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Neutron-Deuteron Streuung- bei niedrigen Energien
von A. Troeseh und M. Verde, Phys. Inst, der ETH. Zürich.

(30. VIII. 1950.)

Einleitung.

Beim elastischen Stoss von Neutronen an Deuteronen tritt im
Schwerpunktssystem eine starke Rückwärtsstreuung auf. Dies
wurde experimentell von verschiedenen Autoren für Neutronen
von 2,5, 3,3 und 14 MeV sichergestellt1)2)3).

Die elastische Neutron-Deuteron (n,d) Streuung ist besser zur
Entscheidung des Austauschcharakters der Wechselwirkung
zwischen Nukleonen geeignet als die Streuung von einem Nukleon an
einem anderen.

Die als Dreikörperproblem aufgefasste Theorie der (n-d)-Streuung*
bietet für die höheren Energien oder für die Berechnung an

sich kleiner Streuphasen keine Schwierigkeiten mehr; dagegen
bedingt die Ermittlung der Streuphasen bei kleinen Energien mühsame

numerische Rechnungen.
In dieser Arbeit haben wir eine Entwicklung von k cotg <50 nach

Potenzen von fe2, wie sie für das Zweikörperproblem kürzlich
angegeben worden ist4), auf das hier vorliegende Dreikörperproblem
erweitert.

Ist die Energie der einfallenden Neutronen so klein, dass die
P-Welle selbst wenig gestreut wird und sich vornehmlich durch
die Interferenz mit der S-Welle bemerkbar macht, so lässt sich die
Streuphase ô1 in guter Näherung leicht berechnen, und es bleibt
einzig die Streuphase ô0 der S-Welle streng zu ermitteln. Zur
Berechnung von ô0 ist die Kenntnis der Eigenfunktion des Systems
für die Einfallsenergie Null erforderlich. Diese erhielten wir durch
ein Variationsverfahren.

Unsere Betrachtungen gelten für eine Wechselwirkung zwischen
zwei Nukleonen von der Form

V2S U23{w + b (2,3)0 + h (2,3), + m (2,3)0 J
Die Rechnungen wurden für die von der symmetrischen bzw.

der neutralen Mesontheorie nahegelegten Potentiale durchgeführt,
hingegen liessen wir die von Christian und Hart5) neuerdings
vorgeschlagene „even theory" vorläufig ausser Betracht.
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Die Formel für k cotg d0.

Wir diskutieren zunächst den Fall S 3/2. Hier hat man
auszugehen vom Gleichungssystem*)

f/lJ-7-2 — T.2\(v'\_((w + b)üs-(h + m)ü" ~(h + m)U' \/V'\ ,„.V^-t-t 'Wlyj \ -(h+ m)U' (w+b)üs+(h+m)ü"J\y>") ^>

Dabei bezeichnen wir mit A die Summe der Laplaceoperatoren
in bezug auf die Koordinaten r und q ; die Potentiale sind mit
2 m/h2 multipliziert zu denken, wobei m 2/3 M die reduzierte
Masse des einfallenden Neutrons ist.

Die uns hier interessierende Lösung (tp', ip") soll sich gegenüber
Permutationen nach der Darstellung D

(2,3) (-0+J) (1,2) M \) (1,8)

1/3 1

2

1/T
2

1/3

2
~~

~2

transformieren und zum Drehimpuls Null gehören. Für grosse q
soll tp' nach Null gehen, während tp" asymptotisch in das Produkt
der Wellenfunktion des Deuterons im 3<S-Zustand und einer ebenen
Welle übergehen muss. ip'0, fl seien die Lösungen eines (2)
entsprechenden Gleichungssystems mit Energie des einfallenden
Neutrons h2k2/2 m 0. Es gilt also

r/1— k2\(Vo'\ y + b)Vs-(h + m)U" -(h+m)U' \(Vo\ ro\
[ ^ Wo"/ \ -(h+m)U' (w+b)Us+(h + m)U")\y}- [ '

Multipliziert man nun das System (2) von links mit (ip'0*, y>'ó*)>

das System (3) hingegen mit (rp'*, tp"*) und subtrahiert die so
erhaltenen Gleichungssysteme, so erhält man:

ip* Atp'—tp'A tp'* + tp"* A tp" - tp" Aip"*7k2 (tp' ip0* 7 tp" tp'0*) 0. (4)

Daraus folgt

f{ (tp"* A tp"- tp" A tp"*) + k2tp"tp'*}dr 0. (5)

dr d3rd3q ist das Volumelement von r und \, die Integration ist
über den ganzen Raum von r und q erstreckt zu denken.

*) M. Verde, Helv. Phys. Acta XXII, 339 (1949), Gl. (14),. Auf die in dieser
Arbeit angegebenen Formeln werden wir uns fortan durch Verwendung des
Buchstabens v beziehen.
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Bei der letzten Umformung haben wir vom Umstand Gebrauch
gemacht, dass A ein gegenüber Permutationen der Koordinaten
der drei Teilchen invarianter, d. h. symmetrischer Operator ist.
Für jeden symmetrischen Operator S gilt

fip'*Stp'dr= ftp"*Stp"dr

Das ist eine direkte Konsequenz der Transformationseigenschaften

von (tp', tp"), die sich, wie gesagt, bei Permutationen nach
der Darstellung B transformieren.

Wir setzen nun
tp' T'tp
tp" T'tp, i (6)

(7)

wobei wir die Symmetrie-Operatoren

T'=Ç{(13)-(12)}
T" - (23) + 1 {(13) + (12)}

einführen6).
tp ist eine in (2,3) symmetrische Funktion, die für q -> oo das

folgende asymptotische Verhalten besitzt:

sin (kq+ô) /Q,w — rp (r) ¦ (8)

wobei rp (r) die im Raum von r normierte Wellenfunktion des
Deuterons im Grundzustand ist. Gehört tp zum Drehimpuls Null, so
ist dies auch für tp' und tp" der Fall, tp' und tp" besitzen das eingangs
geforderte asymptotische Verhalten, nämlich

tp'~0
„ sin (kq+ô) /av

Die Gleichung (5) lässt sich auch in der Form schreiben

J{(tp"*Atp-tp"Atpl)+k2tp"tpl}dx=0, (5)'

weil allgemein gilt

ftp"*Stp"dt -1 ftp"*Stpdr.
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Wir setzen nun
sin (kq+d)

u — w (r) • —:—?r v ' {'Sino

Un «(-i+D-
¦—— lim (fe • ctg <3)4 ist dabei die reziproke Streulänge für den

Grenzfall der Einfallsenergie Null.
Mit diesen Festsetzungen folgt die Gleichung

/ {(«o A u — u A Uq 7- fe2 u u*Q } d r 0 (10)

Denn es gilt
(A +k2 — kl)u — U23 u

Wir bilden nun die Summe der Gleichungen (5)' und (10)

{(tp'ó* A tp — tp" A tp*) + (u* A u — u A Uq) 7 fe2 (mm0* + tp" tp*)}dr 0

und wenden den Greenschen Satz an. Da die tp überall reguläre
Funktionen mit dem oben angegebenen asymptotischen Verhalten
sind, liefern nur die Singularitäten von u und u0 bei q 0 einen
Beitrag. Man erhält nach kurzer Zwischenrechnung

fe ctg d0 - - + ^: I (»K 7 tp" tp*) dr (11)

Es ist hierbei zu beachten, dass tp" für q -> oo gegen — u strebt.
Ist einmal die Entwicklung von tp in der Form

V Vo + k2fi -kitp27...
bekannt, so kann man damit die entsprechende Entwicklung von
fc cotg <50 ableiten.

Analog zum Zweikörperproblem können wir eine effektive Reichweite

Qi -27l I yy + vyl)(]r
definieren, womit sich (11) schreiben lässt:

fc cotg ôn — —h y • fe2 +

Dabei ist für die ersten beiden Glieder, wie erwähnt, nur die Kenntnis

der Eigenfunktionen des Systems bei Energie Null erforderlich.
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Es liegt auf der Hand, dass sich der vorläufig nicht betrachtete
Fall S 1/2 in der gleichen Weise behandeln lässt. Der wesentliche
Punkt liegt darin, dass beim Gleichungssystem für Spin 1/2, das
wir abgekürzt

(A 7k2-kl)tp=Wip
schreiben — unter tp sei die Gesamtheit der vier Komponenten
tpa, tps, tp', tp" verstanden — die Matrix der Wechselwirkung6)

(w + m) Us 0 (b + h) ü" -(b + h)U'
0 (w — m) Vs (b-h) V (b-h)U"

(b + h) ü" (b-h) V wüs-mU" — mV
(b + h) V (b-h) U" — mV ivUs + mü"

11/ — I \w-mj u KU-it-l u yu-ri/u i mw
yy ~ (b + h)T7" (b-h)V wU'-mÜ" -mV \*1

symmetrisch ist.
Wir setzen in diesem Fall

tp' T 0
tp" T" 0
Vs T°tp, (12)

was wiederum keine Einschränkung der Allgemeinheit bedeutet.
Die Funktionen — 0 und tp sind im Endlichen überall regulär, in
(2,3) symmetrisch, gehören zum Gesamtdrehimpuls Null und haben
das gleiche asymptotische Verhalten für q -> oo wie (8). Die
Operatoren T" und T" sind durch (7) definiert, Ts durch

P= (2,3) + (1,2) + (1.3).

Die der Beziehung (11) entsprechende Formel ist in diesem Fall

1
fe cotg ô0 —

a,

+ ^ f(u< 7 \ 0" 0*ü - \ yftp*0 + i y» tpl*) d r. (13)

a2 ist die Streulänge im Dublettzustand für die Energie Null. Die
analoge effektive Reichweite wird gegeben durch

Natürlich muss man zur Bestimmung der Koeffizienten der beiden
Reihenentwicklungen (11) und (13) die Lösungen der Schrödinger-
gleichungen kennen. Hierfür kann man sich des an anderer Stelle
angegebenen Variationsverfahrens bedienen.
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Die Durchführung des Variationsverfahrens.

Das Variationsverfahren besteht bekanntlich darin6), die Lösung
zu finden, die das Integral

J Z fwt{àih(A+k2-k^-Vik}tph-dr (14)

stationär machen.
Uik ist die Matrix der Wechselwirkung, die für die beiden Fälle

S 3/2 und S 1/2 in (2) und (2)' angegeben wurde.
Wir behandeln zuerst den Fall S 3/2. Hierbei wird für tp der

folgende Ansatz gewählt

v (pW{yy (1+cce ""Ocos' '0

+ ™lf (l-e-*-yßqe-y sin d0\, (15)

woraus man tp' und tp" nach (6) erhält. <50 bedeutet dabei die Streuphase

der S-Welle; oc, ß, pi2, v2 sind Parameter, die zu bestimmen
sind. Der Einfachheit halber haben wir für die Deuteron-Eigenfunktion

<p(r) eine Gauss'sche Funktion gewählt

(r) - (a yj
die im r-Raum zu eins normiert ist. Für A verwenden wir den Wert
X 3,1-10+12 cm^1. Der Raumanteil des Potentials wurde ebenfalls

als Gauss'sche Funktion angesetzt

U2S 45 e-"'^-^' MeV.

Wir haben die Rechnungen für die symmetrische und neutrale
Theorie durchgeführt, für die die Wechselwirkung zwischen zwei
Nukleonen (2,3) folgendermassen lautet:

i C723 (y ¦ y • {(l -1) + -1
g (a^ ¦ ay j S. T.

~y3{(l-i)7±g(oW-o^)} N.T.

Als numerische Werte haben wir g IA (S. T.), g 0,2 (N. T.)
und rr1 1,9-10~13 cm angenommen.

Im Ansatz für ip (Gleichung 15) weist der Koeffizient von cos feg/feg

einen verwickeiteren Bau auf als derjenige von sin kqjkq, weil der
Ansatz für q 0 endlich bleiben muss.

Mit einem Ansatz dieser Art berücksichtigt man die Polarisation
des gestossenen Deuterons nicht, was für kleine Energien von vorne-
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herein nicht gerechtfertigt ist. Verfügt man aber über wenige
Parameter, so ist es vernünftig, diese für die Verzerrung der einfallenden
Neutronenwelle allein zu verwenden. Durch die Einführung
zusätzlicher Parameter würde der Rechenaufwand ganz erheblich
vergrössert. Die Grösse der Streuphase dürfte hauptsächlich
durch den Austausch der Teilchen, den wir hier streng
berücksichtigen, bedingt sein. Deshalb haben wir die Rechnung mit dem
angegebenen verhältnismässig einfachen Ansatz durchgeführt. Die
Tatsache, dass die Parameter plausible Werte annehmen, bestätigt
nachträglich unsere Vermutung. Die Form des Ansatzes ist durch
die Tatsache bedingt, dass alle Integrale, die für die Berechnung
der Parameter nötig sind, in geschlossener Form durchführbar sein

sollen; zumal sich die Parameter aus Gleichungen bestimmen, in
die Differenzen von fast gleich grossen Integralen eingehen.

Wir haben die folgenden Integrale auszuwerten:

J0 J tp* U23 f d t, J1 / tp* Uls tp d t, J2 f tp* U13 (12)tpdr,

J4 ftp*(A+k2-k2+U23)tpdr, J5= L*(A+k2-k2y Uls)fdr.

Gleichung (14) wird damit, ausführlich geschrieben, für die
symmetrische Theorie

J5-JyJ3-J2 o,

für die neutrale Theorie

t/5 — t/4 — 2 J1 + j2 + "3 0.

In unserem Falle können die beiden Integrale J4 und J5 ohne die
speziellen Umformungen (42) v und (43) v berechnet werden.

Für fe 0, worauf wir uns hier beschränken dürfen, können alle
Integrale in geschlossener Form integriert werden. Es treten nach
der Integration über den Zwischenwinkel nur Integrale der Form

OD

/ e~a*°-by° g^n j Xy xn yin ^x ^y
0

auf. Sie lassen sich alle ableiten aus

re-ax--bV* Sin(fxy) — dxdy -^
0

V a 4« -*/4a6-/2

e ax* byi Sm(fxy) dx dy ..- arc tg
|/4a&-/2 V 1/4 ab-P

r«""!""' Sin(fxyx)dxdy=^ y~ f (4afe1_/2)
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Es handelt sich nun darum, a2, a4 und die Parameter a, ß, pi2, v2

zu bestimmen. Es ist jedoch kaum möglich, die Parameter pt2 und
v2, für die (14) stationär ist, aus dem Variationsverfahren mit (80) „
zu berechnen, da ein kompliziertes transzendentes Gleichungssystem

aufgelöst werden musste. Wir bestimmen in dieser Weise
nur a und ß als Funktion von pt2, v2 und a4, a2. a4 und o2 haben
wir weiter als Funktion von pt2 und v2 berechnet aus der exakten
Integralformel für die Streuphase (37) „, die unabhängig von
Variationsverfahren gilt*).

J(pi2, v2) =0 liefert graphisch pt2 als Funktion von v2. In dieser
Weise bleibt die Wahl des einen Parameters noch offen. Es zeigt
sich aber, dass a4 und a2 innerhalb einiger Prozente unabhängig
vom Werte von v2 sind, wenn v2 zwischen 0,2 und 4 X2 (für sym. Th.)
bzw. zwischen 0,4 und 4 X2 (für neutr. Th.) liegt.

Wir brauchen deshalb, was die Kenntnis der Streulänge bei
Energie Null anbelangt, nicht festzusetzen, welches der wirkliche
Wert von v2 ist. Für die Berechnung der effektiven Reichweite
haben wir pi2 v2 angenommen.

Für den Spin S 1/2 gehen die Rechnungen in entsprechender
Weise vor sich. Die Gleichung (14) lautet in diesem Fall

Sym. Th.

(2 JyJòv,vyjs-Jò*,*=~g(JyJyJy,w +g(Ji+J»-*JJ:*
7(Jz--h)t!07^(g-2){(J1-J2 + Jz)^y(J1-J2 + J3)00

-2y + J,),,, + 4(J2)^-2 (J2)^-2[(J0)W + (J0)^]}

Neutr. Th.

(2 Jy jyv - (-h—iy0=(3 g-2) (jy j2+j3)v,v + (3 g-2) (j^
-(3a—i) (J2)^ + (Jz)0,0-g{(Ji-Jy J3)„ + (Ji—Jz+Js)*,*

-2 (Ji + Jsy + 4(J2),,0-2 (J2)0>v -2[(J0)„ + (J0)^]}
Wir haben dabei die Beziehung (12) benutzt und für 0 und tp

wiederum einen Ansatz der Form (15) gewählt. Der Einfachheit
halber haben wir hierbei den Wert von pi2 in 0 und tp als gleich
angenommen, ebenso den Wert von v2; dagegen wurden a und ß
unabhängig für die zwei Ansätze bestimmt. Ferner haben wir den
Beitrag von tp" vollkommen vernachlässigt.

*) Wir machen darauf aufmerksam, dass die Formeln (37),, dem Spin S 3/2
entsprechen und die Formeln (38)„ dem Spin S 1/2. Entsprechend sind auch
die Bezeichnungen „Symmetrische Theorie" und „Neutrale Theorie" abzuändern.
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Die Bezeichnung für die Integrale bedarf keiner weiteren
Erklärung. Es bedeutet z. B.

(J2)v^ftp*U13(12)0dr.
In der folgenden Tabelle sind die Zahlenwerte zusammengestellt.

Neutr. Theorie Sym. Theorie

S 3/2 S 1/2 S 3/2 # 1/2

ft2 v2 X IO"24 cm2 2,3 4,6 2,7 4,0

a x 10+13 cm-1 2,8 6,8 3,2 7,0

-Uy, h/Sv X IO"12 cm 0,9 1,6 0,9 1,6

-a,p- — +ß0 X IO-12 cm
a

-0,6 0,9

o X 10+13 cm"1 2 4 2 4

Die Werte der Wirkungsquerschnitte für die Energie Null
betragen 2,6 und 2,9 Barns für die neutrale bzw. symmetrische
Mesontheorie. Das Experiment8) liefert für die beiden Streulängen die
Werte a3/2 2,6 und a1/2 8,26 10~13 cm. Der Umstand, dass die
Werte der effektiven Reichweiten kleiner sind als die entsprechenden

Streulängen, bringt notwendigerweise mit sich, dass der totale
Wirkungsquerschnitt bei Energie Null mit zunehmender Energie
abnimmt.

Schlussbemerkungen.

Wegen des Umfanges der numerischen Rechnungen mussten wir
darauf verzichten, die Bestimmung der effektiven Reichweite zu
verbessern, z. B. durch Einführung weiterer Parameter oder durch
eine von pi2 unabhängige Bestimmung von i*2 und Anwendung der
Prüfformel (37) „ zur unabhängigen Kontrolle der Lösungen. Aus
dem gleichen Grunde konnten wir auch weder für die Triplett- und
Singulettwechselwirkung zwei verschiedene Reichweiten einführen,.
wie dies erforderlich ist, wenn man eine Gauss'sche Raumabhängigkeit

des Potentials annimmt7), noch für den Grundzustand des

Deuterons eine besser angenäherte Wellenfunktion wählen.
Nichtsdestoweniger glauben wir eine wirksame Rechenmethode

angegeben zu haben, deren numerische Resultate es gestatten, sich
von den Folgen einer Wechselwirkung von einem gewissen
Austauschtypus beim betrachteten Stossproblem ein gutes Bild zu
machen.
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Die Bestimmung der Phase ôt der P-Welle ist auf die für die
Phase ó0 verwendete Weise kaum durchführbar. Indessen kann
man bei jenen Energien, bei denen ôt klein ist, dadurch eine gute
Näherung erhalten, dass man in die exakten Integralformeln (37) „
die ungestörte Lösung einsetzt.

Für sin ô1 erhält man z. B. folgende Werte:

Energie
in MeV Sym. Theorie Neutr. Theorie

(8 3/2 8 1/2 S 3/2 /8 1/2

2,5 0,16 -0,11 0,29 0,018

3,3 | 0,12 -0,08 0,205 0,006

Das eventuelle Auftreten einer Spin-Bahnkopplung könnte die
Werte der verschiedenen c^-Phasen merklich beeinflussen.

Es wäre verfrüht, durch einen Vergleich der experimentellen
Daten mit unseren Berechnungen endgültige Schlüsse zu ziehen.
Der Umstand, dass die Werte der differentiellen Wirkungsquerschnitte

bei einem Streuwinkel Null nicht sehr gut bekannt sind
(sie können nur durch Extrapolation gewonnen werden), macht
den Vergleich mit der Theorie recht schwierig.

Die beiden Arten der Wechselwirkungen liefern Maxima der
Streuung im Schwerpunktsystem bei den Streuwinkeln 0° und
180°. Diese Maxima sind jedoch bei der neutralen ausgeprägter als
bei der symmetrischen Theorie. Die experimentellen Kurven würden

mehr zugunsten der neutralen Theorie sprechen. Vermutlich
wird die "even theory" Ergebnisse in der selben Richtung liefern.

Es ist uns eine angenehme Pflicht, an dieser Stelle Herrn
Prof. Dr. P. Scherrer unseren herzlichen Dank für sein Interesse
an dieser Arbeit auszusprechen.

Literatur.

J. H. Coon und H. H. Barschall, Phys. Rev. 70, 592 (1946).
J. Halter, I. Hamouda und P. Scherrer, Helv. Phys. Acta 23, 510 (1950).
J. H. Coon und R. F. Tasheck, Phys. Rev. 76, 710 (1949).
H. A. Bethe, Phys. Rev. 76, 38 (1949).
R. S. Christian und E. W. Hart, Phys. Rev. 77, 710 (1950).
M. Verde, Helv. Phys. Acta, XXII, 339 (1949).
J. M. Blatt und J. B. Jackson, Phys. Rev. 76, 18 (1949).
D. G. Hurst and N. Z. Allock, Phys. Rev. 80, 117 (950).


	Neutron-Deuteron Streuung bei niedrigen Energien

