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Elastizitit von piezoelektrischen und seignetteelektrischen
Kristallen _
von Franco Jona (ETH. Ziirich).
(24. VII. 1950.)

Summary. The object of the present investigation is the application, to piezo-
electric and ferroelectric crystals, of the SCHAEFER-BERGMANN method for the
measurement of the elastic constants of transparent bodies by observing the
diffraction of light on supersonic waves. The elastic behaviour of Rochelle salt is
investigated as a function of temperature in the range between —50° Cand + 30°C.
All elastic constants, with the exception of ¢y, turn out to behave quite normally
in the investigated temperature range. The constant ¢, could not be measured
because of the very strong damping which affects the corresponding elastic wave
and leads to an incomplete diffraction pattern for light incident along the ferro-
electric a-axis. The agreement between the values of elastic constants measured

by the author and those given by the literature for room temperature is highly
satisfactory.

The elastic behaviour of the ferroelectric crystals KD,PO, and RbH,PO, as
well as of the piezoelectric crystal NaClO, is investigated by the same supersonic
method. The measurements obtained with NaClO; yield an excellent agreement
with the results of Masonw.

The application of the SCHAEFER-BERGMANN method to the ferroelectric crystals
investigated here raises the point whether one obtains in this way the elastic con-
stants at constant electric field (cﬁ_) or the elastic constants at constant dielectric

displacement (611‘3.:)' A theoretical argument shows that the constants cﬁc are
obtained. This conclusion confirms the results obtained by Zwicker with KH,PO,,
according to which the constant cg, as measured by the SCHAEFER-BERGMANN

method, is subject to a strong anomaly at the Curie point.

Finally some particular questions connected with the intensity of the observed
diffraction patterns are discussed. The non-observation of certain figures predicted
by theory for the diffraction pattern is explained. Further, an explanation is given
on the basis of an elasto-optical argument for the experimentally observed fact
that with equal excitation of a KH,PO,-crystal a much stronger diffraction pattern
is obtained with light incident along the optical c-axis than with incidence parallel
to the a-axis.
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1. Einleitung.

Seignetteelektrika sind immer stark piezoelektrisch erregbar,
d. h. ihre elastischen Kigenschaften sind eng mit den elektrischen
Eigenschaften gekoppelt. Es ist also zu erwarten, dass sich das
komplizierte elektrische Verhalten dieser Stoffe in ithrem elastischen
Verhalten widerspiegle. Besonders am Curiepunkt, wo die spontane
Polarisation auftritt und die Dielektrizitdtskonstante in der sei-
gnetteelektrischen Richtung hyperbolisch ansteigt, sind ahnliche
Anomalien der piezoelektrischen und elastischen Moduln zu er-
warten?).

Messungen haben ergeben, dass zwischen elektrischer Polarisation
und elastischer Deformation eines Seignetteelektrikums eine strenge
Proportionalitdt besteht, die auch im Curiegebiet, trotz aller dort
herrschender Komplikationen, erhalten bleibt (wenn ein Ein-
doménekristall in Betracht gezogen wird). Wird nun ein Kristall,
dessen IFlichen senkrecht zur seignetteelektrischen Richtung mit
kurzgeschlossenen Elektroden versehen sind, elastisch deformiert,
so entsteht 1m Kristall eine Polarisation. Die auf den Oberflachen
auftretenden freien Ladungen werden infolge des Kurzschlusses
mit wahren Ladungen kompensiert. Am Curiepunkt, wo die di-
elektrische Polarisierbarkeit des Kristalls ansteigt, nimmt auch die
piezoelektrische Polarisation sehr hohe Werte an und der Piezo-
modul wichst ebenfalls hyperbolisch. Infolge der Proportionalitét
zwischen Polarisation und Deformation wird aber auch die letztere
gross: Der Kristall wird weich, der Elastizitdtsmodul nimmt hyper-
bolisch zu. Durch das Vorhandensein der Elektroden wird dem
elektrischen Felde F, das am Kristall liegt, ein konstanter Wert
gegeben (in unserem Ifalle der Wert Null). Entsprechend diesen
Randbedingungen werden die elastischen Grossen des Kristalls
Elastizitdtskonstanten bzw. -module ,,bel konstantem elektrischem
Feld” genannt und ihre Symbole mit einem oberen Index E ver-
sehen, d. h. mit ¢ bzw. s& bezeichnet.

Werden hingegen die Elektroden von der Oberfliche des Kristalls
weggenommen und der Kristall 1soliert aufgestellt, so erzeugen die
piezoelektrisch bedingten freien Ladungen ein Gegenfeld, das die
Polarisation weitgehend unterdriickt. Infolge der Proportionalitat
zwischen Polarisation und Deformation bleibt auch die letztere
klein: Der Kristall bleibt hart und der Elastizitdtsmodul verhilt
sich durchaus normal. In diesem Ialle verlangen die Randbedin-
gungen, dass die dielektrische Verschiebung D im Kristall konstant
bleibe. Die entsprechenden elastischen Grossen werden Elastizitéts-
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konstanten bzw. -module ,,ber konstanter dielektrischer Verschie-
bung* genannt und mit ¢?, bzw. sB bezeichnet*).

Diese Aussagen iiber den Temperaturverlauf der elastischen
Eigenschaften der Seignetteelektrika finden in den Untersuchungen
von Luepy? an KH,PO,- und Seignettesalzkristallen eine aus-
gezelchnete qualitative Stiitze. Da die Seignetteelektrizitét eine
anisotrope Erscheinung ist, so werden nur diejenigen elastischen
Gréssen ,,bel konstantem elektrischem Feld E‘° anomal sein, die
mit der seignetteelektrischen Richtung im Zusammenhang stehen.
Bei Seignettesalz ist dies fir cf, bzw. sf, bei KII,PO, fiir ¢& bzw.
s& der Fall®),%),%),9),7). |

Infolge ungentigender Beachtung der obengenannten Rand-
bedingungen wurden oft Messresultate falsch interpretiert.

Die vorliegende Arbeit setzt sich eine vollstindige Messung des
Temperaturganges aller elastischer Konstanten des Seignettesalzes
zum Ziel. Zur Ausfihrung der Messungen wurde die Methode von
ScHAEFER und BrereMANNS®) gewdhlt, nach der die elastischen
Daten des untersuchten Korpers aus der Beugung des Lichtes an
Ultraschallwellen berechnet werden. Die Anwendung dieser an sich
sehr leistungsfdhigen Methode auf unser spezielles Problem er-
forderte eine Weiterentwicklung der experimentellen Technik und
die Losung einiger damit verbundener experimenteller und theo-
retischer Schwierigkeiten?). Die dieser Methode zugrunde legende
Theorie, die von Fums und Luprorrl?) gegeben wurde, ist nur
tir nicht piezoelektrische Kristalle giiltig. Um entscheiden zu kon-
nen, ob bei der Anwendung der Schaefer-Bergmann’schen Methode
auf einen piezoelektrischen Kristall die Konstanten ¢f oder ¢f
gemessen werden, musste die Theorie von F'ues und Luprorr ver-
- allgemeinert werden. Diese Erweiterung der Theorie und alle
theoretischen Unterlagen fur die experimentelle Auswertung sind
im Anhang zusammengestellt worden. Es ergibt sich dabei eine
Aufklarung fiir alle widerspruchsvollen Angaben des thermischen
Verhaltens der elastischen Grossen der Seignetteelektrika.

Im Anschluss an das Seignettesalz wurde die vorliegende Arbeit
durch Untersuchungen tiber die elastischen Eigenschaften anderer
wichtiger piezo- bzw. seignetteelektrischen Kristalle ergénzt. Das
seignetteelektrische schwere Kaliumphosphat (KD,PO,), das sei-
gnetteelektrische Rubidiumphosphat (RbH,PO,) und das piezoelek-
trische Natriumchlorat (NaClO) sind ebenfalls vermessen worden.

*) Die in der Literatur als ,,wahre‘‘ bezeichneten Konstanten sind die entspre-

chenden Grossen ,,bei konstanter Polarisation P, 5@ bzw. sf;ﬁ. Infolge des depo-

larisierenden Feldes unterscheiden sie sich indessen sehr wenig von den cgc bzw. sﬁ_.
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2. Die Methode und die Theorie.

Das Prinzip der Methode von ScHAEFER und BEraeMANN fiir die
Bestimmung der Elastizitdtskonstanten durchsichtiger Korper mit-
tels Ultraschall ist das folgende: Der zu untersuchende Korper, der
zwel gegeniiberliegende planparallele, optisch polierte Flachen auf-
weisen soll, wird mit einer Piezoquarzplatte zu Eigenschwingungen
sehr hoher Ordnung angeregt. Iis entsteht dann im Versuchskorper
ein System von elastischen Wellen, die eine periodische Anderung
der Dichte und damit auch der Brechungsindizes hervorrufen. Ein
monochromatischer Lichtstrahl wird in der Richtung einer kristallo-
graphischen Achse durch den Kérper hindurch geschickt und er-
féhrt eine Beugung. Auf einem hinter dem untersuchten Kérper
aufgestellten Schirm beobachtet man eine charakteristische Beu-
gungsfigur, die in engem Zusammenhang mit den elastischen Kon-
stanten des Korpers steht.

Dieser Zusammenhang, und damit die Moglichkeit der Aus-
wertung der Beugungsfigur, wurde zum ersten Male von Furs
und Lubprorr herausgearbeitet. Die Theorie dieser Autoren wurde
in der Literatur verschiedentlich wiedergegeben %)19)11)12) und
braucht hier nicht wiederholt zu werden. Es sei hier nur das Er-
gebnis vorweggenommen: Bei einer bestimmten Anregungsfrequenz
gibt es im elastischen Korper zu jeder vorgegebenen Ausbreitungs-
richtung drei Wellen mit drer verschiedenen Wellenléingen 4, 4,,
5. Triagt man von einem Punkte aus in jeder Ausbreitungsrichtung
n den Wellenzahlvektor

2n
sz“}h—‘

4

ab, so bekommt man die sogenannte Formirequenzflache, welche
im allgemeinen dreischalig ist. Die Rechnung zeigt, dass die beo-
bachtete Beugungsfigur dem Schnitt der Formfrequenzfliche mit
der Ebene durch ihr Zentrum senkrecht zur Lichtrichtung geo-
metrisch dhnlich ist, und zwar betrdgt der Abstand OA4 zwischen
einem Punkte 4 der Beugungsfigur und deren Mittelpunkt

Od=a-d. £

Hierbe1 1st mit a der Abstand Kristall-Schirm, mit A die Welleh—
lange des bentitzten Lichtes in Luft und mit K die Wellenzahl der
entsprechenden elastischen Welle bezeichnet.
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- 3. Apparatur.

Das Schema der benutzten Apparatur ist in Fig.1 wieder-
gegeben. Sie entspricht im grossen und ganzen der urspriinglichen
Anordnung von ScHAEFER und Brremann!®). Wir wollen uns
deshalb auf einige wichtige technische Daten und die Beschreibung
besonderer experimenteller Kunstgriffe beschranken.

- a) Optischer Tel.

Dieser besteht im wesentlichen aus Lichtquelle, Filter, Objektiv
und Kamera. Als Lichtquelle Hg dient eine wassergekiihlte Hoch-
druckquecksilberdampflampe mit einer Leuchtdichte von 380000
HK/cm? Mit Hilfe eines Kondensors K wird die Lichtquelle auf

Fig. 1.

Der Abstand zwischen Kristall und Schirm ist in Wirklichkeit viel grésser als
gezeichnet, so dass durch den Kristall fast paralleles Licht hindurchgeht.

eine sehr feine, moglichst runde Lochblende B; von etwa 300 u
Durchmesser abgebildet. Die Linse L, erzeugt ein zehnmal verklei-
nertes Bild der Lochblende bei B,, so dass hier eine Punktlicht-
quelle von etwa 30 u Durchmesser entsteht. Diese wird nun ihrer-
seits mit dem Objektiv L, von 16 cm Brennweite durch ein Griin-
filter ' (A = 5461 A) und den Versuchskristall Kr hindurch auf
einen photographischen Planfilm Ph abgebildet.

Der Kristall Kr liegt méglichst nahe am Objekt L,, um Intensi-
tatsverluste zu vermeiden. Der Abstand zwischen Kristall und
Planfilm betrug rund 150 cm.

Als Negativmaterial wurde wegen seiner hohen Empfindlichkeit
und Feinkornigkeit ein ,,Kodak Super XX Panchromatic*’-Film
verwendet.
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Die visuelle Beobachtung erfolgt entweder an der Stelle Ph oder
in J, falls man den Spiegel Sp in den Strahlengang dreht. Die
Interferenzfigur entsteht als reelles Bild und wird mit einer Lupe
L, beobachtet. -

Die Belichtungszeit der Aufnahmen betrug meistens nur etwa
15 bis 90 sec. Selbst bei einer so kurzen Zeit werden die Inter-
ferenzpunkte oft verwischt, was auf die ausserordentlich schnelle
Erwarmung des Versuchskristalles zuriickzufithren ist. Die Auf-
nahmezeiten wurden deshalb meistens in Etappen von 5 bis 10 sec
aufgeteilt, zwischen die Pausen von 1 bis 3 Minuten geschaltet
wurden,

b) Ultraschall.

Die Anregung der untersuchten Kristalle erfolgte ausschliesslich
auf indirektem Wege mit Hilfe einer Piezoquarzplatte. Ein Ver-
such zur direkten Anregung der piezoelektrischen Seignettesalz-
kristallen fithrte nicht zum Ziel, da sich diese infolge elastischer
und dielektrischer Verluste ausserordentlich schnell erwdrmten
und schmolzen. :

Die benutzten Piezoquarzplatten waren alle senkrecht zur elek-
trischen X-Achse geschnitten und hatten eine Dicke von 5,8 bis
5,9 mm, d. h. also eine Grundfrequenz von etwa 500 KHz.

Es wurden sowohl runde Quarzplatten von 20, 23, 80, 42 und
57 mm Durchmesser als auch viereckige Platten von 80 mm Seiten-
lange benutzt.

Es zeigte sich, dass Quarze mit grosserer Oberfliche bei gleicher
Dicke einen besseren akustischen Wirkungsgrad besitzen. Eine
theoretische, nicht ganz vollstéandige, Erkldrung dieser Erscheinung
findet man bei MarinEscol4). Ferner sind Quarze mit grosserer
Oberflache schon deshalb an sich giinstiger, weil sie die Anregung -
von grosseren Kristallen ermdglichen, also gestatten, weiter ge-
offnete Lichtbiindel zu beniitzen.

Quarzplatten mit Straubelscher Berandung, die bei Erregung
zu Dickenschwingungen hoherer Ordnungen fast nur ebene Wellen
abstrahlen, ergeben gute Beugungsbilders). Fiir die Zwecke dieser
Arbeit 1st aber ein Quarz vorzuziehen, der nicht als reine Kolben-
membran wirkt. Ein solcher Quarz koénnte moglicherweise auch
Scherungsschwingungen auf den Versuchskorper tibertragen. Die
besten Ergebnisse zeitigten runde Quarzplatten mit 30 bzw. 42 mm
Durchmesser und eine viereckige Platte von 80 mm Seitenléinge.

Den am Quarz anzubringenden Elektroden muss besondere Auf-
merksamkeit geschenkt werden. Im Vakuum aufgedampfte (Gold-
oder) Silberelektroden von 10 ux Dicke haben sich gut bewihrt.
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Dickere Silberschichten bewirken eine zusétzliche Dampfung der
Quarzschwingungen, zu diinne Schichten begiinstigen Funken-
tiberschlige bei hoher Spannung. Die Elektroden sollen sich bis
an den Rand des Quarzes erstrecken, da dort sonst infolge des
direkten Piezoeffektes hohe elektrische Felder entstehen, die Fun-
kentiberschldge verursachen kénnen.

Um die Energie, die auf den Versuchskorper tibertragen wird,
moglichst gross zu halten, muss die Gegenfliche des Quarzes an
Luft grenzen. Darum wurde als Auflage des Quarzes ein Messing-
ring gewihlt. Die Zuftihrung der Spannung zur oberen Fliche des
Quarzes erfolgte mit Hilfe einer leicht aufliegenden, federnden
Messingfeder. Fiir sehr hohe Spannungen bewéhrte sich aber am
besten eine Spannungszufiihrung, bei der der Quarz moglichst
frei schwingen kann. Bei dieser Zufiihrung, die in der Fig. 2 skiz-

4

Q

Fig. 2.
@ = Quarz. I = Laborstea-Isolation. SZ = Spannungszufiihrungen.

ziert ist, wurde auf die Silberelektrode des Quarzes eine Silberfolie
gekittet und dartiber eine zweite Silberschicht aufgedampft.

Die Quarzplatten wurden mit Frequenzen von 15 bis 20 MHz
angeregt. Sie schwingen also in der 37. bis 41. Harmonischen ihrer
Dickenschwingung.

Die Grosse der im allgemeinen bei den Messungen verwendeten
Ultraschalleistung wurde kalorimetrisch zu etwa 2 Watt/cm? be-
stimmt. Aus diesem Wert berechnet sich bei 17,5 MHz eine am .
Quarz liegende hochfrequente Spannung von etwa 10000 Volt.

Bei Anregung von Seignettesalz in der ¢-Richtung ergibt sich bei
dieser Schalleistung auf Grund der Formel:

2J 1
oV W -

A =

J = Schallintensitit in Watt/cm?2.
v = Schallgeschwindigkeit im Medium.
w/2 7 = Frequenz.
¢ = Dichte des Mediums.
51
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eine Schallamplitude von etwa 10 A. Die Geschwindigkeitsampli-
tude (Amplitude der Schallschnelle) erhdlt man zu

2j ~ 10,5 cm/sec.

V=

b=

Die Schallwechseldruckamplitude betrégt
P=)2Jpv =~ 8,9 kg/cm?2,

Der Druck schwankt also bei emer fortschreitenden Schallwelle im
Kérper periodisch zwischen 8,9 Atm. Uberdruck und 8,9 Atm.
Zugspannung. Da die Wellenlange der elastischen Welle in Seignette-
salz fiir die c-Richtung etwa 0,12 mm betrigt, so folgt daraus, dass
das Druckgefille 7,8 Atm. pro 6/100 mm betragt. Diese grossen
Krafte haben eine ausserordentlich hohe Beschleunigung zur Folge,

d. h.
b=wV =10° cm/sec?

also eine Beschleunigung, die rund eine Million mal grosser als die
Erdbeschleunigung ist.

Zwischen Quarz und Versuchskorper liegt ein diinner, blasen-
freier Olfilm zur Ubertragung der Ultraschallwellen. Gute Ergeb-
nisse erhielten wir mit Olen ziemlich grosser Viskositit (Rizinusol,
Vakuumpumpendle), wobei die Olmenge keine grosse Rolle spielt.

Dadurch, dass der Quarz zu Oberschwingungen angeregt wird,
die mit wachsenden Ordnungszahlen immer dichter beieinander
liegen, lasst es sich erreichen, dass zwischen der betreffenden Ober-
schwingung des Quarzes und einer Oberschwingung des aufgesetz-
ten Kristalls Resonanz eintritt. Ist das System Quarz-Versuchs-
korper in Resonanz, so erscheinen meistens nur in der Anregungs-
richtung Beugungspunkte grosser Intensitat. Die vollstdndige Beu-
gungsfigur tritt erst bei einer etwas verstimmten Frequenz in Er-
scheinung. Dies ist dadurch bedingt, dass der zu erregende Kristall
je nach der Richtung verschiedene elastische Konstanten aufweist
und man eine Erregungsfrequenz einstellen muss, bei der in den
verschiedenen Richtungen des Kristalls gleichzeitig eine moglichst
grosse Schwingungsanregung auftritt.

Entsprechend ist auch die Wahl der Anregungsrichtung des
untersuchten Kristalls nicht gleichgiiltig. So erhélt man z. B. beil
KH,PO, die Beugungsfigur fiir Durchstrahlung in Richtung der
kristallographischen ¢-Achse (siehe Fig. 26) vollstdndiger und in-
tensiver, wenn man den Kristall in der a’-Richtung (45° zu a),
statt in der a-Richtung anregt. Analog fallt bei der Durchstrahlung
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von Quarz in der X-Richtung die Beugungsfigur bei Anregung in
der Y-Richtung viel besser aus, als bei Anregung in der Z-Richtung.

Andererseits dndert sich die Giite der Beugungsbilder auch dann
wesentlich, wenn man die Anregungsrichtung festhélt und die
Durchstrahlungsrichtung variiert. So treten z. B. bei Quarz als
beugendem Koérper das Bild fiir Durchstrahlung in der elektrischen
X-Achse besonders leicht, die Beugungsfiguren bei Durchstrahlung
in der Y- oder Z-Achse viel schwicher auf. Bet KH,PO, tritt fiir
Durchstrahlung in der c¢-Richtung die Beugungsfigur sehr leicht,
ber Durchstrahlung in der a-Richtung besonders schlecht auf
(Erklarung im Anhang 2b). Mit Seignettesalz sind ferner Beugungs-
bilder viel schwieriger zu erhalten als mit Quarz oder KH;PO,, da
bei weichen Kristallen die innere Dampfung eine grossere Rolle
spielt. Die Erfahrung zeigt, dass im allgemeinen beim Einschalten
der HF-Energie nur die Beugungspunkte in der Anregungsrichtung
erscheinen und das vollstindige Beugungsbild erst nach einiger
Zeit auftritt. Eine mogliche Erkldrung ist darin zu suchen??),
dass durch das Schwingen des Quarzes das zwischen diesem und
dem aufgesetzten Korper befindliche Ol weitgehend herausgedriickt
wird und der Korper gewissermassen an den Quarz ansaugt,
gleichsam an diesen ,,angesprengt‘‘ wird.

c) Hlektrischer Tel.

Die hochfrequente Leistung lieferte ein 400-Watt-Sender, dessen
Frequenz in einem Bereich von 7 MHz bis 25 MHz (durch Ver-
wendung von 3 Spulen) verdndert werden konnte. Das Schema
ist in Fig. 3 wiedergegeben. Die Senderenergie wird durch Variation
der Anodenspannung reguliert. Um die besten Versuchsbedingun-
gen zu haben, wurde im allgemeinen mit der maximal moglichen
Energie gearbeitet, d. h. mit einer Spannung, die knapp unter der
Uberschlagspannung des Quarzes lag.

Die Frequenz wurde mit elnem ,,Heterodyne Frequency Meter
and Calibrator** der General Radio Cp. mit eingebautem E1Chquarz
von 1 MHz gemessen*).

d) Thermostat.

Um das thermische Verhalten der Elastizitdtskonstanten des
Seignettesalzes an den beiden Curiepunkten zu untersuchen musste
die Temperatur des zu vermessenden Kristalles im Bereich zwischen
— 50% C und + 30° C stabilisiert werden kénnen. Ein Messgefiss,

*) Der Wellenmesser wurde uns in freundlicher Weise von der Generaldirektion
der P.T.T. in Bern zur Verfiigung gestellt, was an dieser Stelle bestens verdankt sei.
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wie es ZwICKER®) verwendete, kam fiir die Untersuchung des op-
tisch schlechten Seignettesalzes nicht in Frage, infolge des langen
Lichtweges und der damit verbundenen Intensitdtsverluste. Zudem
lag das interessante, zu untersuchende Temperaturgebiet nicht
sehr tief, so dass ein einfacher Luftthermostat (Fig.1) gentigte.
Die scharf getrocknete Luft wurde in eine Kiihlspirale K.S von
20 Windungen (Durchmesser 8 cm) geleitet, die in ein (Gemisch
von Alkohol und fester Kohlensédure tauchte. Die tiefste erreichbare
Temperatur des Kristalls betrug etwa — 50° C. Der Piezoquarz

Tingseo
5 /JM/JJM

eb:.'s f

-‘\r

Fig. 3.

und der untersuchte Kristall waren in einem wérmeisolierten
Kasten montiert. Dieser hatte zwei Doppelfenster D; und D, (plan-
parallele Glasplatten mit T-Optik) fiir den Lichtdurchtritt und ein
oberes Fenster fir die Beobachtung des Innern. Die hochfrequente
Spannung wurde seitlich durch Polystirene-Isolatoren eingefiihrt.

Die Temperatur im Kasten wurde mit einem Kupfer-Konstanten
Thermoelement T'h gemessen. Seine Thermospannung wurde mit
einem Kompensationsapparat bestimmt, wobel als Nullinstrument
ein empfindliches Galvanometer diente. Die Stabilisierung der
Temperatur erfolgte mit Hilfe einer Toulonschaltung!®), welche
den Strom durch die Heizspirale Hz regulierte oder oft einfacher
durch die Steuerung der hineingeblasenen Luftmenge.
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e) Kristalle.

Prinzipiell kommen fiir die Schaefer-Bergmann’sche Methode nur
Kristalle in Frage, die absolut glasklar sind, keine inneren Risse
oder Inhomogenititen aufweisen und sich optisch gut polieren
lassen. Eine notwendige Bedingung fiir den Erfolg der Versuche
ist, néamlich, dass eine optimale Abbildung der Lochblende durch
den Kristall hindurch auf den Schirm moglich ist. Oft tritt, trotz
der guten Klarheit der untersuchten Stiicke, ein verhéltnisméssig
heller, feinkérniger Untergrund auf, der vorldufig unerklart bleibt.
Das ist z. B. der Fall fiir die Beugungsbilder von Quarz bei Durch-
strahlung in der Y- und Z-Richtung, im Gegensatz zur Beugungs-
figur bei Durchstrahlung in der X-Richtung, und bei der Beugungs-
figur an Natriumchlorat, wovon wir ein sehr schones Stiick zur
Verfiigung hatten.

Die Form der untersuchten Stiicke braucht keineswegs kubisch
zu sein. Sowohl bei Seignettesalz, wie auch bei KH,PO, konnten
wir gute Resultate mit Stiicken erzielen, die ganz roh aus dem
Mutterblock herausgeschnitten waren. Sie hatten nur senkrecht
zu einer kristallographischen Achse zwei gegeniiberliegende, plan-
parallel polierte Flachen fiir den Lichtdurchgang und eine dazu
senkrechte, fein geschliffene Auflagefliche fiir die Ubertragung der
Ultraschallwellen vom schwingenden Quarz her.

A) Seignettesalz. Wie schon frither mitgeteilt wurde®) stosst die
Zucht von grossen, absolut glasklaren und fehlerfreien Seignette-
salzkristallen auf grosse prinzipielle Schwierigkeiten. Wir haben
zwel Methoden angewendet: Die erste Methode besteht in der
Abkiihlung einer bei etwa 40° O gesiattigten Seignettesalzlosung,
die vorher mehrmals umkristallisiert und filtriert wurde*). Die
zweite Methode, die von Buscr'?) ausfiirlich beschrieben wurde,
besteht in der Entziehung von Losungsmitteln aus einer geséttigten
Losung bei konstanter Temperatur.

Iiir die optische Politur der untersuchten Stiicke eignet sich am
besten die von Zwicker?®) angegebene Methode, allerdings nicht
mit einer Glas-, sondern mit einer Teerplatte als Unterlage. Die
Teerplatte soll eben sein und ungefahr die gleiche Hérte wie Sei-
gnettesalz haben.

Die Behandlung der polierten Kristalle verlangt grosse Sorgfalt?).
Ebenso muss man den beim Seignettesalz infolge der starken
Démpfung vorhandenen Temperaturanstieg beachten: In 30 sec

*) Die Zucht glasklarer Seignettesalzkristalle mit dieser Methode verdanken wir
Herrn Dr. H. BLATTNER.
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steigt die Temperatur desselben um 3 bis 6° C. Die Aufnahmen
werden alle in Etappen von 5 sec ausgefiihrt. Oberhalb 30° C
wird der Kristall oberflachlich stark entwissert, die Politur be-
schidigt und die Beobachtung unméglich gemacht. Es wurden
10 Kristalle aus verschiedenen Zuchten untersucht, deren Grosse
zwischen 1 und 5 em?® schwankte.

B) Natriumchlorat. Dieser Kristall lasst sich verhéltnisméssig
leicht in grossen, glasklaren Stiicken ziichten. Die Politur und die
Handhabung verlangt dieselbe Vorsicht, wie bel Seignettesalz,
denn Natriumchlorat ist sehr weich. Untersucht wurde vor allem
ein Parallelepiped mit den Dimensionen 17 x18%x14 mm?.

C) Schweres Kaliumphosphat. Der Kristall wurde nach der von
BanTLE!S) angegebenen Methode geziichtet. Das zur Verfiigung
stehende 979%ige schwere Wasser erlaubte nur die Zucht eines
kleinen Kristalls, aus welchem sich ein Wiirfel von etwa 7 mm
Kantenlinge herausschneiden liess, der aber kleine innere Sto-
rungen aufwies. Diese Dimensionen sind fiir unsere Zwecke schon
sehr knapp. So ist die entsprechende Beugungsfigur sehr licht-
schwach, und es war nicht moglich, das Beugungsbild bei Durch-
strahlung in Richtung der a-Achse zu beobachten. Wir kénnen
deshalb nur diejenigen elastischen Konstanten angeben, die sich
aus der beobachteten Figur ausrechnen lassen.

%4. Die Messgenauigkeit.

Die Formel fiir die Berechnung einer elastischen Konstante aus
der Beugungsfigur lautet allgemein, fiir ¢+ = k (s. Anhang 1):

a2 A2%2.9p2. 0
Cit="oxE (1)
wobei: @ = Abstand zwischen Kristall und Planfilm.
A = Wellenlange des Lichtes in Luft.
v = Anregungsfrequenz.
o = Dichte des Kristalls.
0OX = Achsenabschnitt der Beugungsfigur.

Da wir ein intensives Quecksilberspektrum und ein gutes mono-
chromatisches Griinfilter bentitzten, so konnen wir den Fehler bei
A vernachldssigen.

Die Frequenz » konnten wir auf + 0,005%, genau bestimmen.

Das wirksame Schallwellengitter ist, wie BERGMANN experimen-
tell nachwies, in der Mitte des schwingenden Korpers anzunehmen.
Ist o’ der Abstand zwischen Planfilm und der ihm zugekehrten
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Kristallfliche, so wird die Grosse a, die in Gleichung I(1) einzu-
setzen 1st: o i
a-:a—l——;{k———.?:h(l——%—). @)
I/n; beriicksichtigt die Brechung des Lichtes an der Kristall-
oberflache (Dicke des Kristalles = 2 [, Brechungsindex = n,).

2h (1 —1/ng) tragt der Brechung des Lichtes an den beiden
Thermostatfenstern (Dicke h, Brechungsindex ng) Rechnung.

Der Fehler in der Bestimmung von a betragt héchstens 0,19,.

Die Achsenabschnitte OX der Beugungsfigur wurden mit einer
Schublehre an einem 10fach verzerrungsfrei vergrésserten Negativ
gemessen. Der maximale Fehler betrigt etwa 0,29,.

Die grosste Fehlerquelle bei unseren Untersuchungen liegt in der
Dichtebestimmung. Da die Literaturwerte, vor allem fiir Seignette-
salz, zu grosse Schwankungen zeigen, haben wir die Dichte unserer
Kristalle durch hydrostatische Wiagung in CCl; bestimmt. Die
Dichten verschiedener Seignettesalzstiicken weichen um Betriage
voneinander ab, die wesentlich grisser als die Messfehler sind. Die
Dichte dieses Salzes ist ndmlich von der Vorgeschichte und vom
Alter des untersuchten Stiickes abhingig. Die Genauigkeit der
Dichtebestimmung kann man auf 0,59% abschidtzen. Fir die
Temperaturabhéngigkeit der Dichte sind wir auf die Literatur-
werte angewiesen (siehe unten).

Aus dem Vorhergehenden folgt, dass die Genauigkeit der Be-
stimmung der ¢, aus der Gleichung (1) bei Zimmertemperatur sich
auf 0,79, bis 19, schitzen ldsst. Wesentlich grosser sind leider die
Fehler, die infolge ungenauer Orientierung der Kristalle auftreten
konnen. Ferner ist eine weitere Fehlerquelle in einer zusétzlichen,
unkontrollierbaren Anisotropie der untersuchten Kristalle zu
suchen, welche infolge ungleichméssiger Erwéarmung beim Schwin-
gen auftritt.

Die Unsicherheit in den Elastizitétskonstanten c;; fiir ¢+ £k ist
bedeutend grosser, da in die Ausdriicke (3) bis (5) (siehe unten) emp-
findliche Differenzen von c¢,;-Werten eingehen. Der Fehler schwankt
daher hier zwischen 29, und 59%,.

5. Spezialfille und Messergebnisse.

a) Seignettesalz. Die Gleichung der Formfrequenzflache und die
dazugehorigen Berechnungen sind im Anhang wiedergegeben. Wir
haben aus den Messergebnissen von Mason4) und HuNTtiNcTON!S)
die Schnitte durch die Formfrequenzfliche numerisch ausgerechnet
und in den Figuren 4, 5 und 6 als Polardiagramme dargestellt,
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um sle mit unseren Beugungsfiguren zu vergleichen. In jeder Rich-
tung ist die Grosse K/)/pw? aufgetragen. Die geometrische Ahnlich-
keit mit den in den Figuren 9, 12 und 15 wiedergegebenen Beu-
gungsfiguren 1st offensichtlich. Die fur die Auswertung der Auf-
nahmen beniitzten Formeln sind:

I. Beobachtung parallel zur a-Achse. (Fig. 4.)

Dk,
L~

ff’ 04~ K, =

&

Fig. 4.

Bp 0OC~K,

OF2—-OFK*

; OB~K,, = ], "E‘L

C33

OF 0B _ Vfion~ o) + 4 (engt c)®
OF2+OF*

2 Cyy+ CogtCag

11. Beobachtung parallel zur b-Achse. (Fig. 5.)

8, 0C~K,

Fig. 5.

OF:—-QFE?

04 ~K,~

B R e

C11

Css

. OD~K, ]/W
333,

M . V(Cll_csa) + 4 (013-!-65;,)
OF2+0E?

2 55+ 1y + Cag

ILI. Beobachtung parallel zur c-Achse. (Fig. 6.)

™~

Fig. 6.

OF*—-0E*

>

w w?
22 OB~K,=1/"
C . C
11 . 66
e e
-; OD~EK,—T1/%2
¢ C
22 66

Rt e V(Cll_ 622)2 & 4 (612+ cﬁﬁ)i
OF2+OE*

9
< Cggt Cy1 1 Cop

°2@* . OD~ K, ]/‘-”’2'

(4)
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Nach Gleichung (2) wird die Grisse a (Abstand zwischen beu-
gendem Schallwellengitter und Planfilm) temperaturabhéngig, weil
der Brechungsindex n, des Seignettesalzes mit der Temperatur
variiert. Aus den Angaben von Varasex!®) haben wir den Tempe-
raturverlauf der Brechungsindizes n,, ng, n, fir die griine Hg-Linie
ausgerechnet und in Fig. 7 dargestellt.

Fir die Dichte des Seignettesalzes haben wir den gemessenen
Mittelwert o = 1,772 gfem?® iiber verschiedene Stiicke eingesetzt.

n
1804 —<
\
1602
1600 2~ \*\
1498 ﬂa\\\\ \\\
7496 - - .
1494 P -
\ \
1492
1490 ™~ 3
—5 -4 -3 -2 -1 0 W 2 W W W TT
Fig. 7.

Temperaturabhéangigkeit der Brechungsindizes des Seignettesalzes.

Die Temperaturabhangigkeit der Dichte ist aus den Angaben
von VALASEK!?), VienEess2?) und HaBruUTzeL2!) bestimmt und in
Fig. 8 gezeichnet worden.

Nachstehend geben wir die Werte der elastischen Konstanten
des Seignettesalzes bei der Temperatur T = 25,5% C an. s handelt
sich um Mittelwerte, die aus unabhéngigen Messungen an ver-
schiedenen Kristallstiicken erhalten worden sind. Daneben ist der
maximale Fehler angegeben. Der Fehler jeder einzelner Messreihe
1st oft viel kleiner.

Unmuttelbar aus den Beugungsfiguren erhiilt man die Elastizitéts-
konstanten ¢Z, d. h. die elastischen Grossen bei konstantem elektri-
schem Feld (vgl. Abschnitt 6). Die in den Tabellen aufgefiihrten
Konstanten ¢ (ohne oberen Index) sind auf konstante dielektrische
Verschiebung D (¢”) umgerechnet worden, d. h. es sind die ,,wah-

[

ren’” Konstanten?). Die Elastizitdtskonstanten cyy, ¢z, ¢33 sind
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nicht mit dem piezoelektrischen Effekt gekoppelt, so dass bei
diesen eine Unterscheidung zwischen ¢ und ¢? ~ ¢ dahinfallt.

Zum Vergleich geben wir daneben noch die von Hu~NTIiNGTON!E)
und Mason?) gemessenen Werte an:

Mason berechnete alle Elastizitdatskonstanten des Seignettesalzes
aus den gemessenen Resonanzfrequenzen von 9 geeignet orien-
tierten Stdben und 8 geeignet orientierten Platten. Seine Werte
beziehen sich auf die Temperatur + 30° C. HunTiNGTON bestimmte

Corkr

1790 g

1780 >

4770 : Ny

1760
~50 40 -3 -2 -0 0 10 2 W WY

Fig. 8.
Temperaturabhingigkeit der Dichte des Seignettesalzes.

die Schallgeschwindigkeiten in den verschiedenen Richtungen ei-
niger Seignettesalzstiicke. Mit Hilfe eines Piezoquarzes schickte er
kurze Ultraschallimpulse in die Versuchskristalle und mass die Zeit,
die bis zum Zuriickkommen des an der Oberfliche des Versuchs-
korpers reflektierten Impulses verstrich. Daraus rechnete er die
Elastizitatskonstanten aus. Seine Resultate gelten fir ,,Zimmer-
temperatur®’.
s v 101 dynfem?.

Cir Unsere Messung | HUNTINGTON!S) Mason?)
Ci 2,58 -+ 0,02 2,550 - 0,005 2,64
Cos 3,80 -+ 0,03 3,81 -+ 0,011 3,18
Cas 3,75 -+ 0,02 3,705 - 0,013 3,091
Cs5 0,314 4 0,005 0,321 + 0,008 0,304
Coi 0,997 4 0,011 0,979 -+ 0,027 0,996
Cys 1,40 4 0,04 1,41 + 0,03 1,81
¢y 1,12 + 0,05 1,16 -+ 0,04 2,23




TAFEL 1.

Beugungsfiguren des Seignettesalzes.

Fig. 9. Fig. 10.
Durchstrahlung in Richtung o Durchstrahlung in Richtung a.
Anregung in Richtung c. Anregung in Richtung c.

T = -50°C. T=-T°C.

Fig. 11.
Durchstrahlung in Richtung a.

Anregung in Richtung c.
T = 255C,




TAFEL 2.

Fig. 12. ) —
Durchstrahlung in Richtung b. Fig. 15.

Anregung in Richtung c. Durchstrahlung in Richtung c.

T — 950 C. Anregung in Richtung 45° zu a, b.
26 C T = 25° G,

Fig. 13. Fig. 16.
Durchstrahlung in Richtung b. Durchstrahlung in Richtung c.
Anregung in Richtung a. Anregung in Richtung 459, a, b.
T =29 ¢, T — _50(,

Fig. 17.
Fig. 14. Durchstrahlung in Richtung ¢
Durchstrahlung in Richtung b. Ayﬁgéﬁn;&inuﬁli%llgung45%n§/ Cl-).
Anregung in Richtung c. T = —42°C. Y

T = -45°C.
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Gemessen wurden ¢ = 0,288-10'' dyn/cm? bzw. ¢ = 0,978-

101t dyn/em?. Die in del Tabelle angegebenen Werte von c¢f} bzw.

¢ sind aus den gemessenen Grossen (vgl. Fussnote auf S. 828) mit
Hilfe der Mason’schen Werte?4):

Myy = 4,12-103; mye = 3,83-103; & = 12,5; &f = 10,2

umgerechnet worden.

Aus den Aufnahmen in den Fig. 12—17 ist ersichtlich, dass die
Figuren bei Beobachtung in der b- und ¢-Richtung vollstandig er-
schemen.

Trotz allen Bemithungen konnten wir hingegen den dusseren Teil
der Beugungsfigur bei Durchstrahlung in der seignetteelektrischen

Cik
in lﬁ’é%a
5

Czz

6_}3 R S

bp2
O
Ces

bss
-850 -40 -39 -2 - 0 W0 2 I wWTrT
Fig. 18.

Temperaturabhéngigkeit der Elastizititskonstanten des Seigenettesalzes.

a-Richtung nicht beobachten und kénnen deshalb die Werte der
Konstanten ¢,y und cyg (die sich ja, nach den Formeln (3), aus der
betreffenden Figur ergeben sollten) nicht angeben. Im untersuchten
Temperaturintervall zwischen — 50° C und + 30° C ist dies mit

der ausserordentlich hohen Déampfung der elastischen y_.-Welle zu
erklaren!8)22).

Der Temperaturverlauf der gemessenen Elastizititskonstanten cp,
st limear (Fig. 18). An den Curiepunkten tritt keine Anomalie auf*).

*y D1e Anomahen, die Masox bei ¢;; und ¢4 findet®), sind vermutlich auf den
Einfluss vom anomalen cE zuriickzufiithren.
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Bei Beobachtung in der a-Richtung &ndert sich, im Gegensatz
zu den anderen Durchstrahlungsrichtungen, die Gestalt der Beu-
gungsfigur 1 der Néhe der Curiepunkte. Bei zunehmender Tem-
peratur behélt der innere Teil der Figur bis in die Ndhe des unteren
Curiepunktes emne runde Gestalt (vgl. Fig. 34 und 36, Tafel 4). In
unmittelbarer Nidhe des Curiepunktes 6, erscheint die Figur aber
eher viereckig mit abgerundeten Ecken (vgl. Fig. 38, Tafel 4)
ohne dass dabei die Achsenabschnitte (d. h. also ¢,, und ¢35) eine
Anderung erfahren wiirden. Es @ndert sich also der Abschnitt OF
der Beugungsfigur auf der 45%Geraden. Da es sehr wahrscheinlich
1st, dass der dussere, unsichtbare Teil der Figur auch einer merk-
lichen Anderung bei @, unterworfen ist (vgl. Abschnitt 6), so kann
man aus dem inneren Teil allein keine Schliisse auf den Temperatur-
verlauf von ¢y5 ziehen, und wir miissen uns mit dieser Feststellung
begniigen. Derselbe Vorgang wiederholt sich, in umgekehrter
Richtung, am oberen Curiepunkt @o. Die Beobachtung der Um-
dedlung 1st auf ein kleines Temperaturintervall begrenzt, weil die
Figur im Curiegebiet verschwindet (vgl. Anhang 20)

A

e

0
c
Q- |

Fig. 19. Fig. 20.
Schnitt durch die Formfrequenz- Schnitt durch die Formfrequenz-
fliche von NaClO, senkrecht zu flache von NaClO; senkrecht zu
einer kristallographischen Achse. einer kristallographischen Achse.
(Nach den ¢;,-Werten von MASOX.) (Nach den c;-Werten von Voigr.)

b) Natriumchlorat. Diese Substanz, die im kubischen System
kristallisiert und piezoelektrisch 1st, wurde erstmals 1893 von
Vorie123) untersucht. Seine statischen Messungen der Elastizitéts-
konstanten ergaben als merkwiirdiges Resultat, dass der Wert der
Konstante ¢, negativ ausféllt. Dies hitte die wichtige, sonst nicht
normale, Folge, dass bei longitudinalem Zug eines Zylinders aus
NaClO,, dessen Achse in eine Wiirfelnormale féllt, eine Querdila-
tation entsteht.

Dagegen sprechen die Resultate von Masox?4). Dieser unter-
suchte das elastische Verhalten des Natriumchlorates mit einer
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dynamischen Methode, die in der Messung der Resonanzfrequenzen
von 3 geeignet orientierten Stiben besteht. Nach Mason erhilt
die Elastizitdtskonstante ¢;, einen positiven Wert. Wir haben die
entsprechenden Schnitte durch die Formfrequenzfliche dieses Kri-
stalls aut Grund der Voigt’schen und der Mason’schen Werte
berechnet und in den Figuren 19 hzw. 20 wiedergegeben. Ein Ver-
gleich mit dem von uns erhaltenen Beugungshild (Fig. 21) zeigt, dass
die Mason’schen Werte besser der Wirklichkeit entsprechen.

Fiir die Auswertung der Aufnahmen erhilt man folgende Formeln
(vel. Fig. 19):

04 ~K, = ]/Q_wz OB ~K, - ]/_

‘11 Caq
00 ~K,— 1/ . 0D ~K, - /2~ (6)
‘ 11 €44

OF*—0E*  cpptey
OF:+O0E? = ¢j+cy

€
mn 57//}'2,,,.3 f ‘\
2500 \\

2,490 : N —

2480 —— \~\

|
|

U5 w w0 W X W W TS

Fig. 22.
Temperaturabhingigkeit der Dichte des NaClOj.

Die Dichte des untersuchten Stiickes wurde zu 2,483 g/cm? be-
stimmt und ihre Temperaturabhéngigkeit nach den Angaben von
Mason2%) gerechnet und in Fig. 22 dargestellt. Die Resultate bei
der Temperatur 20,5° C sind in folgender Tabelle wiedergegeben.

ausgerechneten und die von Voier angegebenen c;,-Werte ein-
getragen.
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Fig. 21. Fig. 24.
Beugungsfigur von NaClO,. Beugungsfigur des KD,PO, bei Durch-

strahlung in der ¢- und Anregung in
der a-Richtung.

Fig. 26.

Beugungsfigur des KH,PO, bei Durch-
strahlung in der ¢- und Anregung in
der a’-Richtung (45° zu «, a).
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Cor M 101 dyn/em?2.

Ci ' Unsere Messung ‘ Mason2t)  Vorer?3)
ey 489 1004 4893 | 6504
cw | 1,173 10,02 1471 1,197
G 139 40,02 1,385 — 2,099

| | .|

Gemessen wurde ¢£ = (1,172 4 0,02)-10'* dyn/cm?. Der in der
Tabelle angegebene Wert von ¢y, ist auf Grund der Formel

m>,-4m
D _. B 4 T
Caq = Cyy 7 " <
&
1
(siche Abschnitt 6 und Fussnote auf S.828) und der Mason’schen
Werte?4)

. ,,Q'k I I ]
in 10" s p 1
(it --_--"‘——-_______-
5 |
! ! _--__-"-—-_
L
4 . B i
2 o 1 ]
b=
1 o l —Tr
i & f
i |
| ll |
] I i | | 1 | a;
-50 -4 -0 2 0 0 0 24 A Wl

Fig. 23.
Temperaturabhingigkeit der Elastizitatskonstanten des NaClO;.

ausgerechnet worden. Man sieht also, dass der Einfluss der Plezo-
elektrizitit auf die entsprechende elastische Konstante in diesem
Falle sehr gering ist.

Die Temperaturabhingigkeit der Elastizitatskonstanten des
NaClO, im Bereich zwischen — 50° C und + 80° C ist in Fig. 23
dargestellt.

52
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¢) Schweres Kalwmphosphat KD,PO,. Wie schon erwihnt,
konnten wir mit dem kleinen nicht ganz klaren Kristall aus KD,PO,
nur die Beugungsfigur bei Durchstrahlung in der seignetteelektri-
schen c-Richtung beobachten.

Die Ausrechnung der Formfrequenzfliache fiir das tetragonale
System (in welchem KD,PO, kristallisiert) hat Zwicker?®) aus-
gefiihrt™).

In Fig. 24 ist die Beugungstigur von KD,PO, bei Durchstrahlung
in der ¢- und Erregung in der a-Richtung wiedergegeben. Das
Auflgsungsvermogen der Apparatur reicht nicht hin, um mit Sicher-
heit festzustellen, ob es sich daber um zwel zuemander senkrecht
stehende Ellipsen oder um eine Kurve 4. Grades handelt. Im ersten
Falle (Fig. 25a) sollte in der Richtung der Winkelhalbierenden der

£=F
é — N
Fig. 25a. Fig. 25b.

a-Achsen ein Doppelpunkt, im zweiten Falle (Fig. 25b ibertrieben
skizziert) sollten zwei sehr nahe Beugungspunkte vorhanden sein.

Der erste Ifall fordert die Beziehung ¢y = — ¢g¢. Die Entscheidung
wire eben sehr wichtig im Hinblick auf die Frage, ob die Beziehung
C1g = — (g L1ir KD,PO, erfillt 1st oder nicht.

Es zeigt sich dabei, dass ein kleiner Unterschied von nur 19%,
zwischen OF und OF (Abschnitte auf der 45%Geraden) schon einen
sehr grossen Einfluss auf den Unterschied zwischen cgg und ¢y, hat.
Der letzte steigt prozentual bis zu 259! Es liegt also in der Natur
der Messmethode, dass unser ¢;,-Wert relativ unsicher wird.

*) Die Formel (8) auf Seite 529 des zitierten Zwicker’schen Artikels3) enthalt
einen Druckfehler und ist richtigerweise:

- - 277'7
Py = A Yo vp= /7.“,,,,,,,, —
ade V&. ] (:11 + 612 + 2 (}66
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Wir finden ber T = 26° C:
¢1; = (7,04 + 0,06)-10** dyn/cm?
¢k, = (0,607 - 0,004)-101* dyn/cm?
¢15 = (0,46 -+ 0,14 )-10** dyn/em?

e -
//7yf/mai
|

2360 —
! S~

2050 .

S~

N S

2340

2390 i S SR |

-850 -4 -8 20 -1 0 W 20 34 4 TC
Fig. 27.

Temperaturabhingigkeit der Dichte des KD,PO,.

Die Dichte des untersuchten Kristalls wurde zu 2,35 g/cm?® be-
stimmt und ihre Temperaturabhéngigkeit ist mangels direkter
Daten, derjenigen der Dichte des KH,PO, nach UpBrnrope und
WoopwaArD?%) angepasst worden (Fig. 27).

Gix
v/ %’y/%;z I
4

=T

‘ i
71— i ] j !

e NN S S B
i | | | | | IR R |
~50 40 -0 20 W 0 W X W TTC
Fig. 28.
Temperaturabhingigkeit der Elastizititskonstanten des KD,PO,.
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Der Temperaturverlauf der oben angegebenen Elastizitédtskon-
stanten ergibt sich wie in Fig. 28 gezeichnet.

d) Rubidiwumphosphat RbH,PO,. Der Kristall aus dem tetra-
gonalen RbILPO,, der uns zur Verfiigung stand, war optisch un-
vollkommen und zu klein, um eine genaue Messung der elastischen
Konstanten zu ermoglichen. Wir konnten nur qualitativ die Beu-
gungsfigur bei Durchstrahlung in der seignetteelektrischen c-Rich-
tung feststellen. Die Gestalt ist sehr dhnlich derjenigen der ent-
sprechenden Figur des KII,PO, und des KD,PO,.

Die Dichte bestimmten wir bei 22° C zu 2,838 g/cm?.

Die Auswertung der beobachteten Beugungsfigur ergab folgende
elastische Konstanten, die mit grosser Unsicherheit behaftet sind
(Temperatur T = 10° () :

¢ = (6,7 + 0,2 )-10' dyn/em?®
e = (0,4 + 0,02)-10'* dyn/em?
c2 = (0,2 + 0,1 )-10 dyn/ecm?

8. Verbesserung der Theorie und Ausrechnung eines Spezialialles.

Im folgenden wollen wir an Hand vom Spezialfall des KH,PO,
beweisen, dass die beniitzte Messmethode die Elastizitatskonstanten
c¢f bel konstantem elektrischem Felde liefert.

Iar die Rechnung werden wir die Bezeichnungen von MAnLY¥)
bentitzen?®): x,, x,, £; = Koordinatenachsen.

v = Verschiebungsvektor mit den Komponenten v, = u. v, = v.
Py = .

Q.. 00,/0 x, — Mass fur die relative Verschiebung benachbarter
Punkte, wobei die griechischen Indizes von 1 bis 3 laufen.

@ - Verzerrungstensor mit den Komponenten @,,=1/2 (2,, -
Q.,). Entspricht den iiblichen Deformationen x;, ,, .... x4
der Voigt’schen Bezeichnung.

/I = Spannungstensor mit den Komponenten I7,, = 17, .
Entspricht den dblichen X, X,, ..., X der Voigt'schen
Bezeichnung.

*) Herrn Dr. H. MAHLY bin ich fiir viele wertvolle und lehrreiche Diskissionen

beziiglich der Schwingungen von piezoelektrischen Kristallen zu grossem Dank
verpflichtet.
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Somit schreibt sich das verallgemeinerte Hook’sche Gesetz:

53
9

Hp-r = 2 C,uvo": (Ddr (7)
or =]
) 6
(In der iiblichen Bezeichnung X; = 3 ¢, x;), wobel fiir die ¢,,,,
=1
oilt: - - -
C;H'O’I o {Ur,ur (ra,u:»- o (',u rra

Die iiblichen ¢,;, erhilt man daraus nach dem Schema:

wy oder or 11 22 33 23 =352 31 - 13 12 = 21

1 oder k 1 2 3 4 3 6 )

Die Theorie von Furs und Luprorr!?) geht davon aus, dass
die untersuchten Kristalle nicht piezoelektrisch sind. Fir sie ist
also die Gleichung (7) streng richtig. Im Falle von piezo- bzw.
seignetteelektrischen Kristallen miissen wir die Gleichungen (7)
durch die piezoelektrischen Terme erweitern und eine zweite Glei-
chung hinzufiigen, die das Feld im Kristall ausdriickt:

3

3
HM » = Z C;t PaT (‘Dn‘r jL 2 /n?’(f, lruvDG’ b (9)

ogr =] og=1

3
B, = ] M @yt Dy %) (10)
wobel D die dielektrische Verschiebung bedeutet. Die m, ,, sind
eine Art piezoelektrische Module, die die elastische Spannung mit
der dielektrischen Verschiebung bzw. das elektrische Feld mit den
Deformationen verkniipfen. Fr diese m, ,, existieren in der Litera-
tur noch keine Namen. :

Die Grosse » wird durch die Beziehung x = 1/4 7 & definiert,
die sie mit der Dielektrizititskonstante ¢ des geklemmten Kri-
stalles verkntipft.

Mit Hilfe der Gleichungen (9) und (10) und unmittelbarer An-
wendung des Hamilton’schen Prinzipes hat MAnLy?7) die Diffe-
rentialgleichungen und die Rand- und Nebenbedingungen fiir eine
piezoelektrische, unendlich ausgedehnte Platte der Dicke 21 ab-
geleitet. Dabel wurde nur verschwindende Leitfahigkeit der unter-
suchten Kristalle vorausgesetzt, also div D = 0 angenommen.

*) In der iiblichen Bezeichnung, ohne Indizes, schreibt man:
X= cx+m-D,
14n- B =m-ax+x-D.
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Wir bezeichnen mit E das elektrische Feld im Kristall, mit E’
das elektrische Feld im umgebenden unendlichen Raum. Das zu
losende Gleichungsystem wird dann:

()2?)# _ ()H‘w B 5 _. 02 v,
o 0 12 2 0z, 2 (/f‘”“’_(jgﬂirz -+ Zmdm ()x,, (11)

vor =1

Div D = 0. (12)

Yot By ==, (13)

rot B’ = 0. (14)

3 3 _
D Cer @, E o Dy =0 fir v =1,2,3.  (15)
g r=1 =

Rot E — 0. (16)

E = 0. (17)

Die Gleichung (11) stellt die Differentialgleichung dar, die fir
das Gleichgewicht der Kréfte sorgt. Die Gleichungen (12), (13)
und (14) sind die aus der Voraussetzung div ) = 0 folgenden Neben-
bedingungen: Die Normalkomponente von D soll stetig auf der
Oberfliche des Kristalls sein, das Feld F 1m Kristall und das
Feld E" im Aussenraum sollen wirbelfrei sein. Die restlichen Glei-
chungen stellen die Randbedingungen dar: Gleichung (15) sagt
aus, dass der Rand des Kristalls kraftefrer ist, Gleichung (16),
dass die Tangentialkomponente von K auf der Oberfliche des
Kristalls stetig ist, Gleichung (17), dass das Feld E’ im unendlichen
Aussenraum gegen Null strebt.

Obiges System von Differentialgleichungen wollen wir fiir den

\pondliall des KIL,PO, losen.

In einer in der xy-Ebene liegende, unendlich ausgedehnte Platte
der Dicke 21 (Fig. 29) sollen elastische Wellen in der y-Richtung
laufen.

Gesucht sind die Fortpflanzungsgeschwindigkeit dieser Wellen
und die Schwingungsform der Platte.

Um diec Bedingung div D = 0 zu ertiillen fithren wir ein Vektor-
potential a ein, dessen Komponenten a, b, ¢ sind. Wir setzen alzo:
D =rot a

Ferner wird die xz-Abhéangigkeit aller Grossen gleich Null gesetzt
(0/0x = 0). Schreibt man die Differentialgleichungen (11) ausfihr-
lich fir alle Komponenten hin, so erhilt man drei Gleichungen,
in welchen die unbekannten Grissen w, v, w, (Komponenten des
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Verschiebungsvektors v), die unbekannten Grossen, a, b, ¢ (Kom-
ponenten des Vektorpotentials a), die Elastizitdtskonstanten ¢,,,,
und die Module m,,, eingehen. Die erste dieser drei Gleichungen
enthilt nur die Grossen # und a und unter anderem auch die Elasti-
zitdtskonstante cg. Die Griossen v, w und b, ¢ gehen in diese Glei-
chung nicht ein: Sie kommen nur in den zwei weiteren Gleichungen
vor, die ihrerseits die Grossen u, a und cg nichi enthalten. Analog
erhdlt man aus jeder der vektoriellen Gleichungen (12) bis (16)
drei skalare Gleichungen, von denen eine nur die Grossen %, a (und
U. a. Cgg), die zwel anderen nur die Grossen v, w und b, ¢ enthalten.

le

— >

Fig. 29.

Uns interessiert besonders die Elastizititskonstante c¢qq, weil sie
bei KH,PO, die einzige ist, die mit der seignetteelektrischen Ir-
scheinung in Zusammenhang steht. Da, nach dem oben Gesagten,
die %, a-Komponenten mit den », w- bzw. b, c-Komponenten nicht
gekoppelt sind und die Konstante c¢gg nur mit den ersteren ver-
bunden ist, so ist es moglich, uns auf das Studium der Unbekannten
% und @ allein zu beschrinken.

Der Einfachheit halber setzen wir noch die Zeitabhangigkeit mit
et periodisch an, so dass an Stelle von g- i einfach — - w? %
zu schreiben ist (@ = Kreisfrequenz). Somit wird das zu ldsende
Gleichungssystem:

Cop * Uyy + My + Gy + Caq+ Oy —Mas - G+ 0 w2-u=0. (lla)
a,=a, fir 2 = = [. (12a)

m36 - ‘U)yy "E_ %3 . auyfy“‘_mzs . q,(rzz "E‘ %2 ¢ atzz = 0. (13&)

G,y + 0,,=0.  (14a)

Cs5 * Uy — Mgz - 4, = 0., tir 2=+41. (15a)

Myg - Uy — Ho + Ay — — _1—11 . az' fir 2= +-1. (16a)

7 — 0. (17a)
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Daber bedeuten u, bzw. w,,, a, bzw. a,, die erste bzw. die zweite
partielle Ableitung von « bzw. a nach y, und analog fir w,, ..,
a,, @,

Die strenge Rechnung zeigt, dass die Bertucksichtigung des piezo-
elektrischen Termes in my; nur eme kleine Korrektur zur Folge
hat (vgl. unten). Wir machen deshalb zunéchst die Vereinfachung,
dass myy =~ 0 sel. Somit wird:

Cop " Wyy + Mag ™ OByy + Cgq° Ay + 0 02U = 0. (11h)
a,=@a, firz—= 41 (12h)

Mg~ Uyy T Hy * Gy T Hy ~ G = U (13D)

a,, + a,, = 0. (14b)

w, = 0 fiir 2 = - L, (15h)

o, =4mw %y a, fir 2 = 4 L (16h)

E' - 0. (17h)

Fir die Losung dieses Systems machen wir den Ansatz:

# ~ ¢ sin Ky,

: 18
a« ~€é*-sin Ky, (18)

d. h. wir setzen die y-Abhéngigkeit harmonisch an. Danach bleibt
ein System von gewdhnlichen homogenen Differentialgleichungen
in z ibrig, das wir wie {iblich mit dem Ansatz e zu lésen suchen.

Analog gehen wir fir die gestrichelten Grossen w’ und a’ vor.
Aus Gleichungen (18) und (14b) folgt:

h'? — K2 = 0,
und aus (17b):
‘ h' = — K. (19)

Ferner werden die Gleichungen (11b) und (18b):
(Cag*h® — oo K2 + - w?) u —mgg- K2+ a = 0, (20)
— Magg* K2 2t + (5 h%2 — 225+ K2) @ = i),

Die Bedingung fiir die Losbarkeit dieser zwei Gleichungen ist,
dass die Determinante der Koeffizienten von % und a verschwindet,
d. h.

B G 4
_my K
%y K2— 5y h% "

(21)

pw? = Cgg* K2 — 4y " W% —
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Nun wissen wir aus der I'ues-Ludloff’schen Theorie der Beu-
gungsfigurel.l, dass QQZ/KZ gleich ¢gq 1st. Aus physikalischen Griin-
den muss dieses cg sicher zwischen cf; und cff; liegen:

Qw.<p1)

(b() =" “66 *

(22)

Tragen wir auf der Ordinate die Grosse pw? K2, aut der Abszisse
das Verhaltnis h%K? auf, so erhilt man aus der Beziehung (21)
die in Figur 30 dargestellte Kurve. Die Ordinatenachse wird von

Ajre

Fig. 30.
Graphische Darstellung der Gleichung (21).

einem Hyperbelast im Punkte ¢Z, von einer Asymptote im Punkte
¢y geschnitten.

Nach der Ungleichung (22) liegt unsere Lisung auf einer Geraden
g zwischen ¢ und cf. Also liegen die der Losung entsprechenden
h*K2-Werte bei h}%/K? und h2/K? wobei, wie aus der Fig. 30 er-
sichtlich,

hi2K2 <0 und hYK?2> "Z

Setzen wir h] =1 hy, so ergibt diese erste Losung in den Ansatz
(18) eingesetzt eine trigonometrische Funktion, wahrend die relle
Losung h, eine hyperbolische Funktion ergibt. Da ferner die Lo-
sungen % und a unseres Gleichungssystems sicher gerade Funk-
tionen von # sind, so wihlen wir dafiir die cos- bzw. Cos-Funktionen
und schreiben demnach unseren genauen Ansatz folgendermassen:

% = (uy-coshy z--uy-Cosh, 2) sin Ky
a = (a,coshy z +a,-Cosh, z) sin Ky (23)
a'= a;-e % - sin Ky.
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Nun fiithrt man diesen Ansatz in das Gleichungssystem (11b) bis
(17Db) ein und erhélt, wenn man beriicksichtigt, dass die Gleichungen
tir alle z erfiillt werden miissen:

Uy (07 w2 — Coa K2 — cgqh?) — aqy-mgg- K2 = 0. (24)
Uy Mag K2 + ay (23 K2 + %y h) =D, (25)
Uy (0° 0% — Cog K2 + ¢4q h3) — @y Mge K2 = 0. (26)
Uy Mag K2 + ay (23 K2 — 2y-h3) = i (27)
a,ce B = ay cos hyl + ay, Cos hyl . (28)
—a, K-e 8= 4 muy (—ay hysin byl + ay hy Sin hyl). (29)
— g hy sin byl + 2y hy Sin byl = 0. (30)

Aus Gleichung (30) folgt dann:
uy _ hyl - Sinhyl

g byl osin byl (31)
und aus (28) und (29):
ty (K-coshyl—4mxyhy-sinhyl)
+ ay (K- Coshyl + 47 25 hy- Sinhyl) = 0. (32)
d. h.
a,  4dmsyhyl-Sinhy, I+ K- Cosh,l (322)

wy, 47wy hyl-sin byl — KI - cos h,l

Wir kénnen nun u,, 4,, a; und a, bis auf beliebige multiplikative
Konstanten %, und a, bestimmen, indem wir setzen:

Uy = Ug "~ hg !+ Sin hyl

Uy = Ug - Ryl sIn byl

dy = — g (K 1-Cos hyl +4 7 %5-hy L+ Sin hyl)
ay = o (K 1+ coshyl—4mxy-hyl-sin hyl), I

(33)

worin die Grossen h; und hy, noch unbekannt sind.
Aus den Determinanten der Gleichungen (24) und (25), (26) und
(27) folgt nun sofort:
g K
h2 - xs+ K2 - 24 (34)
mig - K4

% s w2 S 11
0? = gy A eg" Bs =+ = =
0 66 as e T G R,

2 . K2 . ahE
02 = Cgq K2 4 ¢4y 3
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woraus durch Subtraktion:

070 K2og) (g — Ko) = 27005 (35
und durch Addition:
ow? = ceg  K? — gy (h5 — T — "z”z' K®) . (36)

Eine weitere Bestimmungsgleichung entsteht aus der Gleichung
(32) und aus folgender Beziehung

g (h2 - 20+ K2 25) by sin byl + ag (h2 - #y— K2 - 25 by - Sin hyl =0, (37)

die man durch Kombination der Gleichungen (25), (27) und (30)
erhilt. Die Bedingung fiir das Verschwinden der Determinante von
(32) und (37) liefert dann:

~ cos h,yl
h-ny + K% %y = kll-smhll'_4nx2 (38)
hE-o— K2 %, “Kl Cos hyl i Ly )

hyl-Sin byl '+

Die Gleichungen (85), (36), (38) dienen zur Bestimmung von hy, h,
und K. Die Grossen h; und h,, die in Gleichung (33) auftreten, sind
mit den Gleichungen (35) und (38) bestimmt.

Gleichung (28) ergibt uns dann a," zu:

a,; = (a;-cos hyl + ay-Cos hyl) eX?, (39)

und Gleichung (36) die gesuchte Grosse K oder das Verhdltnis
ow? K2,

Somit ist die Losung unseres Problemes gegeben, welche den
Einfluss der Piezoelektrizitdt auf die Schwingungsform unserer
Platte berticksichtigt.

Um ihre physikalische Bedeutung klar zu machen soll nun der
Grenzfall behandelt werden, welcher dem Verhalten des seignette-
elektrischen Kristalls in der Néhe des Curiepunktes entspricht.

Zu diesem Zwecke fithren wir die Grosse 7

O — ™ (40)

*3 ' Cgg

ein und schreiben unsere Bestimmungsgleichungen (35) und (38)
in folgender Form: -

¥y B Y (E B )= fa
(_;3- K® 1) (%3 K? ] %y Cy 0 (35)
2 .
e 3 klz +1 ES cotg hl—4 7 %,
— - (384a)
2 .
My £Cotghzl+4:m;-:2

ny K2 hoy
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und die Gleichungen (34) wie folgt:

ew® ca Bi o/ 1
e ity & @( Y )
ot Bhis SRS
x, K? a4
ewt et ol 1 (B42)
Coo " K2 T ey K M
sy K2
Aus der Gleichung (38a) rechnen wir leicht:
%2 h% +1
Ryl (Kl CA o\ ®m KT
cotghyl = 22 [ 47ty (7{),7 Cotg hyl+4x 42) n ik (41)
w K°

In der Néhe des Curiepunktes 1st nun der Piezoeffekt sehr gross,
so dass

0 > 1%) (42)

strebt. Ferner setzen wir voraus, wie es dem HExperiment ent-
spricht, dass die Wellenldnge 4 der elastischen Welle im Kristall
sehr klein gegeniiber der Dicke 21 se1, d. h.

Ki> 1. (43)
Unter diesen Voraussetzungen behaupten wir nun, dass
hl > 5 (44)

1st, wie folgendermassen auf Grund der Beziehung (41) bewiesen
werden kann.

Wenn die Grosse hy ! zwischen 0 und z/2 variert, durchlduft cotg
h,l alle positive Werte zwischen oo und 0. Da der Ausdruck auf der
rechten Seite von (41) positiv ist, so gibt es sicher eine Wurzel
von (41) so dass

0 <yl <5

Daraus folgt zunéchst, dass h,l endlich ist und kleine Werte an-
nimmt. Wir miissen nun noch beweisen, dass der Ausdruck auf der
*) Die Beziehung zwischen c?s und cfs ist aus den Gleichungen (9) und (10)
leicht zu erhalten und lautet: ¢ = cfs + My / Hys
Fiir unendlich grossen Piezoeffekt ist cﬁES =0, so dass 023 = mgﬁ/ %y wird,
oder also mgﬁ/xa-cé)ﬁ =@ =1,
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rechten Seite von (41) klein gegen 1 ist. Aus der Voraussetzung
folgt, dass hyl/K1<€1 1st. Der Ausdruck in der eckigen Klammer

e B ("2 i E ) ’

2 K :
"3,_]{2_* e 1A — (auf Grund von (35a)),
#o Ry ¥2 Ces ,

i I *2 % g
xg K? X3 Caa

strebt gegen 1. Die Glieder 4 mx, bleiben auch endlich. Aus (35a)
folgt ferner, dass Kl/h,l~ 1 ist, d. h. hyl >1, was zur Folge hat,
dass Cotg hyl ~ 1. Somit bleibt der ganze Ausdruck in der ecklgen
Klammer endhch wihrend hy /K11 1st.

Dann ist aber, nach Gleichung (41), cotg h, 1< 1, d. h. albo
hql ~ g w. z. b. w.

Wir entwickeln nun die erste der Glsichungen (34a) nach h?/K?
und erhalten nach einfacher Umformung:

28, . = Cgg (1 — O) + cyy ]h{12 (1 diggl @) (45)

K* ¥y Cag

worin nunmehr die Grosse h; nach (44) im Grenzfall durch 7/2 1
zu ersetzen ist, d. h.

2 w2 ! ¥y C
% = Cgg (1 — O) + Cu yiys (1 + ;:“gz‘z @)
oder, anders geschrieben:
n? ®y C, .
K2 ee(1—0) = 0+ w? CM“41+ﬁEz@).. (46)

Im allgemeineh 1st nun

0 w2>c44ﬁ;(1 + ﬁc&) *) |

Ky Cyy

so dass mit grosser Genauigkeit:

 pw? : |
K =i 47)

*) Die Ungleichung

1 %
& z2 16 (c44+°““ x:)

gilt mit unseren experimentellen Daten bei KH,PO, recht gut. Es ist namlich

2

H
»? ~ 101 gsec=2 und Caa+ Cos x—a) ~ 1010 gec2,

i
16 p 12

Vernachlissigt man also den zweiten Term auf der rechten Seite der Gleichung (46)
so begeht man einen Fehler von der Gréssenordnung 0,19/y,.
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folgt. Im Falle grossen Piezoeffektes (@ ~ 1) erhédlt man also aus
der Beugungsfigur die Grosse cg (1 — ©), d. h. gerade die Elasti-
zitdtskonstante ¢ bei konstantem elektrischem Felde. Ferner sieht
man aus Gleichung (47), dass fiir @ gegen 1 strebend, die Wellen-
zahl K gegen unendlich strebt. Der entsprechende Achsenabschnitt
wird immer grosser, ein Resultat, das durch die Messungen von
Zw1ckKER?®) deutlich bewiesen wird.

Anschaulich lasst sich unserer Grenzfall wie folgt interpretieren:
Bei Anregung zu hohen Eigenschwingungen folgen im Kristall posi-
tive und negative Deformationen dicht aufeinander. Infolge des
Piezoeffektes entsteht somit an der Oberfliche des Kristalls ein
Mosaik von positiven und negativen Ladungen. Die Feldlinien ver-
laufen zum grossten Teil in der Niahe der Oberfliche zwischen den
Ladungen entgegengesetzten Vorzeichens. Das Kristallinnere, das
ja die Beugungsfigur liefert, ist somit vorwiegend feldfrei.

: by

. ",’
-F. A+
' B

Fig. 31.

Bei wachsender IFrequenz werden die elektrischen Ieldlinien in
eine immer diinnere Oberflichenschicht des KI,PO,-Kristalles
gedringt, wie Fig. 31 schematisch darstellt. Die elektrische Feld-
stirke wird in der Mitte des Kristalls sehr schwach — im Grenzfall
unendlich hoher Frequenzen streng Null —, und die optisch gemes-
sene Elastizitdtskonstante ndhert sich immer mehr dem Wert ¢
fir £/ = 0.

Am Rande des Kristalls hingegen wirken die dichten elektrischen
Feldlinien der Deformation entgegen. Der Kristall ist am Rande
gleichsam geklemmt. Der zweite Term auf der rechten Seite der
Gleichung (46) 1st durch diesen Randeffekt bedingt. Bei konstanter
Frequenz und wachsendem Piezoeffekt wird der Rand immer fester
geklemmt, wahrend das Kristallinnere immer weicher wird.

Auf Grund der obigen Uberlegungen ist nunmehr die Uberein-
stimmung des von Zwicker®) angegebenen Temperaturverlaufs
der Grosse cgg mit den Ergebnissen von RevErDIN®)Y) versténd-
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lich, die letzterer bei der Messung der Resonanzfrequenzen von
KH,PO,-Platten erhielt.

Zur Kontrolle haben wir die Messung der Konstante cg des -
KH,PO, aus der Beugungsfigur bei Durchstrahlung in Richtung
der ¢-Achse (Fig.26) bei Zimmertemperatur (T = 23°C) wieder-
holt. Wir erhielten:

¢E = (0,620 4 0,004) - 101* dyn/em?,

woraus sich der Wert von s& = 1/cf; ausrechnen und mit den
Werten anderer Autoren vergleichen lasst.

Unsere Messung | ZwICKER®) | REVERDIN®) | JAFFE23)
E
S66

in 1012 ¢m?/dyn 16,13 + 0,09 16,8 4 0,04 | 15,81 4 0,1 16,1 4+ 0,3

Die ¢;;-Konstante wurde zu (7,04 4 0,07)-10'! dyn/cm? bestimmt.

Es zeigte sich wieder die Schwierigkeit der Bestimmung von ¢;,

dahnlich wie im Falle von KD,PO, (vgl. S. 818). Der Wert dieser
Konstante betrégt, je nach Auswertung ¢;, = (— 0,622 4 0,01)-1011
dyn/em? oder ¢;5 = (— 0,36 4 0,01)-10* dyn/cm?2.

a

: iy
B

Fig. 32. Fig. 33.

N

|

Fig. 32 zeigt den entsprechenden Schnitt durch die Formfrequenz-
flache des KH,PO, berechnet aus unseren c¢;;- und cg4- Werten fiir
den Fall ¢;, = — 0, 36 101t dyn/em?2.

Zum Vergleich ist derselbe Schnitt mit Hilfe der Zwicker’schen
Werte (¢, = — cg¢) ausgerechnet und in Fig. 88 gezeichnet worden.

Der geringe Einfluss einer starken Variation von ¢, auf die
Gestalt der Beugungsfigur ist daraus ersichtlich.



832 Franco Jona.

Die Beriicksichtigung des kleinen piezoelektrischen Einflusses
von Mg zleht hier keine merkliche Korrektur nach sich. Die Auf-
losung des Systemes der korrekten Gleichungen (11a) bis (17a)
fiihrt zu dem der Beziehung (46) entsprechenden Resultat:

K2 (e(1—6) = 0-w?— ('44{; [1 + g (2* g e )] (48)

Cqq Mag

Daraus folgt, dass die Korrektur klein 1st, weil my; klein gegen mg,
1st und am Curiepunkt keine Anomalie zeigt. Die Berticksichtigung
des mys-Faktors fithrt also keine neue Kopplung ein.

7. Anhang 1.

a) Rhombisches System. (Seignettesalz). Das Schema der Elasti-
zitatskonstanten 1st

Cii €12 Cg O 0 0
Cia Cog Cog O 0 0
13 Co3 (33 0
0 0 0 g 0 0
0 0 0 0 cs5 O
0 0 0 0 0 Cas

=
<

(49)

Dementsprechend wird die Gleichung der Formfrequenzflache nach
der Theorie von Fues und LupLoFF:
(K% C11 -+ K% Cae + K% Cps— 90)2) (K? 666 -+ K% Cop - Kg Cyq— 9(1)2) (K% 655 -+

+ K3 aa + Ki0g3— 000%)

+ 2 K} K3 K5 (645 + Cog) (Cog + €aa) (€13 + €55)

— K3 K3 (ca3 1 €q4)? (BS ey + KS e+ Kiez— 0w?) —

— KT K3 (e15+ ¢55)® (K cg6 + K3 Cop + K§ 04— 000%) —

o — KK (e1a+ o) (K55 + Kooy + Kicgg—o00?) = 0. (50)

wobei K 1 Ky und K, die Komponenten des Wellezahlvektors in

Richtung der kristallographischen Achsen a, b, ¢, ¢ die Dichte und
o die Anregungskreisfrequenz bedeuten.

Untersucht man die ebenen Schnitte dieser Formfrequenzfléache
senkrecht zu den kristallographischen Achsen, so erhilt man:
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Beobachtung parallel zur a-Achse: Man setzt K; = 0 in Gleichung
(50) und erhilt nach einfacher Umformung:

(K% Ceg K% Cs5— 0W?) [(KE Coo T K? 44— 0W?) (K% Caq T Kﬁ Ca3— 007
- K% K% (cag -+ c44)%] = 0.

Der untersuchte Schnitt ist eine Kurve 6. Grades, die in diesem
Falle in eine Ellipse:

K3 oo + K3 €55 — 00® =0 (51)
und eine Kurve 4. Grades:
(Kg 022+K§ C1a— 00%) (K% C44+K§ Ca3— 00?) —~K§ Kg (C2$+C44)2 =0 (52)

zerfallt. Warum die Ellipse (51) in der Beugungsfigur nicht erscheint,
wird 1im Anhang 2 (S. 834) erklart.

Aus den Achsenabschnitten von (52) ergeben sich die Elastizitéts-
konstanten nach den Formeln, die auf S. 808 (3) angegeben sind.

Beobachtung parallel zur b-Achse. Setzt man in Gleichung (50)
K, = 0, so zerfallt der untersuchte Schnitt in eine Ellipse

K? Cgg T Kg Cyy— 0? =0 (53)
und emne Kurve 4. Grades
(Kicy + Kj g5~ 002) (KZ 55+ K3 0g5— 00%) - K5 K3 (¢13+¢55)2 = 0. (54)

Die Ellipse (53) tritt in der Beugungsfigur wiederum nicht auf:
Sie hat die Intensitdt Null. Die Achsenabschnitte der Kurve (54)
sind auf 8. 808 unter (4) angegeben worden.

Beobachtung parallel zur c-Achse. Es wird K; = 0 gesetzt. Man
erhilt wieder eine nicht erscheinende Ellipse

K 55 + Kj ¢y — gw? =0 (55)
und eme Kurve 4. Grades
(KT 11+ K3 cgs— 00?) (K5 ot K5 op— 0w?2) —~ KT K3 (¢15+C66) 2= 0, (56)

deren Achsenabschnitte auf S. 808 unter (5) angegeben wurden.
53
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b) Kubisches System (NaClO,).
Man hat nur drei von Null verschiedene elastische Konstanten

geméss dem Schema:
cn €2 €2 O 0 0
(2t ¢ 0 0 0
C1s €3 €3 O 0 0
0 0 0 R 0
0 0 0 0 Cyg O
0 0 0 0 0 Caa (57)

Die Gleichung der Formfrequenzfldache lautet dann:

[K3ey + (K3 + K3) ¢yy— ow?] [KZ ey + (K5 + K3) ¢4 — 0007 [ K3 e +
+ (K7 + K3) cyy—000®] +
+2 K} K5 K3 (¢15 + €44)* —
— K5 K (e15+ €40) 2 [ K5 €4y -+ (K5 + K3) €4 — 000%] —
— K% Kg (C12 + Caa) 2 [KG c1n + (KT + K?) Caa— QW3] —
- K? K% (€12 + €a4)? [K% e+ (BG4 K3) ¢y — 0] = 0. (58)

Erfolgt die Beobachtung parallel zu irgendeiner der gleichwer-
tigen kristallographischen Achsen (z. B. entsprechend K; =0), so
zerfallt der untersuchte Schnitt in einen Kreis

(K3 + K3) ¢gq — 0?2 =0 (59)
der nicht erscheint, und eine Kurve 4. Grades:
(KZen+Kjca—00?) (Ko + Kjcyy— 0002) - K3 K (c15+040)* = 0, (60)

deren Achsenabschnitte auf 8. 815 unter (6) angegeben wurden.

8. Anhang 2.

a) Wir wollen hier das nicht Auftreten im Beugungsbild der
Ellipse (51) im Falle der Beobachtung parallel zur a-Achse bel
einem Seignettesalzkristall begriinden.

Wir wissen, dass eine Beugungsfigur dadurch zustande kommt,
dass die im Kristall laufenden elastischen Wellen eine periodische
Anderung der Brechungsindizes hervorrufen.

Die optischen Eigenschaften eines anisotropen Korpers werden
bekanntlich durch das Indexellipsoid

Yo e (61)

a1 My

3 2
X

M

D1
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charakterisiert. Schneidet man dieses Ellipsoid mit einer zur Wellen-
normale des Lichtes senkrechten Ebene, so geben die Halbachsen
der Schnittellipse die Schwingungsrichtungen und Brechungs-
indizes des ordentlichen und ausserordentlichen Strahles an.

Ist der Kristall undeformiert, so ist das Indexellipsoid in allen
Punkten dasselbe. Wird der Kristall hingegen inhomogen defor-
miert, so werden die Indexellipsoide verschieden deformiert und
gedreht. Im Falle des Durchganges emner elastischen Welle sind
diese Deformationen der Indexellipsoide periodisch und bewirken
die fiir die Beugung verantwortliche &rtliche Anderung der Bre-
chungsindizes. Die Gleichung des Indexellipsoides im deformierten
Zustand wird nunmehr:

3 ‘
2 Gy T, X, =1, (62)
nr=1

wobel die a,, = a,, die sogenannten Polarisationskonstanten dar-
stellen.

Nach Pockgrrns?®) unterscheiden sich nun diese Konstanten von
denen des undeformierten Zustandes durch Grossen, die in 1. N&-
herung lineare Funktionen der 6rtlichen Deformationen sind, d.h.

| 2 .
Qi O,uv " = leyvor ¢61: (63)
" gT =
wober :
5 - 1firu=v
v 0 i p % v,

und die p,,,,geméss dem Schema auf S. 821 leicht in die sonst mit
pi bezeichneten Pockel’schen elasto-optischen Konstanten um-
zuschreiben sind. Von den sechs Gleichungen, die aus der Formel
(68) zu gewinnen sind, geben drei die Anderungen der Liingen der
Ellipsoidachsen, drei die Anderungen der Orientierungen derselben
1m Raume an.

Fiir Seignettesalz lautet das Schema der elasto-optischen Kon-
stanten nach Pockgerns??):

P Pz Pz O 0 0
Par P2 Pes O 0 0
Ps Ps2 Pss O 0 0
0 0 0 Paa O 0
0 0 0 0 Pss O
0 0 0 0 0 Des (64)
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Durch Einfithren der Wellenzahlwerte derjenigen elastischen
Welle, welche die Ellipse (51) als Beugungsfigur erzeugen mochte,
in die Amplitudengleichung der Fues-Ludloff’schen Theorie kann
man sich iiberzeugen, dass es sich um eine Transversalwelle handelt,
die sich in der be-Ebene fortpflanzt und in der a-Richtung schwingt.
Sie ruft also die Schubdeformationen z, und z, hervor. Die Glei-
chungen (63) werden demnach, ausfithrlich geschrieben, wenn man
auch das Schema (64) beriicksichtigt:

1 1 1
l a'll - = 0, azzg S == 0, 6633'”‘ o () s

ni R, fn; (65)
I a3 =0, Uz = P55 Ty Uyp = Pgg Ty - :

Somit wird die Gleichung (62) des durch diese Welle deformierten
Indexellipsoides die folgende:

2 2 2
x) x, X

—, T + (2 pys ) Ty X5 + (2 Pgg X)) Ty T = 1. (66)
1 2 3

Schneiden wir dieses Ellipsoid mit der zur a = x;-Richtung senk-
rechten Ebene, so erhalten wir die Schnittellipse:

x2 .’L‘Q
2 3 0
A Y (67)
,”’2 7?/3

welche mit der entsprechenden des undeformierten Indexellipsoides
(61) vollstédndig tibereinstimmt.

Der Brechungsindex des Seignettesalzes fiir eine Lichtwelle mit
der Wellennormale parallel zur a-Achse wird also nicht durch eine
elastische Welle beeinflusst, welche sich in der be-Ebene fortpflanzt
und in der a-Richtung schwingt. Die entsprechende Beugungsfigur,
die durch die Ellipse (51) gegeben ist, hat demnach iiberall die
Intensitit Null. | |

b) Das Experiment zeigt eindeutig, wie auf S. 803 erwiahnt wurde,
dass bei gleicher Ultraschallintensitat die Beugungsfigur von
KH,PO, bei Durchstrahlung in der c¢-Richtung viel leichter er-
scheint als diejenige bei Durchstrahlung in der a-Achse und als
alle Beugungsbilder des Seignettesalzes.

Wir begriinden dies wie folgt: Zeigt der untersuchte Kristall in
der Beobachtungsrichtung keine natiirliche Doppelbrechung, so ist
die Intensitdt des an einer Transversalwelle abgebeugten Lichtes
viel grosser als wenn in der Beobachtungsrichtung eine natiirliche
Doppelbrechung vorhanden ist.

Wird néimlich in einem Korper an einer Stelle eine Anderung An
des Brechungsindex erzeugt, so ist die Intensitét des an dieser Stelle
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abgebeugten Lichtes nach Brirrouin®%) direkt proportional dem
Quadrat der Brechungsindexénderung: J = ¢ (4n)2, solange An
sehr klein ist, sonst nach Raman und Nartu?!) oder EXxTERMANN
und WaNNIER®Z) eine kompliziertere, monoton wachsende Funk-
tion von An. Wir wollen diese Abhéngigkeiten nicht néaher unter-
suchen und beschrinken uns auf das Studium der Brechungs-
indexénderung An.

Wir betrachten zuerst den Fall, dass natiirliches, monochroma-
tisches Licht in der ¢-Richtung eines KH,PO,-Kristalles ankomme.
Im undeformierten Zustande des Kristalles 1st der Querschmtt
durch das Indexellipsoid senkrecht zum einfallenden Licht ein
Kreis _
= - (68)

B DO

x: +

Wird nun der Kristall deformiert, so wird der betreffende Quer-
schnitt eine Ellipse

(yy @5 + Ggy T3 + 2095 Ty 5 = 1, (69)

wobel der Winkel ¢ zwischen der z,-Achse und der Richtung &,
der Ellipsenhalbachse durch

tg2p =2 (70)

gegeben ist. Dieser Winkel ist von der absoluten Grosse der Defor-
mation unabhéngig und im allgemeinen endlich. Man erzeugt damit
eine Spannungsdoppelbrechung: Das urspriingliche natiirliche Licht
wird partiell polarisiert. .

Die Halbachse der Ellipse (69) in der &,-Richtung ist 1/)/A4,,
wobel

1 1 i ;
Age = 5 (A3 + 099) + V4 al, + (01— az)* - (71)

Die Anderung des Kreisradius zur Grosse 1/)/A,, ergibt nun die
von der Deformation hervorgerufene Anderung An, des Brechungs-
index.

Diese Grosse konnen wir leicht angeben, wenn wir annehmen,
dass Anq/n, <€ 1 i1st, was in der Praxis sicher erfiillt ist. Man erhalt
dann fir die Brechungsindexénderung der beiden Lichtkompo-
nenten, die in Richtung & und &, schwingen:

1 1 1 ]
Am=—4m [(au N _..%2.) i (%2 N ?@2) + Vdal, + (an—as)® .| (72)
1

1
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Lassen wir nun durch den Kristall nur die Scherungswelle z,
durchlaufen und berticksichtigen, dass das Schema der elasto-
optischen Konstanten des KH,PO, das folgende 1st

Pu Pz Pz O 0 0
Pz Pun Pz 0 0 0

Psi Ps1 Paz O 0 0
0 0 0 Paa O 0

0 0 0 0 Pagr 0
0 0 0 0 0 Deas (73)

so folgt daraus mit (63) sofort, dass

1
o = 0, @35 = Peg Ty

1 "y

ayy—— = 0, tgy—
n

Damit reduziert sich die Formel (72) zu

1 . 1 /
| Ay | '““cj”f a123?"‘f2'766 Fy s \74)
Die Anderung des Brechungsindex ist also direkt proportional der

Deformation.

Nun untersuchen wir das analoge Problem bei Durchstrahlung
des Seignettesalzes in der a-Richtung mit natiirlichem, monochro-
matischem Lichte. Im undeformierten Zustande ist der entspre-
chende Querschnitt durch das Indexellipsoid

1m deformierten Zustande
2 D : . -
Ugp T3 + gy Ty + 2 gy Ty T3 = 1, (76)

wober der Winkel & zwischen der alten z,-Achse und der neuen
&5-Achse der deformierten Ellipse durch die Formel

gegeben 1st. Die Halbachsen der deformierten Ellipse (76) sind
1/y A mit

1 1 IV n)" 1 I - N
4= — (@ay + agg) L 5 Vdag + (Ggy — 35)°



Elastizitéit von piezoelektrischen und seignetteelektrischen Kristallen. 839

und die Anderungen der Brechungsindizes n, und n, fiir die Licht-
komponenten in Richtung &, und &

1 1 1
2) i (a33_n‘3) + ]/4 a3 + (Ggy — a133)*

9 ()

Lot ) i > ()
| . 1 Z

3 3

1 [
3

Lassen wir nur die reine Scherungswelle durchlaufen, welche die
Deformation y, hervorruft, so folgt aus (63) und (64), dass

=t

1
=0, g3 — ) =0, Go3="Du Y.
'3

Ggo — —4
7

~
[34)

o

Danach werden obige Formeln (77):
1 4] /1 1 e (1 1\2
Ang = ny|— (ﬁ; — ) + ]/4 gz T (““5 — ) }
i n, ng n, n,
1 .71 1 2 1 1\2
4"3:2“".2 (2“2)—]/4“234‘“(‘5‘_ ) ] :
[\ 7, " i Ny

Fir optisch zwelachsige Kristalle gilt bei nicht zu schwacher Dop-
pelbrechung

(78)

B L. B (79)

Bpp—@yy 1 1
2 2
Ny Ry

Die Entwicklung der Gleichungen (78) liefert dann allgemein

2

- 1 q a;,u v
An,=gm "7 (mv=2oders3)
; v—:‘; — *'“}*
/)qu "
oder also
1 g a',uv \
A By =5 B3 [ Gy - (80)
Ty T T o
o ,

Der Faktor a,,, / ! 'f_‘i stellt nach (79) eine sehr kleine

2 2

n

B M v - .
Grosse dar. Es resultiert daraus, dass, bei gleicher Deformation, die

Grosse 4An, der Formel (80) viel kleiner als die entsprechende
Grosse An, der Formel (74) ist.

c) Die Figuren 34 bis einschliesslich 40 geben die Beugungsbilder
eines Seignettesalzkristalles bei verschiedenen Temperaturen und




TAFEL 4.

Fig. 34. Fig. 35
T = —50°C. T = —30°C.

Fig. 36 Fig. 37.
T = —-271,5°C. T = -20°C.

Fig. 39.
T — _160C. T = —100C.

Fig. 40.
AF = =9 (L,
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Durchstrahlung in Richtung der seignetteelektrischen a-Achse
wieder. Wie ersichtlich, beobachtet man in der Nidhe des unteren
Curiepunktes bei steigender Temperatur immer unvollstindigere
Beugungsbilder. Zuerst verschwinden die Beugungspunkte mit
den grossten Abstédnden von der die Symmetrieachse des Beu-
gungsbildes bildenden Anregungsrichtung, bis nur noch ein schma-
ler Teil der Beugungsfigur tibrigbleibt, der sich schliesslich auf
Punkte in der Anregungsrichtung reduziert. Im Curiegebiet behalt
das Bild letztere Form bei. Beim Uberschreiten des oberen Curie-
punktes wiederholt sich der Vorgang in umgekehrter Richtung und
bel noch hioheren Temperaturen tritt wieder eine vollstandige, der
be1 tieferen Temperaturen erhaltenen dhnliche Beugungsfigur auf.

Diese Erscheinung lasst sich etwa folgendermassen plausibel
machen. Bekanntlich @ndert sich die Struktur des Seignettesalzes
beim Uberschreiten der Curiepunkte, da der sonst rhombische
Kristall im Curiegebiet monoklin wird. Entsprechend sollte die
Auswertung der Beugungsfiguren im Curiegebiet eigentlich nicht
nach den Formeln (3) bis (5) erfolgen, sondern es wére vielmehr
die Formfrequenzflache fiir den monoklinen Kristall auszurechnen.
Hierbei 1st zu beachten, dass dem von VoieT33) angegebenen Schema
der elastischen Konstanten eines monoklinen Kristalls die allge-
mein angenommene Konvention der Achsenbenennung zugrunde
legt, wéhrend speziell fiir das Seignettesalz eine besondere Kon-
vention getroffen worden ist (vgl. auch Capy3%)). Das Schema der
elastischen Konstanten fiir das monokline Seignettesalz erhélt man
aus dem Voigt’schen durch eine Vertauschung der Indizes 1 und 3
sowle 4 und 6 zu:

(81)

o o o O
o o o O

0 0 0 0 Css  Cse
0 0 0 0 Ceg  Cgg

Mit diesem Schema haben wir die Gleichung der Formfrequenz-
fliche des monoklinen Seignettesalzes ausgerechnet und folgende,
fiir die Auswertung der Beugungsfiguren im Curiegebiet giiltigen
Formeln der Achsenabschnitte abgeleitet:
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Beobachtung parallel zur X-Achse:

K -pez2? Cas & V(o — caa)® + 4By
Y1, 2 (cap €4a — €34)

K2 e Q 0)2 Cag + 044__i V(033 _‘6;4)2— -—}_ 4__634

1,2 2 (cg3 €44 — €3a)

Beobachtung parallel zur Y-Achse:
K2 — ow?

%1 €11

K2 — 0 w? Co5 + Cog — V(ess — coe)® + 4 24
Ta 2 (c55 Ces — CBs)

———
K2 — gttt - View = cu® + 4 iy
%1 2 (cg3 €0 — €34)

K2 =22
A .
2 Css

Beobachtung parallel zur Z-Achse:
Jrc L

1 Cll

K2 — 0 w2 Cs5 T Ceg + Vlfss - 666)2 + 4cq
2 2 (c55 o — CE6)

K2 —pe2le2™ u— Vice — cas)® + 45y
Yy 2 (Cop €4q — €34)

: o w?
Ko = e

Die Umwandlung an den Curiepunkten bewirkt also das Auf-
treten neuer elastischer Konstanten. Dabei 1st der Einfluss der cg4-
Konstante sicher nicht gross, weil die entsprechende Beugungs-
figur keine merkliche Anderung aufweist. Weitaus wichtiger ist
das Auftreten der Konstanten ¢, welche die Druckwellen z,, y,
und 2z, mit der anomalen y,-Welle koppeln.

Es 1st nun interessant, festzustellen, dass im Curiegebiet die von
Longitudinalwellen hervorgerufene Beugungsfigur bei Durchstrah-
lung in der a-Richtung verschwindet, wihrend die Beugungs-
figuren bei Durchstrahlung in der b- und c¢-Richtung, sowohl ausser-
halb wie auch innerhalb des Curiegebietes, vollstindig auftreten.

Die von einer elastischen Welle hervorgerufene Brechungsindex-
dnderung An wird von der Umwandlung des Kristalls in die mono-
kline Form fiir in der b- oder ¢-Richtung einfallendes Licht nicht,
fiir Durchstrahlung in der a-Richtung aber wohl beeinflusst.
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Wird z. B. eine z,-Welle durch den Kristall geschickt, so lautet
die Gleichung des deformierten Indexellipsoides fiir das rhombische
Seignettesalz

1 1 1
(‘? + P13 2. ) 5‘3% + (_2 + Pog 2, ) 515% + (‘E + P33 2. ) :E% =1 (82)
G e "3 /

und fiir das monokline Seignettesalz (das Schema der elasto-
optischen Konstanten ist analog demjenigen der elastischen Kon-
stanten (81)):

1 1 1
(_2‘+P13 Zz) xf—}—(T ‘|‘p233z) $§+(T +Psa3 Zz)w§+(2p432z)ﬂ?2 z3=1 (83)
& o the

Daraus folgt, dass fiir Licht einfallend in der mz-Richtﬁng die
,,chombische’ Schnittellipse durch die Gleichung

T 1
(?ermzz ) x5+ (ﬁ—%p%zz)wg:l,

1 3
und die ,,monokline” Schnittellipse ebenso durch

(iz_’_pmzz ) .’E?—i— (iz +p33zz> £U§= 1
™ "3
dargestellt wird. Da die Konstanten p;3 und pg; von der Umwand-
lung kaum beeinflusst werden diirften, sind die beiden Ellipsen
gleich und die Beugung &ndert sich nicht.

Fiir Licht einfallend in der ;-Richtung hingegen wird die Glei-
chung der ,,rhombischen‘* Schnittellipse

1 1
(ng"l"pzszz) :13%—{— (Vg + P33 2. ) .’,D%*—“l

\

wahrend die Gleichung der ,,monoklinen* Schnittellipse lautet:

(12 +p232z) x5 -+ (35 +P333z) T3+ (2Pa32:) Ty T3 =1.
Ny Ry .

Es 1st also offensichtlich, dass die Umwandlung des Kristalles
in die monokline Form die Beugung des Lichtes in der a-Richtung
beeinflusst. Wichtig ist das Auftreten in der Gleichung der Schnitt-
ellipse der elasto-optischen Konstante p,s, die mit der anomalen
Deformation y, in Zusammenhang steht.

Nun sind leider die Werte der elasto-optischen Konstanten pg,
sowie ihres Verhaltens als Funktion der Temperatur im Curiegebiet,
vollig unbekannt. Es besteht eine Moglichkeit, dass die Temperatur-
abhéingigkeit der Konstanten p,; fur das Verhalten der Beugungs-
figur bei Durchstrahlung in der a-Achse verantwortlich gemacht
werden kénnen. Diese Vermutung kénnen wir aber, auf Grund der
Unkenntnis der p,;, weder beweisen noch kontrollieren.

*
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Herrn Prof. Dr. P. ScHERRER, unter dessen Leitung diese Arbeit
entstanden ist, mochte ich an dieser Stelle fiir sein forderndes
Interesse meinen herzlichsten Dank aussprechen.

Weiter gilt mein Dank Herrn Prof. Dr. L. BeEramann (Wetzlar),
dessen viele briefliche Ratschlige fiir die Ausfithrung der Versuche
emne grosse Hilfe bedeuteten.
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