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Zur Theorie der starken Kopplung zwischen Nucleonen und
pseudovektoriellen Mesonen

von Klaus Rildenberg.
(19. VII. 1950.)

Wenn man aus den Mesonfeldtheorien die Kernkrifte berechnen
will, steht die tatséchliche Stérke der Wechselwirkung einer er-
folgreichen Anwendung der iblichen, emne schwache Kopplung
voraussetzenden, Storungstheorie bekanntlich im Wege. Um dies
Hindernis zu iberwinden, hat G. WeNTZEL vorgeschlagen, eine
Entwicklung nach fallenden anstatt nach steigenden Potenzen des
Kopplungsparameters vorzunehmen, was die Annahme einer sehr
starken Kopplung zwischen Mesonen und Nucleonen impliziert.
Seither sind Rechnungen in diesem Sinne an den verschiedenen
Varianten der Mesontheorie mit Ausnahme des Pseudovektorfeldes
ausgefiihrt worden, und es haben sich daber Widerspriiche mit der
Erfahrung ergeben?).

Um die Sachlage vollig kldren zu konnen, ist es notig, auch das
pseudovektorielle Mesonfeld in starker Kopplung an Nucleonen
zu untersuchen. Dieser Feldtypus ist bisher etwas stiefmiitterlich
behandelt worden, vermutlich weil er bei schwacher Kopplung
abstossende Krifte fiir das Zwei-Nucleon-Problem liefert?). Diese
Tatsache sollte indessen zu keinem Vorurteil fithren, da die starke
Kopplung neue Verhéltnisse schafft, infolge derer die Krifte
zwischen zwel Nucleonen ganz allgemein die Tendenz haben, fiir
kleine Absténde unziehend zu Werdena)

Die vorliegende Arbeit will einen ersten Beitrag zur Ausfiillung
der erwihnten Liicke leisten. Die Hauptziele sind, unter Zugrunde-
legung der beiden bekannten Kopplungsansétze des Pseudovektor-
feldes?) die ,,Isobaren-Energie’* und die statischen Kernkréfte bei
starker Kopplung in der iiblichen N#herung zu berechnen, und
zwar fir eine ladungs-symmetrische Theorie. — Weitere Fragen,
wie die nach dem Sittigungscharakter der abgeleiteten Kréfte oder
nach dem magnetischen Moment von Proton und Neutron, sollen
hier ausser Betracht bleiben. _

Die allgemeinen Linien der Untersuchung entsprechen dem in
diesem Gebiet bisher angewendeten Schema und &hneln speziell
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der Behandlung des Vektorfeldes durch G. We~NTzEL?Y). Unser
Wechselwirkungsansatz ist von jenem Fall jedoch deutlich ver-
schieden, insbesondere koppelt jeder seiner beiden Terme longi-
tudinale und transversale Mesonen zugleich.

I. Hamiltonfunktion und passende Feldvariable.

§ 1. Lagrange- und Hamaltonfunktion fiir das Ein-Nucleon- Problem.

Das reelle Pseudovektorfeld, mit dessen Betrachtung wir begin-
nen, besteht aus den reellen Feldfunktionen (w; ws s v,). Bel
einer Lorentztransformation der Raumzeitkoordinaten (x; x, x5 x,
= ict) transformiert sich (w; w, v3 v =1 vy, als Pseudovektor,
d. h. der Vierervektortransformation ist noch die Multiplikation
mit der Determinante (4 1) der Lorentztransformation hinzu-
zufiigen. In der Lagrangefunktion des Feldes

BTyl . (1.1)

charakterisiert
4

1 oy, oy \2 1 L
Li=—5 X (o0 — o) —z 2 2% (1.2)

das Vakuumfeld®). (Wir setzen % = ¢ = I, u = Mesonruhmasse mit
der Dimension einer reziproken Lénge. Im Vakuum stimmen Vek-
tor- und Pseudovektorfeld tiberein.) L’ stellt die Wechselwirkung
mit dem Nucleon dar. Wir denken es als ruhend vorgegeben, wie
man es 1n der starken Kopplung bisher stets angenommen hat, eine
Beriicksichtigung der Riickwirkung auf das Nucleon ist noch nicht
versucht worden. — Um L’ zu finden, gehen wir von dem Kopp-
lungsansatz aus, den N.Kemmer fiir den allgemeinen Fall der
nichtstatischen Wechselwirkung zwischen einem Pseudovektorfeld
und einem Dirac-Nucleonfeld abgeleitet hat?):

Lfﬁﬁlf 48 g 1 4R Oy, 0Py l 1.3
- l ; vwv_}-?—z_f\;‘ /Lw('—a?#‘mox")l ( : )

\ v

Hierin sind f,g zwel reelle Kopplungsparameter und die S, E,, aus
den Dirac-Nucleon-Spinoren @ = (@, @, &3 #,) und den Dirac-
Matrizen y; 2 s Yas V5= "Y1 V2 Vs Yo 05 =— 175 v1 (1 i L zykl.) gebildet
gemass
szé*a;’@’ Gj:~iykyl’ O'-L:_i’y:') (14)
(7, k, 1 (zykl. Perm. v. 123)

B,=%%0,, P, oy=vs ey=t0if=vivivs, ¢,=0 (L5
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D. h. S, ist der duale Pseudovektor zum antimetrischen Tensor I11.
Stufe (— D+y,v,7, D), (A,, alle verschieden, D+ =1D*y,); und E,,
1st der duale Pseudotensor zum antimetrischen Tensor II. Stufe
(—1D+y,v,D), (utv). Damit ergibt sich fir L' die zu fordernde
relativistische Invarianz. — Beschrinken wir uns nun im Sinne
der Annahme eines ruhenden Nucleons auf die unrelativistische
Naherung @, = @,=10, {D, D,} = {ps+ ¢_}= ¢, so vereinfacht
sich der Kopplungsansatz (1.3), wenn man fiir die Diracmatrizen
die ubliche Darstellung wahlt, zu

v (e ) o
v=(nvaw) S=o¢*oe
wo jetzt ¢ = (0y 05 05) die Paulischen Spinmatrizen sind.

Indem wir in der Lagrangefunktion (1.1, 2,6) nun S als die vor-
gegebenen Quellen des Feldes behandeln, erhalten wir die Feld-
gleichungen des Pseudovektorfeldes p. Zur Transformation in die
kanonische Form ist zu bemerken, dass m, =0 wird, da L nicht
von 4, abhiingt. Wie in der Vektortheorie wird der Ubergang in die
Hamiltonsche Form dadurch moglich, dass man v, aus den Feld-
gleichungen eliminiert. Diese Methode$) fithrt uns zu der Hamilton-
funktion § = H, + H': |

o= g {202+ (ot PR+ 72+, (div 7)? (L.7)

- (515 + 23] o

wo 7 = (mym,my) das zu ¥ = (v, w, ;) kanonisch konjugierte
Feld ist. Genau gesagt: Die kanonischen Gleichungen
o9 05 _ 310 05 Om __ 08 310 05 _
ot 0 7; = 0, ()(dnj) 0t 0 = 0y, 3 (d%—)
0 x;, 0z,
und die zusitzliche. Definition von w, durch u?y, = div & sind
zusammen dem aus L folgenden Lagrangeschen Gleichungssystem
fdquivalent. :
Den Ubergang zur Quantentheorie vollziehen wir, indem wir die
v, 7 als hermitesche Operatorfelder auffassen, die auf eine Schro-
dingerfunktion F wirken. Ferner soll jetzt, auch bei ruhendem
Nucleon, die Rickwirkung auf den Nucleonspin berticksichtigt
werden. Wir nehmen daher eine zweikomponentige Schrodinger-

funktion I, (x =+ —) an, und setzten in Analogie zu (1.6) fir &
den Operator S = d,(x)o, so dass § durch die Matrizen o, auf die
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Spinindizes o von I operiert. Die vorgegebene reelle Formfunktion
8, (x) des Nucleons beschreibt eine Quelle der Lineardimension a.
Wir miissen dabeil stehenbleiben, obwohl im Sinne der punkt-
formigen Wechselwirkung und der relativistischen Invarianz 4,
durch die Diracsche d-Funktion zu ersetzen wire. Denn — wie wir
spater sehen werden — fiithrt der Iim @ — 0 zu unendlich grosser
Spintragheit. Damit ergibt sich aus (1.8) der Operator

& — 6a(m);§ak (f Y+ 73_ .n'k) (1.9)

Die Formfunktion 6, (x) wird ZWeckméssig kugelsymmetrisch ge-
wahlt (vel. § 2) und erfillt:

[dX6,(x) =1 x=F =(z,2,2;) dX=da,dzyda,  (1.10)

Die dimensionslosen Kopplungskonstanten f, g sollen reell > 0 sein.

Nun gehen wir noch vom reellen Feld zum ladungssymmetrischen
Feld tiber. An die Stelle von § treten 3 reelle Felder p, mit den
9 Komponenten v, (k, o = 1, 2, 3) und die kanonisch konjugierten
7y,. Der neue Index g bezeichnet ,,Komponenten im Raum des
1sotopen Spins®’. Zum Unterschied vom reellen Feld trigt das
symmetrische eine Ladung. Um der Riickwirkung auf die Ladung
des Nucleons Rechnung zu tragen, erhélt die Schriodingerfunktion
zu dem Spinindex « (= +,—) noch den Ladungsindex A (= 0,1)
und wird so vierkomponentig: F ,. Der Hamiltonoperator dieses
symmetrischen Pseudovektorfeldes ergibt sich in bekannter Ver-
allgemeinerung?) der Gleichungen (1.7,9) zu:

$o= 221710 L @VR 2y aoti ) (111)

‘5’ = (Sa(m) Z ZGA: Tg (f kag & -‘l%xkg\) (1'11’)
k=1 ¢=1 ¢

wo die den Paulischen Matrizen analogen ,,isotopen Spinmatrizen®
(t1 7, 73) =7 auf die Ladungsindizes 4 von F,; wirken. Die (o,7,)
sind als direkte Produkte (Kroneckerprodukte) mit 4 Zeilen und
Kolonnen aufzufassen. Der durch (1.11, 11') gegebene Hamilton-
operator

H=Hy+ H' = [ dX($, + ) 2}

gibt der symmetrischen Theorie bekanntlich den Vorzug, zu ladungs-
unabhéngigen Kernkriften zu fiihren.
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§ 2. Entwicklung nach einem reellen Orthogonalsystem.

Es empfiehlt sich, die Feldfunktionen yy, 7;, nach einem voll-
standigen Orthogonalsystem von reellen Ortsfunktionen U, (r =
0,1,2, ....00) zu entwickeln?):

%Q = Egﬂgg Ur ("E) nk@ - Zprkg Uﬂ’ (aj) ‘/ dX U"‘ DTS = (39”5 (2'1)

Uber die U, werden keine besonderen Annahmen gemacht, bis
auf die Festsetzung

U, (z) = 17 S5.(z) (>0 (2.2)

Sie bedingt:
[dX 6,(x) Uy(x)=0  fiir s >1 (2.3
[AX 8@y =z fir g (2.4)

woraus In Verbindung mit (1.10) die Grossenordnung
1~ a*m (2.5)

folgt. Die Wahl (2 2) fihrt zu einem einfachen Ausdruck fir H’,
und es wird sich spéter zeigen, dass der Teil (@lo e Uo (%)) des Meson-
feldes yy,, welcher ,nur am Ort des Nucleons* +0 ist, als derjenige
Feldanteill aufgefasst werden kann, den das Nucleon fest an sich
bindet.

Indem wir (2.1, 2) in den Hamiltonoperator (1.11, 11/, 12) ein-
fihren erhalten wir®)

0" 9 2 ZZ{ATA ,slprko pslo+BaR sl quo‘]slc} (26)

0 rs

“_"720'1” (T%An i pou) (27)
wober: :
CTavgr s 10t 4oy .
Ay = [ X U, | Orr— m:;;rm{} U, (2.8)
; ’ , 02 .
B, = [dXTU, o (w2 4) + N.;axz.} U, 2.9)

Die mnversen Matrizen

Ay = v/qu U {65+ (-4~ T, (@10

02
O'ik_é) x

_ P 1 .
Ba= | dXU%{a,l.l i oxll(w—d) 1y, (2.11)
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erfiilllten die Beziehungen
2 AH:, sl Asl, i Zi, Brk, sl le, i 51‘?" a}:k’
sl K} e

Man erhilt sie, wenn man in der Identitit

02 1 0? -
;{5“(#2_4)7‘ O, 0 }{‘M T 0w, 0my [(H — )

die reellen hermiteschen Operatoren
02 . 5 . , , gt iz—a|
o, B4 (=A@ = [dXTE)
durch die Matrizen ersetzt, welche sie in der Basis der U, darstellen.
Die Matrizen 4, 4, B, B sind in (r,s) und in (k,l) getrennt
symmetrisch. I'iiv » = § = 0 vereinfachen sie sich, wenn man die
Kugelsymmetrie in (2.2) in Betracht zieht, zu?):

Aok,of‘AGakzs AOL 01" ~ 4, ‘Sw BOk,OI,:BO(SkZ’ BOI:,{Jl:BOékl (2-12)
mit

Aozlm'f{l'z'/jdXUOAUo ZOI -

3+l [AXUol—d) 7Ty
i s/ 2.13)

B = -,Ltzﬁ—/dKDY AZ)O BO "g' /‘d.X Uo(ﬂz—*d)—lU‘J]

I1. Approximation des Hamiltonoperators im Fall f3=0, g = 0.

§ 3. Eanfithrung der Niherungsvoraussetzungen der starken Kopplung.

Die Grundvorstellung der starken Kopplung ist, dass man in-
folge der Grosse der Parameter f und g den Wechselwirkungsterm
H’ als etwas Grosses zu betrachten hat. Im Gegensatz zur iiblichen
Storungstheorie wendet man daher die Aufmerksamkeit zunéchst
diesem Operator H’ zu, und unser erster Schritt wird darin be-
stehen, ihn als Matrix beziiglich Spin und Ladungsvariablen dia-
gonal zu machen. Wir transformieren zu diesem Zweck die Schro-

dingergleichung
2y Hoswn By = B E, (3.1)

mit einer unitdren Matrix 2, ., in
2 {(11"‘ Ho u)oc.?., i T (uﬂ< H’ u)a;., a’).’} 1';,’;.' =k ‘F;’A (3-2)
a’'d’
F=U*F, F=UF (3.2

wobel U so gewihlt ist, dass (U* H' W) eine Diagonalmatrix wird.
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- Zur Durchfithrung setzen wir im folgenden zunichst g = 0 vor-
aus, so dass

H’:?’Z(ka"’@) Qor, y=nf>0 19 (33)
ok

Zur Konstruktion der Matrix U gehen wir folgendermassen vor.
Sel mit ¢ die reelle Matrix (g,;,), (k, =1, 2, 3) bezeichnet, mit ¢’
ihre Transponierte. Dann sind die Eigenwerte der Matrix (qq") reell,
da (gq') symmetrisch, und positiv (da die zugehérige quadratische
Form sich leicht als Summe von Quadraten schreiben lasst). Sei r
die Matrix (r, 8,,,), WO 7y, 75 ,73 die positiven Wurzeln dieser Eigen-
werte sind, und sei s die reelle, orthogonale Matrix, die (qq") diago-
nal macht, so dass:

s'(qq")ys=17%  ss'= 1 (3.4)

Dann gilt folgendes: Die Matrix t=¢'sr~1 ist ebenfalls ortho-
gonal, und sie bringt die Matrix (¢’ g) auf Diagonalform. In der Tat
folgt aus (3.4):

r1s'qq sri=1t=1

g qt=(r""s"q)(¢"ss"q) (¢'sr™ ) =r"tr2r2r t =92 (3.4

Also: (gq') und (¢'q) haben die gleichen Eigenwerte »7, und
zwischen den Matrizen g, r, s, t besteht die Beziehung

q=st,  Qoro— 2 TaSenten (3.5)

und

Wir betrachten nun die #,, s;,, t,, als Funktionen der 9 Variablen
o re» Perechnet als Eigenwerte und Eigenvektoren. Mit ihrer Hilfe
kénnen wir, wegen (3.5), fir H' jetzt

H' =y ‘; Ty (Ak\:' o7, sk%) (Zrn @n) (8.6)

schreiben. Da nun s und ¢ orthogonal sind, entsprechen ihnen zZwel
unitdre Matrizen Y, Y, in der Darstellung der Drehgruppe vom
Grade 2, und diese haben die Eigenschaft
2 Gk Skn = Ys Gn Y: ’ Z Tg ttgn - Yt Tn Yz* (37)
% e

wie sich aus der Spinortheorie ergibt. Das liefert uns

H =y (Yo x Y Xru(oux ) - (Vo x Y)* (3.8)
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Schliesslich bemerken wir noch, dass die unitare Matrix

£ = V; (oy +17,) = l/12 {(orx 1) +1 (1 x7p)} (3.9)
den Beziehungen
Zog ¥ =— (0 X Ty) Zty Z* —=— (0 X Ty3)
Z (05 X T3) L% =—(03 X T3) (3.9
gentigt, wodurch es maglich ist,
H=—yURU* (3.10)
zu schreiben, mit den Definitionen
N={Y ,xYy )+ Z (3.11)
B=rit3+rs05+r3(o5xt5)=R_;0,,.0,, (3.12)

Wie angedeutet, ist R eine Diagonalmatrix. Die Diagonalelemente
berechnet man zu:

3
R =y (-2%) (entsprechend : o5 == Ty=1)

. h=1
B_o=R_,+2y(ry+75) (entsprechend: o3 =—1 13=1) (3.13)
B =R _+2y@r;+ry) (entsprechend: o3=1 73=—1)
B =R _,+2y(r +1,) (entsprechend: o5= —1 7,=—1)

Das durch (3.11) definierte W hat also die gewiinschte Eigen-
schaft, und die Gleichung (3.2) schreibt sich in unserem Fall

(g =0):
S (UWH),, - F,-—yR,,  B,=EE, (8.14)

Wir kommen nun zum zweiten Schritt, der darin besteht, von
den 4 simultanen Gleichungen (3.14) zu emner einkomponentigen
Schrodingergleichung iiberzugehen. Mit diesem Ubergang fiihren
wir zum ersten Male eine Naherung in unsere Rechnungen ein, fiir
welche wir die Konstante y als geniigend gross anzunehmen haben.
Wir setzen y als so gross voraus, dass die Grossenordnung der Eigen-
werte F/ in (8.14) wesentlich durch den Term (—y R,;) bestimmt
wird, was fiir y = oo ja zutrifft. Aus (3.13) folgt dann, dass in die-
sem Fall die Eigenwerte E in zwei Gruppen zerfallen: die erste
entspricht dem Diagonalelement R, die zweite entspricht den
Diagonalelementen RB_,, R,;, B_; und liegt wegen der Grisse von
v und wegen v, > 0 sehr viel hoher als die erste. Dies berechtigt
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uns, unser Interesse auf die erste Gruppe zu beschréinken. Diese
tiefliegenden Eigenwerte berechnen sich nun aber in einer ersten
Naherung aus der einkomponentigen Schrédingergleichung

{(u*Hou)+o, +0“VR+0}F:—,0=EF—!:0 (3.15)

sofern man y als so gross voraussetzt, dass die Ausserdiagonal-
elemente von (U* H, i) die Bedingung

/ (u* HO u)og 24+0 /; < YTy (31 6)

erfilllen (nicht zugleich o = 4,2 = 0). — Im Vorangehenden 1ist
stillschweigend angenommen, dass die r, nicht etwa ~ 1/y oder
gar = 0 sind; in der Tat wird sich im folgenden ergeben, dass die
r, selbst noch einmal ~y und + 0 sind.

Unser dritter Schritt besteht in der Einfithrung einer weiteren
Niherung. Zunéchst schreiben wir (3.15) in der Form:

{WEU) o o~ E}F/,=0 (8-17)
wobei jetzt nach (2.6), (8.13), (3.5)

K=F+G (3.177)

G: %ZZZJ{TA',SlkaQ pslg (3.18)

0 s kil

1
F = ?222B?‘A‘,sl%’kgqt?lggy;’r” (319)

o s ki

quQ = 2 Tn Skn tgn H /'Pn = Zq() ko Skn th (320)
n Ko
Die Funktion F hat, wie wir sehen werden, ein Minimum (fir
U*FU gilt das Gleiche), und wir fithren nun die Bedingung ein,
dass die g,;, nur kleine Schwingungen um die Gleichgewichtslage
ausfithren. Diese Bedingung entspricht dem Wesen der starken
Kopplung und gewihrleistet auch, dass die Anregungsenergien
dieser kleinen Schwingungen klein sind im Vergleich zum Energie-
abstand von der Gruppe der vernachlissigten hochliegenden Eigen-
werte. In den folgenden Paragraphen werden wir dann diese Be-
dingung zur Vereinfachung des Ausdruckes (U* K U)., ., be-
nutzen. |
Um sie zu formulieren, haben wir das Minimum zu bestimmen.
Zunichst betrachten wir die s,,.t,, als Konstante, dann ist F' qua-
dratisch und hat offenbar ein Minimum. Wir finden es, indem wir
alle q,;,, und r, als unabhéngige Variable betrachten und die Glei-

-

i
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chungen (3.20) als Nebenbedingungen. — Bezeichnen wir mit o,
Lagrangesche Multiplikatoren, so kénnen wir die Gleichungen fiir
die Minimallagen #,, ¢,;, schreiben:

0 0
L 0t 900 o, Ao} (P Z 10 (o= X a0
tko ri@ n n o n
das heisst:

Y B, Qa0 00, %,=0 (k=123 (r=01,2...) (8.21)
sl

e+ 3 0 S by, =0 (n=1,2,3) (3.22)
lo
Gleichung (3.21) lasst sich vermoge (2.11) umkehren:
qcszgﬁZ"Bsz,Ok“kQ (3.28)
:
dies geht fir s = 0 tber in (vgl. (2.12)):
é(}ltg: ED d‘lg (3.24)
Aus (3.24), (8.22), (3.20) folgt
Tw=Byy=T (3.25)

was, in (3.20) eingesetzt
Qoro=T(st) =TS, (3.26)

liefert. Aus (3.26) und (3.24) ergibt sich o;,, welches wir in (3.23)

emsetzen, so dass: |
qugzyZBrk,OlSlg (3.27)
7

Diese Gleichung gilt fiir » = 0 und r + 0. Im Vorangehenden haben
wir die Definitionen B
I'=vy B, (3.28)

S = st (3.29)

benutzt, wobei die Matrix S wie s und ¢ orthogonal ist.

Fithrt man (8.25, 26, 27) in F (3.19) ein, so findet man den
Minimalwert

5 3
Fe— 2yl (3.80)

welcher, wie wir sehen, fiir alle Werte von s, t,, der gleiche ist.
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Daher kénnen wir jetzt das Postulat der kleinen Schwingungen
durch die folgenden Gleichungen ausdriicken:

quQ:é?‘k9+‘arkgzyzgrk,()lslg-{—arkg (T>O) (3‘31)
l

r,=7,+r,=1I"+7, (3.82)
Speziell wird (vgl. (3.20)):
éOkQ:FSkQ Gore= (7 1), (3.83)

‘Hier sind die ¢,;, und 7, die kleinen Abweichungen von der Gleich-
gewichtslage, und die r, miissen die Bedingungen

erfillen.
In (3.16) und (8.34) haben wir die Bedingungen abgeleitet,

welche die Ideen beziiglich der Grosse von y fixieren. Wegen
(3.32, 84) konnen wir offenbar (8.16) durch

[UE*N),;, 4o/ <yI'=9*By (8.85)

ersetzen. Berechnen werden wir (3.34), (3.35) spater, es wird sich
dann zeigen, dass beide die gleiche ,,Bedingung fiir starke Kopp-
lung® fir die Kopplungskonstante f liefern. Dies stimmt damit
tiberein, dass unsere Naherung eine erste Approximation im Sinne
einer Entwicklung nach fallenden Potenzen von f darstellt.

§ 4. Ewnfiihrung von Wainkelkoordinaten.

Um die Bedingung (3.84) zur Vereinfachung von (U*K )., o
auszunutzen, ist es zweckmaissig, an Stelle der Koordinaten ¢,;, im
wesentlichen die kleinen Verschiebungen aus der Gleichgewichts-
lage als neue Variable einzufiihren. Zu diesem Zweck schreiben wir
die Formeln (3.31, 83) unter Benutzung der in (3.29) definierten
orthogonalen Matrix

8 =gt (4.1)
und der durch

E=trt'=trt—T, &,,=)'rt,t,—16,,=5, 42
definierten symmetrischen Matrix & in der Form

Q:S(F+ §) gokg): (S‘E)Lg (4'3)

QTkL):yZETk,OISZQ+§er (7>1) (4:4)
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D. h. g ist das Produkt einer orthogonalen und einer symmetrischen
Matrix (was fiir jede reelle Matrix zutrifft), wobei die symmetri-
sche in nullter Naherung (im Sinne einer Entwicklung nach &/I')
die Einheitsmatrix ist. Die Bedingung (3.34) lautet wegen (4.2)
und der Orthogonalitidt von ¢ jetzt

[$o) <T' (4.5)

Weiter denken wir uns die Matrix S als Funktion von drer Euler-
schen Winkeln (& @ W) dargestellt:

S—8(6dP) 8,,—8,, (00 (4.6)

wie es fiir jede orthogonale Matrix moglich 1st. Die explizite Form
der Abhingigkeit, sowie einige Eigenschaften von S finden sich
in § 13 im Anhang.

Die neuen Variablen, die nun eingefithrt werden, sind: die
9 Grossen (0, D, Y, &,,— &,,) und die q,;, (r = 1). Durch (4.8, 4.6)
werden die alten Variablen, ndmlich die 9 Grossen g, und die
Grossen ¢,;, (r > 1) als Funktionen der Neuen gegeben. Den
neuen Koordinaten entsprechend sind zu ihnen kanonisch konju-
glerte neue Impulsoperatoren py (¢ = @, D, V), 7,; = Ty Prio
(r > 1) derart einzufiilhren, dass die kanonischen Vertauschungs-
relationen invariant bleiben. Es ist hiermit vertridglich, dass wir
die p, als ‘

(2= 0O, D, ;W) (4.7)

1
D=

0
. 0o
festsetzen. Die iibrigen Impulskoordinaten fixieren wir nicht in
dieser Weise. Weiter empfiehlt es sich, zur Formulierung der

Transformation, zunichst eimnige Hilfsoperatoren zu definieren.

Es seien:
' cos ¥

P=sin ¥ p,+ Sn @ (pop+cos@-p,)
1)2:——“008 Yf‘fpg+ zizg (p@+COS @ .pw) (4.8)

Ly=p,

Wegen (4.7) ergeben sich die Vertauschungsrelationen

[BB]=iP, (jE1: zykl) (4.9)
ferner

['Z)j’ SQU:[ - Pj (SQU) (410)

Hier ist auf der linken Seite S,, als Operator aufgefasst, wihrend
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die rechte Seite bedeutet, dass der Operator P; aut die Funktion
S,e (ODPY) wirkt. Wegen der Gleichung (18.9) folgen aus (4.10)
dann die V. R.

B S,]=0, (B8] =i, [B,S,]=—iS, A1)
(jkl bedeuten stets: zykl. Perm. von 123). Mit der antimetrischen
Matrix von Operatoren

P-(By), B——5 @.12)
lassen sich die V. R. (4.11) auch
[I)kl ’ SQO‘:I = %{Sgk 601_'391 50‘]\'} (418)
schreiben.
Nachdem wir noch die symmetrische Matrix von Operatoren
m=(,), I, =m,,+8,,7, (4.14)
definiert haben, bilden wir schliesslich die Operatoren
};Okgzﬁkg_l_pkg (4‘15)
mit den beiden Summanden:
Pro=g (SI),= (ZSM %jq 7+ St o) (4.16)
1.5];9 - 211 {S (?’—— IJ)}kQ - 2 ]‘ {(IJ—L) S’}Qk (417)

Dro= 57 (BuSus—Sis B = 'y (S B— BS,y) (ndzykl) (417

1
2r 2
Die Aquivalenz von (4.17) und (4.17’) folgt aus (4.11, 13).

Mit Hilfe der getroffenen Definitionen lassen sich nun die alten
Impulsoperatoren folgendermassen als Funktionen der neuen Ko-
ordinaten und Impulsoperatoren ausdriicken:®)

pOIJsz_)—OkQ+2122’k9,816358l6’ p)]fJ p?kﬂ (fr'}]‘) (418)
§ lo

Hierm hangen die 4 noch von den (& @ ¥) ab, gemiss:

"Zke,:‘?lc 2B ZBI ()}(SLG jo ak}'aag)’ j‘ko,(llazo (419)

Hierbei1 1st von (4.5) schon in folgendem Sinne Gebrauch gemacht:
Die Gleichungen (4.18, 19) bilden zusammen mit (4.8, 4) nur die
erste Ndherung einer kanonischen Transformation, worauf wir uns
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beschranken. Um dies nachzuweisen, gehen wir davon aus, dass
aus (4.3, 4) die Gleichungen

0 L Oqoro 09’”;0 8
o ‘l%' 0 0?070 2 2 o 0%}20 ’ )

,,,,,, Odore. 0_ 9
2 0&sa’ 09010 ’ O drro N 0950 (T>1)

folgen. Man entnimmt daraus, dass die Transformationsformeln

0 ok 0 0 r 0
P, = 2 g, pU/\n-JFZZ qk “Prroo (4.20)
ko

Oopo _ N
1, :kz‘ ()Z-(:ﬁ Poo: Do =Prr, (r=1) (4.20")

zusammen mit (4.3, 4) die kanonischen V. R. invariant lassen, auch
wenn die Impulsoperatoren nicht als Ableitungen definiert sind.
Fiir » > 1 stellt man schon Ubereinstimmung mit (4.18) fest. Fiir
die andere Gleichung (4.20") liefert die Ausrechnung

I, = (8'p);,;+ (8'p);, (8': Transponierte von S) (4.21)
wo I durch (4.14) und die Matrix p durch

P=(Por,) (4.22)
definiert 1st. Ferner ergibt sich aus (4.20)

_Z{as (r'+8) pM,,+y2§Z*B,W e

el " kO

woraus nach (13.4), (13.7) und (4.8):
B:—AZ'{SAJ. (F'+ Yo Pore—7 2" 2 Brw,or 2, (S4))10Pr
e r ki 2]
Durch Einsetzen der Matrizen 4, 4, 45 (13.5) und der Definition

(4.12) folgt:
= 3T+ 8, — (T4 8,0, S} Poro + (A —Ayy) (4.28)

A'J"f’ =7 2’; Erk,()l Slj’ Drr; (423’)
r K

Um nun die alten Impulskoordinaten in Funktion der neuen zu
erhalten, hat man die Gleichungen (4.21, 23) nach den p,,;, aufzu-
losen. Die Losung kann man sich nach den (&,,/I) entwickelt
denken, und im Sinne unserer N&herung interessieren nur die

mit
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&-freien Terme. Diese erhalten wir, wenn wir (4.28) durch die
Gleichung

, , 1 :
(8'P)is— 8Dy = - {By + Apy— Ay} (4.24)

ersetzen, welche sich aus (4.23) durch Nullsetzen von & ergibt. —
Addition von (4.21) und (4.24) liefert jetzt, wenn man noch die
Symmetrie von II und die Antimetrie von P benutzt:

2(S'p) = Ml — 1 Pt — (A— )
(4.25)

p=-3 (SH)— = (SP) + 58 (4—4)

Der erste Term der rechten Seite ist mit (4.16) identisch, der dritte
mit dem A-Term in der ersten Gleichung (4.18), wie man wegen
(4.19) und (4.28’) bestitigt. Der zweite Term in Gleichung (4.25)
unterscheidet sich von (4.17) durch das Fehlen des Summanden
(»S/2 I'). Bis auf diesen Unterschied stimmt also (4.25) mit der
ersten Gleichung (4.18) iiberein. Man kann nun vermége der V. R.
(4.9, 18) leicht einschen, dass die Addition des Termes (1S/2 1)
die Invarianz gegen die kanonischen V. R. nicht beeintrichtigt,
und damit 1st (4.18) in der betrachteten Niherung als kanonisch
erwiesen. -

Der Grund, den Term mit S hinzuzufiigen, liegt in Folgendem:
Spater (§ 9) wird sich ergeben, dass die P, und 'S;, als hermitesche
Operatoren zu betrachten sind. Die Formulierung (4.17) sorgt
dann (wegen (4.11)) dafiir, dass auch die alten Operatoren pyz,
hermitesch sind, wie es sein muss. Hier liegt der Grund, warum
die pyy, nicht als Ableitungen der gy;, definiert wurden.

Die neuen Variablen sind nun in K (8.17') einzufithren. Setzt
man (4.18) in den Term G (3.18) ein, so berechnet sich

G”‘—ZZZ Arl slprkopslg_*_Z”ZZ rke, sto P rko psla

rs kil o rs ki oo

1 - - < —
+ ? AO;{WP{%IM_J £ (p()kg +Z ;'Akg,sla_psla)z} (4326)
g § (G
wobel man fir N entweder N’ oder N”' einsetzen kann, gemiiss

N;kQ,SlGEZ(A?‘k’(]fljg’slo‘) (4‘27')

N:ke,sla 2 (Nrkg SZG+N=§ZG M@) (427”)
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In I (3.19) setzen wir 1m ersten Term (3.31) und 1m zweiten (3.32)
ein, Wodurch

2222B.M quM!n eln+yZQOAQ ko y%’f’—,n

rs kil o

entsteht. Die letzten beiden Terme heben sich wegen (3.29, 33)
fort, so dass unter Beriicksichtigung von (3.30):

- ZZEBM S‘Ia’n‘ﬂﬁ Ej?lnﬁ__yr (428)

Gemiiss der Konstruktion der gq,;, war zu erwarten, dass I in diesen
Variablen rein quadratisch wird. Die gy, sind nach (4.3) Funktio-
nen von S und é&.

§ 5. Abspaltung der Isobarenenergie.

Gemiiss (4.26) ist die Funktion G die Summe aus einer homo-
genen quadratlschen Jorm in den p Prro (r > 1) und aus einer homo-
genen quadratischen Form in den pg;, und aus einer Biliearform
in den Py, und den p,., (r > 1). — Fassen wir die p,z, Poz, als
klassische Variable auf und halten die pg;, konstant, d. h. fassen
wir (i als quadratische Funktion der p,;, (r > 1) allein auf, so hat
G also em Minimum fir gewisse Werte p,;, (r > 1), welche noch
von den py,,sbhéingen. Die Einfiithrung neuer Variabler p,,.,(r > 1)
durch die Translation

o]

ﬁ?‘ ke = ﬁrke a j‘grkg (T > 1) (51)

wird offenbar die erwidhnte Bilinearform zum Verschwinden brin-
gen, so dass GG 1In zwel Summanden zerfillt: der erste héngt von
den Dor, allein ab, der zweite von den p,,,(r > 1) allein. Diese
Aufspaltung von G ist erwiinscht, der erste Term wird zur soge-
nannten Isobarenenergie Anlass geben. — Indem wir die Ergénzung
zu einer kanonischen Transformation sowie den Ubergang zu den
Operatoren p,;, zundchst zuriickstellen, wollen wir die Transfor-
mation (5.1) jetzt durchfiithren.

Zur Bestimmung der Minimalwerte pﬂg betrachten wir die
Vmaussetzungen Pore — const. als 9 Nebenbedingungen, &hnlich
wie frither die lel(,hungen (3.20). Dadurch werden die Minimums-
gleichungen, wenn wir mit f£,, wieder 9 Lagrangesche Multiplika-
toren bezeichnen:

f) {G""_?; B p(JkQ} =0 (r>0) (5.2)

Pri:o

Poke =Por, = const. (5.8)
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Fir (5.2) erhélt man nach (4.26, 27"):
0= %‘ Ari:, sl}%slg +4, {67'0 (1501;9_1%0139) + 4?\; )}jn, rkgfjo;’a}
+(1=0,0) X XN ioPaao—Sur By (54

wobel Py, durch (4.18) definiert ist, wenn man dort ﬁ,kexﬁ,ke
(r > 0) einsetzt. Substituiert man (4.27") in N”, so ergibt sich:

Z rk, (}y(p()jo pOjQ +2A1k slpslo
+sz,m{ e(pow Pojo) +2AOJ ”pmj 3p0Br=0 (5.5)
jo

Dies geht fiir » = 0 (vgl. 4.19) tiber in

ﬁm: Ao (Z}Okg_]?Okg) + ,ZIYAOIL‘, slf—’szg (56)
Wegen der Giltigkeit von (5.6) ldsst sich (5.5) auch

ZArk,slﬁle_i_ZArk,09‘(1307'9—509'9)_;—2;"7'6,7'1:9 ﬂja—"éf'o ﬁlgzo (5‘7)

schreiben. Die Ausfithrung der Operatlon 2 Ay an (5.7) ergibt

rk
ﬁrk@ ; 7’0(p0ku p{)ﬁo +Z§AM sl/“jcr slo jo’ ZAH Oy jo =0 (58)
jo §
welches sich fiir r = 0 zu
ﬁ()!ce:Zoﬁi;g_ZZtYAOk:slﬂ'ja,slgﬁjo (5'9)
jo s
vereinfacht. Andererseits liefert die Operation 3 Ay, r1,, auf (5.8)
angewandt (dabei (4.18, 19) benutzt): THe
pOAo pOLn+ EZA(M sl An slo ﬁya ZAE}O) 70/3 (510)
jo sl jo
mit
Agrlo) jo ZZ‘Z;ASZ s’V 2}'].,0 slt 76 s'l't Agls)kg (511)

Zwischen (5.9) und (5.10) eliminieren wir Py, und erhalten:

‘ZO ‘Bk.e +Z(Ailé jo Aﬁ) :)G) ﬁjazﬁorcg:lgorcg (5-12)
jo
mit: B B
Ag? ko™ Aﬁ) jo Z& (AOk,sl}“jcr, slo + Aoj,slﬂ'lcg,sla) (513)
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Um die 9 Gleichungen (5.12) nach den 9 Variablen f,, aufzulosen,
sind im Anhang § 14 die Matrizen A% und A® berechnet. Geméss
(14.10) geht (5.12) in

(;4“0__"‘/1) iBAo ‘/IESLI Sroﬁrr p()/m (5']4)

iiber. Die Konstante < ist in (14.11) definiert. Gleichung (5.14)
lasst sich leicht nach den g, auflésen, mit dem Resultat

1

ﬁ,’,'r_) = A_g (A/T(,*QA) {(At)—_‘/j[)p()lrfg—"i;"gkr' S’rg p()rr’} (515)
Vermoge der f,, kann man die f)o'rk , (r = 1) aus (5.8) berechnen.
Wir werden aber sofort sehen, dass dies nicht notig ist, um G in
den neuen Variablen p,,, auszudriicken.

Um die Transformation (5.1) in G (4.26) einzufiithren, schreiben
wir G in der Form

(= %WZ{ ZA»'A \Iﬁ lop ln T Zlv;',kg,slap'rkaﬁsla}

feled

Zpt)ko Z 40;& \lpsin )+ *4027)01 (5.16)

ko ko
WO Poponach (4.18) definiert ist. Setzen wir jetzt (5.1) ein, so kommt:

Vi Vi ) " o A
Z ZZA?k 5lp9£opslo 2 ZZ* rkg,slcprkgpsla
s 0

rS ki oo

2 A”Z(ZE’M szapszg) $- G (5.17)

ko
wobel sich G, aus G (5.16) erglbt, indem man alle p,;, durch p,,,
ersetzt, wiahrend G’ sich als

Z szpﬂnl S’Aﬂ. élp slo +2£Z”NH’0 Slop\lc—’[—AOlZ,ﬁOlG)'lﬁ,?'kQ}
schreiben lisst. Da die Summe das Glied » = 0 nicht enthalt, folgt

aus (5.4), dass die Klammer stets verschwindet, und damit auch
G'. Andererseits erhilt man aus (5.4) (unter Benutzung von (4.18))

durch die Operation ' p,,.,:

rho
TZ’%,ZAM; S[prllo pslo N 2”2221\7:,{0 gfr i,]lz_)}%.sld
s ] rs Kt 0O
+ 402( pogn+pogo) Zp(‘],{nﬂ,(n Zpolmﬁ/o
ke ko

Durch Vergleich mit (4.26) erkennt man, dass die hnke Seite —
2 Gy 1st. Indem man auf der rechten Seite fiiv g (5.15) einsetzt,
findet man daher: ~

1 —g — Q oy =
GO = — J(A ‘4) Epalm - AZZP()A'Q'SJ'Q 'Sk.op()ja} (‘)18)

2 (44 —2 A\ ko B ko jo



Kopplung zwischen Nucleonen und pseudovektoriellen Mesonen. 107

Wir fragen jetzt nach den Operatoren p,,, und der kanonischen
Tlansformatlon Die Rechnungen die von (5.4) zu (5.15) fihren,

sind auch ftiir Operatoren P, ,, B, giltig. Um die Berechnung von
G fiir Operatoren nachzuahmen, sind wegen des Nichtkommu-
tierens der p,;, und der 4, ,;, entsprechende Symmetrisierungen
einzufiihren. Dies ist aber erst sinnvoll, wenn (5.1) zu einer kano-

nischen Transformation ergénzt ist. Da die f;",,kg (r > 1) gemiss
(5.8,15) noch von den S;, und p,;, abhéingen, wird die kanonische
Transformation @hnlich derjenigen in (4.3, 4, 18), wobei aber die
Rollen der p und q vertauscht sind. Es ist schon bei der Behandlung
der Vektortheorie darauf hingewiesen'?), dass diese Rechnungen
erst auf die néchsthohere Néherung im Sinne der Entwicklung
nach Potenzen von (¢g-1) Einfluss haben. Sie konnen in der hier
betrachteten N#herung vernachlissigt werden, so dass die Glei-
chungen

TR U () (5.19)

zusammen mit (5.1) als kanonische Transformation zu betrachten
sind. Wir haben also (5.19) in I (4.28) einzusetzen, und ferner in ¢
(5.17, 18) die p,;, (r > 1) als die zu den ¢,;, {r > 1) kanonisch
konjugierten Operatoren aufzufassen. Die Operatoren pg;, sind
wieder durch (4.15 ff.) definiert, so dass sich

S g (T B :‘n—zn |

ke je je (520)
;j‘%‘ﬁomskcsjgpoja zpz ( ZPIFT";)T—_EHM J
ergibt.

Setzen wir nun die Funktion K (3.17) aus: (4.28) (5.19) sowie
(5.17, 18, 20) und G’ = 0 zusammen, so konnen wir sie folgender-
massen schreiben:

_——_ZZZBHG SIQ?‘I{Q (:Isln o ZHZZAHC siquop,sln

rs KL o
3 T -
+KO+K3+~2~(H2EQE% v BO) (5.21)
mit
| 1 . _
A X 3 ) 522)
7 - 8 40 e

1 o 7 [ =
KS = —2— 4 (Z ARQ slapsla)2+2 ZZI\H;:Q slap?lopsla (928)

Ty kt oo
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wo N, o durch (4.27") oder (4.27") gegeben ist. Die Konstante oJ
ergibt sich nach (5.18, 20) zu

J=2)2B(d,—2 A) (5.22)
was sich wegen (14.11), (2.2), (3.3) zu

F = fii{ f dX 8, (z) (12— A)""8,(2)+2 2 f dX 0 (u?—A)2 aa} (5.24)

berechnet.
Bemerken wir noch, dass unter Benutzung von (4.27)

S: 02{(2 /Ln slapslcr

slo
| / \2 1 ’ o
T A"Zz AOk,slpslo) - Z(Q)" (Zlv AOI;,sl pslg)2} (5-25)
mit (5.23) identisch ist, so konnen wir fiir K auch
K =H+ HY -+ HS+ H_+ const. (5.26)

schreiben, wobei jetzt:
H=H, (5.27)

von (2.6), wenn man die p,;, Gy, durch p,;, q,., ersetzt,
HY= - 3P (5.28)
n

D

k slo
A2 (§A0L slpslg) } (5.29)

g-_L I (5.30)

0 je

bedeuten sollen. HS (5.29) unterscheidet sich von K, (5.25) dadurch,
dass die dritte Summe auch die Terme s = 0 umfasst. Die gleichen
Terme treten auch in H® (5.27) auf und heben sich daher in K
(5.26) fort, was mit (5.21) iibereinstimmt.

§ 6. N-Transformation.

Es war unser Ziel, den Ausdruck (U*KM),, ., in (3.17) zu be-
rechnen. — Nachdem wir in §§ 4, 5 mittels zweier kanonischer
Transformationen fiir K eine fiir unsere Zwecke geeignete Niherung
erhalten haben, ist jetzt die Transformation mit der Matrix U
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(8.11) vorzunehmen. Da es hierbei in K nur auf die Terme H¥
(6.28) und H; (5.30) ankommt, sind die Rechnungen genau gleich-
lautend wie diejenigen im Fall des Vektorfeldes, und wir konnen
daher unter Verweis auf den § 8 der in Fussnote?) zitierten Arbeit!?)
sofort das Resultat

WEW=K+ 2+ L {(6,x ) P+ (0,P3— 03 Py) x 15} (6.1)
angeben. Hierbei wurde wieder von (4.5) in der Weise Gebrauch
gemacht, dass wir U nach Potenzen von &,,/I" entwickelten und
uns in (U¥KU) auf das grosste Glied beschrankten. Die ersten
beiden Terme in (6.1) sind Diagonalmatrizen, der dritte hat ver-
schwindende Diagonalelemente. Daher finden wir in unserer Néhe-
rung

(WEKN) . o=K+ > Ausserdiagonalelemente ~L (6.2)

87 J

Denkt man sich (8/8J) in die additive Konstante von K (5.26)
aufgenommen, so geht damit die Schrédingergleichung (8.17)
schliesslich iiber in:

(K—E)F_,=0, mit der ,,Randbedingung: (6.3)

{ei TF. T W-F:},O} hat m @ und ¥ die Periode 2x. (6.4)

Die Begriindung fiir (6.4) findet man in § 9 der in Fussnote?) zi-
tierten Arbeit.

§ 7. Bedingung fiir starke Kopplung.

In diesemn Abschnitt sollen die Bedingungen (3.84) und (8.35)
untersucht werden, welche die Voraussetzung darstellen, unter der
die Naherung (5.21, 26), (6.3) zuldssig ist.

Da nach (3.20);
2 ’r‘i = 2 qg?’a 2
[ lo
grossenordnungsméssig also

—2 —9
L™ 2 qO.’f@

7

gilt, und wegen (3.8) konnen wir (3.84) zunichst

1 15
f2> ';?23—2 2; Q(Q)jg (7'1)
0

schreiben. In der quantisierten Theorie sind unter ¢g;, die Mittel-
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werte zu verstehen. Da diese auch im Grundzustand eine von Null
verschiedene endliche Grosse haben, wird (7.1) zur Bedingung fiir f.

Man kann nun zeigen, dass der Grundzustandsmittelwert der
Abweichung ¢¢;, von der Minimumslage ¢,,, (3.38) die gleiche
Grossenordnung hat, wie der Mittelwert von gg; , fiir die Nullpunkts-
schwingung des wechseluirkungsfreien Mesonfeldes. Wir berechnen
die letatere. — Nach (2.1) gilt, wenn M {----} den Mittelwert be-
deutet:

M{q%_,g} = ‘/dX‘/ dX’[]() (:B) U M{’P,@ w;n & )} (72)

Die Theorie des Vakuumfeldes!®) liefert nach einiger Rechnung

1 7 r
ZWI{T})_’;U "/9,, )}——7(23)3‘// d3f7n(k)etf(x 9] ]

o . (18)
m(k) - Wy, T 2 (U;«':/’Lz"{_ A-’- ‘

Dies m (7.2) eingesetzt ergibt (vel. hierzu (12.1)):

XM (G = [t VE Ry m (k) = 2[AX Uy (u2—2) T,

7

+ f [AX U (u2—APU, (14)

Der erste Summand rithrt von den transversalen Mesonen her, der
zwelte von den longitudinalen.

Durch Einsetzen von (7.4), (2.5, 13) und der Grossenordnungen
(12.5, 6) 1n (7.1) bekommt diese Bedingung jetzt die Form

> (au) firep <1 (7.5)
[ (ap)® fir ap>1 (7.5")

Fir die Bedingung (3.35) miissen wir die Ausserdiagonalelemente
von (U*KU) kennen. Nach (6.2) sind dieselben von der Grossen-
ordnung 1/J, so dass sich (3.85) unter Benutzung von (3.3) als

PP0® By > 1 (7.6)

fassen lasst. — Im Fall a ¢ <€ 1 findet man fir J nach (5.24), (2.2),
(12.4, 6, 7) in erster Niherung 1m Sinne einer Entwicklung nach
(ap):

f2

I =g e g (7.7)
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W0 g der n (12.4) definierte Nucleonradius ist. Grossenordnungs-
méssig ergibt sich aus (5.24), (2.2), (12.5 6, 7):

JN[f2 tu™ firep <l
| f2a=?u=* fiir ap>1

Setzt man jetzt in (7.6) die Grossenordnungen geméss (7.8), (2.5,
18), (12.5, 6) ein, so wird man wieder auf die Ungleichungen (7.5, 5')
gefiihrt. Diese stellen also die am Ende des § 3 in Aussicht gestellte
.,Bedingung fiir starke Kopplung*® dar, welche als die Voraus-
setzung aller hier durchgefiihrten Rechnungen zu betrachten ist.

(7.8)

III. Approximation des Hamiltonoperators im Fall f= 0, g==0.

§ 8. Ubertragung der §§ 3—7 auf den anderen Kopplungsansatz.

Wir werden die Theorie nicht fir den allgemeinen Kopplungs-
ansatz f£0, g+ 0 entwickeln, sondern beschrinken uns darauf,
jeden der beiden Wechselwirkungsterme fiir sich zu betrachten.
Wir wollen daher jetzt den alternativen Ifall f =0, g+ 0 unter-
suchen. Hierzu ist es zweckmissig, von den durch (2.1) definierten
kanonischen Variablen zu den durch die kanonische Transforma-
tion

QH;Q = Prro s 'Prkg === Qs (81)

eingefiihrten neuen kanonischen Variablen P,;,, ()., tiberzugehen.
Diese substituieren wir in H (2.6, 7), wodurch:

. 1
Ho ) ; %‘ é\;{BM,Sl Pr,-k@ Psl@ + Ark,SlQ?‘kQ Qé‘lé’} (82)

H = 2;% T, (_A% Qore—1 Poro) (8.3)
entsteht, und fiir f = 0 dann
H = ng Oy TQ QOkQ yy = f;q = 0 (84)
ko

Der Vergleich mit (3.8) lehrt, dass wir den Iall / — 0 auf die
gleiche Form gebracht haben, die frither der Ifall g = 0 hatte.
Daher konnen wir alle fritheren Rechnungen iibernehmen. Der
einzige Unterschied ist, dass die — immer noch durch (2.8 bis 13)
definierten — Matrizen 4, B ihre Pldtze vertauscht haben. Der
Einfluss dieses Wechsels ist Schritt fiir Schritt nachzupriifen.
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Der § 3 kann 1m wesentlichen tibernommen werden, einzig sind
in (3.21) ff. die B durch die 4 zu ersetzen, speziell in (3.31—35),
wo Jetzt _

Fg = yg A 0 (8'5)
auftritt. Gleichermassen ist in (4.8) I, und in (4.4) 4 zu schreiben.
(4.19) 1st durch

1 e
/‘ﬁ)sla = é‘;{; 2 Asl,(])' (Ska Sjr_) - al-j (sag) (8 = 1) (86)
0y

zu ersetzen. In (4.26) tritt B an die Stelle von 4. Anstatt (4.27) ist
\f:‘gfl}o sle Z‘BH 0] ]n slo . (87)

zu verwenden. In (4.28) haben wir 4, (y, I,) fir B, (y I') einzu-
setzen. In § 5 dndern sich die Definitionen (5.11), (5.13) zu:

11](‘1091)0 = 22 psl s’ Zﬂ'gf%)slr jq(z' A Aﬁladllzo (88)

st sl
Zg) __ () () — AQe)
A/{n io Z{BOA sl/jga slo ! BO) ?[/Ao slo } 4}Gglo (89)

Diese beiden Matrizen sind ebenfalls im Anhang § 14 berechnet,
und geméss (14.10) hat man jetzt in (5.15) 4@ (durch (14.12)
definiert) zu schreiben, ausserdem natiirlich B, statt 4,. Dic wei-
teren Rechnungen verlaufen wieder ganz analog, und (5.21) ist
daher mit dem Zusatz giiltig, dass in (5.23) 4, N durch 19 (8.6)
und N9 (8.7), (4.27") ersetzt werden, und dass an die Stelle von
(6.22") jetzt

Jy=2y; A3{B,—2 49} (8.10)

tritt. In (8.10) sind (14, 12), (2.2), (8.4) einzusetzen, wodurch wir
2 g2 _ - -

J, = 35{2 f dX 8,(x) (u2 — A)16,(x) +p2 f AX 0,(u~ 4)~28,| (8.11)

erhalten. Im Vergleich mit (5.24) ist die Vertauschung der Faktoren
1 und 2 zu bemerken. Der Ubergang zu (5.26) gilt auch hier.

Der § 6 ist ohne Anderung zu tbernchmen, so dass noch die
Bedingung fiir starke Kopplung § 7 zu diskutieren bleibt. Da sich
die Bedingung (3.34) 1m vorliegenden Fall, wie erwahnt

Fu <<y, Ao (8.12)
schreibt, liefern die gleichen Uberlegungen, die zu (7.1) fiihrten,

wegen (8.4) jetzt \
' 2 2 Y02, (8.
> 1?2 Z(.]‘a ;‘ng \8 13)
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Der (7.2) entsprechende und rechts einzusetzende Mittelwert wird
wegen (8.1), (2.1) jetzt

M{Q2,) /dedX' Uy () Uy (2') M{ 7, (x) ;, (2)} (8.14)
Die gleiche Theorie des Vakuumfeldes, die zu (7.3) fithrte liefert

uns auch q .
2 M {m(2) 7 (@)} = ..@_&)_gfds Em’ (k) ¢ E—)
mit \

m' (k) =20, + L~ w=u?k? (8.15)

ay;

Dies m (8.14) eingesetzt, ergibt analog zu (7.4)
SM{E )= [ EVEE) W (k) zzde Uy (u2— AR U,
,w]dXD (w2 - MHFU,  (8.16)

Der erste Summand entspricht den transversalen Mesonen, der
zweite den longitudinalen. Setzt man nun (8.16), (2.5, 13) und die
Grossenordnungen (12.5, 6) in (8.13) ein, so ergeben sich die Be-
dingungen:

g >ap  firewp <1 (8.17)

g > (e fir ap>1 (8.17")
Die Bedingung (3.85) andererseits lautet jetzt

WEEW),, ., <y2d, 8.18)

Analoge Uberlegungen wie diejenigen, die zu (7.6) fiihrten, liefern -
wegen (8.4) jetzt:

P Agd,> u? (8.19)

oder, da nach (2.18) 4, von der gleichen Grossenordnung wie
w2 B, ist: N
PZn2Byd, > 1 - (8.19)

Der Verglemh von (8.11) mit (5.24) zeigt ferner, dass grossen-

-ordnungsmaissi
g g A J

‘ g~
gilt. Infolgedessen konnen die auf (7.6) folgenden Uberlegungen
hier in gleicher Weise gemacht werden, sofern man nur J, f durch
J,, g ersetzt. Daher folgen aus (8.19') wieder die Ungleichungen
(8.17, 17"), welche die ,,Bedingung fiir starke Kopplung** im vor-

liegenden Fall darstellen. Sie sind den Bedingungen (7.5, 5) voll-
8

(8.20)
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kommen analog. — Wir geben noch die erste Naherung von J, im
Sinne einer Entwicklung nach (au) bei ay <€ 1 an:

g2
welche sich aus (8.11) analog ergibt wie (7.7) aus (5.24)

IV, Diskussion der Gleiéhung (8.3).

§ 9. Das komplexe Nucleon.

Um die Bedeutung der Schriodingergleichung (6.3) mit K (5.26)
zu diskutieren, behandeln wir zunichst den Term HY (5.28), den
wir nach (4.7, 8)

5 -1 1 0 1
HY = { sin @ -

= 2c0s0 O 4 % )} o)

0
sin @ 06 0@ T smz"@'(mz ‘ aqsoep 0P

schreiben, fiir sich; d. h. wir betrachten das Eigenwertproblem
HY -EMFY¥ (0 DP)=0, (9.2

nach dessen Eigenfunktionen wir uns spater eme Entwicklung vor-
genommen denken. Dieses Vorgehen ist ganz gleich wie in der
Vektormesontheorie und wir konnen fiir die Rechnungen daher auf
den § 9 der in Fussnote?) zitierten Arbeit verweisen. Der Ausdruck
(9.1) 1st der Hamiltonoperator eines Kugelkreisels mit dem Trig-
heitsmoment o/, die Eigenfunktionen und Eigenwerte von (9.2) sind

1

N ) N
11571@7&:61(1”@ ) u;mn (0>5 E;\ = zj 7( s ) l
. 1 3 3 1 3
L LI IR T s B o 9.3
=373 mizd‘ n=tv, 3, J( )
] = m ]=n

Die Halbzahligkeit der drei Quantenzahlen folgt aus der Bedingung
(6.4).

Aus der Differential-Gleichung (9.1,2) ergibt sich fiir die Hermi-
tizitéts- und Orthogonalitéits-Integrale das Volumelement (d @dWd®
sin @), woraus die nach (4.25) erwahnte Hermitizitat der P (4.8)
folgt. Nimmt man noch hinzu, dass (4.9) die Vertauschungsrela-
tionen von Drehimpulsoperatoren sind, und dass (4.8) dieselben
Gleichungen sind, wie diejenigen zwischen den Drehimpulskom-
ponenten eines starren Korpers in einem korperfesten Axensystem
und den zu den Eulerschen Winkeln (©@@Y¥) kanonisch konju-
glerten Impulsen (p,p,pe) — so erkennt man, dass die P, mathe-
matisch die Rolle von Drehimpulsen eines Kugelkreisels mit der
Rotationsenergie (9.1) spielen. Diesen Sachverhalt interpretiert
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man dahin, dass der durch die Freiheitsgrade (€ @¥) beschriebene
Teil des Mesonfeldes durch die starke Kopplung fest an das ru-
hende Nucleon gebunden wird; er bildet mit diesem zusammen
eln sogenanntes ,,komplexes Nucleon*, welches sich wie ein Kugel-
kreisel verhalt. Der Spin dieses komplexen Nucleons wird néamlich
identisch mit den Komponenten des Kugelkreiseldrehimpulses be-
zlighch eines raumfesten Axensystems:

M :_Zsm P,, MY =yp, FEigenwerte: M;‘:ml
2 M= M P, Eigenwerte: j (5 +1) l (9.4)

2
so dass HY die diesemn Spin entsprechende Rotationsenergie ist,
sofern dem komplexen Nucleon das Tragheitsmoment JJ zugeschrie-
ben wird. Diese ,,Spintragheit” wird fir ¢ - 0 gemdss (7.8) un-
endlich gross, worauf wir vor (1.9) Bezug nahmen. — Die Quanten-
zahlen 9, m bestimmen also Rotationsenergie und Spin des kom-
plexen Nucleons. Die Quantenzahl n bestimmt ferner seine Ladung,
da sich diese zu
| 1
=5+ Pi=5
ergibt. Die Grundzustinde § = 1/2, m = £ 1/2, n = 4+ 1/2 ent-
sprechen dem ,,nackten Nucleon*, wihrend sich fiir 4 > 1/2 soge-
nannte ,,Isobaren*’ ergeben.
Die vorstehenden Austihrungen gelten offenbar auch fiir den
m § 8 diskutierten alternativen Kopplungsansatz, sofern man nur
das Tragheitsmoment J durch J, (8.11) ersetzt.

§ 10. Zum Streuproblem.

Es sei ein Wort tiber die Streuung angefiigt, wobel wir uns auf
den Fall g = 0 beschrinken. Die Sachlage in den anderen Meson-
theorien lasst erwarten, dass der ibrige Teil von K (5.26) eine
Streaung der ,,nicht im komplexen Nucleon absorbierten Me-
sonen durch das komplexe Nucleon beschreibt, und dass das Pro-
blem sich in vereinfachter Form darbietet, wenn man sich auf den
interessanten Fall a <€ 1 beschriinkt und die Energie w, =)/ %+ k2
der einfallenden ,,freien Mesonen™ als < a1 voraussetzt!4). Es
liegt nahe, dann in K (5.26) den Term H," zu streichen und in HY,
H5 die (g, Por,) als von den (@®Y) unabhingige Variable auf-
zufassen, so dass die Hamiltonfunktion

K = H¥ + H° + H® + const. (10.1)

leicht interpretierbar wird: H¥ entspricht dem komplexen Nucleon,
H? reprasentiert das Vakuumfeld der ,freien”” Mesonen, H® (p,;,/

; / 1 _
+ p, FEigenwerte = (-n + —2—/) (9.5)
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QDY) liefert die Wechselwirkung zwischen beiden. In Analogie
zu dem dhnlichen Vorgehen beim Vektor- und Skalarfeld wird man
ndmlich vermuten, dass die gemachten Vernachldssigungen das
Fortlassen einer Streuung bedeuten, die klein gegen die durch H¥
bewirkte ist. — Nimmt man nun noch die Energie der einfallenden
Mesonen als gross gegen die Isobaren-Energiedifferenzen an, so
kann H¥ als konstant angesehen werden, und in HS sind die (O @¥),

also auch die 1 als vorgegebene Parameter zu behandeln:
K = H° + H* + const. (10.2)

Der Streuterm H# (5.29) ist komplizierter als in den tibrigen Meson-
theorien. Dies liegt in der urspriinglichen Hamiltonfunktion (2.6, 7)
begriindet. Diejenigen Impulskoordinaten (pgy;,) némlich, deren
konjugierte (qyz,) In H' (2.7) auftreten, erscheinen in H; (2.6) auch
mit den tibrigen p,;, (r > 1) multipliziert — ein Umstand, der weder
in der Vektortheorie noch in der Pseudoskalartheorie sein Analogon
hat. Immerhin ldsst sich das zu (10.2) gehorige Streuproblem in
dahnlicher Weise wie das entsprechende Problem in der Vektor-
theorie behandeln. Als Lisung ergibt sich:

3,5, U =gl t) = const.e™ ot oFs, 6, M) (10.5)

jio Y000 Thiode0e T Ty

mit:

. 12
ff 0,40 90 (@@ 97) = a{) (a'l l’l’)z 8; (SZQQ Sjo‘_’_ (Sl.i.u 600 Q) (\63.'; _;_- _[j; Sl 5})
1
+ @ty (01 g)? 72*2 (816,84 + 64 0,,) (10.4)
I
; 2
* [( 6l} ]

0 k§ 0.0
1\ T uE 5157'1) (5 9y, + @k Vi 5;‘0‘) — 0y 5i-j.,}
wobel:

@ = [AX Uy (=4)1 Uy, & =18, To=1y89(|5 = 50 =1)

Nach (12.8) 1st a; ebenso wie das durch (12.4) definierte @, von
der Grossenordnung des Nucleonradius.

Wir wollen die ziemlich langen und verwickelten Rechnungen,
die zu (10.4) fiihren, hier nicht angeben. Aus (10.4) folgt fiir den
mittleren Wirkungsquerschnitt nimlich die Grissenordnung ~
(a® 1%, d. h. um (@ u)* kleiner als in der Vektor- und Pseudoskalar-
theorie. Dieses Ergebnis lasst es als moglich erscheinen, dass durch
die oben eingefiilhrten Vereinfachungen eine stirkere Streuung
ungerechtfertigterweise vernachlissigt ist.
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V. Mehrere Nucleonen.

§ 11. Kriifte zwischen Nucleonen.

Wenn anstatt eines einzigen Nucleons jetzt N ruhende Nucleonen
an den Orten x, (v =1, 2, .... N) mit dem Mesonfeld in Wechsel-
wirkung treten, so ist der Kopplungsterm (1.11’) durch

5 =39, 5,=0,(@—2) ol Fp,+ L 7y (1L

v=1] ko

zu ersetzen, wahrend §, (1.11) unverindert bleibt. Die Schriodinger-
funktion héngt von den Spin- und Ladungsindizes aller N-Nucleo-
nen ab, hat also 4% Komponenten. Die Matrix (o,{.”) tg”) wirkt auf
die Indices des »-ten Nucleons allein, bezitiglich der Indices der
(N — 1) anderen Nucleonen ist sie als Einheitsmatrix aufzufassen.

In Analogie zu § 2 entwickeln wir die Feldfunktionen nach
einem vollstindigen Orthogonalsystem reeller Funktionen U, ()

[r=1,2,...()]
ka@ ZZ U?‘ q$'i.:l ﬂke = 2 Lr—r prkg (2 - ;:) (112)

Und in AnaIOO"ie zu (2.2) definieren wir die Funktionen U, (x), U,
(z).. durch
1
sz?éa(x—xv) (»=1,2---N) (11.8)

# ist fir alle U, gleich und durch (2.4) gegeben. Da die Nucleonen
als nicht dberlappend:

0,(x—x,)0,(r—x,)=0 fir u+v (11.4)
vorausgesetzt werden, ist die Orthogonalitédt der Funktionen Uj ....
Uy gewihrleistet. Gehen wir jetzt mit (11.2, 3) in die Hamilton-

a

funktion (1.11) (11.1) ein, so resultiert

0—"—222{AH Slprln pslo + BM al(:IMO QSZO} (115)

B ;:Hv Hv:nga;:) T(Qv) {f qv,{-@ + M_ pvk@} (116)

Dabei sind die Matrizen 4, B immer noch durch (2.8, 9) definiert,
nur sind unter den U,(x) jetzt die neuen Funktionen zu ver-
stehen. An die Stelle von (2.12,13) treten daher erweiterte Glei-
chungen, die wir nur fiir 4, B ausrechnen. Man findet:

Aﬂvz-,vz = Eo akl Evl vl = B éu (11'7)
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wo A4, By wieder durch (2.18) gegeben sind. Fiir v + u liefert (2.10)
wegen der Orthogonalitit:

_ . o2 -
A= [AXT, 70 (- 7T, (11.8)

was sich fir @ g €1 und Nucleonabstinde |z, — z,| <€ a wegen
(11.8) in erster Naherung zu

_ 1 02 e__ " 7'[1. P A ';: (IN l’) — :,z. j ; - -
A= e e T (u,vy<<N) (11.9
Hilgyd n* 9 ilc;c'u ] x(l'u LANE S 2 Fur ™ @ () (H, ) ( )
vereinfacht. In analoger Weise findet man
= 1 1 02 \ e Tu
o - S 11.
B !(A-: v] ?‘-‘2 {6Ll /""2 0 x;f‘ ¥) () x(l‘u_ 1)] ( 4 T T‘u " ( 1 10)

Um die zu § 3 analogen Rechnungen durchzufithren, beschrianken
wir uns wieder auf einen einparametrigen Kopplungsansatz und
setzen in (11.6) zundchst ¢=0. Die Matrix, die H = 2 H,,, dann
analog zu (3.2) diagonalisiert, ist das direkte Produkt

U=, x Uy -+ - x Uy (11.11)

wobei U gemiiss (3.11) fiir das »-te Nucleon und seine Indices de-
finiert ist, und H, gemiss (3.10, 12) auf Diagonalform bringt, so
dass sich

v
Hz:__yuRu*, REZR.’L" o, = 77f (1112)

ergibt. Ry 1st die nach (3.12, 13) fiir das »-te Nucleon und seine
Indices definierte Diagonalmatrix. Analoge Uberlegungen wie in
§ 3 fithren uns von hier zur einkomponentigen Schridingergleichung :

{(H*Ku)-a-o...,+o...““E}F;0,+0...,+0=O (11-13)
mit
N 3
K=Hy—y 3} Y r"=F+G (11.14)
v=1 n

G ist mit (3.18) identisch, withrend

i ! {y —
B = 722% BTA‘,SZCI}‘]{Q QSIQ o yzzwz) (]110)

o rs k v
__2’,« (») {v) 2' (n §»
q, ko ™ 7&5 ) Sl(cv?)e tng ’ 71: )= qvkg Sk17)?, tgpn (1 1 16)
n k0

Die Funktion F' hat wieder ein Minimum, und bei starker Kopp-
lung konnen wir uns auf kleine Schwingungen um dasselbe be-
schrinken. Zur Bestimmung des Minimums wenden wir das gleiche
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Verfahren wie in § 3 an und fithren, den 9 N Nebenbedingungen
entsprechend, die 9 N Lagrangeschen Multiplikatoren «,;, em.
An die Stelle Gleichungen (3.21, 22) treten dann:

N
Zl‘BT'k,Slqle— szyra,ukg:: 0 (11.17)
s —
(kp=1,2,3) (r=1,2,- .. 0)
—y T Z Lyio Sln t(y =0 (1118)

(n=1,2,3) (# =1,2,3..-N)
Gleichung (11.17) ldsst sich mittels (2.11) umkehren:
éslg - 2 Esl, wk g’,ukg (1119)
ke

welches fiir s = » =1, 2, . N in

Qoro= Bo“vz(,+2 ZB,,Z i R 2 Eabel w+ ) (11.20)
ibergeht. Aus (11.1(), 18, 20) folgt:

;g): F_E_Z,ZETL#I Sln tg}% Lpo (1121)
" kle ;
2 PO 3 2 3 B S8 o (11.22)
klo

wo I" wieder durch (3.28) und S® analog (3.29) definiert ist. Da
nun die B,; ,; (v ¥ u) gemiss (11.10) fiir grosse r,, sehr klein sind,
denkt man sich die Grossen q,.,, 1", «,,, nach den B,; ,; (v # p)
entwickelt. Die B-freien Terme ergeben sich, indem man in den
obigen Gleichungen die B,; ,,=0 (»+ u) setzt. So findet man aus
(11.20, 21) und mittels (11.16):

[4,10J0= Bol[%do» [101o=T'=y By, [#,,,b=7 S} (11.28)
Durch Emsetzen von (11.23) in (11.19——22) ergeben sich sodann die

Zr(”)~31"'+y2 ZB” MZSMSW (11.24)

berechnen. Das gentigt schon um den Minimalwert F' von (11.15)
zu erhalten. Aus (11.17) ergibt sich nédmlich:

ZZZBﬂk slgslo QM-Q Zé.ukgd#ke

rKe 8§l pnko

und aus (11.16, 18).
YZ ’(V) —Zavla vlcr

vioc
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Fir I (11.15) finden wir daher, wenn wir noch (11.24) bertick-
sichtigen

v 3 D 7 1 ’ ¥
= 2?2’] )**EﬂyzBoN—l‘E‘Z V;ﬂ) (1125)
ny
mit ;

v & (., = *,?’2.2; EM-,MZ S(A%) S(l? (11.26)

V™ hiingt geméss (11.10) von r,, ab.

Die Berechnung von I ist hinreichend, um die Krafte zwischen
den ruhenden Nucleonen in einer ersten Naherung zu liefern. In

der Tat: F¥ ist die erste Naherung von K und damit von (W*KU).,..
+o---- Daraus, dass diese Néherung der Hamiltonfunktion sich
gemiss (11.26) zu einer Funktion der Nucleonkoordinaten allein
reduziert, entnimmt man, dass sich die Krafte zwischen den Nu-
cleonen aus den statischen Potentialen (11.25, 26) ableiten. Wir
begniigen uns mit dieser Niherung, wollen aber vor der Diskussion
noch auf den alternativen Kopplungsansatz eingehen. Es ist klar,
dass ein analoges Vorgehen, wie wir es im § 8 eingeschlagen haben,
uns hier zu dem Ausdruck

°T 3 f) v
Fym 202 A N+ 3 VY (11.27)
v
mit
T = 3 A 5 550 128

fithren wird, in Analogie zu (11.25, 26). Setzen wir nun die Werte

(11.9, 10) fiir 4 und B in (11.26, 28) ein, so ergeben sich folgende
statische Potentiale der Nucleonkrifte:

V- 3| Zspsn- (T8 0)
(380 0 e e (11.29)
- le gx(uv) dmr ’

v

wn 9 g 9 __ v T
V= e DTS (TS )y, o 0130

Man hat es mit Kréiften zwischen den komplexen Nucleonen im
Sinn von §9 zu tun, von deren ,inneren Variablen® (0, @, ¥,)
die Potentiale durch die S noch abhingen. Infolgedessen sind die
V;. V, als Operatoren auf die Schriodingerfunktion aufzufassen,
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wodurch sich der Austauschcharakter der Krafte ergibt. Denkt
man sich die Schrodingerfunktion nun nach Produkten aus den
Eigenfunktionen F1.., (0, @, ¥,) der Isobarenenergien H¥" (9.1)
der verschiedenen Nucleonen entwickelt, so entsprechen den Opera-
toren V,, V, in dieser Basis Matrizen mit den Elementen

(fmyn - gy myny | VE [ fiming -« fymyny)  (11.81)
Die Untermatrix, die dem Fall entspricht, dass alle Nucleonen im
Neutron-Protonzustand sind (j, = 4, = 1/2 fiir alle #), ergibt sich
zuls):
M) = fz( (#) r("))

-{_ﬁ(w.3<v>)+---;—é-( . grad) (5 - grad) | U (r,.)  (11.82)

'Vg(,uv) _ _51) g?. (?(It) . ;(i')) {__ ;15 (6- (1) . glad) (B- (» . grad) } u (T.’“’ (11,33)
mit: 1
U@ =™ (11.34)

wo die Paulischen Spinmatrizen ¢{” auf die Quantenzahlen m,, und
die isotopen Spinmatrizen 7{ auf die Quantenzahlen n, wirken.

Dieses Resultat ist bis auf den Faktor 1/9 identisch mit dem
Nucleonwechselwirkungsoperator, den die Methode der schwachen
Kopplung liefert1®). In dem Fall also, dass bei Nucleonwechsel-
wirkungen die hoéheren Isobaren-Zustdnde (5 > 8/2) unangeregt
bleiben, sind die Kernkrédfte in der ersten Néherung der starken
Kopplung bis auf den Zahlfaktor die gleichen wie in der ersten
Néherung der schwachen Kopplung. Es ist indessen zu beachten,
dass wir — im Gegensatz zur schwachen Kopplung — nicht berech-
tigt sind, im Fall f+0, g+ 0 das Potential als V=V, + ¥, an-
zusetzen; der allgemeine Fall wiirde eine besondere Untersuchung
erfordernt?).

Sowohl nach (11.32) wie nach (11.83) wéren die Krifte zwischen
einem Proton und einem Neutron in einem S-Zustand ((Ty:7,)
(61°6,) = — 8) auf grosse Distanzen abstossend, wihrend bel stér-
kerer Annaherung die zunehmende Anregung der Isobarenzustinde,
wie eingangs bemerkt?), zu einer Anziehung fithren wiirde.

Es diirfte indessen nicht angezeigt sein, das Deuteronproblem
nach dieser Theorie in Angriff zu nehmen, bevor nicht die Frage
nach dem Sattigungscharakter der abgeleiteten Krafte im Iall der
schweren Kerne abgekliart ist'8), In diesem Zusammenhang ist zu
bemerken, dass das Wechselwirkungspotential (11.82) sich von dem
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analogen Potential der Vektormesontherie nur durch das Vorzei-
chen unterscheidet, und dass das Gleiche zwischen dem Potential
(11.38) und demjenigen der Pseudoskalartheorie gilt. Wie nun
F. CoesTErR mittels der statistischen Methode (Thomas-Fermi-
Naherung) gezeigt hatl®), liefern zwar die ladungssymmetrische
Pseudoskalar- und Vektortheorie Krifte mit Sittigungscharakter;
dieser Sachverhalt kann sich indessen infolge des Vorzeichen-
wechsels @ndern.

VI. Anhang.

§ 12. Abschiitzung evniger Integrale.

Um die folgenden Abschitzungen herzuleiten entwickelt man
U, (2.2) als Fourierintegral :

U, (z) = (2 n)-3’2/d3 eV, (k) ¢ &0 (12.1)
d3t = dt, dt,dty, k= T|

Wegen der Kugelsymmetrie von U, [vgl. (1.10)] gilt das gleiche
fir Vo im f-Raum. U, ist wesentlich + 0 fiir |z| < a, V fir k <1/a.
Daher gilt

. l/a
/dXUOR(A) Uy= [d®t-R(~k3V (k) = 4nfdk-k2R(— k2) V2 (k)
0

wo B (4) eine der unten vorkommenden einfachen Funktionen von
A ist. Ersetzt man wegen

/d3fV(? /dXU2

und unter Voraussetzung eines verntnftig glatten Verlaufs, V2
durch den Mittelwert a3, so wird
lle
deUOR(A)U0~a3fdk-k2R(~k2) (12.2)
0
Hierdurch berechnet man sich folgende Abschitzungen??). Zunéchst:

f AX Uy (~ 4" Uy~ [a 2" (n> — o und rational) (12.3)

Hiermit steht die Definition des Nucleonradius von Oppenheimer
und Schwinger (¢y) 1n Ubereinstimmung?!) — vgl. (2.5)

agt= [dX fax %) D)t [AX 8 (-

" 4nn2/dX Uy (—A)"'U,  (12.4)
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Weiter findet man fiir au > 1 im Sinne einer Entwicklung nach
(@p)=t
[aX Uy (s — 4y Uy = > {1 4 [a )™+~ [w"] (125)

(n = belicbig rational)
Fir au <€ 1 andererseits hat man im Sinne einer Entwicklung nach
(ap):
deUO(;ﬂ-—A)”UO=deU0(—A)”UO{1+[aM]+---}w[a‘z’"’] (12.6)
tir m > 0 rational und n = —1/2, — 1. Dagegen wird:
de Uy (u2 —A) 2 Uy [ad (ap) ' Bir ap <1 (12.7)

Dies hangt damit zusammen, dass fir (12.7) — im Gegensatz zu
(12.6) — die in (12.2) auftretende rationale Funktion k%R (— k2)
den Grad < —1 in k hat.

§ 13. Eigenschaften der orthogonalen Matrixz S (Zu §§ 4,6).

Die in (4.6) zugrunde gelegte Abhéngigkeit der orthogonalen
Matrix S von den Eulerschen Winkeln (@ ®@¥) lautet:

cos @ . cos @ sin D | "cos @D . cos @ sin @

| —sin¥ cos¥ cos ¥ sin ¥ | cos - ein ©
S=| sin®.cos@ cosP| sinP-cos® cos P & - sin O (13.1)
. sin¥ cosW' = —cos¥ sin¥ s s
— cos ¥ -sin @ — sin ¥ -sin @ cos @

Die Variablenbereiche sind: @ = (02x), ¥= (02x), O = (0,7).
Aus (18.1) folgt:

Sir =858, — Sps S (i zykl, Perm. von (1,2,8) (18.2)

(rst)
Ableitungen : Definiert man die antimetrischen Matrizen 4,4, 4 ¢
durch:
i el B g 28 (S’ = S~'=Transponierte von S) (13.3)
x 0o 0 o ’
so gilt:
08
S

, 08
:AOCS *a‘*;: - SAG( (13.4:)
Wie alle antimetrischen Matrizen lassen sich die A4, als Linear-

kombinationen der

0 0 0 0 0 1 0 -1 0
Alm(o 0 _1) Azz( 0 0 o) H e (1 0 0) (13.5)
0 1 0 -1 0 0 0 0 0

4
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den infinitesimalen orthogonalen Matrizen, darstellen. Man findet:
Ay=sn 6 (4,-cos P+A4,-sin ¥)— 4;-cos O l
Ayg=A,-sm¥ — A, -cos ¥ (18.6)
A4, |

Wir benotigen die Umkehrung:

cos !P

A, =4, sm‘P—l— (A —i—cos@-Aw) ]

-,In 97

Ay=—A4- cos![f+ (A 4 cos 6 . A) J (13.7)
A3:Aw

Lésst man die Operatoren Py P, Py (4.8) auf die S,, — als Funk-
tionen von (O@PY) aufgefasst—wirken, was P, (S,,) geschrieben
sel, so erhélt man auf Grund von (4.7, 8) und (13.4, 7):

P, (S)=1(S4,), d.h. P,(S,,)=1(54,),, (13.8)
Die Ausrechnung der rechten Seite liefert:
P,(8,)=0 P;(S,,)=18, P;(S,)=—18,; (13.9)
(jkl = zykl. Perm. von 1, 2, 3)
§ 14. Rechnungen zu §§ 5, 8.

Zur Berechnung von AN A® A00 AR getzen wir (4.19) in (5.11)
und (5.13) emn, sowie (8.6) in (8.8) und (8.9). Das ergibt:

1

A}cg),lo' } _ 2 { Q5
1 -

435,14 Lot

e tna

378,81, — 8408, (S0 8;e— 8,6, (14.1)

Ert ™o kit Vto it™~jo lj “10

47 ,‘] T

mit:
— B, 2 (EOi,sl Agy o+ AOi,slle,Oj') (14.2)

— AOZ 01,sl sl 0j T BO@ slAsl 0]) } (14‘3)
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und:
i I S LI TEA ~ 8,0, (144
A(Qg ‘—-2 po) ( loMio l?: 00 —I_Z ,’m io ki GQ)( ¥ )
ko,lo 4 ki
mit :
"I S — — —
bn = o7 { Aoj,szBsz,Oi“‘ 53‘@ Ao Bo} (14.5)
‘BU Is
1 _ _ _
= { 3 By A= 030 Bﬂ} (14.6)
Nun gilt:
;'A_;k,tj Et}',sl = aklIvrs Irs = de U’I‘ (MZ - A)-l Us (]47)
)
= sl s Bs’l’,()k

1 2 -
— 5, {W100+§deU0(M2—A) U, (148)

: 2; HUj,sl Esl,s’l' ‘Zs'l’ 0k
=8 5 Lty /dXU (% - AU} (149)

wie man durch Ubergang von den Matrixprodukten zu den ent-
sprechenden Operatorprodukten gemiss (2.10,11) berechnet. —
Aus (14.1, 2, 4, 5, 7, 8) einerseits und (14.1, 1, 3, 4, 6, 7, 9) anderer-
seits ergibt sich dann:

(1) 2)
A(,;og;g Agyla} lA(g) } (40 Sy, — 8,10,0) (14.10)
AlQ lo Akg,lo’ lA

wobe1 die Konstanten A, A@ durch die Gleichungen

(A=24) By~ 55 Lo + 5 [AX Uy(w = 4)72T, (14.11)

(By—2AD) 42— 2 4" deU (u2—A4)"2U, (14.12)

bestimmt sind.
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Die mitgeteilte Untersuchung habe ich auf Anregung von Herrn
Professor Dr. Grrcor WeNTzZEL unternommen. Fiir seine stete
Bereitschaft zu Diskussion und Ratschligen, sowie fiir das for-
dernde Wohlwollen, welches er mir dauwernd entgegenbrachte,
mochte 1ch an dieser Stelle meinem hochverehrten Lehrer aufs
herzlichste danken.

University of Chicago, Department of Physics.

Anmerkungen.

1) Eine Ubersicht iiber Rechnungen und Literatur bis Ende 1946 findet sich in
§§ 1 und 4 des Artikels von G. WENTZEL, Rev. Mod. Phys., Vol. 19, Nr. 1 (1947).

%) Vgl. N. KEmMER, Proc. Roy. Soc. 166, 127 (1938).
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(12.5), (16.5).

6) Vgl. G. WENTZEL, Quantentheorie der Wellenfelder § 12, wo der entsprechende
Ubergang fiir Operatorfelder ausgefiihrt ist.

") Vgl. N. KEMMER, Proc. Cambr. Phil. Soc. 34, 354 (1938); auch G. WENTZEL,
Quantentheorie der Wellenfelder § 10.

8) Im folgenden gelten stets folgende Summationsregeln: In 3 3 laufen », s von

T s
0 bis co. In Y’} laufen 7, s von 1 bis co. Anderseits laufen die Indices

r 8

(oo, ijklmn)stets von 1 bis 3.

%) In der in Fussnote %) zitierten Arbeit iiber das Vektorfeld ist die Konstante,
die unserem B, analog ist, mit C' bezeichnet,

10y Tn § 3 und § 6 deuten wir das direkte Produkt zweier Matrizen durch x an,
um es vom Matrixprodukt zu unterscheiden.

11) Vgl. die in Fussnote #) zitierte Arbeit, p. 568.

12y Unsere Matrix [ ist dort mit S bezeichnet.

13) Vgl. § 12 des in Fussnote 3) zitierten Buches, im Vakuum stimmen Vektor- und
Pseudovektorfeld iiberein.

14) Vgl. zu den Ausfithrungen in d1esem Paragraphen den § 10 der in Fussnote?)
zitierten Arbeit.

15) Vgl. Formeln (15.9) bis (15.13) der in Fussnote ¢) zitierten Arbeit.

16) Vgl. Formel (69b) der in Fussnote 2) zitierten Arbeit. Dort ist beim Term
({20, 0 ) versehentlich der Faktor k* ausgelassen. Kemmers Konstanten héu-

gen mit unseren wie folgt zusammen: f, = f ][2/ i ]/,u Ge==¢ ]/2 ul
17) Vgl. §§ 11—13 der in Fussnote %) zitierten Arbeit.

18) Herr E. Trucco hat hier cine Untersuchung dieser Frage vorgenommen.
19) Vgl. F. CorsTtER, Helv. Phys. Acta 17, 35 (1944).

20) Im folgenden heisst [..... ]: von der Gréssenordnung.

21) Phys. Rev. 60, 150 (1941).
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