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Zur Theorie der starken Kopplung- zwischen Nucleonen und
pseudovektoriellen Mesonen

von Klaus Rüdenberg-.
(19. VII. 1950.)

Wenn man aus den Mesonfeldtheorien die Kernkräfte berechnen
will, steht die tatsächliche Stärke der Wechselwirkung einer
erfolgreichen Anwendung der üblichen, eine schwache Kopplung
voraussetzenden, Störungstheorie bekanntlich im Wege. Um dies
Hindernis zu überwinden, hat G. Wentzel vorgeschlagen, eine

Entwicklung nach fallenden anstatt nach steigenden Potenzen des

Kopplungsparameters vorzunehmen, was die Annahme einer sehr
starken Kopplung zwischen Mesonen und Nucleonen impliziert.
Seither sind Rechnungen in diesem Sinne an den verschiedenen
Varianten der Mesontheorie mit Ausnahme des Pseudovektorfeldes
ausgeführt worden, und es haben sich dabei Widersprüche mit der
Erfahrung ergeben1).

Um die Sachlage völlig klären zu können, ist es nötig, auch das

pseudovektorielle Mesonfeld in starker Kopplung an Nucleonen
zu untersuchen. Dieser Feldtypus ist bisher etwas stiefmütterlich
behandelt worden, vermutlich weil er bei schwacher Kopplung
abstossende Kräfte für das Zwei-Nucleon-Problem liefert2). Diese
Tatsache sollte indessen zu keinem Vorurteil führen, da die starke
Kopplung neue Verhältnisse schafft, infolge derer die Kräfte
zwischen zwei Nucleonen ganz allgemein die Tendenz haben, für
kleine Abstände einziehend zu werden3).

Die vorliegende Arbeit will einen ersten Beitrag zur Ausfüllung
der erwähnten Lücke leisten. Die Hauptziele sind, unter Zugrundelegung

der beiden bekannten Kopplungsansätze des Pseudovektorfeldes2)

die ,,Isobaren-Energie" und die statischen Kernkräfte bei
starker Kopplung in der üblichen Näherung zu berechnen, und
zwar für eine ladungs-symmetrische Theorie. — Weitere Fragen,
wie die nach dem Sättigungscharakter der abgeleiteten Kräfte oder
nach dem magnetischen Moment von Proton und Neutron, sollen
hier ausser Betracht bleiben.

Die allgemeinen Linien der Untersuchung entsprechen dem in
diesem Gebiet bisher angewendeten Schema und ähneln speziell
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der Behandlung des Vektorfeldes durch G. Wentzel4). Unser
Wechselwirkungsansatz ist von jenem Fall jedoch deutlich
verschieden, insbesondere koppelt jeder seiner beiden Terme
longitudinale und transversale Mesonen zugleich.

I. Hamiltonfunktion und passende Feldvariable.

§ 1. Lagrange- und Hamiltonfunktion für das Ein-Nucleon-Problem.

Das reelle Pseudovektorfeld, mit dessen Betrachtung wir beginnen,

besteht aus den reellen Feldfunktionen {ipx ip2 ys ip0). Bei
einer Lorentztransformation der Raumzeitkoordinaten (x1 x2 x3 *x4

iet) transformiert sich (^ ip2 y>3 ipi i ip0) als Pseudovektor,
d. h. der Vierervektortransformation ist noch die Multiplikation
mit der Determinante ± 1) der Lorentztransformation
hinzuzufügen. In der Lagrangefunktion des Feldes

L LyL' (1.1)
charakterisiert

A,--ÎÇfà-Tgf-r'È* (1-2)

das Vakuumfeld5). (Wir setzen % c 1, /li Mesonruhmasse mit
der Dimension einer reziproken Länge. Im Vakuum stimmen Vektor-

und Pseudovektorfeld überein.) L' stellt die Wechselwirkung
mit dem Nucléon dar. Wir denken es als ruhend vorgegeben, wie
man es in der starken Kopplung bisher stets angenommen hat, eine

Berücksichtigung der Rückwirkung auf das Nucléon ist noch nicht
versucht worden. — Um L' zu finden, gehen wir von dem
Kopplungsansatz aus, den N. Kemmer für den allgemeinen Fall der
nichtstatischen Wechselwirkung zwischen einem Pseudovektorfeld
und einem Dirac-Nucleonfeld abgeleitet hat2) :

i^-\iy.^yy„y~y\ w
Hierin sind f, g zwei reelle Kopplungsparameter und die Sv BßV aus
den Dirac-Nucleon-Spinoren 0 {0X 02 03 04) und den Dirac-
Matrizen yx y2 y3 y4, y5 yx y2 y3 y4, a} — iykyi (j k l zykl.) gebildet
gemäss :

S,= 0*o,0, oi^~iykyl, er4=-tyß (1.4)

(;, k, l: (zykl. Perm. v. 123)

R,.v=0*°^0, Sjk Yi> oij iajß=ykylyi, qvv 0 (1.5)
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D. h. Sv ist der duale Pseudovektor zum antimetrischen Tensor III.
Stufe (—0+y^yßyv 0)> (^v a^e verschieden, 0+ i0*yi); und Bßr
ist der duale Pseudotensor zum antimetrischen Tensor II. Stufe
(—i0+yßyv0), (ft+iv)- Damit ergibt sich für L' die zu fordernde
relativistische Invarianz. — Beschränken wir uns nun im Sinne
der Annahme eines ruhenden Nucléons auf die unrelativistische
Näherung 03 04 0, {0X 02} {ç?+ ç*_} rp, so vereinfacht
sich der Kopplungsansatz (1.3), wenn man für die Diracmatrizen
die übliche Darstellung wählt, zu

L' -(J.[/?+^(||-grady4)])i (1.6)

wo jetzt a (ffx a2 a3) die Paulischen Spinmatrizen sind.
Indem wir in der Lagrangefunktion (1.1, 2,6) nun S als die

vorgegebenen Quellen des Feldes behandeln, erhalten wir die
Feldgleichungen des Pseudovektorfeldes y>. Zur Transformation in die
kanonische Form ist zu bemerken, dass 7ii 0 wird, da L nicht
von f4 abhängt. Wie in der Vektortheorie wird der Übergang in die
Hamiltonsche Form dadurch möglich, dass man ipA aus den
Feldgleichungen eliminiert. Diese Methode6) führt uns zu der Hamilton-
funktion §> §>0 + <rj' :

$' («• [/v + f ¦*]) (3.8)

wo n [nx 7i2 7i3) das zu y> {y>x y>2 y)3) kanonisch konjugierte
Feld ist. Genau gesagt: Die kanonischen Gleichungen

dt ' ' wy ~2f dxk ~ Jjy_\ dt " d y,j T^ dxk ~ ] d yoy\ ot 0ipj ^jf dxk dlJ}y_s_\
dx,.) \ d xk j

und die zusätzliche- Definition von y>0 durch /i2 tp0 div n sind
zusammen dem aus L folgenden Lagrangeschen Gleichungssystem
äquivalent.

Den Übergang zur Quantentheorie vollziehen wir, indem wir die

f, rt als hermitesche Operatorfelder auffassen, die auf eine Schrö-
dingerfunktion F wirken. Ferner soll jetzt, auch bei ruhendem
Nucléon, die Rückwirkung auf den Nucleonspin berücksichtigt
werden. Wir nehmen daher eine zweikomponentige Schrödinger-
funktion Fœ(a=-j an, und setzten in Analogie zu (1.6) für S
den Operator 8= ôa(x)a, so dass § durch die Matrizen o*,. auf die
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Spinindizes <x von F operiert. Die vorgegebene reelle Formfunktion
ôa(x) des Nucléons beschreibt eine Quelle der Lineardimension a.
Wir müssen dabei stehenbleiben, obwohl im Sinne der
punktförmigen Wechselwirkung und der relativistischen Invarianz ôa

durch die Diracsche cS-Funktion zu ersetzen wäre. Denn — wie wir
später sehen werden — führt der lim a -> 0 zu unendlich grosser
Spinträgheit. Damit ergibt sich aus (1.8) der Operator

§>' àa(x)jrok(fy,k + -Z-nk) (1.9)
*=i v it i

Die Formfunktion ôa(x) wird zweckmässig kugelsymmetrisch
gewählt (vgl. § 2) und erfüllt:

jdXòa(x)=l x x=(x1x2x3) dX dx1dx2dx3 (1-10)

Die dimensionslosen Kopplungskonstanten /, g sollen reell > 0 sein.

Nun gehen wir noch vom reellen Feld zum ladungssymmetrischen
Feld über. An die Stelle von y> treten 3 reelle Felder yiB mit den
9 Komponenten tpke (k, q 1, 2, 3) und die kanonisch konjugierten
7ij.g. Der neue Index q bezeichnet „Komponenten im Raum des

isotopen Spins". Zum Unterschied vom reellen Feld trägt das

symmetrische eine Ladung. Um der Rückwirkung auf die Ladung
des Nucléons Rechnung zu tragen, erhält die Schrödingerfunktion
zu dem Spinindex a +, —) noch den Ladungsindex X 0,1)
und wird so vierkomponentig : FaX. Der Hamiltonoperator dieses

symmetrischen Pseudovektorfeldes ergibt sich in bekannter
Verallgemeinerung7) der Gleichungen (1.7,9) zu:

So=|J;fë+ ^yvZf+fiy^yyyy (i.ii)
p — 1 " '

& ôa(x) Ü-J.J/ft. + ^J (1.11')
i'=l e=i

wo die den Paulischen Matrizen analogen „isotopen Spinmatrizen"
(Ti T2 r3Ì * aui die Ladungsindizes X von Fa?_ wirken. Die (ak rg)
sind als direkte Produkte (Kroneckerprodukte) mit 4 Zeilen und
Kolonnen aufzufassen. Der durch (1.11, 11') gegebene Hamiltonoperator

H HyH' fdX (§„ + §') (1.12)

gibt der symmetrischen Theorie bekanntlich den Vorzug, zu
ladungsunabhängigen Kernkräften zu führen.



Kopplung zwischen Nucleonen und pseudovektoriellen Mesonen. 93

§ 2. Entwicklung nach einem reellen Orthogonalsystem.

Es empfiehlt sich, die Feldfunktionen tpkg nkg nach einem
vollständigen Orthogonalsystem von reellen Ortsfunktionen Ur (r
0, 1, 2, oo) zu entwickeln8):

V>k„ E'lricoUr(x) akt £prkaür{x) /dXUrUs ôrs (2.1)
r r

Über die Ur werden keine besonderen Annahmen gemacht, bis
auf die Festsetzung

U0(x) Ua(x) C>0) (2.2)

Sie bedingt :

fdX da{x) Us{x) 0 für s >1 (2.3)

fdXò2a(x) if faxt) (2.4)

woraus in Verbindung mit (1.10) die Grössenordnung

*, « a~m (2.5)

folgt. Die Wahl (2.2) führt zu einem einfachen Ausdruck für H',
und es wird sich später zeigen, dass der Teil (q0Jcg U0(x)) des Mesonfeldes

xpke, welcher „nur am Ort des Nucléons" 70 ist, als derjenige
Feldanteil aufgefasst werden kann, den das Nucléon fest an sich
bindet.

Indem wir (2.1, 2) in den Hamiltonoperator (1.11, 11', 12)
einführen erhalten Avir8)

H0 Y E Z Z iArk, slPrke Véle + Brk, si irke 1sle} (2-6)
y rs kl

H'=.vZffy{flok.e + iPo^) (2-7)
ek ' r

wobei :

Ark,syf^ur\ôkl-y-d^us (2.8)

Brh..sl ]dXVr{èu^-A)7- ôx^OXi\y (2-9)

Die inversen Matrizen

Irl,sl=fdXUr[ôky d£ÒXi (ffi-Ar^V. (2.10)

BrkM JdXUr\ôkl-l2 ^}y-AyUs (2.11)
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erfüllten die Beziehungen

2-1 rk. sl -d-sl, r'k' 2j rk, sl "sl, r'k' "rr' "kk'
sl sl

Man erhält sie, wenn man in der Identität

Z{ôkiy~A)+ ò^d^\yr-^y^-x^)(^~A) 1=<w

die reellen hermiteschen Operatoren

ô*5v {^-A)> ^-Aym-fax't^y^
durch die Matrizen ersetzt, welche sie in der Basis der Ur darstellen.

Die Matrizen A, A, B, B sind in (r, s) und in (fe, l) getrennt
symmetrisch. Für r s 0 vereinfachen sie sich, wenn man die
Kugelsymmetrie in (2.2) in Betracht zieht, zu9) :

AOk,0l~A0"kl' yk,0l~A0°kl> BqL-.OI -°0 "kl' Bok.Ol -^0 "kl {"•*¦")

mit

4o l~ 37? fàXU0AU0 Äo-y + J3 fdXV0{ii?-A)-y0

B0 [*-4 fdX U0 AU0 B0 3^ + 4 fdX U0(y-A)-W0
(2.13)

II. Approximation des Hainiitonoperators im Fall /4= 0, g 0.

§ 3. Einführung der Näherungsroraussetzungen der starken Kopplung.

Die Grundvorstellung der starken Kopplung ist, dass man
infolge der Grösse der Parameter / und g den Wechselwirkungsterm
H' als etwas Grosses zu betrachten hat. Im Gegensatz zur üblichen
Störungstheorie wendet man daher die Aufmerksamkeit zunächst
diesem Operator H' zu, und unser erster Schritt wird darin
bestehen, ihn als Matrix bezüglich Spin und Ladungsvariablen
diagonal zu machen. Wir transformieren zu diesem Zweck die
Schrödingergleichung

all'

mit einer unitären Matrix Ua;, a-;/ in

£{(U*H0U)a^,r7-(U*H'U)aX!a,r}Fy EF:, (3.2)

F' U*F, F UF' (3.2')

wobei II so gewählt ist, dass (VL*H'U) eine Diagonalmatrix wird.
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Zur Durchführung setzen wir im folgenden zunächst g 0 voraus,

so dass

H' YZ(<rtXTj%te y vf>0 10) (3.3)
gk

Zur Konstruktion der Matrix U gehen wir folgendermassen vor.
Sei mit q die reelle Matrix (qokg), (fc, q — 1, 2, 3) bezeichnet, mit q'
ihre Transponierte. Dann sind die Eigenwerte der Matrix (qqr) reell,
da (qq') symmetrisch, und positiv (da die zugehörige quadratische
Form sich leicht als Summe von Quadraten schreiben lässt). Sei r
die Matrix (rnônm), wo rv r2 ,r3 die positiven Wurzeln dieser Eigenwerte

sind, und sei s die reelle, orthogonale Matrix, die (qq') diagonal

macht, so dass:

s'(qq')s r* ss'= 1 (3.4)

Dann gilt folgendes: Die Matrix t q'sr~x ist ebenfalls orthogonal,

und sie bringt die Matrix (q' q) auf Diagonalform. In der Tat
folgt aus (3.4):

r-1 s' qq' sr-1 t't l
und

t'q'qt (r-Vg) (q'ss'q) (q'sr-1) =r~1r2r2y r2 (3.4')

Also: (qq') und (q'q) haben die gleichen Eigenwerte r|, und
zwischen den Matrizen q, r, s, t besteht die Beziehung

q srt', qoke ZrnskJen (3-5)
n

Wir betrachten nun die rn, skn, tgn als Funktionen der 9 Variablen
q0 ke, berechnet als Eigenwerte und Eigenvektoren. Mit ihrer Hilfe
können wir, wegen (3.5), für W jetzt

H' 'Zr«(Z ffk Skn) X (ZT» ten\ (3-6)
n \ k / \ e

schreiben. Da nun s und t orthogonal sind, entsprechen ihnen zwei
unitäre Matrizen Ys, Yt in der Darstellung der Drehgruppe vom
Grade 2, und diese haben die Eigenschaft

zv*.=3*>.y;, zysn=yt^y m
k q

wie sich aus der Spinortheorie ergibt. Das liefert uns

H'=y (Y, x Yt) - JT rn (an x rn) ¦ (Y. x Yt)* (3.8)
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Schliesslich bemerken wir noch, dass die unitäre Matrix

z~
^2 y+iy- y2 {Kxl)+ i(l XT2)} (3.9)

den Beziehungen

Zff8Z* —(<raXTa) Zr3Z* ~>i XTj)
Z(g3xt3)Z* — (o-gXTg) (3-9')

genügt, wodurch es möglich ist,

H' -yllBU* (3.10)

zu schreiben, mit den Definitionen

11 (Ys x Yt) ¦ Z (8.11)

B 1\ r3 7 r2 a3 + r3 (o*3 x t3) - Ea; ccoc">;.;/ (3.12)

Wie angedeutet, ist 2? eine Diagonalmatrix. Die Diagonalelemente
berechnet man zu:

B+0 — y (—J^7rri (entsprechend : o*3 1 ^3 1)

B_0 ß+0 + 2y(r2 + r3) (entsprechend: o*3 —1 t3 1) (3.13)

ß+1 JB+o + 2 y (r8 + fj) (entsprechend : o*3 1 t3 —1)
Z?_

L B+0 + 2 y (ì\ 7 r2) (entsprechend : a3 — — 1 r3 — 1)

Das durch (3.11) definierte U hat also die gewünschte
Eigenschaft, und die Gleichung (3.2) schreibt sich in unserem Fall
(9 0) :

2,(H*H0H)a,.a,;/.Jp;;..-yEa,.F', FFa; (3.14)

Wir kommen nun zum zweiten Schritt, der darin besteht, von
den 4 simultanen Gleichungen (3.14) zu einer einkomponentigen
Schrödingergleichung überzugehen. Mit diesem Übergang führen
wir zum ersten Male eine Näherung in unsere Rechnungen ein, für
welche wir die Konstante y als genügend gross anzunehmen haben.
Wir setzen y als so gross voraus, dass die Grössenordnung der Eigenwerte

E in (3.14) wesentlich durch den Term (— y By bestimmt
wird, was für y oo ja zutrifft. Aus (3.13) folgt dann, dass in
diesem Fall die Eigenwerte E in zwei Gruppen zerfallen: die erste
entspricht dem Diagonalelement B+0, die zweite entspricht den
Diagonalelementen B_0, B+1, i?„x und liegt wegen der Grösse von
y und wegen rn > 0 sehr viel höher als die erste. Dies berechtigt
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uns, unser Interesse auf die erste Gruppe zu beschränken. Diese
tiefliegenden Eigenwerte berechnen sich nun aber in einer ersten
Näherung aus der einkomponentigen Schrödingergleichung

{(U*H0U)+0!+0-yR+0}F:o EF;o (3.15)

sofern man y als so gross voraussetzt, dass die Ausserdiagonal-
elemente von (U* H0 II) die Bedingung

/(ü*H0U)a,i + Ql<yrn (3.16)

erfüllen (nicht zugleich sc +, X 0). — Im Vorangehenden ist
stillschweigend angenommen, dass die rn nicht etwa ~ 1/y oder

gar 0 sind; in der Tat wird sich im folgenden ergeben, dass die
rn selbst noch einmal ~ y und 7 0 sind.

Unser dritter Schritt besteht in der Einführung einer weiteren
Näherung. Zunächst schreiben wir (3.15) in der Form:

{(U*KU)+o_+o-E}F;0=0 (3.17)

wobei jetzt nach (2.6), (3.13), (3.5)

K F-\-G (3.17')

G=TZZZArk,SlPrkePs,B (3.18)
Q /• S fc t

F YZZZBrk,sl<lrk^lS~rZrn ^)q r fi fc t n

%k.e ZrnSkJen' rn Zl0kQSk.Jon (3-20)
n ic q

Die Funktion F hat, wie wir sehen werden, ein Minimum (für
Vl*FVL gilt das Gleiche), und wir führen nun die Bedingung ein,
dass die qrkQ nur kleine Schwingungen um die Gleichgewichtslage
ausführen. Diese Bedingung entspricht dem Wesen der starken
Kopplung und gewährleistet auch, dass die Anregungsenergien
dieser kleinen Schwingungen klein sind im Vergleich zum Energieabstand

von der Gruppe der vernachlässigten hochliegenden Eigenwerte.

In den folgenden Paragraphen werden wir dann diese
Bedingung zur Vereinfachung des Ausdruckes (XL* K U)+0i+0
benutzen.

Um sie zu formulieren, haben wir das Minimum zu bestimmen.
Zunächst betrachten wir die skn, tgn als Konstante, dann ist F
quadratisch und hat offenbar ein Minimum. Wir finden es, indem wir
alle qrkg und rn als unabhängige Varia ble betrachten und die Glei-
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chungen (3.20) als Nebenbedingungen. — Bezeichnen wir mit a.lo

Lagrangesche Multiplikatoren, so können wir die Gleichungen für
die Minimallagen r„, qrkg schreiben:

Z'dT d1rke + Zdr drn}{F~Zal°(<l0l°-ZrnSlny)} 0
rke °q>'ke n °rn- >[ it n '

das heisst:

ZBrk,sAslo-y^ke 0 (e,t= 1,2,3) (r 0,l,2...) (3.21)
sl

-y+2>«a*i,*„» 0 (» 1.2,3) (3.22)
la

Gleichung (3.21) lässt sich vermöge (2.11) umkehren:

ï.i. i7B./,o*«*e (3-23)
k

dies geht für s 0 über in (vgl. (2.12)) :

%iyB0a[g (3.24)

Aus (3.24), (3.22), (3.20) folgt

K=B0y r (3.25)

was, in (3.20) eingesetzt

Vokym')kyrske (3.26)

liefert. Aus (3.26) und (3.24) ergibt sich alg, welches wir in (3.23)
einsetzen, so dass:

lkyyZBrk,0ylo (3.27)
i

Diese Gleichung gilt für r 0 und r 7 0. Im Vorangehenden haben
wir die Definitionen

r=y'B0 (3.28)

S st' (3.29)

benutzt, wobei die Matrix S wie s und t orthogonal ist.

Führt man (3.25, 26, 27) in F (3.19) ein, so findet man den
Minimalwert

F -^yr (3.30)

welcher, wie wir sehen, für alle Werte von skn, tgn der gleiche ist.
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Daher können wir jetzt das Postulat der kleinen Schwingungen
durch die folgenden Gleichungen ausdrücken:

<lrkyqrkB+-ZrkyrZBrk,oAe+<lrkc •> > °) (3-31)
l

rn=fn+rn=r+7n (3.32)

Speziell wird (vgl. (3.20)) :

îoke rSkg qokg-(srt')ke (3.33)

Hier sind die qrkg und rn die kleinen Abweichungen von der
Gleichgewichtslage, und die r„ müssen die Bedingungen

r~n<r=yB0 (3.34)
erfüllen.

In (3.16) und (3.34) haben wir die Bedingungen abgeleitet,
welche die Ideen bezüglich der Grösse von y fixieren. Wegen
(3.32, 34) können wir offenbar (3.16) durch

/(HZ*H)a;.) + 0/<7r=r2B0 (3.35)

ersetzen. Berechnen werden wir (3.34), (3.35) später, es wird sich
dann zeigen, dass beide die gleiche „Bedingung für starke Kopplung"

für die Kopplungskonstante / liefern. Dies stimmt damit
überein, dass unsere Näherung eine erste Approximation im Sinne
einer Entwicklung nach fallenden Potenzen von / darstellt.

§ 4. Einführung von Winkelkoordinaten.

Um die Bedingung (3.34) zur Vereinfachung von (U*KVL)+0 +0
auszunutzen, ist es zweckmässig, an Stelle der Koordinaten qrkg im
wesentlichen die kleinen Verschiebungen aus der Gleichgewichtslage

als neue Variable einzuführen. Zu diesem Zweck schreiben wir
die Formeln (3.31, 33) unter Benutzung der in (3.29) definierten
orthogonalen Matrix

8 st' (4.1)
und der durch

Ç trt' trt'-r, Cea~ZrJyan-ràga=!;oe (4.2)
¦n

definierten symmetrischen Matrix | in der Form

q S(r+S) q0kg (8i)kg (4.3)

irkyyZBrk,0iSle + qrk, ¦>>!) (4-4)



100 Klaus Büdenberg.

D. h. q ist das Produkt einer orthogonalen und einer symmetrischen
Matrix (was für jede reelle Matrix zutrifft), wobei die symmetrische

in nullter Näherung (im Sinne einer Entwicklung nach f/F)
die Einheitsmatrix ist. Die Bedingung (3.34) lautet wegen (4.2)
und der Orthogonalität von t jetzt

/W<r (4-5)

Weiter denken wir uns die Matrix S als Funktion von drei Euler-
schen Winkeln (0 0 W) dargestellt :

8 8(60W) Skg SkQ(00W) (4.6)

wie es für jede orthogonale Matrix möglich ist. Die explizite Form
der Abhängigkeit, sowie einige Eigenschaften von S finden sich
in § 13 im Anhang.

Die neuen Variablen, die nun eingeführt werden, sind: die
9 Grössen (0, 0, W, £„„= £ag) und die qrkg (r > 1). Durch (4.3, 4.6)
werden die alten Variablen, nämlich die 9 Grössen q0kr und die
Grössen qrkg (r > 1) als Funktionen der Neuen gegeben. Den
neuen Koordinaten entsprechend sind zu ihnen kanonisch konjugierte

neue Impulsoperatoren pa (oc 0, 0, W), nga 7tag, prk„
(r > 1) derart einzuführen, dass die kanonischen Vertauschungs-
relationen invariant bleiben. Es ist hiermit verträglich, dass wir
die pa als

P«=T"A («=0.*-^ (4-7)

festsetzen. Die übrigen Impulskoordinaten fixieren wir nicbt in
dieser Weise. Weiter empfiehlt es sich, zur Formulierung der
Transformation, zunächst einige Hilfsoperatoren zu definieren.
Es seien:

Px sin W-P(y °yw (p07- cos 0 ¦ pw)

P2 -cosW-pe7- s^(p0 + cos0.pw) (4.8)

sin ©
sie

sin ©

P3 Py,

Wegen (4.7) ergeben sich die Vertauschungsrelationen

yP^-^iP, (j kl-.zykl.) (4.9)
ferner

[Py,Seo] P,(Seo) (4.10)

Hier ist auf der linken Seite Sga als Operator aufgefasst, während
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die rechte Seite bedeutet, dass der Operator P3- auf die Funktion
Sga (00W) wirkt. Wegen der Gleichung (13.9) folgen aus (4.10)
dann die V. R.

[P„Sy 0, {Pj,Sy=iSgl, [P^SJ^-iS^ (4.11)

(jkl bedeuten stets: zykl. Perm, von 123). Mit der antimetrischen
Matrix von Operatoren

P=(Pjk), Pjk -Pl (4.12)

lassen sich die V. R. (4.11) aucb

[PM,SJ i{Sgkôal-8glôal} (4.13)
schreiben.

Nachdem wir noch die symmetrische Matrix von Operatoren

n=(ITea), nea nea+ôgangg (4.14)

definiert haben, bilden wir schliesslich die Operatoren

PokyPke + Pke (4-15)

mit den beiden Summanden:

Vty\ (sn)tg= Y{Zski^ysk,yQo) (4.16)

Vke 2T{S(i-P)}ky 2V {(P-i)S%. (4-17)

ViQ 4r (P2Sts-8kiPs) zr (SksP-PA2) (und z^k1*) (4.17')

Die Äquivalenz von (4.17) und (4.17') folgt aus (4.11, 13).

Mit Hilfe der getroffenen Definitionen lassen sich nun die alten
Impulsoperatoren folgendermassen als Funktionen der neuen
Koordinaten und Impulsoperatoren ausdrücken:8)

Poko-P0kQ + Z'Zy.sl°>Psl°' VrkyVrke (r>!) (4.18)
s la

Hierin hängen die À noch von den (0 0 W) ab, gemäss:

**«,.»«= yyZBsi,oASko8jg-ôkjôae), XkoA)la 0 (4.19)

Hierbei ist von (4.5) schon in folgendem Sinne Gebrauch gemacht :

Die Gleichungen (4.18, 19) bilden zusammen mit (4.3, 4) nur die
¦erste Näherung einer kanonischen Transformation, worauf wir uns
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beschränken. Um dies nachzuweisen, gehen wir davon aus, dass

aus (4.3, 4) die Gleichungen

d_= y öjTom ò _j_ y, y d9rkQ y 8>

doc kt dx dq«*e r kt d,x dqr*e '

d- yy1Kb d d_ -=__ô_ (r>l)

folgen. Man entnimmt daraus, dass die Transformationsformeln

P* Z 'y Poi-yZ'Z dy VrkS, (4.20)
fc i> r fc o

n^-ZitfV^-' PrkyPrk, (r>l) (4.20')

zusammen mit (4.3, 4) die kanonischen V. R. invariant lassen, auch
wenn die Impulsoperatoren nicht als Ableitungen definiert sind.
Für r > 1 stellt man schon Übereinstimmung mit (4.18) fest. Für
die andere Gleichung (4.20') liefert die Ausrechnung

nij' {S'P)n + (S'P)if y ¦ Transponierte von 8) (4.21)

wo II durch (4.14) und die Matrix p durch

P ÖW (4-22)

definiert ist. Ferner ergibt sich aus (4.20)

V«-Z{^(r+t)}keV0ke + YZ'ZZBrk,0l dt PrkS
fc Q ~ T fc Q l

woraus nach (13.4), (13.7) und (4.8) :

Pj -Z{SA}(r+ï)}kyoke-yZ;'ZBrk,<iiZ(SAyPrkt,
kQ r fc l q

Durch Einsetzen der Matrizen Ax A2 A3 (13.5) und der Definition
(4.12) folgt:

Pif=Z{(r+s)A-y+t)fyk,}Poke+(Aß-An) (4.23)
• Aromit

An' yZ'ZBrk,oiSirPrki (4-23')
r 1k

Um nun die alten Impulskoordinaten in Funktion der neuen zu
erhalten, hat man die Gleichungen (4.21,23) nach den p0kg aufzulösen.

Die Lösung kann man sich nach den (lea/P) entwickelt
denken, und im Sinne unserer Näherung interessieren nur die
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^-freien Terme. Diese erhalten wir, wenn wir (4.23) durch die
Gleichung

(S'ph- (S'p)jr J - {P,r + 4,- Ajf} (4.24)

ersetzen, welche sich aus (4.23) durch Nullsetzen von Jf ergibt. —
Addition von (4.21) und (4.24) liefert jetzt, wenn man noch die
Symmetrie von 77 und die Antimetrie von P benutzt :

2 (S' p) II-1rP7--1T(A- A')
(4.25)

p=4 (sn)- y (SP)+y, s (a-A')

Der erste Term der rechten Seite ist mit (4.16) identisch, der dritte
mit dem A-Term in der ersten Gleichung (4.18), wie man wegen
(4.19) und (4.23') bestätigt. Der zweite Term in Gleichung (4.25)
unterscheidet sich von (4.17) durch das Fehlen des Summanden
(iS/2 r). Bis auf diesen Unterschied stimmt also (4.25) mit der
ersten Gleichung (4.18) überein. Man kann nun vermöge der V. R.
(4.9, 13) leicht einsehen, dass die Addition des Termes (iS/2 F)
die Invarianz gegen die kanonischen V. R. nicht beeinträchtigt,
und damit ist (4.18) in der betrachteten Näherung als kanonisch
erwiesen.

Der Grund, den Term mit *S hinzuzufügen, liegt in Folgendem:
Später (§ 9) wird sich ergeben, dass die Pk und 'Sla als hermitesche
Operatoren zu betrachten sind. Die Formulierung (4.17) sorgt
dann (wegen (4.11)) dafür, dass auch die alten Operatoren p0kg
hermitesch sind, wie es sein muss. Hier liegt der Grund, warum
die Poke nicht als Ableitungen der qokg definiert wurden.

Die neuen Variablen sind nun in K (3.17') einzuführen. Setzt
man (4.18) in den Term G (3.18) ein, so berechnet sich

™~7f2u2j2j -rk,slV'rkoP' slg~^ 2j Z Z rke, slaPrkg Psia
rs kl q rs kl qg

+ ÌAoZ{-PLy (Pokç+Z'Zy.slaPsla)2} (4,26)
kQ s lo

wobei man für N entweder N' oder N" einsetzen kann, gemäss

^rko,sla Z (Ark,0j^JQ,slo) (4.27')

¦^rke.sla ~~2 yrke.sla^ ^sia,rke) (4.27
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In F (3.19) setzen wir im ersten Term (3.31) und im zweiten (3.32)
ein, wodurch

F=F+^ZZZBrktyrl.QqslyyZq0keSk,-yZrH
rs kl q kg n

entsteht. Die letzten beiden Terme heben sich wegen (3.29, 33)
fort, so dass unter Berücksichtigung von (3.30) :

F-YZZZBrk,siìrkJsis~Ìrr (4-28)
r s k l g

Gemäss der Konstruktion der qrkg war zu erwarten, dass F in diesen
Variablen rein quadratisch wird. Die q0kg sind nach (4.3) Funktionen

von 8 und £.

§ 5. Abspaltung der Isobarenenergie.

Gemäss (4.26) ist die Funktion G die Summe aus einer homogenen

quadratischen Form in den prkQ (r > 1) und aus einer homogenen

quadratischen Form in den p0kg und aus einer Bilinearform
in den p0Ä.8 und den prkg (r > 1). — Fassen wir die prk„ Pokg als
klassische Variable auf und halten die pokg konstant, d. h. fassen
wir G als quadratische Funktion der prkg (r > 1) allein auf, so hat
G also ein Minimum für gewisse Werte prke (r > 1), welche noch
von den p0ko abhängen. Die Einführung neuer Variabler prke(r > 1)
durch die Translation

Prkg =Prkg+Prkg (*">!) (5A)

wird offenbar die erwähnte Bilinearform zum Verschwinden bringen,

so dass G in zwei Summanden zerfällt: der erste hängt von
den p0kg allein ab, der zweite von den prkg(r > 1) allein. Diese
Aufspaltung von G ist erwünscht, der erste Term wird zur
sogenannten Isobarenenergie Anlass geben. — Indem wir die Ergänzung
zu einer kanonischen Transformation sowie den Übergang zu den
Operatoren prkg zunächst zurückstellen, wollen wir die Transformation

(5.1) jetzt durchführen.
Zur Bestimmung der Minimalwerte prkc betrachten wir die

Voraussetzungen p0kg const, als 9 Nebenbedingungen, ähnlich
wie früher die Gleichungen (3.20). Dadurch werden die
Minimumsgleichungen, wenn wir mit ßkg wieder 9 Lagrangesche Multiplikatoren

bezeichnen:
ö lG-£ ßkg p okg

1 o (r > 0) (5.2)
dPrke 1 kt I

K ' v J

Pukg=P0ks=COnSt- (3-3)
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Für (5.2) erhält man nach (4.26, 27") :

0 ZArk,slPsle + AolÔro(Pokg-Poke) + ZÀ)a,rkePoja]
sl [ ja

+ (l-Or0)Z'Z2NrkS,slaPslo-aorßkg &A)
s lo

wobei p0ka durch (4.18) definiert ist, wenn man dort prkg=Prkg
(r> 0) einsetzt. Substituiert man (4.27') in A7", so ergibt sich:

Z rk,Oj\Poig Pole) + 2j Ark,slPslg
j sl

+ Zy,rkg {Ao(Pojo~P0jo)+ZA0,,slPSlr]~Or0ßkg 0 (5.5)
ja sl I

Dies geht für r 0 (vgl. 4.19) über in

ßko Ao(Poko-Poko) + ZA0k,slPslg (5-6)
sl

Wegen der Gültigkeit von (5.6) lässt sich (5.5) auch

ZArk,slPsle+ZArk,Oj(h)g-Pojg)+Z?-)°,rkeßjo--0roßkg Q (5-7)
sl j jc
schreiben. Die Ausführung der Operation: 2JAr'k',rk an (5-7) ergibt

rk

Vrke+ôro(Vok.B-VokS) +ZZ' Ark,slho,slgßja-ZArk,0jß}g ° (5-8)
ja si j

welches sich für r 0 zu

Vokg =Ä0ßkg -ZZA0k,siyslgßjo (5-9)
ja sl

vereinfacht. Andererseits liefert die Operation £Xk,g^rkg, auf (5.8)
angewandt (dabei (4.18, 19) benutzt): rkQ

P0kg P0kg+ZZA0i,sl.y,sloßjo-ZAklioßjo (5-10)
ja sl jo

mit
kg,jo 2j Z Asl,s'l'Z ^tQ.slr^ja.s'l'x^ ^js,kg (5.11)

sl s'V t
Zwischen (5.9) und (5.10) eliminieren wir pokg und erhalten:

Äoßkg + Z^lj-^klio) ßjo=Pokg Poke (5-12)
ja

mit:
A%,ke-A?t,ja Z(AOkyyslg + yj,ykg,slo) (5.13)
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Um die 9 Gleichungen (5.12) nach den 9 Variablen ßkQ aufzulösen,
sind im Anhang § 14 die Matrizen /1(1) und A(2) berechnet. Gemäss

(14.10) geht (5.12) in

(A0-A)ßkyA2JSkTyTIJrr, p0k<J (5.14)
tt'

über. Die Konstante A ist in (14.11) definiert. Gleichung (5.14)
lässt sich leicht nach den ßkg auflösen, mit dem Resultat

/5,„= j :j 9 ^ {(Ä0-A)p0k-A2J8kz, Srgp0TX,} (5.15)

Vermöge der ßkg kann man die prkg (r > 1) aus (5.8) berechnen.
Wir werden aber sofort sehen, dass dies nicht nötig ist, um G in
den neuen Variablen prkg auszudrücken.

Um die Transformation (5.1) in G (4.26) einzuführen, schreiben
wir G in der Form

G Z"Z { \ Z Ark, sl PrkgPslg + Z Nrkg, sia P rka Psla}

+ ZP«kg(Z'Alk,.,lPslg)+i-A0ZPtke (546)
kg sl kg

wo pCU£,nach (4.18) definiert ist. Setzen wir jetzt (5.1) ein, so kommt :

G kZ"ZZArk. slPrkgPslg + Z'ZZ Kte. sloPrkgVsia

+ \A,Z{Zzy,sioPsio)yGyG' (5.17)
kg la

wobei sich G0 aus G (5.16) ergibt, indem man alle prke durch prke
ersetzt, während G" sich als

G'-Z'ZPyZArk,slPs,g + 2Z'Xkg,SJ>ayyZP0lay,rkg}
r kg [ si sia ta J

schreiben lässt. Da die Summe das Glied r 0 nicht enthält, folgt
aus (5.4), dass die Klammer stets verschwindet, und damit auch
&". Andererseits erhält man aus (5.4) (unter Benutzung von (4.18))
durch die Operation X Prkg'-

rkg

ZZZ Ark. SlPrkgPslg ~ Z"ZZ^-^rkg.slaPrkgPsIa
rs kl g rs nl ga

+ AoZ (-Puls + P'tks) =Z'P0k-g ßkg ZPoke ßkg
le g le g k g

Durch Vergleich mit (4.26) erkennt man, dass die linke Seite
2 Gry ist. Indem man auf der rechten Seite für ß (5.15) einsetzt,
findet man daher:

Go=yyì ~;{(Ao-A)ZPokS-AZZP~oksSjgSkaP0jo) (5.18)
*Ao(A0-ZAl kg leg ja J
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Wir fragen jetzt nach den Operatoren prko und der kanonischen
Transformation. Die Rechnungen, die von (5.4) zu (5.15) führen,
sind auch für Operatoren prke, ßkg gültig. Um die Berechnung von
G für Operatoren nachzuahmen, sind wegen des Nichtkommu-
tierens der p0jr und der XkgHa entsprechende Symmetrisierungen
einzuführen. Dies ist aber erst sinnvoll, wenn (5.1) zu einer
kanonischen Transformation ergänzt ist. Da die prkg (r > 1) gemäss
(5.8,15) noch von den Sla und p0ke abhängen, wird die kanonische
Transformation ähnlich derjenigen in (4.3, 4, 18), wobei aber die
Rollen der p und q vertauscht sind. Es ist schon bei der Behandlung
der Vektortheorie darauf hingewiesen11), dass diese Rechnungen
erst auf die nächsthöhere Näherung im Sinne der Entwicklung
nach Potenzen von (gr1) Einfluss haben. Sie können in der hier
betrachteten Näherung vernachlässigt werden, so dass die
Gleichungen

«•*,= «,* ^ > 0) (5.19)

zusammen mit (5.1) als kanonische Transformation zu betrachten
sind. Wir haben also (5.19) in F (4.28) einzusetzen, und ferner in G

(5.17, 18) die prkg (r > 1) als die zu den qrkg (r > 1) kanonisch
konjugierten Operatoren aufzufassen. Die Operatoren p0kg sind
wieder durch (4.15 ff.) definiert, so dass sich

(5.20)
ZPlky^(Z^+i)^\ZIT
fcQ fc )Q }Q

ZZPokeSkAoPoia= 2]r2 (-27P/+4) + ÌZW*
kj g a Ic jg

ergibt.
Setzen wir nun die Funktion K (3.17') aus: (4.28) (5.19) sowie

(5.17, 18, 20) und G' 0 zusammen, so können wir sie folgender-
massen schreiben:

K YZZZ Bnc. sl <lrkg Vslg + \Z"ZZ Ark. slPrkgPslg
TS Kl Q rs tut Q

+K«+K'+ì{y,-Brr"B°) (3*21)

mit

n a ji0 }e

KS-iAoZ(Z'y,s,ysla)2+Z'ZZNrke,sloPrkgPslo (5-23)
/ro \sla ; rn kt oo



108 Klaus Büdenberg.

wo NrketSla durch (4.27') oder (4.27") gegeben ist. Die Konstante J
ergibt sich nach (5.18, 20) zu

J 2y2Bl(Ä0-2A) (5.22')

was sich wegen (14.11), (2.2), (3.3) zu

J 4%r{[dX6a{x) y~A)-Ha(x)7-2^[dXòay~Ayòa} (5.24)•Ali*

berechnet.
Bemerken wir noch, dass unter Benutzung von (4.27')

KS Y AoZ \{Z'?-kg, slaPsla
fco [\sla

+ Ì0 Z'A0k,slPslef- ^o(Z'AOk,slP.slgf\ (5-25)

mit (5.23) identisch ist, so können wir für K auch

K H° + HK + Hs + H'y const. (5.26)

schreiben, wobei jetzt :

H° H0 (5.27)

von (2.6), wenn man die prkg qrkg durch prkg qrkg ersetzt,

HN=yjZPn (5-28)
n

"¦ ==7>7AoZ KZ'^kg, slaPsla + a Z'A0k,slPslg\
kg \\sla ^° si j

- -^(ZA0k.slPslgf) (5.29)
¦ä-D \sl 1

H>yÄ Zm (5-30)

bedeuten sollen. Hs (5.29) unterscheidet sich von Ks (5.25) dadurch,
dass die dritte Summe auch die Terme s 0 umfasst. Die gleichen
Terme treten auch in H° (5.27) auf und heben sich daher in K
(5.26) fort, was mit (5.21) übereinstimmt.

§ 6. U-Transformation.

Es war unser Ziel, den Ausdruck (M*ZU)+Oi+0 in (3.17) zu
berechnen. — Nachdem wir in §§ 4, 5 mittels zweier kanonischer
Transformationen für K eine für unsere Zwecke geeignete Näherung
erhalten haben, ist jetzt die Transformation mit der Matrix Vi
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(3.11) vorzunehmen. Da es hierbei in K nur auf die Terme HN
(5.28) und H's (5.30) ankommt, sind die Rechnungen genau
gleichlautend wie diejenigen im Fall des Vektorfeldes, und wir können
daher unter Verweis auf den § 8 der in Fussnote4) zitierten Arbeit12)
sofort das Resultat

(11* K11) K 7- Z + 4HK x 1) Pi + yPs- ob P*) x t2} (6.1)

angeben. Hierbei wurde wieder von (4.5) in der Weise Gebrauch
gemacht, dass wir II nach Potenzen von leCT/P entwickelten und
uns in (U*KU) auf das grösste Glied beschränkten. Die ersten
beiden Terme in (6.1) sind Diagonalmatrizen, der dritte hat
verschwindende Diagonalelemente. Daher finden wir in unserer Näherung

(Xt* KU) +0 + 0 K 7- "y, Ausserdiagonalelemente ~-j (6.2)

Denkt man sich (3/8 J) in die additive Konstante von K (5.26)
aufgenommen, so geht damit die Schrödingergleichung (3.17)
schliesslich über in:

(K - E) F'_ 0 0, mit der „Randbedingung" : (6.3)

j e* T * ei: T *
¦ F'+ 0} hat in 0 und W die Periode 2 n (6.4)

Die Begründung für (6.4) findet man in § 9 der in Fussnote4)
zitierten Arbeit.

§ 7. Bedingung für starke Kopplung.

In diesem Abschnitt sollen die Bedingungen (3.34) und (3.35)
untersucht werden, welche die Voraussetzung darstellen, unter der
die Näherung (5.21, 26), (6.3) zulässig ist.

Da nach (3.20) ;

2j Tn~ 2j Soi'e '

grössenordnungsmässig also

rn *** 2*1 Qojg

gilt, und wegen (3.3) können wir (3.34) zunächst

/2>re2'22J*fl (7.1)

schreiben. In der quantisierten Theorie sind unter q$jg die Mittel-
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werte zu verstehen. Da diese auch im Grundzustand eine von Null
verschiedene endliche Grösse haben, wird (7.1) zur Bedingung für /.

Man kann nun zeigen, dass der Grundzustandsmittelwert der
Abweichung g02;e von der Minimumslage q0je (3.33) die gleiche
Grössenordnung hat, wie der Mittelwert von q^ g

für die Nullpunktsschwingung

des wechselwirkungsfreien Mesonfeldes. Wir berechnen
die letztere. — Nach (2.1) gilt, wenn M{ —} den Mittelwert
bedeutet :

M{qljg}:- fdX l'dXy0(x)TJa(x')M{Wjg(x)Wju(x')} (7.2)

Die Theorie des Vakuumfeldes13) liefert nach einiger Rechnung

ZM{y>jg(x)Wlg(x')}= j} fdHm(k)e^y(2»)

m(k)= ^ + ß2
o>- fly k2

(7.3)

Dies in (7.2) eingesetzt ergibt (vgl. hierzu (12.1)) :

2JM(qlQ)^fdnVl(k)m(k)^2jdXU0(^-A)^U0

+ \ fdxu0(y-Afr0 (7.4)

Der erste Summand rührt von den transversalen Mesonen her, der
zweite von den longitudinalen.

Durch Einsetzen von (7.4), (2.5, 13) und der Grössenordnungen
(12.5, 6) in (7.1) bekommt diese Bedingung jetzt die Form

/ > (a/j) füra/,(<l (7.5)

f y (a y2 für a fi î> 1 (7-5')

Für die Bedingung (3.35) müssen wir die Ausserdiagonalelemente
von (VL*KU) kennen. Nach (6.2) sind dieselben von der Grössenordnung

1/J, so dass sieb (3.35) unter Benutzung von (3.3) als

/VP0J>1 (7.6)

fassen lässt. — Im Fall a ft <^1 findet man für J nach (5.24), (2.2),
(12.4, 6, 7) in erster Näherung im Sinne einer Entwicklung nach
(ap) :

J= « -i (7-7)



Kopplung zwischen Nucleonen und pseudovektoriellen Mescnen. 111

wo a0 der in (12.4) definierte Nucleonradius ist. Grössenordnungs-
mässig ergibt sich aus (5.24), (2.2), (12.5 6, 7):

t ~ I /2 a~l V" für «"ja < 1 1

ß.J~]/»a-V-4 furaci) (7'8)

Setzt man jetzt in (7.6) die Grössenordnungen gemäss (7.8), (2.5,
13), (12.5, 6) ein, so wird man wieder auf die Ungleichungen (7.5, 5')
geführt. Diese stellen also die am Ende des § 3 in Aussicht gestellte
„Bedingung für starke Kopplung" dar, welche als die Voraussetzung

aller hier durchgeführten Rechnungen zu betrachten ist.

III. Approximation des Hamiltonoperator^ im Fall /= 0, g*4=0.

§ 8. Übertragung der §§ 3—7 auf den anderen Kopplungsansatz.

Wir werden die Theorie nicht für den allgemeinen Kopplungsansatz

/ ± 0, g 7 0 entwickeln, sondern beschränken uns darauf,
jeden der beiden Wechselwirkungsterme für sich zu betrachten.
Wir wollen daher jetzt den alternativen Fall / 0, g 7 0
untersuchen. Hierzu ist es zweckmässig, von den durch (2.1) definierten
kanonischen Variablen zu den durch die kanonische Transformation

Qrkg Prkg > Prke - 2rte (8-l)

eingeführten neuen kanonischen Variablen Prkg, Qrkg überzugehen.
Diese substituieren wir in H (2.6, 7), wodurch:

H0 4 ZZZ {Priest Prkg F'sig + Ak.slQrkg Qslg} (8-2)
Q TS kl

H'-vZoyg{jQokg~fPokg) (^)
entsteht, und für / 0 dann

H' ygZoygQokg y, -5f->o (8.4)
kg "

Der Vergleich mit (3.3) lehrt, dass wir den Fall / 0 auf die
gleiche Form gebracht haben, die früher der Fall g 0 hatte.
Daher können wir alle früheren Rechnungen übernehmen. Der
einzige Unterschied ist, dass die — immer noch durch (2.8 bis 13)
definierten — Matrizen A, B ihre Plätze vertauscht haben. Der
Einfluss dieses Wechsels ist Schritt für Schritt nachzuprüfen.
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Der § 3 kann im wesentlichen übernommen werden, einzig sind
in (3.21) ff. die B durch die A zu ersetzen, speziell in (3.31—35),
wo jetzt _rB Y„A0 (8.5)

auftritt. Gleichermassen ist in (4.3) F3 und in (4.4) A zu schreiben.
(4.19) ist durch

<sta - \ Z Asi.oj (Ska S,e - dt} dae) (s > 1) (8.6)
ZA0 j

zu ersetzen. In (4.26) tritt B an die Stelle von A. Anstatt (4.27') ist

¦^rlcg.sla 2j rk,0) ^)g,sla ("•')
./

zu verwenden. In (4.28) haben wir A, (yg Fg) für B, (y F)
einzusetzen. In § 5 ändern sich die Definitionen (5.11), (5.13) zu:

411 ZZBsi,s'v Z lt,su a,V* - 4*1 (8*8)
s l s' V r

mo) _ V-fD ;(!/) p* ;(</) *>_ /|(2g) /gmxlkg,ia — Zj\DOk,slAja.slg • D Oj.sl Akg.sla J ~~ /Lja.icg \°-^)
sl

Diese beiden Matrizen sind ebenfalls im Anhang § 14 berechnet,
und gemäss (14.10) hat man jetzt in (5.15) A{a) (durch (14.12)
definiert) zu schreiben, ausserdem natürlich B0 statt A0. Die
weiteren Rechnungen verlaufen wieder ganz analog, und (5.21) ist
daher mit dem Zusatz gültig, dass in (5.23) X, N durch Ato) (8.6)
und N[g) (8.7), (4.27") ersetzt werden, und dass an die Stelle von
(5.22') jetzt

Jg 2ylAt{B0~2A^} (8.10)

tritt. In (8.10) sind (14,12), (2.2), (8.4) einzusetzen, wodurch wir

Ja= lffifdXâa(x)fa*-A)-1ôa(x)+p*fdXô0(p*-A)-*da} (8.11)

erhalten. Im Vergleich mit (5.24) ist die Vertauschung der Faktoren
1 und 2 zu bemerken. Der Übergang zu (5.26) gilt auch hier.

Der § 6 ist ohne Änderung zu übernehmen, so dass noch die
Bedingung für starke Kopplung § 7 zu diskutieren bleibt. Da sich
die Bedingung (3.34) im vorliegenden Fall, wie erwähnt

rn<y,À0 (8.12)

schreibt, liefern die gleichen Überlegungen, die zu (7.1) führten,
wegen (8.4) jetzt

92> A ZQtig (8-13)
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Der (7.2) entsprechende und rechts einzusetzende Mittelwert wird
wegen (8.1), (2.1) jetzt

M{Qlje} JdXjdX' U0 (x) U0 (x') M{njg (x) njg (x')} (8.14)

Die gleiche Theorie des Vakuumfeldes, die zu (7.3) führte liefert
uns auch

zM {nn(x) yy)>=y^ fd31 m' (fc) ert&y
j (2 7t)3./ v '

mit:
m' (fc) 2 cok + -y col ,u2 + k2 (8-15)

Dies in (8.14) eingesetzt, ergibt analog zu (7.4)

ZM{Qlig}= fdHVl(k)m'(k)=-2 [dXU0(fi*-Afü0
i j

+ fi2fdXÜ0(fi2-A)~iü0 (8.16)

Der erste Summand entspricht den transversalen Mesonen, der
zweite den longitudinalen. Setzt man nun (8.16), (2.5, 13) und die
Grössenordnungen (12.5, 6) in (8.13) ein, so ergeben sich die
Bedingungen :

g i^> a fi für a fi <^1 (8-17)

g>(a/<)32 füra,w>l (8.17')

Die Bedingung (3.35) andererseits lautet jetzt

(U*KX!)aV,0 y/gA0 (8.18)

Analoge Überlegungen wie diejenigen, die zu (7.6) führten, liefern
wegen (8.4) jetzt:

gy2I0Ja>fi2 (8.19)

oder, da nach (2.13) A0 von der gleichen Grössenordnung wie
fi2B0 ist:

g*ifBQJg>l (8.19')

Der Vergleich von (8.11) mit (5.24) zeigt ferner, dass grössen-
ordnungsmässig

Jf ~ -£ (8-20)

gilt. Infolgedessen können die auf (7.6) folgenden Überlegungen
hier in gleicher Weise gemacht werden, sofern man nur J, / durch
Jg, g ersetzt. Daher folgen aus (8.19') wieder die Ungleichungen
(8.17, 17'), welche die „Bedingung für starke Kopplung" im
vorliegenden Fall darstellen. Sie sind den Bedingungen (7.5, 5') voll-
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kommen analog. — Wir geben noch die erste Näherung von Ja im
Sinne einer Entwicklung nach (a/u) bei afi <^1 an:

Jy3Sa0 {afÂ<1) (8-21)

welche sich aus (8.11) analog ergibt wie (7.7) aus (5.24)

IV. Diskussion der Gleichung (8.3).

§ 9. Das komplexe Nucléon.

Um die Bedeutung der Schrödingergleichung (6.3) mit K (5.26)
zu diskutieren, behandeln wir zunächst den Term HN (5.28), den
wir nach (4.7, 8)

mv -Ifl ô n ò 1 / ô2 0 n ô2 Ô2 \1/Q1v¦" =o-fl -öw;Sin0 77;+ ,„ ,-*T+2C0S 0 ,7^xir/+ Aim }("•!)

schreiben, für sich; d. h. wir betrachten das Eigenwertproblem

(Hff - FA) F^ (0 0 Ï») 0 (9.2)

nach dessen Eigenfunktionen wir uns später eine Entwicklung
vorgenommen denken. Dieses Vorgehen ist ganz gleich wie in der
Vektormesontheorie und wir können für die Rechnungen daher auf
den § 9 der in Fussnote4) zitierten Arbeit verweisen. Der Ausdruck
(9.1) ist der Hamiltonoperator eines Kugelkreisels mit dem
Trägheitsmoment J, die Eigenfunktionen und Eigenwerte von (9.2) sind

Ffmn *«<«• + »*>
ujmn (0) Ef - Z j (j 7-1)

* 13 .1.3 ,1,3
j > : m jl> n

(9.3)

Die Halbzahligkeit der drei Quantenzahlen folgt aus der Bedingung
(6.4).

Aus der Differential-Gleichung (9.1,2) ergibt sich für die Hermi-
tizitäts- und Orthogonalitäts-Integrale das Volumelement (d0dxPd0
sin 0), woraus die nach (4.25) erwähnte Hermitizität der P (4.8)
folgt. Nimmt man noch hinzu, dass (4.9) die Vertauschungsrela-
tionen von Drehimpulsoperatoren sind, und dass (4.8) dieselben
Gleichungen sind, wie diejenigen zwischen den Drehimpulskomponenten

eines starren Körpers in einem körperfesten Axensystem
und den zu den Eulerschen Winkeln (00W) kanonisch
konjugierten Impulsen (p^>py,p&) — so erkennt man, dass die Pn
mathematisch die Rolle von Drehimpulsen eines Kugelkreisels mit der
Rotationsenergie (9.1) spielen. Diesen Sachverhalt interpretiert
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man dahin, dass der durch die Freiheitsgrade (00W) beschriebene
Teil des Mesonfeldes durch die starke Kopplung fest an das
ruhende Nucléon gebunden wird; er bildet mit diesem zusammen
ein sogenanntes „komplexes Nucléon", welches sich wie ein Kugelkreisel

verhält. Der Spin dieses komplexen Nucléons wird nämlich
identisch mit den Komponenten des Kugelkreiseldrehimpulses
bezüglich eines raumfesten Axensystems:

Mf -£SinPn, Mi p„ Eigenwerte: Mf m\

£ (Mff £ PI., Eigenwerte : j (j +1) I

i n '

(9.4)

so dass HN die diesem Spin entsprechende Rotationsenergie ist,
sofern dem komplexen Nucléon das Trägheitsmoment J zugeschrieben

wird. Diese „Spinträgheit" wird für a -> 0 gemäss (7.8)
unendlich gross, worauf wir vor (1.9) Bezug nahmen. — Die Quantenzahlen

j, m bestimmen also Rotationsenergie und Spin des
komplexen Nucléons. Die Quantenzahl n bestimmt ferner seine Ladung,
da sich diese zu

eN y + P3 y + Py Eigenwerte (n + -~\ (9.5)

ergibt. Die Grundzustände j 1/2, m ± 1/2, n ± 1/2
entsprechen dem „nackten Nucléon", während sich für j > 1/2
sogenannte „Isobaren" ergeben.

Die vorstehenden Ausführungen gelten offenbar aucb für den
in § 8 diskutierten alternativen Kopplungsansatz, sofern man nur
das Trägheitsmoment J durch Ja (8.11) ersetzt.

§ 10. Zum Streuproblem.
Es sei ein Wort über die Streuung angefügt, wobei wir uns auf

den Fall g 0 beschränken. Die Sachlage in den anderen
Mesontheorien lässt erwarten, dass der übrige Teil von K (5.26) eine

Streuung der „nicht im komplexen Nucléon absorbierten'"
Mesonen durch das komplexe Nucléon beschreibt, und dass das
Problem sich in vereinfachter Form darbietet, wenn man sich auf den
interessanten Fall a fi<7^ 1 beschränkt und die Energie co0 =]/fi27-k2
der einfallenden „freien Mesonen" als <^! or1 voraussetzt14). Es

liegt nahe, dann in K (5.26) den Term Hs' zu streichen und in H°,
Hs die (qokePokg) als von den (00W) unabhängige Variable
aufzufassen, so dass die Hamiltonfunktion

K HAyH° + Hs7- const. (10.1)

leicht interpretierbar wird: HN entspricht dem komplexen Nucléon,
H° repräsentiert das Vakuumfeld der „freien" Mesonen, Hs (prkgf
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00W) liefert die Wechselwirkung zwischen beiden. In Analogie
zu dem ähnlichen Vorgehen beim Vektor- und Skalarfeld wird man
nämlich vermuten, dass die gemachten Vernachlässigungen das
Fortlassen einer Streuung bedeuten, die klein gegen die durch Hs
bewirkte ist. — Nimmt man nun noch die Energie der einfallenden
Mesonen als gross gegen die Isobaren-Energiedifferenzen an, so
kann HN als konstant angesehen werden, und in Hs sind die (00W),
also auch die X als vorgegebene Parameter zu behandeln:

K H° 7- Hs + const. (10.2)

Der Streuterm Hs (5.29) ist komplizierter als in den übrigen
Mesontheorien. Dies liegt in der ursprünglichen Hamiltonfunktion (2.6, 7)
begründet. Diejenigen Impulskoordinaten (p0kg) nämlich, deren
konjugierte (q0kg) in H' (2.7) auftreten, erscheinen in H0 (2.6) auch
mit den übrigen prkg (r > 1) multipliziert — ein Umstand, der weder
in der Vektortheorie noch in der Pseudoskalartheorie sein Analogon
hat. Immerhin lässt sich das zu (10.2) gehörige Streuproblem in
ähnlicher Weise wie das entsprechende Problem in der Vektortheorie

behandeln. Als Lösung ergibt sich:

-i"i„t\ „tu?
| "ni, '-g'),j.io g so

' ' j g, ie SoZ Ürjo Vr y>,-e(x> t) const, e"

r

mit:

fio,jy^w)=^(axF)^z(sioAag-^yj{^+y^y)
7- a0 K«0)2 4i7 (S/s. Sia + àH òeJ

(10.3)

I-2

«w)(6*«f. + ^»K)-*i;*«*.l

(10.4)

wobei :

i2a\= f dXUg^A)^1 U0, x =i'6, 1, fc05°(!ö 5° =1)

Nach (12.3) ist ax ebenso wie das durch (12.4) definierte a0 von
der Grössenordnung des Nucleonradius.

Wir wollen die ziemlich langen und verwickelten Rechnungen,
die zu (10.4) führen, hier nicht angeben. Aus (10.4) folgt für den
mittleren Wirkungsquerschnitt nämlich die Grössenordnung ~
(a6 /i4), d. h. um (a fi)4 kleiner als in der Vektor- und Pseudoskalartheorie.

Dieses Ergebnis lässt es als möglich erscheinen, dass durch
die oben eingeführten Vereinfachungen eine stärkere Streuung
ungerechtfertigterweise vernachlässigt ist.
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V. Mehrere Nucleonen.

§ 11. Kräfte zwischen Nucleonen.

Wenn anstatt eines einzigen Nucléons jetzt N ruhende Nucleonen
an den Orten xv (v 1, 2, N) mit dem Mesonfeld in Wechselwirkung

treten, so ist der Kopplungsterm (1.11') durch

8' Z& > & àa (x - x,) £y t« (/ fko + i nkg) (11.1)

vi kg
' r

zu ersetzen, während irj0 (1.11) unverändert bleibt. Die Schrödinger-
funktion hängt von den Spin- und Ladungsindizes aller V-Nucleo-
nen ab, hat also 4AT Komponenten. Die Matrix (a(kr> xy wirkt auf
die Indices des v-ten Nucléons allein, bezüglich der Indices der
(N — 1) anderen Nucleonen ist sie als Einheitsmatrix aufzufassen.

In Analogie zu § 2 entwickeln wir die Feldfunktionen nach
einem vollständigen Orthogonalsystem reeller Funktionen Ur (x)
[r l, 2,...(!)]

fkg-Zy^rkl yg-ZVrPrkg [Z Z W
Und in Analogie zu (2.2) definieren wir die Funktionen U1 (x), U2

(x)... UN durch

U, Ua(x-xv) (v l,2-.-N) (11.3)

rj ist für alle 77„ gleich und durch (2.4) gegeben. Da die Nucleonen
als nicht überlappend:

à
a (x - ag öa (x - xv) 0 für fi + v (11.4)

vorausgesetzt werden, ist die Orthogonalität der Funktionen U1 —
TJN gewährleistet. Gehen wir jetzt mit (11.2, 3) in die Hamilton-
funktion (1.11) (11.1) ein, so resultiert

H0=^ZZZ {Ark,sl Prkg Pslg + Brk,sl Irkg 2,Je} (U -5)
" q rs kl

H' £HV K=rj£ o-« r« {/ qvkg + 9- pvk0] (11.6)
v=l kg "

Dabei sind die Matrizen A, B immer noch durch (2.8, 9) definiert,
nur sind unter den Ur(x) jetzt die neuen Funktionen zu
verstehen. An die Stelle von (2.12, 13) treten daher erweiterte
Gleichungen, die wir nur für A, B ausrechnen. Man findet:

Avhvl Ä0ökl Brkvl=B0ôkl (11.7)
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wo ^0) P0 wieder durch (2.13) gegeben sind. Für v ± /t liefert (2.10)
wegen der Orthogonalität :

A,^JdXU,d^öxl^-Ar1y (H.8)

was sich für a fi <; 1 und Nucleonabstände \xß — xv\ <^ a wegen
(11.3) in erster Näherung zu

Aßkvi^ t v i ih- x.1.*r(u,v<N) (11.9)

vereinfacht. In analoger Weise findet man

— 1 I 1 e)2 Ì / e-"'"'*"' \
P„„-,/= V5«- 2 W

1 (H-10)'"** ' »;2 | /«2 x[f'v) r> x{{"A \ ±^rnv j y J

Um die zu § 3 analogen Rechnungen durchzuführen, beschränken
wir uns wieder auf einen einparametrigen Kopplungsansatz und
setzen in (11.6) zunächst 3 0. Die Matrix, die PL' — £Hv, dann
analog zu (3.2) diagonalisiert, ist das direkte Produkt

H lI1xH2x ••¦ xXtY (11.11)

wobei Hj, gemäss (3.11) für das v-te Nucléon und seine Indices
definiert ist, und Hv gemäss (3.10, 12) auf Diagonalform bringt, so
dass sich

H'=-yUBU*, B~2JBV, y vf (11.12)
V

ergibt. Bv ist die nach (3.12, 13) für das v-te Nucléon und seine
Indices definierte Diagonalmatrix. Analoge Überlegungen wie in
§ 3 führen uns von hier zur einkomponentigen Schrödingergleichung:

{(H*XH)+o..., + o...--E}P;o,-o..., + o 0 (11.13)
mit

K^H0-yf;Zjy F + G (11.14)
v=i n

G ist mit (3.18) identisch, während

F YZZZBrk,sl1rkg1slg'yZZy d1*15)
0 rs kl v n

i^-Z^'W** y=Z^yi^L (11-16)
n kg

Die Funktion F hat wieder ein Minimum, und bei starker Kopplung

können wir uns auf kleine Schwingungen um dasselbe
beschränken. Zur Bestimmung des Minimums wenden wir das gleiche
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Verfahren wie in § 3 an und führen, den 9 N Nebenbedingungen
entsprechend, die 9 N Lagrangeschen Multiplikatoren crv[a ein.
An die Stelle Gleichungen (3.21, 22) treten dann:

ZBrk,sAslg-ZÔ,r^kg-0 (11.17)
sl ß=X

{kQ 1,2,3) (/•=- 1,2, • ¦ -oo)

-y+z«na4vy:yo aus)
la

(n 1,2,3) (v 1,2,3-¦ -N)

Gleichung (11.17) lässt sich mittels (2.11) umkehren:

ïslg ZBsl,,k*»kg (11*19)
fifc

welches für s v ~ 1, 2, N in

2,ze Po «ws + 2" 2 ^, Kk %kg (Z' È aber !•' * ") (11 -20)
ii fc t-i ß=l

übergeht. Aus (11.16, 18, 20) folgt:

r P + Z'Z B*i,,k y t%%kg (11-21)
fi fclQ

z°y=zr+Z'Z p«uik yi %kg (11-22)
n m /dg

wo F wieder durch (3.28) und Sw analog (3.29) definiert ist. Da
nun die Bv^lik (v + ii) gemäss (11.10) für grosse rßV sehr klein sind,
denkt man sich die Grössen qrkg, r£-\ a.vkg nach den Bvjiflk (v 7 fi)
entwickelt. Die ß-freien Terme ergeben sich, indem man in den
obigen Gleichungen die Bvj ßk 0 (v 7 ii) setzt. So findet man aus
(11.20, 21) und mittels (11.16):

[Ligio Po KJo, [ri"]0 r= y B0, [awJ0 y Sft (11.23)

Durch Einsetzen von (11.23) in (11.19—22) ergeben sich sodann die
in den Bv)l,k(v7fi) linearen Terme, von denen wir nur aus (11.22):

Z°y zr + yZ'ZB*i.l>kZs'ig)s{k1 (11M)
n ii kl g

berechnen. Das genügt schon um den Minimalwert F von (11.15)
zu erhalten. Aus (11.17) ergibt sich nämlich:

2j 2j 2j ^rk,sl1slg1rkg 2j 1/*kga)ikg
g rk sl iikg

und aus (11.16, 18):
Y Z' °rn]' Z' *vlaivla
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Für F (11.15) finden wir daher, wenn wir noch (11.24)
berücksichtigen :

F^-hZV^-ir^oN + iZ'^ (11-25)
vn ßv

mit:
17""' (*,.) - Y2 Z Bt.k, ,iZ SH St}g (11-26)

lit s

yj»v'> hängt gemäss (11.10) von rßV ab.

Die Berechnung von F ist hinreichend, um die Kräfte zwischen
den ruhenden Nucleonen in einer ersten Näherung zu liefern. In
der Tat : F ist die erste Näherung von FT und damit von (U*KU) + 0...,
+0 Daraus, dass diese Näherung der Hamiltonfunktion sich
gemäss (11.26) zu einer Funktion der Nucleonkoordinatc n allein
reduziert, entnimmt man, dass sich die Kräfte zwischen den
Nucleonen aus den statischen Potentialen (11.25, 26) ableiten. Wir
begnügen uns mit dieser Näherung, wollen aber vor der Diskussion
noch auf den alternativen Kopplungsansatz eingehen. Es ist klar,
dass ein analoges Vorgehen, wie wir es im § 8 eingeschlagen haben,
uns hier zu dem Ausdruck

Fg -^ylÄ0N7-±Z'V(r} (11-27)

mit
Vt] - Y2oZA^iZS(£ Stt (11-28)

kl g

führen wird, in Analogie zu (11.25, 26). Setzen wir nun die Werte
(11.9, 10) für A und P in (11.26, 28) ein, so ergeben sich folgende
statische Potentiale der Nucleonkräfte :

B V k r \ k k

e~"r"

Z^d^]\hy (11-29)

f''o\k ke dx(kV) Ì \l " dx\ßV) / 4jir/'-^— yZiz^gd^y zyhly-,',e-^ynm
Man hat es mit Kräften zwischen den komplexen Nucleonen im
Sinn von § 9 zu tun, von deren „inneren Variablen" (0V 0V Wv)
die Potentiale durch die S'-v) noch abhängen. Infolgedessen sind die
Vf., Vg als Operatoren auf die Schrödingerfunktion aufzufassen,
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wodurch sich der Austauschcharakter der Kräfte ergibt. Denkt
man sich die Schrödingerfunktion nun nach Produkten aus den

Eigenfunktionen Ff„n (0V 0V Wv) der Isobarenenergien HNv (9.1)
der verschiedenen Nucleonen entwickelt, so entsprechen den Operatoren

Vf, Vg in dieser Basis Matrizen mit den Elementen

(h m'i n'i ¦ ¦ • fa m'a n'a I Vi"v) I h m'i % • • • fa mN n"a) (11 -31)

Die Untermatrix, die dem Fall entspricht, dass alle Nucleonen im
Neutron-Protonzustand sind (j'v j"v =1/2 für alle v), ergibt sich

15V

VI"V) =fa/2(?M-^(,,))

(5C).5W) + -L(â<"'.grad)(5W.grad))Zl(r,„) (11.32)

K'v) P f (*M • *W) {- -i (Sw • grad) (5« • grad) ] 11 (r„) (11.33)

9

3iW ï^^' (11.34)
mit :

4jzr

wo die Paulischen Spinmatrizen aJW auf die Quantenzahlen m^, und
die isotopen Spinmatrizen t^ auf die Quantenzahlen %, wirken.

Dieses Resultat ist bis auf den Faktor 1/9 identisch mit dem
Nucleonwechselwirkungsoperator, den die Methode der schwachen
Kopplung liefert16). In dem Fall also, dass bei Nucleonwechsel-
wirkungen die höheren Isobaren-Zustände (j > 3/2) unangeregt
bleiben, sind die Kernkräfte in der ersten Näherung der starken
Kopplung bis auf den Zahlfaktor die gleichen wie in der ersten
Näherung der schwachen Kopplung. Es ist indessen zu beachten,
dass wir — im Gegensatz zur schwachen Kopplung — nicht berechtigt

sind, im Fall / £ 0, g + 0 das Potential als V Vf + Vg
anzusetzen; der allgemeine Fall würde eine besondere Untersuchung
erfordern17).

Sowohl nach (11.32) wie nach (11.33) wären die Kräfte zwischen
einem Proton und einem Neutron in einem S-Zustand ((t1-t2)
(cTx-a2) — 3) auf grosse Distanzen abstossend, während bei
stärkerer Annäherung die zunehmende Anregung der Isobarenzustände,
wie eingangs bemerkt3), zu einer Anziehung führen würde.

Es dürfte indessen nicht angezeigt sein, das Deuteronproblem
nach dieser Theorie in Angriff zu nehmen, bevor nicht die Frage
nach dem Sättigungscharakter der abgeleiteten Kräfte im Fall der
schweren Kerne abgeklärt ist18). In diesem Zusammenhang ist zu
bemerken, dass das Wechselwirkungspotential (11.32) sich von dem
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analogen Potential der Vektormesontherie nur durch das Vorzeichen

unterscheidet, und dass das Gleiche zwischen dem Potential
(11.33) und demjenigen der Pseudoskalartheorie gilt. Wie nun
F. Coester mittels der statistischen Methode (Thomas-Fermi-
Näherung) gezeigt hat19), liefern zwar die ladungssymmetrische
Pseudoskalar- und Vektortheorie Kräfte mit Sättigungscharakter;
dieser Sachverhalt kann sich indessen infolge des Vorzeichenwechsels

ändern.

VI. Anhang.

§ 12. Abschätzung einiger Integrale.

Um die folgenden Abschätzungen herzuleiten entwickelt man
U0 (2.2) als Fourierintegral :

U0(x) (2.-r)-32/'d3f70(/f)ei<î^> (12.1)

<Z3£ dtfaf2df3 h= î
Wegen der Kugelsymmetrie von U0 [vgl. (1.10)] gilt das gleiche
für V0 im ï-Raum. U0 ist wesentlich 4= 0 für jx| < a, V0 für k < lja.
Daher gilt

fdXU0B(A) U0 fdH-B(-k2)V2(k) 4n fdk-k2B(-k2) V20(k)

o

wo B (A) eine der unten vorkommenden einfachen Funktionen von
A ist. Ersetzt man wegen

j\mv2= fdxu20=i

und unter Voraussetzung eines vernünftig glatten Verlaufs, V2
durch den Mittelwert a3, so wird

IIa

fdXU0B(A)U0^asïdk- k2 B (- k2) (12.2)
ò

Hierdurch berechnet man sich folgende Abschätzungen20). Zunächst :

fdX U0 (- A)nU0™ [a~2n] (n > - -| und rational) (12.3)

Hiermit steht die Definition des Nucleonradius von Oppenheimer
und Schwinger (a0) in Übereinstimmung21) — vgl. (2.5)

a^ fdxfdX' ô-f^ =AnJdXôa(-ApHa

4nr,2 fdXU^-Ap'üo (12.4)
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Weiter findet man für apt p> 1 im Sinne einer Entwicklung nach
(aptp1

fdX ü0 (pt2 - Af U0 pt2n {1 + [o ptp- +..•}« [pt2n] (12.5)

(n beliebig rational)

Für apt <p 1 andererseits hat man im Sinne einer Entwicklung nach
(api) :

JdXÜ0(pi2~A)nU0=JdXU0(-i,)nU0{l+[api] + ---}™[a~2n] (12.6)

für n > 0 rational und n — 1/2, — 1. Dagegen wird:

fdXU0(pi2-A)~2U0^[ai(api)-1]iÜT a pt <pl (12.7)

Dies hängt damit zusammen, dass für (12.7) — im Gegensatz zu
(12.6) — die in (12.2) auftretende rationale Funktion k2B (— k2)
den Grad < — 1 in k hat.

§ 13. Eigenschaften der orthogonalen Matrix S (Zu §§ 4,6).

Die in (4.6) zugrunde gelegte Abhängigkeit der orthogonalen
Matrix S von den Eulerschen Winkeln (00W) lautet:

cos 0 • cos 0 sin 0
— sin tf7 cos tf*

S I sin 0 ¦ cos © cos 0

cos 0 ¦ cos 0 sin 0 '
_ „

ir/ • m cos <P-sin©
cos V sin !r

sin 0-cos© cos<P I

_ _ (13.1)
• <r/ i» ir/ ¦ .7/ Sin 0 • sin « I ^ '

sm !f cos !r — cos ¥ sin !f
— cos y • sin © — sin Ï* ¦ sin © cos ©

Die Variablenbereiche sind: 0 (0,2 ti), W (0,2 ti), 0 (0,7t).
Aus (13.1) folgt:

Str SuSkt-St,Sjt «$} zykl. Perm, von (1,2,3) (13.2)

Ableitungen: Definiert man die antimetrischen Matrizen A 0 A v A e
durch :

A« dfa S - S' fafa (S' S_1 Transponierte von S) (13.3)

so gilt:
*& *-*' 4f—S^ (13.4)

Wie alle antimetrischen Matrizen lassen sich die Aa als
Linearkombinationen der

/0 0 0\ /00 1\ /0 -1 0\
41= o o-i) A2=[ o o o] A3= l o Ol (13.5)

\0 1 0/ V-l 0 0/ \0 0 0/
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den infinitesimalen orthogonalen Matrizen, darstellen. Man findet:

A0= sin 0 (Ax-cos XP+A2 -sin W) — A3-cos 0
A0 Ax- sin W — A2 ¦ cos W

ÄV A3

(13.6)

Wir benötigen die Umkehrung:

cos ¥Ax AtìsinWA- — "(A0-{-cos0-Ax " Bin © v v
sin V

A2 -Ae-cosW+ °£l (A0 + cos 0 • Axp

Ä3 AW

(13.7)

Lässt man die Operatoren Px P2 P3 (4.8) auf die Sea — als
Funktionen von (00W) aufgefasst—wirken, was Pk (Sea) geschrieben
sei, so erhält man auf Grund von (4.7, 8) und (13.4, 7) :

Pk(S)=i(SAk), d.h. Pk(Seo) i(SAk)ea (13.8)

Die Ausrechnung der rechten Seite liefert:

Pj(Sel) 0 Pj(Sek) lSel Pj(Sel) ~iSek (13.9)

(jkl zykl. Perm, von 1, 2, 3)

§ 14. Bechnungen zu §§ 5, 8.

Zur Berechnung von /t(1) /1<2) /t(ls,) A(2g) setzen wir (4.19) in (5.11)
und (5.13) ein, sowie (8.6) in (8.8) und (8.9). Das ergibt:

^ha\ Z\al \Z<ßkTSi9-6ki6x) {SltS,.-ôIt ÔJ

mit:

aa — fa52 \ Ai 21 ^oi.st^-si.s'i' Bs-r,t>j + du A0 B0 -4 -"o { ts l's'

~&o2j (¦"Oi,al-/*»l,0j + ¦^¦0i,sl"sl,0j)

(14.1)

(14.2)

a(P
4fa ZZA<sitSlBsl:S,l,As,v^ + òijB0A

0 \ Is l's'

~ ÄoZ (AOi,sl Bsl,0j + B0i,slAsl.Oj) (14.3)
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und:

5° | 27fe} (»,. **,„ - 3„ *e„) + £ I ^ | (S*„Sle- *tA„) (14.4)
fCQf IO /Cì lì

mit:

bH=Y'È \ZÄ^Ä^0H^B0\ (14.5)
-"o i Is

bn= h [ZBo^At^à^B,] (14.6)

Nun gilt:

ZAH,tA;,si àklIrs Irs=fdXVr(,x2-A)^Vs (14.7)

2-1 2u "<3i,sl^-sl,s'V ^s'l'.Ok
si s'V

^-{3^^00 + 4 fdXV,(pi2-A)-2V0] (14.8)

Zj 2j ¦A-OiM &l,s'l $'l',Qk
si s'V

àJUw + T" /^Z7J0(^-Zir2U0] (14.9)

wie man durch Übergang von den Matrixprodukten zu den
entsprechenden Operatorprodukten gemäss (2.10, 11) berechnet. —
Aus (14.1, 2, 4, 5, 7, 8) einerseits und (14.1, 1, 3, 4, 6, 7, 9) andererseits

ergibt sich dann:

ft:^t}-\^}^s^-ôM (14.10)

wobei die Konstanten A, AP) durch die Gleichungen

(Ä0-2A)B20= —1^+ IfdXTJ^-A)-2!], (14.11)

(B0-2A^)A2 l Iw+^ fdXU0([t2-A)-2U0 (14.12)

bestimmt sind.
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Die mitgeteilte Untersuchung habe ich auf Anregung von Herrn
Professor Dr. Gregor Wentzel unternommen. Für seine stete
Bereitschaft zu Diskussion und Ratschlägen, sowie für das
fördernde Wohlwollen, welches er mir dauernd entgegenbrachte,
möchte ich an dieser Stelle meinem hochverehrten Lehrer aufs
herzlichste danken.

University of Chicago, Department of Physics.
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x) Eine Übersicht über Rechnungen und Literatur bis Ende 1946 findet sich in
§§ 1 und 4 des Artikels von G. Wentzel, Rev. Mod. Phys., Vol. 19, Nr. 1 (1947).

2) Vgl. N. Kemmer, Proc. Roy. Soc. 166, 127 (1938).
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5) Vgl. G. Wentzel, Quantentheorie der Wellenfelder (Deuticke, 1943), Formeln

(12.5), (16.5).
6) Vgl. G. Wentzel. Quantentheorie der Wellenfelder § 12, wo der entsprechende

Übergang für Operatorfelder ausgeführt ist.
') Vgl. N. Kemmer, Proc. Cambr. Phil. Soc. 34, 354 (1938) ; auch G. Wentzel,

Quantentheorie der Wellenfelder § 10.
8) Im folgenden gelten stets folgende Summationsregeln: In 2727 laufen r, s von

r s
0 bis oo. In P'P' laufen r, s von 1 bis oo. Anderseits laufen die Indices

r s

(gar, i j hlmn) stets von 1 bis 3.
9) In der in Fussnote 4) zitierten Arbeit über das Vektorfeld ist die Konstante,

die unserem B0 analog ist, mit C bezeichnet.
10) In § 3 und § 6 deuten wir das direkte Produkt zweier Matrizen durch x an,

um es vom Matrixprodukt zu unterscheiden.
u) Vgl. die in Fussnote 4) zitierte Arbeit, p. 568.
12) Unsere Matrix II ist dort mit S bezeichnet.
13) Vgl. § 12 des in Fussnote 5) zitierten Buches, im Vakuum stimmen Vektor- und

Pseudovektorfeld überein.
14) Vgl. zu den Ausführungen in diesem Paragraphen den § 10 der in Fussnote4)

zitierten Arbeit.
15) Vgl. Formeln (15.9) bis (15.13) der in Fussnote 4) zitierten Arbeit.
16) Vgl. Formel (69b) der in Fussnote 2) zitierten Arbeit. Dort ist beim Term

(/2ffjy, dp) versehentlich der Faktor /c2 ausgelassen. Kemmers Konstanten häu-

gen mit unseren wie folgt zusammen : /c / ]P2/ß ]/,« ge g j/2 /j, / /u.

") Vgl. §§ 11—13 der in Fussnote 4) zitierten Arbeit.
18) Herr E. Trucco hat hier eine Untersuchung dieser Frage vorgenommen.
19) Vgl. F. Coester, Helv. Phys. Acta 17, 35 (1944).
20) Im folgenden heisst [ ]: von der Grössenordnung.
21) Phys. Rev. 60, 150 (1941).
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