3,96
4,0

1,17
1,25

1,35
1,35

1,02
1,03

1,05
1,04

1,00
1,00

1,01

1,00
1,00
1,00

1,00
1,00

der Anomalie ist also das integrale Reflexionsvermögen der Inter
ferenzen (00/) gegeben durch:

_ Q-Th(p2g)lp2q
02 - 2Pi (13)

3. Ansatz: Umwandlung vom Idealkristall in den vollkommenen
Mosaikkristall.

Der Ansatz 2 beschreibt die Anomalie der Interferenzen (00/) gut.
Für die Interferenzen (OfcO) genügt aber keine der Näherungen,
die vom Mosaikkristall ausgehen. Wir werden zeigen, dass sich der
Kristall für diese Interferenzen ausserhalb der Anomalie nahezu
wie ein Idealkristall verhält und sich am Umwandlungspunkt
vorübergehend dem vollkommenen Mosaikkristall nähert. Die Rechnung

soll wieder für beide Interferenztypen (OfcO) und (00/),
durchgeführt werden.

Es ist also das integrale Reflexionsvermögen des absorbierenden
Idealkristalls zu vergleichen mit demjenigen des absorbierenden
vollkommenen Mosaikkristalls :

a) für symmetrische Reflexion durch die Platte hindurch (OfcO),
b) für symmetrische Reflexion an der Plattenoberfläche (00/).



Über die Seignetteelektrizität von Bariumtitanat. 195

Für den vollkommenen Mosaikkristall gelten die Formeln (1)
und (6) mit Th (pq)/pq 1 und g ^ 0.

Für den Idealkristall ist der Fall b) zuerst gerechnet worden von
Prins32). Waller rechnete den Fall a) durch für verschwindende
lineare Absorption33). Er findet, dass das integrale Reflexionsvermögen

bei nicht zu kleiner Plattendicke im Falle a) halb so gross
ist wie im Falle b). Als grobe Näherung dürfte dies auch noch für
den absorbierenden Kristall gelten, solange die dynamische
Absorption (Extinktion) beträchtlich grösser ist als die lineare
Absorption. Dies ist erfüllt für alle Ordnungen (OfcO) bis auf (070) und
(090), die wir von unseren Betrachtungen ausschliessen. Die
Korrektur für endliche Plattendicke ist belanglos für unsere Kristalle.
Es ist also nur der Fall b) durchzurechnen für den Idealkristall.
Durch Halbieren gelangt man dann zum Fall a).

Zur Abschätzung des integralen Reflexionsvermögens des
absorbierenden Idealkristalls eignet sich die Darstellung der Prins'-
schen Formel von James30) :

_
2 Pò F(2 0)

Q ~ "sTnTeT '
F(ö)

1 +
%B

H
A ± yVf^faiB\2

À2 e2

2 Time2 ¦N-Zh(0)1—ô Realteil des Brechungsindex: öl
P Polarisationsfaktor:

P 1, wenn elektrischer Vektor senkrecht zur Einfallsebene.
P cos 2@, wenn elektrischer Vektor parallel zur Einfallsebene.

F Strukturamplitude.
ß p/é 7two/n linearer Absorptionskoeffizient.

B und A lassen sich leicht berechnen für das zentrosymmetrische
Gitter (kubische Phase) unter der Annahme, dass die lineare
Absorption durch annähernd punktförmige Atome (K- Schale) erfolge.
Für Titan und Sauerstoff ist dies praktisch erfüllt, da die Wellenlänge
der einfallenden Strahlung (0,71 Â) bedeutend kleiner ist als
diejenige der iT-Kanten (2,48 Â und 23 A). Für Ba (XK 0,33 Â) trifft
dies nicht zu, was aber für eine rohe Abschätzung nicht
schwerwiegend ist. Es gilt dann:

A + iBç^P-
/n„(0)

*Ba + *ABa

-MTi//Ti(2©)-MT,/lTp^ W) \ -MoT n -MoTT\ //„(2 0) s -fa±e (rjrpw,ô^+%N+(e ±2e )nb) -0°+%ß,
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Das obere Vorzeichen gilt für die geraden, das untere für die
ungeraden Ordnungen.
ft Streufaktoren der Ionen (aus Int. Tab. zur Bestimmung von Kristallstruk¬

turen), korrigiert für die Dispersion der if-Elektronen nach Hönl30).
Annähernd gilt ferner für alle Atome:

A2e2A
0,354-10-7

ft(0) — 2 nmc2
eM* Debyefaktoren der einzelnen Ionen bestimmt nach S. 201.

ßi Beitrag der einzelnen Ionen zu ß X /t/4 n.

Die Integrale werden graphisch ausgewertet.
Tabelle 3 enthält das berechnete Verhältnis der integralen

Reflexionsvermögen von Mosaikkristall und Idealkristall für den Fall
a). Zum Vergleich ist die beobachtete Anomalie qx/q26XV aufgeführt.
Die Übereinstimmung ist befriedigend, ausgenommen bei der
niedrigsten Ordnung. Der Ansatz 3 beschreibt die Anomalie der
Extinktion bedeutend besser als die übrigen Ansätze. Wie weit die
verhältnismässig grosse Diskrepanz bei der Ordnung (010) den
Unzulänglichkeiten der Näherung zuzuschreiben ist, kann nicht
abgeschätzt werden.

Tabelle 3.

(KM) (010) (020) (030) (040) (050) (060) (070) (080)

qJQì ber.
QilQi exP-

4,0
-,1

8,7
10,5

3,0
4,2

5,0
5,5

2,2
2,2

3,2

3,0
1.7 2,2

2,0

Für den Fall b) (Interferenzen (00/)) ist die beobachtete und die
berechnete Anomalie in Tabelle 4 verglichen. Die theoretische
Abnahme mit steigender Ordnungszahl erfolgt viel zu langsam. Die
Näherung (12), die vom Mosaikkristall ausgeht, ist hier viel besser.

Tabelle 4.

(hkl) (001) (002) (003) (004) (005) (006) (007) (008) (009) (0010)

öi/gs ber.

qJq2 exp.

2,9

3,0
6,5

4,0
2,3

1,25
3,8
1,35

1,7

1,03
2,6
1,04

1,4
1,00

2,1

1,00
1,2

1,00
1,5

1,00

Zusammengefasst lautet das Ergebnis der Untersuchungen über
die Anomalie der Extinktion:

1. Das scharfe Maximum des integralen Reflexionsvermögens am
Umwandlungspunkt ist durch eine mit laufender Temperatur (nicht
zeitlich!) vorübergehende Abnahme der primären Extinktion zu
erklären.
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2. Am Umwandlungspunkt verhält sich der Kristall für alle
Interferenzen wie ein vollkommener Mosaikkristall, indem die
Extinktion praktisch verschwindet.

3. Für die Interferenzen (00/) verhält sich der Kristall ausserhalb

der Anomalie wie ein realer Mosaikkristall mit der mittleren
Blockgrösse 3,6 pi, für die Interferenzen (OfcO) annähernd wie ein
Idealkristall.

4. Aus den Figuren 6 und 7 kann man ferner noch entnehmen,
dass in der kubischen (unpolarisierten) Phase und in der tetrago-
nalen (polarisierten) Phase die Extinktion gleich ist.

Die Erklärung dieser Extinktionsverhältnisse erfolgt im nächsten
Kapitel.

2. Diskussion der Anomalien der Extinktion.
Sehwankungserscheinungen.

a) Die Extinktionsverhältnisse im Temperaturgebiet ausserhalb der
Spitze des integralen Beflexionsvermögens.

Die Interferenzen (OfcO) und (00/) verhalten sich hier hinsichtlich
der Extinktion verschieden: Bildlich gesprochen folgen die
Netzebenen (OfcO) in ungestörter Periodizität aufeinander, so dass
annähernd die Theorie des Idealkristalls (Prins'sche Formel) zuständig
ist. Gestört ist aber die Abfolge der Netzebenen (00/). Die Mosaikblöcke

sind also plattenförmig. Die Dicke der Platten beträgt im
Mittel 3,6 pt. Diese Schichtung des Kristalls hängt wahrscheinlich
zusammen mit anisotropen Wachstumsbedingungen in der Schmelze
(unverzwillingte Plättchen findet man meistens an der Oberfläche),
die im Verlaufe des Kristallisationsprozesses schwankten. Der
plättchenförmige Habitus lässt sich nur auf diese Weise erklären,
da sich der Kristall in der kubischen Phase bildet. Auch die
Bevorzugung der Plättchennormalen als Polarisationsrichtung wird damit
verständlich.

In der tetragonalen Phase bestehen die unverzwillingten Kristalle
aus parallel und antiparallel polarisierten Bezirken6). Aus der Gleichheit

der Extinktion in der unpolarisierten und in der polarisierten
Phase folgt, dass diese Bezirke identisch sind mit den oben
diskutierten ungestörten Gitterbereichen (Mosaikblöcken). Würden diese
nämlich beim Eintreten der spontanen Polarisation noch weiter
unterteilt in parallele und antiparallele Bezirke, so wäre die
Extinktion in der polarisierten Phase kleiner als in der unpolarisierten
Phase. Dies wird aber nicht beobachtet. Damit wird auch verständlich,

dass die Extinktion in allen Punkten der dielektrischen Hy-
steresiskurve gleich ist7).
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b) Die vorübergehende Extinktionsänderung am Umwandlungspunkt.

Am Umwandlungspunkt wird die Periodizität des Gitters so stark
gestört, dass die Extinktion verschwindet. Die Mosaikblöcke werden
scheinbar in kleinere Blöcke aufgeteilt. Sie „heilen" aber wieder
zusammen. Der Gitterzusammenhang ist also nicht zerstört worden.
Es handelt sich somit nicht um ein Aufbrechen der ursprünglichen
Kristallite, sondern um inhomogene Verzerrungen innerhalb
derselben. Solche Störungen lassen sich durch Schwankungserscheinungen

erklären, die in der Nähe des Umwandlungspunktes
auftreten. Auf Grund der phänomenologischen Theorie von
Devonshire17) sind Schwankungen zu erwarten:

im123.B C

r,f120.S C

T.1110 C

Fig. 13.

Freie Energie A als Funktion des Quadrates der Polarisation P, berechnet nach

Devonshire17). Die Temperaturangaben entsprechen ungefähr dem Kristall Nr. 2.

Wir tragen die Freie Energie A eines bestimmten (kurzgeschlossenen)

Kristallvolumens auf als Funktion des Quadrates der
Polarisation P. Parameter sei die Temperatur T (Fig. 13). Im
Gleichgewichtszustand ist die Freie Energie minimal. Bei hohen
Temperaturen ist der Kristall also im unpolarisierten Zustand B. Bei
T Tx sind die Freien Energien der Gleichgewichtszustände für
die unpolarisierte Phase (23) und für die polarisierte Phase (C)
gleich gross. Zwischen dem polarisierten und dem unpolarisierten
Zustand liegt aber noch ein relatives Maximum D, welches erst bei
der tieferen Temperatur T0 verschwindet. Wenn es keine Schwan-
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kungen gäbe, so würde bei sinkender Temperatur der unpolarisierte
Kristall erst bei T0 in den polarisierten Zustand E übergehen.
Umgekehrt würde sich bei steigender Temperatur der polarisierte
Kristall erst bei der Temperatur T2 entpolarisieren (horizontale
Wendetangente in F). Die thermische Hysteresis wäre also T2 — T0.
Setzen wir die numerischen Daten ein, die Devonshire verwendet,
so entspricht dies einem Temperaturintervall von etwa 13° C. Am
Kristall Nr. 1 wurde aber eine thermische Hysteresis von nur
1,25° C und am Kristall Nr. 2 eine solche von 1,97° C beobachtet.
Die Umwandlung findet somit in unmittelbarer Nähe der Temperatur

Tx statt. Es müssen also Schwankungen angenommen werden,
welche die Überwindung des relativen Maximums D ermöglichen.
Diese Schwankungen bestehen in einemHin- und Herpendeln kleiner
Volumelemente zwischen der polarisierten und der unpolarisierten
Phase/Infolge des Piezoeffektes treten erhebliche Schwankungen
der Gitterkonstanten auf. Auch vorübergehende Zwillingsbildung
ist möglich. Dies erklärt die Abnahme der Extinktion, die Verbreiterung

der Reflexionskurve und die Veränderungen des
reflektierten Bündels.

Die Verdoppelung des reflektierten iïa-Dubletts weist darauf hin,
dass die Volumelemente zwischen zwei scharf definierten
Zuständen (B und C) hin- und herspringen, ohne in Zwischenzuständen
zu verweilen. Eine obere Grenze für die Lineardimensionen dieser
Gebiete ist zu 10~5 cm abgeschätzt worden (S. 194). Aus der
Verbreiterung der reflektierten Spektrallinien kann auf eine untere
Grenze von etwa 10~6 cm geschlossen werden.

Die einzelne Umwandlung eines solchen Volumelementes von der
unpolarisierten in die polarisierte Phase ist diskontinuierlich. (Wir
sprechen daher im folgenden von einem „sprunghaften" Teil der
Phasenumwandlung im Gegensatz zu den kontinuierlichen
Änderungen, die in der tetragonalen Phase noch stattfinden.) Für den
Makrokristall ist aber der Polarisationsverlauf nicht von der Form
einer scharfen Stufe, da die Umwandlung der einzelnen Volumelemente

hin- und hergeht und nicht gleichzeitig erfolgt.
Bei den hohen Ordnungen (00/) sind die Änderungen des

integralen Reflexionsvermögens in der Hauptsache durch den Strukturfaktor

bedingt. Während der Umwandlung misst man einen Mittelwert

über polarisierte und unpolarisierte Volumelemente, so dass
die Änderung der reflektierten Intensität nicht diskontinuierlich ist
(Fig. 8 a). Als Ursache des scharfen Minimums nach der Spitze wird
folgendes vermutet : Die Netzebenen werden in einem kleinen
Temperaturbereich durch die Schwankungen so stark aufgerauht (ahn-
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lieh wie durch die Temperaturbewegung), dass das Reflexionsvermögen

abnimmt. Dass dieser Effekt bei steigender Temperatur
viel weniger ausgeprägt ist als bei sinkender Temperatur, könnte
vielleicht damit erklärt werden, dass die Zustände B und C (Fig. 13)
nicht symmetrisch liegen bezüglich D.

L-(97<M
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Fig. 14.
Thermische Hysteresis der Umwandlung. Links: Kristall mit kleiner Leitfähigkeit.

Rechts: Kristall mit grosser Leitfähigkeit.

Fig. 14 zeigt, dass der Kristall mit der grösseren Leitfähigkeit die
kleinere thermische Hysteresis aufweist. Dieser Effekt lässt sich
auf zwei Arten deuten:
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1. Die Schwankungen der Polarisation im Innern des Kristalls
sind mit dem Auftreten von Raumladungen verknüpft, welche den
Schwankungen entgegenwirken. Im leitenden Kristall ist
wahrscheinlich der Ausgleich der Raumladungen bereits merklich. Die
Schwankungen werden dadurch weniger gehemmt, und die
Umwandlung findet näher bei der Temperatur Tx statt*).

2. Die Fehlstellen, welche die hohe Leitfähigkeit hervorrufen,
wirken bei der Umwandlung als „Keime" und begünstigen dieselbe.

Die kleinere Anomalie qx/q2 weist ferner darauf hin, dass der
besser leitende Kristall aus kleineren Mosaikblöcken besteht.

3. Die Temperaturabhängigkeit des integralen Reflexionsvermögens
in der kubischen Phase.

Die Abnahme des integralen Reflexionsvermögens mit steigender
Temperatur verläuft in der kubischen Phase T > 120° C ohne
Anomalie. Es wird daher versucht, mit der bekannten Debye-Waller'-
sehen Theorie den Temperaturfaktor und die mittleren thermischen
Verschiebungsquadrate zu berechnen.

a) Interferenzen (001).
Das integrale Reflexionsvermögen q ausserhalb der Extinktionsanomalie

ist für die Interferenzen (00/) darstellbar durch:

e=Q.Th(pq)/pq {aiehe geite 194) (13)

Der Extinktionsfaktor Th (pq)/pq nimmt zu, wenn Q abnimmt
(vgl. (3) S. 190). Die Abnahme von q ist darum stets kleiner als

diejenige von Q. Für / > 5 hat sich aber Th (pq)/pq dem oberen
Grenzwert 1 schon so weit genähert, dass die Temperaturabhängigkeit

von o gleich derjenigen von Q ist. Diese lässt sich für ein
einatomiges kubisches Gitter darstellen durch den Faktor e~2M, wobei30)

2M ^(h2A-lP + l2)-{ßT + AvjT + ±A----) (14)

mit
n An2 n2

a _ ^_§P_ (.*,,P~ mhB02 ' 12 mkB' Ì2Ò0 mkB
^ '

a Gitterkonstante, m Masse der Atome, kB Boltzmannkonstante, 0: um
wenige % grösser als die Charakteristische Temperatur in der Debye'sehen Theorie

der spezifischen Wärme. Die Entwicklung gilt für T > 0/2 n.

*) Die entsprechende Erscheinung am Makrokristall ist unter dem Namen
„Luftspalteffekt" bekannt: Ein kurzgeschlossener seignetteelektrischer Kristall
lässt sich am Umwandlungspunkt sehr leicht deformieren, der isolierte Kristall
hingegen bleibt hart (vgl. etwa 34).
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Aus (14) folgt für zwei verschiedene Temperaturen Tx > T2 :

In Oi/Oi
h2 + k2 + l2

2(MX-M2) _ 4n2
12 + W+W ~ ~aF

ß(Tx-T2)A-y
1

+ à(=^- (16)

Für ein Gitter mit Basis sind die Streufaktoren ft der einzelnen
Ionen mit individuellen Temperaturfaktoren e~M* zu multiplizieren.
Die M-Werte der einzelnen Gitterbausteine sind aber selbst bei
erheblichen Massenunterschieden nicht stark verschieden, wie die
Erfahrung zeigt35), so dass für die Temperaturabhängigkeit der
Q-Werte annähernd eine Entwicklung der Form (14) gilt Für
Interferenzen mit verschiedenartig zusammengesetzter Strukturamplitude

sind nun aber die ß-Werte verschieden. Die Glieder mit y und ô

sind nur kleine Korrekturen, so dass keine Unterscheidung
notwendig ist. Bei BaTi03 sind für die geraden und ungeraden
Ordnungen (00/) verschiedene ß-Werte zu erwarten.

Tabelle 5.

Experimentell bestimmte Werte von -
für T,

laQJQi
h2 + k2 + l2

¦103

(hkl) (005) (006) (007) (008) (009) (0010)
Mittelwert

l gerade [ l ungerade

^QJQi 103
h2+k2 + l2

6,78 7,14 6,92 7,32 6,75

1
1

7,18 7,2
'

6,8
|

Die rechte Seite der Gleichung (16) ist unabhängig von der
Ordnung (hkl). Wenn die Debye-Waller'sehe Theorie anwendbar
sein soll, dann müssen die experimentell bestimmten Werte von

Iniq I (h2 + k2 + l2) unabhängig von (hkl) sein. Tabelle 5 zeigt, dass

dies für die geraden Ordnungen (00/) unter sich und für die
ungeraden Ordnungen (00/) unter sich gut erfüllt ist. Die Berechnung
der Koeffizienten ß, y und ô ist also sinnvoll :

Eine erste Näherung für ß gewinnt man aus (16), indem man die
Glieder mit y und ô vernachlässigt. Aus (15) ergibt sich dann ein
roher (9-Wert, indem für m die mittlere Masse der Atome
eingesetzt wird. Man erhält 0 ~ 430° K. Die Entwicklung (14) ist
damit im betrachteten Temperaturbereich gerechtfertigt, y und ô

werden aus (15) abgeschätzt, indem ebenfalls die mittlere Atom-
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masse eingesetzt wird. Man erhält y ^ 0,086 -10~16 cm2 grad, ô ^
—1,4-10-14 cm2grad3. Mit diesen Werten bekommt man aus (16)
die genaueren ß-Werte:

/ gerade ßg 1,64-10-21 cm2grad_1,

/ungerade ßu 1,55-10-21 cm2grad_1.

Damit lässt sich der Temperatureinfluss für alle Ordnungen (00/)
berechnen.

Aus den beiden verschiedenen ß-Werten lassen sich näherungsweise

individuelle Temperaturkorrekturen für die Streufaktoren der
einzelnen Ionen herleiten:

Die Interferenzen (00/) werden nur durch die Komponenten der
thermischen Schwingungen in der [001]-Richtung geschwächt. Bei
der Betrachtung der Schwingungen in der [001]-Richtung sind vier
Ionensorten zu unterscheiden (vgl. Fig. 1): Ti, Ba, 0T und On.
Die beiden ß-Werte erlauben aber nur die Berechnung von zwei
individuellen Temperaturkorrekturen e~M. Für Ba und Ti lassen
sich diese berechnen, wenn über die Schwingungen des verhältnismässig

schwach streuenden Sauerstoffes geeignete Annahmen
gemacht werden:

Vereinfachend teilen wir den Kristall ein in zwei Sorten von
schwingenden Ketten parallel der [001]-Richtung:

1. Kette: Ti — 0T — Ti — 0T —

2. Kette : Ba — f On — Ba — f- On — •••. vgl. Fig. 1.

Erfahrungsgemäss unterscheiden sich die individuellen Temperaturfaktoren

der verschiedenen Glieder einer solchen Kette selbst bei
erheblichen Massenunterschieden nicht sehr stark35). Wir setzen
daher MTi M0 und MBa M0 Da Sauerstoff wesentlich
schwächer streut als Ti und Ba, so hat diese Gleichsetzung keinen
entscheidenden Einfluss auf das Endergebnis. Damit erhalten wir
folgende Strukturamplituden: .¦

/ gerade :

K (/ti + fox) e-U™+ (/Ba + 2 /0lIj e~M^= A e^'"+ Be~M»» (17)

/ ungerade:

Fu (U-fox) e-M™-(fm- 2 /0lI) e-MBa C e-?*~D e~M**
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MBaund MTl sind nicht sehr verschieden, so dass MTi MBa (1 + e)

mit e -p 1. Damit wird:

1 + __.e,afBa
Fg^(A+B)e

und FuS*(C-D)e {^-C-B ''«B»
(18)

Die Streufaktoren / und die M-Werte denken wir uns im folgenden
für einen ganz bestimmten Streuwinkel 2 0 eingesetzt. Die
Exponenten in (18) sind den experimentell bestimmten M-Werten für
gerade und ungerade Ordnungen gleichzusetzen. Die beiden
Unbekannten e und MBa (und damit auch MTi) können also berechnet
werden. MTi und MBa hängen mit den mittleren Verschiebungsquadraten

u2 der Schwingungen in der [001]-Richtung zusammen
durch :

MJ— *) (19)
¦ l2

U; 2n2

Die numerische Durchrechnung ergibt:

120° C**) 311,5° C

i u2Ti 0,084 À

0,081 Â

0,101 Â

0,098 Â

Die Amplitude des Ti-Ions ist nur wenig grösser als diejenige des
schwereren Ba-Ions. Es ist also anzunehmen, dass das Ti-Ion im
Oktaeder keine besonders grosse Verschiebbarkeit besitzt, sondern im
Gegenteil sehr fest gebunden ist. Die früher viel diskutierte Hypothese

des „rattling atom" ist also nicht zutreffend.

Wenn man sich mit sinkender Temperatur dem Umwandlungspunkt

nähert, so lässt sich keine Anomalie in den Amplituden
feststellen, bevor die Umwandlung eintritt. Die zunehmende Neigung
des Gitters zur Selbstpolarisation beeinflusst die thermischen Schwingungen

nicht merklich.

*) Das mittlere Amplitudenqu&dTeit ist doppelt so gross wie das mittlere Ver-

schiebungsq\mdra,t.

**) Knapp oberhalb der Umwandlungstemperatur.



Über die Seignetteelektrizität von Bariumtitanat. 205

b) Interferenzen (OkO). r

Infolge der kubischen Symmetrie gelten die Strukturamplituden
(17) auch für die Interferenzen (OfcO). Eines der beiden On-Ionen
wird einfach zu einem 0T-Ion und umgekehrt. Die
Temperaturabhängigkeit des integralen Reflexionsvermögens ist aber durch
die dynamische Theorie gegeben, im Grenzfall verschwindender
Absorption durch e~M statt durch e~2M. Für den absorbierenden
Idealkristall liegt der Temperaturfaktor für das integrale Reflexionsvermögen

zwischen diesen Extremwerten und muss mit der Prins'-
schen Formel berechnet werden. Die Rechnung wurde für die
Interferenz (080) durchgeführt, indem die oben bestimmten Werte für
MBa und MTi zugrunde gelegt wurden. Für das Verhältnis der
integralen Reflexionsvermögen bei 120,0° C und 311,5° C ergibt
sich der theoretische Wert 1,39. Experimentell wurde 1,36
gefunden*). Die gute Übereinstimmung bestätigt, dass für die
Interferenzen (OfcO) die dynamische Theorie gilt. Die Theorie des
Mosaikkristalls ergäbe den stark abweichenden Wert 1,59.

4. Die Änderungen des Strukturfaktors beim Eintreten der spontanen

Polarisation und in der tetragonalen Phase.

Die höheren Ordnungen (00 /) werden von den anomalen
Extinktionseffekten fast nicht mehr beeinflusst. Die beobachteten
Änderungen des integralen Reflexionsvermögens (Fig. 8) sind darum
proportional zur Änderung von Q**). Diese setzt sich im wesentlichen

aus drei Anteilen zusammen :

1 + cos2 2 0
1. Änderung des Winkelfaktors a -—-—-^ - infolge der Aus-& sin 2 0 b

dehnung des Gitters in der [001]-Richtung beim Eintreten der
spontanen Polarisation: Dieser Anteil kann berechnet werden aus der
bekannten Änderung der Gitterkonstanten8). Aaja ist für die
betrachteten Interferenzen durchwegs kleiner als 2%.

2. Änderung der Anzahl N der Elementarzellen pro cm3: Das
Volumen der Elementarzelle ändert sich bei der Umwandlung so

wenig5), dass hierfür keine Korrektur notwendig ist.

*) Der ungestörte Wert des integralen Reflexionsvermögens bei 120,0° C wird
von der kubischen Phase her extrapoliert (Fig. 6).

**) Von der Anomalie im schmalen Übergangsgebiet zwischen den beiden
Phasen sehen wir hier ab (Fig. 8a) und behandeln die Änderungen am
Umwandlungspunkt als sprunghaft.
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3. Änderung des Strukturfaktors |F|2 : Dieser Anteil ist am
wichtigsten. Er kann zerlegt werden in:

a) Änderung der Streufaktoren / der Ionen ;

b) Änderung der Lage der Ionen;
c) Änderung der Temperaturfaktoren e~M.

Da die Umwandlung rein piezoelektrisch-dielektrischer Natur ist6),
so sind keine tiefgreifenden Änderungen der chemischen Bindung
zu erwarten. Die Streufaktoren der Ionen werden darum als
konstant angenommen. Es werden die Werte der Internationalen
Tabellen zur Bestimmung von Kristallstrukturen verwendet. Die
Korrekturen, die infolge der Dispersion der i£-Elektronen
anzubringen sind, betragen nach Hönl30): für Ti4+:Zl/ 0,26 + i-0,41,
für Ba2+: Af 1,29, für O2-:zl/=0.

Die hohen Ordnungen reagieren besonders empfindlich auf b) und
auf c). Es soll versucht werden, die beobachteten Änderungen von
|F|2 zu zerlegen in die Anteile ò und c, um daraus die Änderungen
der thermischen Amplituden und der Atomkoordinaten zu gewinnen.

Eine solche Zerlegung ist im allgemeinen ohne Willkür nicht
möglich. BaTiOg stellt jedoch einen besonders günstigen Fall dar,
indem die Zahl der in Frage kommenden Freiheitsgrade für die
Koordinatenänderungen sehr beschränkt ist.

Alle Änderungen von |F|2 werden im folgenden auf den bekannten
Wert für die kubische Phase bei 120° C bezogen. Das Gitter hat
hier die Raumgruppensymmetrie O^/Pm 3m mit folgender Besetzung

der Punktlagen :

Ti in (0, 0, 0)

Ba in (J, l, 1)

0T in (0,0,1), On in (0,1,0) und (h 0, 0)

Die Unterscheidung von 0T und On ist zunächst willkürlich und
erfolgt darum, weil wir nur die thermischen Schwingungen in der
[001]-Richtung betrachten und diese Richtung später als
Polarisationsrichtung auszeichnen.

Tritt die spontane Polarisation ein, so sind nur Parameteränderungen

in der [001]-Richtung zu erwarten. Welche Ionen werden sich
verschieben? Einen Anhaltspunkt darüber geben die Berechnungen

des Lorentz'schen inneren Feldes, welche zeigen, dass dieses im
polarisierten Kristall am Orte der 0T- und der Ti-Ionen ausserge-
wöhnlich hohe Werte annimmt in der Polarisationsrichtung19)20)21).
Es ist also eine Verschiebung dieser Ionen zu erwarten, und
zwar in entgegengesetzter Richtung, entsprechend dem Vorzeichen
der Ladung. Die gittertheoretischen Berechnungen von Devon-



Über die Seignetteelektrizität von Bariumtitanat. 207

shire17) ergeben zudem eine grosse Verschiebbarkeit der OrIonen
in der [001]-Richtung.

Die Basis des tetragonalen, polarisierten Kristalls schreiben wir
in der Form:

Ti in (0, 0, zTi)
Ba in (f, 1, 1) unverändert
0T in (0,0, i-z0)
On in (0, 1, 0) und (1, 0, 0) unverändert.

Die Raumgruppensymmetrie dieser Anordnung ist CIJP 4 mm.
Mit den Parametern z werden sich aber auch die mittleren

thermischen Verschiebungsquadrate ~u2 ändern. Vereinfachend nehmen
wir wieder für die Schwingungen in der [001]-Richtung an, dass
MTI M0l und MBa M0u, d.h. nach (19) Wh lP0l und ^a ü0n

J F fnormiert
F | normiert

(0010)

n=o
(009)

140

15°C
0=0

120

100

08 A.04 .02 .04 .05

Fig. 15.

Abhängigkeit des Strukturfaktors I-FI2 von den Ionenverschiebungen z0 wzTi
für die Interferenzen (009) und (0010). Für unverschobene Ionen ist \F\2 zu hundert
normiert. Die gestrichelte Kurve wird im kontinuierlichen Teil der Phasenumwand¬

lung durchlaufen.

(vgl. S.203). Die Abweichungen von den bekannten Werten für die
kubische Phase bei 120° C (siehe S. 204) seien mit A u%x und A w|a
bezeichnet. Das Verfahren zur gleichzeitigen Bestimmung der 4
Unbekannten zTl, z0, m|} und zt|a sei im folgenden beschrieben:

Nehmen wir an, die Verschiebung des OrIons sei n-mal grösser
als diejenige des Ti-Ions, d. h. z0 nzTl. Wir tragen nun \F\2 auf
als Funktion von zTi für verschiedene n-Werte, indem die
bekannten Temperaturfaktoren für die kubische Phase zugrunde ge-
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legt werden. Für jede Ordnung (00/) erhält man so eine Kurvenschar.

Diese Scharen (n- Scharen) sind sehr verschieden für gerade
und ungerade Ordnungen, wie Fig. 15 am Beispiel (009) und (0010)
zeigt. Im Verlaufe des Polarisationsprozesses durchläuft |F|2 eine
bestimmte Bahn in der Ebene dieser Scharen. Gleichzeitig ändern
sich aber die thermischen Schwingungen. Es ist noch eine Korrektur

A\F\2 anzubringen. Für eine vorgegebene Änderung der mittleren

Verschiebungsquadrate lässt sie sich nach (19) berechnen.

A\F\"*>

r=Q3

-io-

io-

Aul
10 20 30 40 50-10^"cm'

A\f\2°k

r=Q3

Aa?

10 20 10 40 50-10™cm'

Fig. 16.

Korrektur infolge der Abnahme der mittleren thermischen Verschiebungsquadrate
A tt|a r-Au?n, berechnet für (009) und (0010) mit zQ 0,09 Â und zTj 0,03 Â.

Sei A MBa r-A w|j. Trägt man die Korrektur A \F\2 als Funktion
von Au2j auf, so erhält man für jede Ordnung eine Kurvenschar
mit dem Parameter r. Auch diese F- Scharen sind verschieden für
gerade und ungerade Ordnungen (Fig. 16). Leider ist diese Korrektur

A \F\2 nicht nur von Au2, sondern auch noch vom augenblicklichen
Stande der Verschiebungen z abhängig. Die F- Scharen sind also für
verschiedene 2-Werte zu berechnen (Fig. 16 ist z. B. für z0 0,09 Â
und %,; 0,03 À berechnet). Im Verlaufe der Umwandlung durchläuft

Zl|.F|2 in der Schar der 7^-Scharen eine bestimmte Punktfolge.
Ist diese für eine bestimmte Ordnung festgelegt, so kann sie in die
Scharen für alle übrigen Ordnungen übertragen werden (homologe
Punktfolgen). Dasselbe gilt für eine Kurve in der Ebene der n-
Scharen (homologe Kurven).

Eine Lösung des Problems ist gefunden, wenn in den n-Scharen
homologe Kurven und in den Scharen der JT- Scharen homologe
Punktfolgen angegeben werden können, welche die beobachteten
Änderungen des Strukturfaktors für alle Ordnungen wiedergeben.
Von einer vernünftigen Lösung fordern wir ferner, dass sich die
z- und die M2-Werte im Verlaufe des Polarisationsprozesses stets
in demselben Sinne ändern sollen.
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Es konnte eine einzige Lösung gefunden werden, welche die
beobachteten charakteristischen Änderungen des Strukturfaktors
einigermassen befriedigend wiedergibt. Das Ergebnis ist dargestellt
in den Fig. 17 und 18. Fig. 8 enthält nebst dem gemessenen Verlauf
des integralen ReflexionsVermögens noch den Verlauf, welcher der

ozX

Sauerstoff
0,12-

0,10-

0,06- II

0,06-
Titan ti

II

0,04- fall
0,02- II

ll
H r-

Fig. 17.

Verschiebung der Ti-Ionen und der 0,-Ionen als Funktion der Temperatur.
(Abweichung von den Gleichgewichtslagen der kubischen Phase in A-Einheiten.)
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Fig. 18.

Temperaturabhängigkeit der mittleren thermischen Verschiebungen (/«J in der
[001]-Richtung.

Lösung entsprechen würde (gestrichelte Kurven). Eine gute
quantitative Übereinstimmung konnte wegen den vereinfachenden
Annahmen nicht erwartet werden. Es scheint aber, dass die wesentlichen

Veränderungen im Kristallgitter von den Ansätzen erfasst
Worden sind:

1. Beim Eintreten der spontanen Polarisation springen das Ti-Ion
und das Ox-Ion einander entgegen, bzw. voneinander weg. Die
Verschiebung des Oj-Ions ist grösser als diejenige des Ti-Ions. Dies
bestätigt die theoretischen Überlegungen von Devonshire17) und
Jaynes36).

14
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2. Die thermische Amplitude des Ti-Ions nimmt beim Abkühlen
am Umwandlungspunkt sprunghaft ab in der [OOlj-Bichtung.

3. Auf die sprunghaften Änderungen folgen mit sinkender
Temperatur stetige Änderungen im gleichen Sinne.

4. Die thermischen Schwingungen des Ba-Ions werden durch die
spontane Polarisation fast nicht beeinflusst.

1 iL i

Mr
4

] y

/y—

Fig. 19.

Schnitt durch den Kristall parallel zur (OlO)-Ebene. Die Kreisradien entsprechen
maßstäblich den Goldschmidt'schen Ionenradien für Ti4+ und O2-. Links : kubische

Phase T 120° C. Rechts: tetragonale Phase T 15° C.

Fig. 19 vermittelt eine Anschauung von der Grösse der
Ionenverschiebungen. Die Abstände in der Ti-Oj-Kette sind ziemlich stark
verändert gegenüber der kubischen Phase. Das elastische Verhalten
ändert sich damit auch, wie die Abnahme der thermischen Amplituden

zeigt.
Dieser Effekt kann aber nicht diskutiert werden auf Grund der

alleinigen Kenntnis der mittleren thermischen Verschiebungen.
Dass diese beim Übergang in die tetragonale Phase abnehmen,
könnte vielleicht folgendermassen gedeutet werden: Durch die
Ionenverschiebungen (Fig. 17) ist der Kristall sehr stark
piezoelektrisch geworden. Zu jeder elastischen Welle gehört also eine
periodische Raumladungsverteilung. Diese Raumladungen wirken
infolge des inversen Piezoeffektes der Deformation entgegen. Der
Kristall wäre demnach „härter" in der piezoelektrischen (tetra-
gonalen) Phase. Theoretische Betrachtungen über die Gitter-
schwingungen piezoelektrischer Kristalle sind von Huang37)
angestellt worden. Genauere experimentelle Aufschlüsse gäbe die
Untersuchung der diffusen Röntgeninterferenzen.
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Auch senkrecht zur Polarisationsrichtung werden sich die
thermischen Amplituden ändern. Aus unseren Messungen lässt sich aber
darüber nichts entnehmen, da selbst die höchsten Ordnungen (OfcO)

durch die Anomalie der Extinktion noch stark gestört werden.

5. Diskussion des Lorentz'schen inneren Feldes.

a) Das Modell der Punktdipole.

Da die Kristallstruktur von BaTi03 sehr einfach ist, haben
verschiedene Autoren versucht, das Lorentz'sche innere Feld am Orte
der verschiedenen Ionen zu berechnen19)20)21). Die einzelnen Ionen
im polarisierten Kristall werden dabei als Punktdipole behandelt.
Wie schon Slater21) in seiner Arbeit bemerkte, ermöglicht die
Kenntnis der Ionenverschiebungen die numerische Berechnung des
inneren Feldes und die Bestimmung der Ladungen der verschobenen

Ionen.
Das Lorentz'sche innere Feld ist aus Symmetriegründen parallel

oder antiparallel zur Polarisationsrichtung [001], so dass es als
Skalar behandelt werden kann. Ft sei der Wert am Orte der Ionen i.
Fi sei der Beitrag der Ionen i zur Polarisation. Das innere Feld
lässt sich dann durch folgendes lineares Gleichungssystem darstellen:

J»T1=E + 4w[lpT1 + ipBa + (g + y)Po1+(-g + 4)Pon]

jPTi + yPBa + (-p + y)P0l+(p + l)P0n]

{i + T)Pn+(-P + ì)r*-+ìPox+(v+Y)Pou]

[— -J + 3") PTi + [Y + TJ ^Ba

+ (t + ïK+(-P + 4)PoJ (20)

P0n ist der Anteil eines der beiden On-Ionen an der Polarisation.

p und q hängen nur von der Geometrie des Gitters ab und betragen
für die kubische Phase p 0,690, q 2,39421). Da die tetragonale
Verzerrung des Gitters und die Ionenverschiebungen klein sind,
können diese Werte auch für die tetragonale Phase verwendet
werden. PTi und P0l werden nun aufgespalten in einen Anteil PTi
bzw. P'0v welcher von der Verschiebung herrührt, und in einen
Anteil P^i bzw. P0l, welcher der Elektronenpolarisation des Ions
zuzuschreiben ist. Bezeichnen wir mit Q die Ladung eines Ions und
mit z dessen Verschiebung, so gilt:

Q ¦ zP' —r- mit v Volumen der Elementarzelle. (21)

FBA E+4n

F0l E+4n

F0n=E + 471
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Über die Ladung einer Ionensorte muss nun eine Annahme
gemacht werden. Den geringsten Einfluss auf das Endergebnis hat die
Festsetzung der Ladung des Ba-Ions. Wir nehmen an, dass dieses

doppelt positiv geladen sei (vgl. Kritik). Sind die O-Ionen n-fach
negativ geladen (0 < n < 2), so bleibt für die Ti-Ionen eine positive

Ladung (Sn — 2). Der Wert n 2 entspricht dem vollkommenen

Ionenkristall. Damit wird:
(3 n-2) ¦ e- zTi n ¦ e- zn

Ptì-—-fa und P'= -—° (22)

Für die Anteile der Elektronenpolarisation gilt :

"•Ti

V ¦Fji, analog für alle übrigen Ionen. (23)

Der numerischen Rechnung legen wir die Elektronenpolarisier-
barkeiten zugrunde, die Slater21) zitiert: aTi 1,86-10~25 cm3,

a0 19,45-10"25 cm3, aBa 23,9-10-25 cm3. Mit Hilfe der
Beziehungen (23) eliminieren wir aus (20) die inneren Felder F. Für den

spontan polarisierten und kurzgeschlossenen Kristall ist E 0.
Das System der 4 linearen Gleichungen (20) enthält dann nur noch
die 4 Unbekannten P^, PBa, P'0 P0tt und den Parameter n, der
in einfacher Weise in die Lösung eingeht, n wird nun bestimmt,
indem die Summe sämtlicher Polarisationsanteile gleich der
beobachteten spontanen Polarisation 16-10-8 Clb/cm2 gesetzt wird6)7).
Dies ist der Wert bei Zimmertemperatur, also sind in (22) auch
die entsprechenden Ionenverschiebungen einzusetzen : zTl 0,057 À,
z0 0,127 Â. Die Rechnung ergibt n ^ 1,1- Die Ladung des Ti-
Ions beträgt damit 3«. — 2^1,3. BaTiOs wäre nach dieser
Betrachtungsweise kein reiner Ionenkristall. Tabelle 6 gibt einen Überblick

über das innere Feld und die Polarisationsanteile, die sich

aus diesem w-Wert ergeben.
Tabelle 6.

Lorentz'sches inneres Feld und Polarisationsanteile im spontan polarisierten Kristall
bei Zimmertemperatur, berechnet auf Grund des Punktdipolmodells.

PolarisationsAnteil der Totaler

Ion
inneres Feld anteil durch ElektronenAnteil an der
108 Volt/cm Verschiebung polarisation Polarisation

°//0 % %

Ti + 2,64 11,0 5,3 16,3
Ba + 0,015 — 0,4 0,4
Ol + 1,79 21,3 37,7 59,0

2 0„ + 0,58 — 24,3 24,3
32,3 67,7 100,0
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b) Auswirkung der Überlappung der Ionen.

Der Beitrag eines polarisierten Ions zum Lorentz'schen inneren
Felde am Orte des nächsten (berührenden) Nachbarions ist kleiner
als das Feld eines entsprechenden Punktdipols, da sich die Ionen
überlappen (Mott und Gurney39)). Der Beitrag kann verschwinden
oder sogar negativ werden, wenn die Ionen auf einer Geraden parallel

zur Polarisationsrichtung liegen. Der Koeffizient im System (20),
welcher die Wechselwirkung des Ti- und des Or-Gitters beschreibt,
wird also besonders stark vom Werte (q + £) 2,727 abweichen,
welcher aus dem Punktdipol-Modell folgt. Es ist also durchaus
möglich, dass dieses ein ganz falsches Bild vom inneren Felde und
von den Ionenladungen liefert. Es sei deshalb noch ein zweiter
Extremfall diskutiert:

Wir nehmen an, dass BaTi03 ein reiner Ionenkristall sei. Die
Überlappung der Ti- und der OrIonen werde berücksichtigt, indem
der oben erwähnte Koeffizient (q + £) durch einen neuen Lorentzfaktor

ersetzt wird. Dieser lässt sich aus dem System (20) berechnen,

analog wie im Punktdipolmodell die Ladungen der Ionen
bestimmt wurden. Die Rechnung führt zuletzt auf eine quadratische
Gleichung mit den Wurzeln rx + 0,44 und r2 — 16. Die Lösung
r2 ergäbe aber unwahrscheinlich hohe negative Felder am Orte der
Ti-Ionen (— 2-109 Volt/cm). Sinnvoll erscheint hingegen die Lösung
rx= A- 0,44. Dieser Wert bedeutet, dass der Beitrag der beiden dem
Ti-Ion unmittelbar benachbarten Ox-Ionen zum inneren Felde am Orte
des Ti-Ions etwa lOmal Meiner ist als der Beitrag, den entsprechende
Punktdipole liefern würden. Auf Grund der Lösung 0,44
ergeben sich die inneren Felder und die Polarisationsanteile der
Tabelle 7.

Tabelle 7.

Inneres Feld und Polarisationsanteile im spontan polarisierten Kristall bei
Zimmertemperatur, berechnet für den reinen Ionenkristall unter Berücksichtigung der

Überlappung der Ti- und der 0,-Ionen.

Ion
inneres Feld
108 Volt/cm

Polarisationsanteil

durch
Verschiebung

/0

Anteil der
Elektronenpolarisation

%

Totaler
Anteil an der
Polarisation

%

Ti
Ba

Oi
2 0„

+ 0,59

- 0,076

+ 0,91

+ 0,14

+ 35,9

+ 39,7

+ 1,2

- 2,0
+ 19,2

+ 6,0

+ 37,1

- 2,0

+ 58,9

+ 6,0
75,6 24,4 100,0
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Obwohl Tabelle 6 und 7 auf sehr verschiedenen Voraussetzungen
beruhen, stimmen sie qualitativ in folgenden Punkten überein :

1. Das innere Feld am Orte der Ti-Ionen und der 0T-Ionen ist
bedeutend grösser als das innere Feld am Orte der übrigen Ionen.

2. Das innere Feld am Orte des Ba-Ions ist sehr klein, so dass
Ba trotz der hohen Polarisierbarkeit nur wenig zur Polarisation
beiträgt.

3. Das Ti- und das Oj-Ion geben zusammen den grössten Beitrag
zur Polarisation.

Punkt 1 rechtfertigt nachträglich unsere Annahmen über die
Verschiebung der Ionen. Aus Punkt 2 folgt, dass das Ba-Ion am
Mechanismus der Seignetteelektrizität wahrscheinlich nur wenig
beteiligt ist. Eine Perowskitstruktur, wo das dem Ba-Ion entsprechende

Ion fehlt, ist verwirklicht im W03-Gitter, welches nach
Matthias seignetteelektrisch sein soll40).

IV. Kritik.

Die Lösung, die für die Ionenverschiebungen und für die
thermischen Amplituden gefunden wurde, kann nur als Näherung
betrachtet werden:

1. Der Berechnung der Verschiebungen zTi und z0 aus den
Änderungen des Strukturfaktors liegt die Annahme des reinen
Ionenkristalls zugrunde, indem die Streufaktoren von Ti4+ und O2-
verwendet wurden. Nun hat aber die Diskussion des inneren Feldes
gezeigt, dass die Elektronenverteilung auch anders sein könnte.
Die Kurvenscharen der Fig. 15 werden aber nur sehr wenig beeinflusst,

wenn z. B. an Stelle der Streufaktoren der Ionen diejenigen
der Atome eingesetzt werden, so dass sich das Endergebnis nicht
wesentlich ändert. Würden sich hingegen die Streufaktoren während

der Umwandlung stark ändern (was sehr unwahrscheinlich
ist), so käme man mit unserem Verfahren nicht zum Ziel.

2. Es wurde angenommen, dass sich die On-Ionen nicht verschieben,

wenn sich der Kristall polarisiert. Die Tabellen 6 und 7 zeigen
aber, dass das innere Feld am Orte dieser Ionen nicht ganz
verschwindet. Die Verschiebbarkeit derOirIonenin der [001]-Richtung
ist allerdings bedeutend geringer als diejenige der 0T-Ionen17), so
dass die Verschiebung grössenordnungsmässig kleiner ist als die
Verschiebung der Ti- und der 0T-Ionen. Die kleine Änderung des

Strukturfaktors, die dadurch verursacht wird, ist bei unserer
Methode vorwiegend der Änderung der thermischen Amplituden
zugeschrieben worden. Der Fig. 18 ist infolgedessen eher nur
qualitative Bedeutung zuzumessen.
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Die direkte Bestimmung der Elektronendichte durch eine Fou-
rieranalyse gäbe aus folgenden Gründen keine zuverlässigeren
Resultate :

a) Es müssen unverzwillingte Kristalle verwendet werden. In
solchen ist aber immer mit anisotropen Extinktionsverhältnissen
zu rechnen, welche in die experimentelle Bestimmung der Strukturfaktoren

eine beträchtliche Unsicherheit bringen. Bei unserem
Verfahren tritt diese nicht auf, da nur die relativen Änderungen der
Strukturfaktoren während der Umwandlung gemessen werden
müssen.

b) Die Ionen, deren Elektronenverteilung uns besonders
interessiert (Ti, 0), streuen nur schwach im Vergleich zu den Ba-Ionen,
so dass die Strukturfaktoren sehr genau bestimmt werden müssten.

Problematisch ist die Diskussion des inneren Feldes:
1. Über die Ladungsverteilung in BaTi03 fehlen sichere Angaben.

Die verschiedenen Ti02-Modifikationen, Rutil, Brookit und Anatas,
werden von Pauling38) als Ionenkristalle klassifiziert. BaO
hingegen ist wenig ionogen. BaTi03 ist also wahrscheinlich kein reiner
Ionenkristall.

2. Eine weitere Unsicherheit bringt die Verwendung der Elek-
tronenpolarisierbarkeiten <xTi, <xBa, oc0 mit sich. Es handelt sich
hier um Erfahrungswerte, die aus den Brechungsindizes anderer
Verbindungen gewonnen wurden. Sie sind infolgedessen abhängig
von den Annahmen über das Lorentz'sche innere Feld dieser
Verbindungen.

3. Man kann sich fragen, ob die Einführung individueller
Polarisierbarkeiten sinnvoll ist. Jaynes und Wigner41) betrachteten
die Elektronenzustände der ganzen Ti06-Konfiguration zur Erklärung

einer hohen Elektronenpolarisierbarkeit der Ti06-Oktaeder.
Eine rein elektronentheoretische Betrachtung der Seignetteelektrizität

von BaTiOg wird aber unzureichend sein, wie die
Ionenverschiebungen und die Änderungen der thermischen Amplituden
zeigen. Die temperaturabhängige Polarisierbarkeit, welche zur
Erklärung der Selbstpolarisation notwendig ist, ist vermutlich in der
Dynamik des ganzen Kristallgitters zu suchen.

Herrn Prof. Dr. P. Scherrer möchte ich für seine wertvolle
Unterstützung und für sein förderndes Interesse an dieser Arbeit
herzlich danken. Besonderen Dank schulde ich auch Herrn Dr.
H. F. Blattner, welcher nicht ruhte, bis es ihm gelang,
unverzwillingte BaTiOg-Kristalle zu züchten, die sich für die vorliegenden
Untersuchungen eigneten.
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