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Neutron-Deuteron Streuung bei niedrigen Energien
von A.Troesch und M. Verde, Phys. Inst. der ETH. Ziirich.
(30. VIIL. 1950.)

Einleitung.

Beim elastischen Stoss von Neutronen an Deuteronen tritt im
Schwerpunktssystem eine starke Riickwirtsstreuung auf. Dies
wurde experimentell von verschiedenen Autoren fiir Neutronen
von 2,5, 8,3 und 14 MeV sichergestellt?)?)3).

Die elastische Neutron-Deuteron (n,d) Streuung ist besser zur
Entscheidung des Austauschcharakters der Wechselwirkung zwi-
schen Nukleonen geeignet als die Streuung von einem Nukleon an
einem anderen.

Die als Dreikorperproblem aufgefasste Theorie der (n-d)-Streu-
ung bietet fiir die hoheren Energien oder fiir die Berechnung an
sich kleiner Streuphasen keine Schwierigkeiten mehr; dagegen
bedingt die Ermittlung der Streuphasen bei kleinen Energien miih-
same numerische Rechnungen.

In dieser Arbeit haben wir eine Entwicklung von k cotg d, nach
Potenzen von k2, wie sie fiir das Zweikorperproblem kiirzlich an-
gegeben worden ist?), auf das hier vorliegende Dreikdrperproblem
erweitert.

Ist die Energie der einfallenden Neutronen so klein, dass die
P-Welle selbst wenig gestreut wird und sich vornehmlich durch
die Interferenz mit der S-Welle bemerkbar macht, so lisst sich die
Streuphase d; in guter Nidherung leicht berechnen, und es bleibt
einzig die Streuphase d, der S-Welle streng zu ermitteln. Zur Be-
rechnung von d, ist die Kenntnis der Eigenfunktion des Systems
fir die Einfallsenergie Null erforderlich. Diese erhielten wir durch
ein Variationsverfahren.

Unsere Betrachtungen gelten fiir etne Wechselwirkung zwischen
zwel Nukleonen von der Form

Vg = Ugg{w + b (2,3), + h (2.3), + m (2,3),.}

Die Rechnungen wurden fiir die von der symmetrischen bzw.
der neutralen Mesontheorie nahegelegten Potentiale durchgefiihrt,
hingegen liessen wir die von CuristiaN und IHArT®) neuerdings
vorgeschlagene ,,even theory® vorldufig ausser Betracht.
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Die Formel fiir k& eotg d.

Wir diskutieren zunéchst den Fall S = 3/2. Hier hat man aus-
zugehen vom Gleichungssystem®)

@+ () ="V it men) () @

Dabei bezeichnen wir mit 4 die Summe der Laplaceoperatoren
in bezug auf die Koordinaten 7 und g; die Potentiale sind mit
2 m/h? multipliziert zu denken, wobel m = 2/3 M die reduzierte
Masse des einfallenden Neutrons ist.

Die uns hier interessierende Losung (y’, ") soll sich gegeniiber
Permutationen nach der Darstellung D

13 1 _ys

. (=1 0 2 2 o 2 T 2
ey= (T wa={ g ) el &)
2 2 2 2

transformieren und zum Drehimpuls Null gehoren. Fiir grosse ¢
soll " nach Null gehen, wéhrend %" asymptotisch in das Produkt
der Wellenfunktion des Deuterons im 3S-Zustand und einer ebenen
Welle iibergehen muss. w;, v, seien die Losungen eines (2) ent-
sprechenden Gleichungssystems mit Energie des einfallenden Neu-
trons h2k%2m = 0. Es gilt also

d e (' _ ((w+b) US—(h+m,U" —(h+m) U’ v
( 4 kd) (QPOH) B ( - (h—l— m) U’ (w+b)Us+ (h+m)U”) (wotr) £ (3)

Multipliziert man nun das System (2) von links mit (wi¥*, wo¥),
das System (3) hingegen mit (p'*, v"*) und subtrahiert die so er-
haltenen Gleichungssysteme, so erhélt man:

po* Ay —y Apg* Ly * A" — " Aypg* + k2 yo* + 9" w*) = 0. (4)
Daraus folgt
f{(wg*ﬁ Y —p" dy*) + k2" p*pde=0. (5)

dt=d?rd?q ist das Volumelement von 7 und g, die Integration ist
tber den ganzen Raum von r und ¢ erstreckt zu denken.

*) M. VErDE, Helv. Phys. Acta XXII, 339 (1949), Gl. (14),. Auf die in dieser -
Arbeit angegebenen Formeln werden wir uns fortan durch Verwendung des Buch-
stabens v beziehen.
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Bei der letzten Umformung haben wir vom Umstand Gebrauch
gemacht, dass 4 ein gegeniiber Permutationen der Koordinaten
der drei Teilchen invarianter, d.h. symmetrischer Operator ist.
Fir jeden symmetrischen Operator S gilt

/w'*Sw’ dv— f@p”*Sip” dr

Das 1st eine direkte Konsequenz der Transformationseigen-
schaften von (v', "), die sich, wie gesagt, bei Permutationen nach
der Darstellung D transformieren.

Wir setzen nun
' =Ty } 6
Tl)” . Tﬂw, ( )

wobel wir die Symmetrie-Operatoren
' 3
Y r13) — (12))

(7)
T" = — (28) + 5 {(18) + (12)}
einfithren®).
p 1st eine in (2,3) symmetrische Funktion, die fiir ¢ - oo das
folgende asymptotische Verhalten besitzt:

in (kg+ 9
p=—q(r '“Sil;l.(siqn 3 ! ’ ()

wobel @ (r) die im Raum von 7 normierte Wellenfunktion des Deu-
terons im Grundzustand ist. Gehdrt » zum Drehimpuls Null, so
1st dies auch fiir " und " der Fall. 9" und %" besitzen das eingangs
geforderte asymptotische Verhalten, némlich

p' ~0
7 in (kg+ o
W'~ () .fl;lgiqﬂ ik (9)

Die Gleichung (5) lasst sich auch in der Form schreiben

f{(wé*dw—w”ﬁwé‘)+k2w”w3’}dr: 0, (5)'
weil allgemein gilt

/"y)ﬁ'*sy)ﬂdr — _3/1‘0;’/*Swdr'
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Wir setzen nun

sin (kq+ 6)
U=—e(r: ji’gg_(g

ey e+ )

= lim (k-ctg d), ist dabei die reziproke Streuléinge fiir den
4 E—>0
Grenzfall der Einfallsenergie Null.

Mit diesen Festsetzungen folgt die Gleichung
f{(ué‘du~udu§)+'7{;2uu§}dr:O. (10)

Denn es gilt

Wir bilden nun die Summe der Gleichungen (5)" und (10)
/{(wg* Ay —vp" Apy) + (ug Auw—uAug) + k2 (wu, +y" py)tdr=0

und wenden den Greenschen Satz an. Da die y tberall regulédre
Funktionen mit dem oben angegebenen asymptotischen Verhalten
sind, liefern nur die Singularititen von % und %, bei ¢ = 0 einen
Beitrag. Man erhilt nach kurzer Zwischenrechnung

1 k2 A £ /.
ketg dg = — —+— /(uuo +y"y,)dT (11)

ay 47

i

Es ist hierbei zu beachten, dass »” fiir ¢ > co gegen — u strebt.
Ist einmal die Entwicklung von » in der Form

Y=y, + kZyp; + kty, +...

bekannt, so kann man damit die entsprechende Entwicklung von
k cotg d, ableiten.

Analog zum Zweikorperproblem kénnen wir eine effektive Reich-
welte

1 "
0a= o [ (ug2 +vigwy) dv

definieren, womit sich (11) schreiben lésst:

k cotg 6y = —---;———2 %4 $ R84 ...
4

Dabei 1st fiir die ersten beiden Glieder, wie erwahnt, nur die Kennt-
nis der Eigenfunktionen des Systems bei Energie Null erforderlich.
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Es legt auf der Hand, dass sich der vorlaufig nicht betrachtete
Fall S = 1/2 in der gleichen Weise behandeln lasst. Der wesentliche
Punkt liegt darin, dass beim Gleichungssystem fiir Spin 1/2, das
wir abgekiirzt

(@ +k )y =Wy

schretben — unter y sei die Gesamtheit der vier Komponenten
e, p*, v, v’ verstanden — die Matrix der Wechselwirkung®)

(w+m) U 0 B+h) U —(b+R)U’

B 0 (w—m) U5 (b=h) U’ (®—h)U" ,

W= ( b+h) U (=R U  wUs—mU" —mU’ (2)
—b+R U (b-h)U" —mU wUs+mU"

symmetrisch 1st.
Wir setzen in diesem Fall

W =T &
y).’/ o TH @
=Ty, (12)

was wiederum keine Einschrinkung der Allgemeinheit bedeutet.
Die Funktionen — @ und o sind im Endlichen iiberall regulér, in
(2,3) symmetrisch, gehéren zum Gesamtdrehimpuls Null und haben
das gleiche asymptotische Verhalten fiir ¢ - oo wie (8). Die Ope-
ratoren T” und 1" sind durch (7) definiert, I'¢ durch

Die der Beziehung (11) entsprechende IFormel ist in diesem Fall

k cotg o, = ﬁ;lr
2

N

B e 1 paame 1 ooox 1 .
+ﬂ_/ (‘u,‘u,o + 5 @D — ¢y, +Ftp‘y)g*)dr. (13)

as 1t die Streuldnge im Dublettzustand fir die Energie Null. Die
analoge effektive Reichweite wird gegeben durch

1 1 " * 1 1
ez:‘z‘}?/(l“ol“?@o By — 5 'Yy + g ¥ uET) AT

Natiirlich muss man zur Bestimmung der Koeffizienten der beiden
Reihenentwicklungen (11) und (18) die Losungen der Schrodinger-
gleichungen kennen. Hierfiir kann man sich des an anderer Stelle
angegebenen Variationsverfahrens bedienen.
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Die Durchiiihrung des Variationsveriahrens.

Das Variationsverfahren besteht bekanntlich darin®), die Losung
zu finden, die das Integral

o = Z/V)a {aak T kz U:}wk dv (14)

stationér machen.

U, ist die Matrix der Wechselwirkung, die fiir die beiden Iille
S =3/2und S =1/2 1n (2) und (2)" angegeben wurde.

Wir behandeln zuerst den Fall S = 3/2. Hierbei wird fiir ¢ der
folgende Ansatz gewahlt

wzqo(w){su;cqq (14 o e=#7) cos

+ Eﬁiq- (1—e "¢+ Bge ?)sin 60} , (15)

woraus man ' und y” nach (6) erhalt. d, bedeutet daber die Streu-
phase der S-Welle; «, f, u?, »? sind Parameter, die zu bestimmen
sind. Der Einfachheit halber haben wir fiir die Deuteron-Eigen-
funktion ¢ (r) eine Gauss’sche Funktion gew#hlt

— ;» V— s _12 ’

die im 7»-Raum zu eins normiert ist. Fiir 2 verwenden wir den Wert
A=31-10712 ¢cm~1, Der Raumanteil des Potentials wurde eben-
falls als Gauss’sche Funktion angesetzt

Usg = 45 ¢~ MeV,

Wir haben die Rechnungen fir die symmetrische und neutrale
Theorie durchgefiihrt, fiir die die Wechselwirkung zwischen zwel
Nukleonen (2,3) folgendermassen lautet:

%— U (72w ) {(1 — g—) + % g (6? - o) } S. T.
s W {(1 — L)+ 596 o) N. T.

Als numerische Werte haben wir g = 1,4 (8. T.), g = 0,2 (N. T.)
und »#~! = 1,9-10-1% cm angenommen.

Im Ansatz fiir v (Gleichung 15) weist der Koeffizient von cos kq/kq
einen verwickelteren Bau auf als derjenige von sin kq/kq, weil der
Ansatz fiir ¢ = 0 endlich bleiben muss.

Mit einem Ansatz dieser Art beriicksichtigt man die Polarisation
des gestossenen Deuterons nicht, was fiir kleine Energien von vorne-
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herein nicht gerechtfertigt ist. Verfiigt man aber tiber wenige Para-
meter, so ist es verniinftig, diese fiir die Verzerrung der einfallenden
Neutronenwelle allein zu verwenden. Durch die Einfiihrung zu-
sétzlicher Parameter wiirde der Rechenaufwand ganz erheblich
vergrossert. Die Grosse der Streuphase diirfte hauptsichlich
durch den Austausch der Teilchen, den wir hier streng bertick-
sichtigen, bedingt sein. Deshalb haben wir die Rechnung mit dem
angegebenen verhdltnismissig einfachen Ansatz durchgefithrt. Die
Tatsache, dass die Parameter plausible Werte annehmen, bestéatigt
nachtriglich unsere Vermutung. Die Form des Ansatzes ist durch
die Tatsache bedingt, dass alle Integrale, die fiir die Berechnung
der Parameter notig sind, in geschlossener Form durchfiihrbar sein
sollen; zumal sich die Parameter aus Gleichungen bestimmen, in
die Differenzen von fast gleich grossen Integralen eingehen.
Wir haben die folgenden Integrale auszuwerten:

Jo = f‘!’*UzswdT’ Jl=f‘l”!= Upypdr, Jy= /’P*Uls (12)ypdr,
Jo= [v*(A+k—K+ Up)pdr, Jo= [y*(A+k2—k3+ Ty pdr.

Gleichung (14) wird damit, ausfithrlich geschrieben, fir die sym-
metrische Theorie

Jo—J,+ Jy—J, =0,
fir die neutrale Theorie
Jy—J,—2J, +J, +J3=0."
In unserem Falle kénnen die beiden Integrale J, und J; ohne die
speziellen Umformungen (42), und (43), berechnet werden.
Fiir k = 0, worauf wir uns hier beschrinken diirfen, konnen alle

Integrale in geschlossener Form integriert werden. Es treten nach
der Integration tiber den Zwischenwinkel nur Integrale der Form

ffe*wz—fwz Sinfry - 2" y" dz dy
0
auf. Sie lassen sich alle ableiten aus

ffe_‘“ﬂ“byg Sin(f:ny)%dwdy:%é_- L
0

Viab—p?

o

A —ax>—by® Qi /1. 5 _ _,f
/O/e V' Sin(fzy) dx dy Jia —f2 amtg(]/ﬁbt"ﬁ)

o0

f/e_‘”’ ' Sin(fzyx) dedy = V f (4ab 7
0
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Es handelt sich nun darum, a,, a, und die Parameter «, f, u?2, »2
zu bestimmen. Es ist jedoch kaum moglich, die Parameter x? und
2, fiir die (14) stationir ist, aus dem Variationsverfahren mit (30),
zu berechnen, da ein kompliziertes transzendentes Gleichungs-
system aufgelost werden miisste. Wir bestimmen in dieser Weise
nur « und f als Funktion von w2, »? und a,, a,. @, und a, haben
wir weiter als Funktion von u? und »2 berechnet aus der exakten
Integralformel fiir die Streuphase (37),, die unabhéngig von Va-
riationsverfahren gilt*).

J (u?, v*) =0 liefert graphisch u? als Funktion von »2. In dieser
Weise bleibt die Wahl des einen Parameters noch offen. Es zeigt
sich aber, dass a, und a, innerhalb einiger Prozente unabhéngig
vom Werte von »2sind, wenn »2 zwischen 0,2 und 4 A2 (fiir sym. Th.)
bzw. zwischen 0,4 und 4 A2 (fir neutr. Th.) liegt.

Wir brauchen deshalb, was die Kenntnis der Streuldnge bel
Energie Null anbelangt, nicht festzusetzen, welches der wirkliche
Wert von »? 1st. Fir die Berechnung der effektiven Reichweite
haben wir u? = »* angenommen.

Fir den Spin S = 1/2 gehen die Rechnungen in entsprechender
Weise vor sich. Die Gleichung (14) lautet in diesem Fall

Sym. Th.

2J5+d0),, —(ls—Jdee=—91+Jo+J5),, T9(J1+J:—2J4) 4 4
+ (Ty—T)a0 + - (g—D (T —Ta+ Ty, + (Tr—Ts+ T as
—2(J1+J5) 0 +4 () o —2 (oo, —2[(Jo)y,, + Jo)yel}

Neutr. Th.

(2J5+’]4)w,w _‘(']5—‘]4)@,¢ =(8g—2)(Ji+Jo+ J3)y',tj) +(89—2) (Jl)cb,cb
—B9—1)(Jo)os + Jaoo—9{(Jr—Jo+Ja)y, + (Jr—J2+Js)00
—2(Jy +J3)y0 +4(Ja)y0—2(s)o, —2[(Jo)yy + (Jo) 01}

Wir haben dabei die Beziehung (12) benutzt und fir @ und o
wiederum einen Ansatz der Form (15) gewahlt. Der Einfachheit
halber haben wir hierbei den Wert von u? in @ und v als gleich
angenommen, ebenso den Wert von »%; dagegen wurden o und S
unabhéngig fiir die zwei Ansétze bestimmt. Ferner haben wir den
Beitrag von ¢ vollkommen vernachlissigt.

*) Wir machen darauf aufmerksam, dass die Formeln (37), dem Spin § = 3/2
entsprechen und die Formeln (38), dem Spin § = 1/2. Entsprechend sind auch
die Bezeichnungen ,,Symmetrische Theorie‘‘ und ,,Neutrale Theorie‘ abzuindern.



Neutron-Deuteron Streuung bei niedrigen Energien. 47

Die Bezeichnung fiir die Integrale bedarf keiner weiteren Er-
klarung. Es bedeutet z. B.

(JZ)w,tDz/"lP* U13 (12) D dT.

In der folgenden Tabelle sind die Zahlenwerte zusammengestellt.

Neutr. Theorie ! Sym. Theorie
§=32 | 8=12 | 8§=32 | §=1/2
fi = P2 % 10724 ¢m? 2,3 4,6 2,7 4,0
X 10+13 cm—1 2,8 6,8 3,2 7,0
= By 1 +By X102 ¢m 0,9 1,6 | 09 1,6
a
: _ S B
_a(p';‘}‘ﬁ@ w 10-12 ¢m -0,6 0,9
0 X 10718 em—1 2 4 2 4

Die Werte der Wirkungsquerschnitte fiir die Energie Null be-
tragen 2,6 und 2,9 Barns fiir die neutrale bzw. symmetrische Me-
sontheorie. Das Experiment?) liefert fiir die beiden Streuléngen die
Werte ag,=2,6 und ay =8,26 10—;; cm. Der Umstand, dass die
Werte der effektiven Reichweiten kleiner sind als die entsprechen-
den Streuldngen, bringt notwendigerweise mit sich, dass der totale
Wirkungsquerschnitt bei Energie Null mit zunehmender Energie
abnimmt.

Schlusshemerkungen.

Wegen des Umfanges der numerischen Rechnungen mussten wir
darauf verzichten, die Bestimmung der effektiven Reichweite zu
verbessern, z. B. durch Einfiihrung weiterer Parameter oder durch
eine von u? unabhéngige Bestimmung von »? und Anwendung der
Priifformel (87), zur unabhéngigen Kontrolle der Losungen. Aus
dem gleichen Grunde konnten wir auch weder fir die Triplett- und
Singulettwechselwirkung zwei verschiedene Reichweiten einfiihren, .
wie dies erforderlich ist, wenn man eine Gauss’sche Raumabhéngig-
keit des Potentials annimmt?), noch fiir den Grundzustand des
Deuterons eine besser angenéherte Wellenfunktion wihlen.,

Nichtsdestoweniger glauben wir eine wirksame Rechenmethode
angegeben zu haben, deren numerische Resultate es gestatten, sich
von den Folgen einer Wechselwirkung von einem gewissen Aus-
tauschtypus beim betrachteten Stossproblem ein gutes Bild zu
machen.
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Die Bestimmung der Phase §; der P-Welle ist auf die fiir die
Phase 6, verwendete Weise kaum durchfithrbar. Indessen kann
man bel jenen Energien, bei denen ¢; klein ist, dadurch eine gute
Niherung erhalten, dass man in die exakten Integralformeln (37),
die ungestorte Losung einsetzt.

Fir sin 0, erhdlt man z. B. folgende Werte:

]i?;lnﬁ'eg‘ife ; Sym. Theorie Neutr. Theorie
8=32 | S=12 | S=32 | 8=172
25 | 016 } - 0,11 020 | 0018
33 | 012 | 008 0205 | 0,008

Das eventuelle Auftreten einer Spin-Bahnkopplung konnte die
Werte der verschiedenen d;-Phasen merklich beeinflussen.

Es wére verfritht, durch einen Vergleich der experimentellen
Daten mit unseren Berechnungen endgiiltige Schliisse zu ziehen.
Der Umstand, dass die Werte der differentiellen Wirkungsquer-
schnitte bei emnem Streuwinkel Null nicht sehr gut bekannt sind
(sie konnen nur durch Extrapolation gewonnen werden), macht
den Vergleich mit der Theorie recht schwierig.

Die beiden Arten der Wechselwirkungen liefern Maxima der
Streuung im Schwerpunktsystem bei den Streuwinkeln 0° und
180°. Diese Maxima sind jedoch bei der neutralen ausgepriagter als
bei der symmetrischen Theorie. Die experimentellen Kurven wiir-
den mehr zugunsten der neutralen Theorie sprechen. Vermutlich
wird die “even theory” Ergebnisse in der selben Richtung liefern.

Es 1st uns eine angenehme Pflicht, an dieser Stelle Herrn
Prof. Dr. P. ScaerrER unseren herzlichen Dank fiir sein Interesse
an dieser Arbeit auszusprechen.
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