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Elektrische Sättigungserscheinungen und elektrokalorischer
Effekt von Kaliuniphosphat KH2P04

von Hans Baumgartner.
(24. VII. 1950.)

Zusammenfassung. Die vorliegende Arbeit befasst sich mit dem seignette-
elektrischen Verhalten von KH2P04-Kristallen in einem sehr engen Temperaturbereich

direkt oberhalb des Curiepunktes — 145° C bis —150° C). Bei diesen
Temperaturen werden zwei Effekte, die sonst kaum beobachtbar sind, sehr gross
und der Messung zugänglich. Es handelt sich um den elektrokalorischen Effekt
einerseits und den Abfall der differcntiellen Dielektrizitätskonstanten beim
Anlegen eines elektrischen Vorfeldes andererseits. Solche Messungen haben eine grosse
Bedeutung für die Theorie der Seignetteelektrika.

Die oben erwähnten Kristalle (und ihre Isomorphen) sind wohl die einzigen
Substanzen, die einen deutlich messbaren elektrokalorischen Effekt zeigen: ein
Feld von 10000 Volt/cm bewirkt bei der Temperatur 1° oberhalb des Curiepunktes
bereits eine adiabatisohe Temperaturänderung von über 1° C.

Durch umfangreiche Messungen und durch theoretische Überlegungen wird
gezeigt, dass und in welcher Weise der Abfall der Dielektrizitätskonstante mit
steigender Feldstärke verknüpft ist, einerseits mit dem elektrokalorischen Effekt
und andererseits mit den Sättigungserscheinungen der elektrischen Polarisation.
Der elektrokalorische Effekt erzeugt durch Temperaturschwankungen als Funktion
des Feldes Polarisationsänderungen, die den ursprünglichen durch das Feld
erzeugten entgegengesetzt sind und so die Dielektrizitätskonstante verkleinern.
Ausserdem steigt schon oberhalb des Curiepunktes die Polarisation bei hohen
elektrischen Feldern nicht mehr proportional mit dem Felde an, sie strebt auch da
einem Sättigungswerte zu. Die Messungen wurden dazu verwendet, um zu
entscheiden, ob es möglieh ist, die Seignetteelektrizität durch eine Theorie mit innerem
Feld, entsprechend der Langevin-Weiss'schen Theorie des Ferromagnetismus, oder
durch die statistische Theorie von Slater1) darzustellen. Die beiden Theorien
unterscheiden sich in bezug auf die Sättigungserscheinungen sehr stark voneinander.
Die gemessenen Sättigungskurven oberhalb der Curietemperatur sind ganz im
Widerspruch mit der Slater'schen Theorie; sie zeigen eher den Charakter, der
nach dem Langevin-Weiss'schen Ansatz zu erwarten ist. Damit aber die letztere
Theorie verwendet werden kann, muss man die Langevinfunktion L (oc) durch eine
allgemeinere (P (a) ersetzen und ausserdem eine ganz geringfügige
Temperaturabhängigkeit des Dipolmomentes annehmen. Dann aber kann man das Verhalten
oberhalb und unterhalb der Curietemperatur quantitativ richtig darstellen.
Interessant ist auch die Tatsache, dass die anomale Feldabhängigkeit des Piezomoduls
und des Elastizitätsmoduls auch im Sättigungsgebiet oberhalb der Curietemperatur

auf das anomale Verhalten der Polarisation zurückgeführt werden
kann: die Deformation bleibt auch im Sättigungsgebiet streng proportional zur
Polarisation.
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I. Einleitung.

Kaliumphosphatkristalle zeigen in ihrer c-Achsenrichtung ein
elektrisches Verhalten, das dem magnetischen Verhalten der Ferro-
magnetika in vielen Beziehungen analog ist. Oberhalb der
Curietemperatur 0 ist ein KH2P04-Kristall paraelektrisch. Die
Dielektrizitätskonstante steigt mit sinkender Temperatur hyperbolisch an
und folgt dem Curie-Weiss'schen Gesetz:

e =eu+ r_@ •

Unterhalb der Curie-Temperatur herrscht spontane Polarisation.
Wie beim Ferromagnetismus werden von vielen Autoren permanente,

bewegliche Dipole für diese Erscheinung verantwortlich
gemacht. Im Falle des KH2P04 können die Wasserstoffbindungen,
die zwei P04-Gruppen verknüpfen, als Dipole betrachtet werden.
Der Wasserstoffkern liegt nicht genau in der Mitte zwischen den
zwei Sauerstoffatomen der Hydrogenbindung 0—H...O. Dieser
asymmetrischen Bindung müssen wir ein elektrisches Dipolmoment
zuschreiben. Wenn der Wasserstoffkern von einem Sauerstoff in
die Nähe des andern springt, wechselt der Dipol sein Vorzeichen.

Die Analogie zum Ferromagnetismus veranlasste Busen2) die
Langevin-Weiss'sehe Theorie für den elektrischen Fall des KH2P04
anzuwenden. Es zeigte sich, dass gewisse Modifikationen der Theorie

notwendig sind. Bei der Polarisation spielen nicht nur die Dipole
eine Bolle, sondern auch der Untergrund muss in einem beträchtlichen

Masse beteiligt sein. Ferner wird der Zusammenhang zwischen
Polarisation und innerem Feld nicht durch eine Langevinfunktion
vermittelt: Der Anstieg der spontanen Polarisation mit sinkender
Temperatur unterhalb des Curiepunktes ist viel steiler als zum
Beispiel beim Eisen.

Die erste der Langevin-Weiss'schen Theorie entsprechende Theorie

der Dielektrika mit Dipolen stammt von Debye3). Debye
betrachtet die Lorentzkugel, die einen Dipol umgibt. Die polarisierte
Materie ausserhalb der Kugel erzeugt im Innern derselben ein Feld
von 4jï/3-P. Wenn die Wirkung der Dipole innerhalb der Lorentzkugel

auf den betrachteten Dipol verschwindet oder
vernachlässigbar klein ist, gelangt man zu der Gleichung:

f-1 4 TT /
t + 2 a \ u -alci

Diese Gleichung stimmt bei Gasen und Flüssigkeiten mit geringer
Dipolkonzentration mit der Erfahrung gut überein. Bei grösseren
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Konzentrationen stellt man Abweichungen fest, die mit der
Konzentration anwachsen. Diese Abweichungen werden als Folge der
Assoziation der Dipole angesehen. Die Dipole selbst erzeugen ebenfalls

ein elektrisches Feld, das im der Nähe der Dipole sehr stark
ist. Steigert man die Dipolkonzentration bis die Dipole gegenseitig
in ihre Nahfelder gelangen, so tritt die Tendenz auf, sich nach
Möglichkeit antiparallel zu stellen. Jeder Dipol besitzt dann eine
entgegengesetzt polarisierte Umgebung, die sein Dipolmoment nach
aussen abschirmt und die, wie Onsager4) gezeigt hat, auch das den
Dipol richtende Feld heruntersetzt. Ohne Assoziation musste nach
der Debyeschen Theorie wie beim Ferromagnetismus die
Suszeptibilität mit sinkender Temperatur zunehmen und am Curiepunkt 0
unendlich werden. Ebenso musste spontane Polarisation auftreten
(4 jr/3-Katastrophe). Die Assoziation ist stark genug, um das
Anwachsen der D. K. ins Unendliche zu verhindern; es sind keine
Flüssigkeiten mit spontaner Polarisation bekannt.

Mehrere Autoren versuchen die Wirkung der Assoziation
rechnerisch zu erfassen. Onsager4) betrachtet die Umgebung eines

Dipols als homogenes Dielektrikum, das vom Dipolfeld momentan
entsprechend der Lage des Dipols (die infolge der Temperaturbewegung

des Dipols stark wechselt) polarisiert wird. Nach
Onsager wird dann das den Dipol richtende Feld nicht mehr E +
4nß-P, sondern (E + 4tcP)/(2s + 1). Böttcher5) wies daraufhin,
dass die Onsagersche Theorie auf die empirisch ermittelte Formel
von Van Arkel und Snoek für die D. K. von Dipolsubstanz in
dipolfreier Dipolflüssigkeit führt. Die Onsager'sche Theorie ist
folglich experimentell gut gestützt*). Theoretische Ansätze im
gleichen Sinne sind von Van Vlek6), Kirkwood7) und Frölicii8)
gemacht worden. Die Onsagersche Theorie zeigt, wie bei wachsender
Dipolkonzertration die Wechselwirkung eines Dipols mit seinen
unmittelbaren Nachbarn immer wichtiger wird und schliesslich
fast allein für die Richtung eines Dipols massgebend wird. Bei
festen Dielektrika kann der Einfluss der nächsten Nachbarn noch
deutlicher zum Ausdruck kommen. In diesen Stoffen sind meistens
nur einzelne diskrete Dipolrichtungen möglich, wobei zwischen der
Richtung eines Dipols und den Richtungen der umgebenden Dipole
gewisse strukturbedingte Beziehungen eingehalten werden müssen,
die nur von einer einzigen Dipolrichtung erfüllt sind. Jeder Dipol
ist gezwungen, sich so einzustellen, dass er zu Nachbarn passt, und
das elektrische Feld der entfernteren polarisierten Materie vermag

*) Pirenne9) weist darauf hin, dass auch bei dieser Theorie eine 4rr/3-Kata-
strophe möglich ist, was den Behauptungen Onsagers widerspricht.
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die Dipolrichtung nicht zu beeinflussen. Auf diese Weise ist vor
allem das anomale dielektrische Verhalten von Eis10) erklärt
worden. Sobald das Eis schmilzt, verschwinden natürlich die
Strukturbedingungen für die Dipolrichtung. An ihre Stelle tritt aber
die Assoziation. Beim Schmelzpunkt des Eises tritt aber keine Un-
stetigkeit der Dielektrizitätskonstanten auf, was die
Wesensverwandtschaft dieser Strukturbedingungen und der Assoziation bei
Flüssigkeiten beleuchten mag.

Slater1) weist darauf hin, dass in bezug auf die Anordnung der
Hydrogenbindungen, welche die Dipole verkörpern, zwischen
KH2P04 und Eis eine grosse Ähnlichkeit besteht. Es sei anzunehmen,

dass die Dipolrichtungen wie beim Eis voneinander abhängig
seien, und eine Wechselwirkung zwischen Dipolen, wie sie die
Langevin-Weiss 'sehe Theorie beschreibt, komme bei einer
Dipoldichte, wie sie im KHaP04 vorhanden ist, nicht in Betracht. Seine
auf Grund dieser Erkenntnisse aufgebaute Theorie vermag das
Curie-Weiss'sche Gesetz (1) richtig wiederzugeben, wobei die
Konstante A besser mit der Erfahrung übereinstimmt als bei der Debye-
schen Theorie. Sie sagt eine Umwandlung erster Art mit latenter
Wärme an einem bestimmten Temperaturpunkt 0 voraus. Die
Umwandlung dehnt sich also hier nicht über einen endlichen
Temperaturbereich aus, wie dies die Langevin-Weiss'sche Theorie
verlangt. In Wirklichkeit erstreckt sich die Umwandlung über einen
Bereich von etwa 7° C (Breite der Anomalie der spez. Wärme), was
weder den Voraussetzungen der einen, noch denjenigen der andern
Theorie entspricht. Slater äussert die Ansicht, die Umwandlung sei
im Grunde genommen erster Art, würde aber durch Effekte sekundärer

Natur, wie innere Spannungen usw. verwischt. Es besteht
die Möglichkeit, aus dem dielektrischen Verhalten oberhalb des

Curiepunktes, wo noch keine dielektrische Hysteresis herrscht,
Aufschluss über die Gültigkeit der einen oder der andern Theorie
zu erhalten. Beide Theorien sagen einen hyperbolischen Anstieg
der Suszeptibilität mit sinkender Temperatur voraus, was mit dem
Experiment übereinstimmt. Aber die Feldabhängigkeit der
Suszeptibilität ist bei den beiden Theorien verschieden.

Bei den meisten Dielektrika sind Polarisation und elektrisches
Feld zueinander proportional, d. h. es gelingt nicht, aus dem
Proportionalitätsbereich heraus zu kommen. Bei KH2P04 ist dies nicht
der Fall. Z. B. 0,3° C oberhalb des Curiepunktes erreicht die
Dielektrizitätskonstante den Wert 10000. Nimmt man Proportionalität

zwischen Polarisation und Feld an, so berechnet sich die Polarisation

bei 20000 Volt/cm (höchster experimentell erreichbarer Wert



Sättigungserscheinungen von Kaliumphosphat KH2P04. 655

für KH2P04) zu 17,7-IO"6 Clb/cm2, wenn man die bei kleinen
Feldern gemessene DK sc 10000 zugrunde legt. Die grösste gemessene

spontane Polarisation, die wahrscheinlich der Parallelstellung
aller Dipole entspricht, ist aber nur 5-10-6 Clb/cm2. Es besteht
somit kein Zweifel, dass man auch im paraelektrischen Gebiet den
Linearitätsbereich verlassen kann. Es schien uns deshalb lohnend,
diese Sättigungserscheinungen genau zu studieren und mit der
Theorie zu vergleichen. Das ist die Hauptaufgabe der vorliegenden
Arbeit.

Die Sättigungserscheinungen sind ausserdem noch insofern
interessant, als sie sich auch auf die mit der Polarisation verknüpften
Konstanten, wie Dielektrizitätskonstante, Elastizitätsmodul und
Piezomodul auswirken, welche hier starke Feldabhängigkeit zeigen.
Diese Feldabhängigkeit der DK erlaubt eine genauere Bestimmung
der Polarisation, als die in mancher Beziehung nicht einwandfreie
ballistische Methode.

Spezielle Aufmerksamkeit verdient der elektrokalorische Effekt,
der in diesem Temperaturbereich besonders gross ist. Ein Kristall,
der bis zum Curiepunkt abgekühlt worden ist, erwärmt sich bei
Anlegen eines Feldes von 20000 Volt/cm um 2,9° C. Die entsprechende

Erscheinung beim Magnetismus, der magnetokalorische
Effekt, ist wohl bekannt und wird zur Erzeugung besonders tiefer
Temperaturen verwendet. Der elektrokalorische Effekt beeinflusst
in Nähe des Curiepunktes die Dielektrizitätskonstante ganz wesentlich.

(Im Mittel Faktor 2.) Es war eine interessante und nicht
einfache Aufgabe, diesen Effekt einmal genau zu untersuchen.

II. Ballistische Messungen der Polarisation.

Zur Messung dienten Kristallplatten von etwa 1 mm Dicke und
0,5 cm2 Fläche, auf welche Silberelektroden aufgedampft wurden.
Ein Schema der Messapparatur ist in Fig. 1 dargestellt.

Der Schalter erlaubt die Gleichspannung V- an den Kristall zu
legen, wobei die auf den Kristall geflossene Ladung mit dem
ballistischen Galvanometer gemessen werden kann. Aus dem Ladungs-
stoss und der Grösse der Kristallfläche lässt sich die Polarisation
berechnen. Zur Messung des Entladungsstosses schliesst man den
Kristall über das ballistische Galvanometer kurz. Will man die
Summe von Ladungs- und Entladungsstoss messen, so muss man
bei angelegter Spannung den Umpoler bedienen.

Die Temperatur wurde mit einem Flüssigkeitsthermostaten, wie
ihn schon Bantle11) und Cafliscii12) bzw. Scott und Brick-
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wedde13) beschrieben haben, konstant gehalten. Bei den Messungen
ist darauf zu achten, dass die Temperatur nicht durch den
elektrokalorischen Effekt verfälscht wird. Nach dem Einschalten der
Gleichspannung muss man warten, bis sich die Temperatur der
Badtemperatur angepasst hat. Auf die durch Umpolen gemessenen
Werte wirkt sich der elektrokalorische Effekt fast nicht aus. Im
Moment der Entladung kühlt sich der Kristall ab, um bei der
nachfolgenden Aufladung wieder die ursprüngliche Temperatur zu
erreichen. Der Prozess verläuft praktisch adiabatisch. Auch beim
Entladen spielt der elektrokalorische Effekt keine Rolle. Schwierigkeiten

bieten sich beim Aufladen. Ist der Kristall auf einer bestimmten

Temperatur des Thermostaten und legt man ein Feld an, so
erhöht sich die Temperatur auf einen unbekannten Wert. Man muss

Kristall

Galvanometer

-p--0-Ï
Umpoler Schalter

Fig. 1.

Schema der Messapparatur zur Messung der Polarisation
nach einer ballistischen Methode.

das Feld anlegen und warten, bis der Kristall den bekannten
Temperaturwert des Thermostaten hat. Darauf muss mit kurzgeschlossenem

Galvanometer entladen und sofort wieder aufgeladen werden.
Wenn der Prozess schnell genug vor sich geht, so nimmt der Kristall
gerade wieder die Temperatur des Bades an. Es gibt also drei
Möglichkeiten, die Polarisation zu messen: Laden, Entladen und
Umpolen, die aber nicht übereinstimmende Resultate liefern.

Die untere Kurve in Fig. 2 zeigt die Polarisation die man misst*).
wenn der Kristall immer im gleichen Sinne aufgeladen oder
entladen wird. Laden und Entladen geben in diesem Falle die gleichen
Kurven. Polt man nach jeder Entladung um, so erhält man beim
Aufladen Werte, die der obersten Kurve entsprechen, also wesentlich

grösser sind. Die Entladung gibt aber auch in diesem Falle
wieder die untere Kurve. Es scheint, dass sich der Kristall nicht
ganz entladen kann, so dass im allgemeinen zu kleine Entladungswerte

gemessen werden. Nachdem umgepolt worden ist, muss der
Kristall zuerst völlig entladen werden, und erst nachher kann er
sich im ungekehrten Sinne aufladen. Dabei addiert sich die restliche
Entladung mit dem Aufladungsstoss.

*) Die entsprechende Streuung der Messpunkte ist etwa 2%, also etwa die
doppelte Strichdicke der Zeichnung.
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Beim Aufladen misst man den gleichen Betrag zu viel wie beim
Entladen zu wenig. Die beiden Messungen sind also um den
doppelten Restladungswert verschieden. Der Mittelwert musste die
richtige Grösse ergeben. Bei den Umpolwerten tritt diese
Restladungserscheinung nicht auf, da der Kristall immer in geladenem
Zustand bleibt. In Fig. 2 ist die mittlere die durch Umpolen
erhaltene Kurve. Sie ist nahezu der Mittelwert der beiden andern.

10-6
Cb/cm2

2,0

1,5

1,0

0,5

0 2000 4000 6000 8000 10000 12000 14000 16000
Volt/cm

Fig. 2.

Polarisation als Funktion des Feldes bei T— & 1,37°.
Untere Kurve : Werte, gerechnet aus Lade- und Entladestromstössen, wenn der

Kristall immer im selben Sinne aufgeladen wurde.
Mittlere Kurve : Durch Umpolen gefundene Werte.
Obere Kurve: Werte gerechnet aus den Ladestössen, wenn der Kristall vorher

umgekehrt aufgeladen war.

Es hängt von der Vorgeschichte des Kristalls ab, was für eine
Polarisation man misst. Aus diesem Grunde muss in dem
Entladungsstromkreis ein Widerstand eingeschaltet werden. Dieser
Widerstand B muss so gross sein, dass der Schwingkreis, den die
Induktivitäten der Zuleitungen mit der Kristallkapazität bilden,
aperiodisch ist. Im periodischen Falle erhält man nicht reproduzierbare

Werte für die Polarisation.
Entladungen sind bei allen festen und flüssigen Dielektra zu

finden. Bei Seignetteelektrika sind sie aber besonders gross. Böning14)
zeigte, dass Substanzen, die Feuchtigkeit enthalten, besonders
grosse Nachentladungen zeigen. Seignettesalz hat viel Kristall-

42
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wasser, das nicht fest im Kristallgitter gebunden ist, was möglicherweise

die Ursache der Restladungen ist. Auch sind dort diese
Restladungserscheinungen besonders im Curiegebiet sehr gross. Bei
KH2P04 können diese Effekte nicht mit der Feuchtigkeit
zusammenhängen, da kein Kristallwasser vorhanden ist und die anhaftende

Feuchtigkeit in dem in Frage kommenden Temperaturgebiet
längst gefroren ist. 10° über dem Curiepunkt ist KH2P04 ein fast
verlustfreies Dielektrikum was darauf hindeutet, dass die
Restladung nur äusserst wenig ausmacht. Die Restladungen werden
um so bedeutender, je mehr man sich dem Curiepunkt nähert.

p
10-6

Cb/cm2

2,0

1,5

1,0

0,5

5000 10000 15000 E

Volt/cm
Fig. 3.

Polarisation als Funktion des elektrischen Feldes bei T-& 0,66° und
7-0 0,48° mit Entladungen gemessen, wenn der Kristall immer in

gleichem Sinne polarisiert wird.

Fig. 3 zeigt die Polarisation die man aus Entladungen misst bei
T — 0 0,66° und bei T - 0 0,48°. Bei der Messreihe näher
am Curiepunkt T — 0 0,48°, die anfangs steiler ansteigt, tritt
der Fehler durch die Restladung deutlicher in Erscheinung. Der
Fehler wird so gross, dass die Kurve sogar unter derjenigen bei
höherer Temperatur bleibt, sie also überschneidet. Da sich die
Kurven P (E)T der wahren Polarisation bei konstanter Temperatur
naturgemäss nicht überschneiden können, so kann dies Verhalten
nur auf Restladungen zurückgeführt werden. Wenn ein Fehler
hinzukommt, der proportional der Polarisation ist, so können sich auch
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die verfälschten Kurven nicht überschneiden, was aber, wie Fig. 3

zeigt, der Fall ist. Gegen den Curiepunkt nimmt also die Restladung
nicht nur absolut zu, sondern auch relativ zur Polarisation wird
sie grösser. Dies schliesst die Möglichkeit aus, dass die Restladungen
eine Folge der Deformationen sind, wie man aus der Theorie von

Polarisation als Funktion des elektrischen Feldes; maximales Feld 1000 Volt/cm.

Fig. 4.

Polarisation als Funktion des elektrischen Feldes, gemessen mit dem Kathoden-
strahloszillografen nach der Methode von Sawyer und Tower; maximales elek¬

trisches Feld 10000 Volt/cm.

Böning14) schhessen möchte. Die Deformation ist bekanntlich15)16)
streng proporitonal der Polarisation. Da aber die Restladungen
nicht proportional der Polarisation sind, so können sie auch nicht
eine Folge der Deformation sein.
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Die Restladungen äussern sich bei der Messung wie eine Remanenz

(wie man sie nur im Gebiet der spontanen Polarisation
antrifft). Dies kann unter Umständen sogar zu Verwechslungen führen.
Fig. 4 zeigt zwei Aufnahmen, nach der Methode von Sawyer und
Tower17), die normalerweise zur Aufnahme von Hysteresisschleifen
verwendet wird und ausserhalb des Curiegebietes aufgenommen
wurde. Bei höheren Feldern zeigt sich eine Art Hysteresis mit einer
Remanenz, die aber in Wirklichkeit nichts anderes als Restladungen
sind. Bei kleinen Feldern erhält man nur eine S-Kurve, die keine
Fläche einschliesst, während echte spontane Polarisation eine
ellipsenähnliche Kurve geben sollte, sofern die Sättigung nicht erreicht

10-9
Ampere

1

6

5

4

3

2

1

0 50 100 150 200 250 300 350 sec

Fig. 4a.

Nachentladungsstrom eines KH2P04-Kristalls als Funktion der Zeit.

wird. Fig. 4 zeigt deutlich wie die Restladungen erst bei höheren
Feldern auftreten, wie auch aus Fig. 2 folgt.

Die Restladungen fliessen im Gegensatz zu der echten Remanenz
mit der Zeit wieder ab. Fig. 4a zeigt eine solche Nachentladung, die
eine Kristallplatte von 0,573 cm2 Fläche nach der ballistisch
gemessenen Entladung zeigt. Der Entladungsstrom steigt
merkwürdigerweise noch einmal an. Insgesamt fliesst in diesem Falle noch
eine Ladung von 0,8 Clb/cm2 ab. Dieser Wert ist etwas grösser als
die Restladung, die man durch die verschiedenen ballistischen
Methoden (siehe Fig. 2) ermitteln konnte.

Da weitere Untersuchungen dieses Effektes nicht in den Rahmen
dieser Arbeit passen, gaben wir uns mit der Feststellung zufrieden,
dass die durch F/mpolen erhaltenen Werte der Polarisation am
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wenigsten durch Restladungen verfälscht sind. Fig. 5 zeigt die
Werte, die durch Umpolen gemessen wurden.

Von kleinen Werten ausgehend wurde langsam die Spannung
gesteigert. Bei jedem Messpunkt polte man mehrere Male um, bis
sich reproduzierbare Werte ergaben. Die Kurven zeigen deutlich,
wie die Polarisation einem Sättigungswert zustrebt. Bei den Kurven
mit negativem Parameter (Temperaturen unter dem Curiepunkt)

p
10-6

T-©
-1,850

Cb/cm2 -1,400

3,5

3,0

-0,92"

-0,410
-0,160

0,020
0,200
0,340
0,480
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Fig. 5.

Ballistische Messungen der Polarisation als Funktion des elektrischen Feldes bei
verschiedenen Temperaturen.

wurde die spontane Polarisation mitgemessen. Bei Feldstärken
unterhalb der Sättigungsfeldstärke sind diese Messwerte von der
Form der Hysteresiskurve abhängig. Diese Kurven in Fig. 5 sind
daher von unseren Betrachtungen ausgeschlossen.

Wie im letzten Kapitel noch gezeigt wird, haben die Kurven nicht
den Charakter, den man nach der Slater'schen Theorie erwarten
würde. Es bleibt noch zu diskutieren, ob eine Theorie mit innern
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Feldern noch haltbar ist. Beim Ferromagnetismus macht man nach
der Langevin-Weiss'schen Theorie den Ansatz:

H magnetisches Feld, / Lorentzfaktor, k Boltzmannsche Konstante,

fi Dipolmoment.

Bei Kaliumphosphat zeigt schon der Verlauf der spontanen Polarisation

bei sinkender Temperatur, dass es sich nicht um eine Lange-
vin'sche Funktion handeln kann. Wir verallgemeinern den Ansatz
und nehmen an Stelle der Langevinschen eine beliebige, noch für
unseren speziellen Fall zu bestimmende Funktion 0 und schreiben

P=0(x) (2)
wobei

E+fP
<* —-jt ¦

Der Lorentzfaktor / lässt sich aus der Gleichung : / —.

0)

^ B-8,86-10-l4Cb/V.cm (4)

(siehe z. B. Becker-Döring Ferromagnetismus18), S. 33, Gl. 10b)
bestimmen. Somit wäre auch die 0-Funktion aus den ballistischen
Messungen bestimmbar. Durch den Ansatz und eine einzige
Messung P (E) bei T const, ist die Abhängigkeit der Polarisation
von E und T oberhalb des Curiepunktes festgelegt. Wenn der Ansatz
brauchbar ist, müssen die ^-Funktionen, die aus zwei Kurven mit
verschiedenen Temperaturen berechnet werden, übereinstimmen.
Diese Prüfung soll in folgendem durchgeführt werden. Es ist aber
nicht ratsam, die Funktion 0 (oc) selbst zu bestimmen, da diese nur
sehr wenig von einer Geraden verschieden ist, sondern es ist besser,
die Funktion

F-«~^L (5)

(A Konstante aus dem Curie-WTeiss'schen Gesetz) zu betrachten.
Dies ist eine Differenz einer Geraden mit einer von diesen Geraden
schwach verschiedenen Funktion, also eine empfindliche Differenz.
Wenn 0 (oc) für die einzelnen Messkurven übereinstimmt, so muss
auch F übereinstimmen. F lässt sich leicht bestimmen. Dabei ist es

günstiger, anstatt F als Funktion von a darzustellen, 0 (oc) P
als Variable zu nehmen. Durch Einsetzen in Gleichung (4), (3) und
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(2) in Gleichung (5) kommt man durch leichte Umformung zur
Gleichung

E- P(T-&)
F- (6)

Nach Gleichung (1) ist aber A/(T — 0) x (x0 darf gegenüber dem
viel grösseren temperaturabhängigen Term vernachlässigt werden).
In den P(E) -Kurven ist aber die Suszeptibilität bei kleinen Feldern
gerade die Neigung der Tangente im Nullpunkt. Legt man die
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Fig. 6.

Funktion F a- Çp(a.)/A (Abszisse) als Funktion der Polarisation P (Ordin.)
Ausgezogene Kurve : Die aus den ballistischen Messungen bestimmten Werte.
Gestrichelte Kurve : Die aus der Feldabhängigkeit der Dielektrizitätskonstante

bestimmten Werte.

Tangente an eine P(ß)-Kurve im Nullpunkt und betrachtet einen
festen Ordinatenwert P, so liegt in der Abszissenrichtung auf der
Tangente der Punkt mit der Abszisse Pjx (siehe Fig. 5 gestrichelte
Linien). Noch weiter in der Abszissenrichtung treffen wir auf die
P(E)-Kurve mit der zu P gehörenden Abszisse E. Die Differenz
dieser zwei Punkte ist folglich : E — Pjx F-T (siehe auch Fig. 5).
Division durch T ergibt dann F. In Fig. 6 sind die F-Werte (Ab-
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szisse), die sich aus der Kurvenschar Fig. 5 bestimmen lassen,
aufgetragen.

Die einzelnen Kurven zeigen grosse Unterschiede. In Anbetracht
der Restladung, die möglicherweise noch unkontrollierbare Fehler
in die Messung hineinbringt, und der Empfindlichkeit der Darstellung

kann aber keine bessere Übereinstimmung erwartet werden.
Es lässt sich auch nicht entscheiden, ob die Abweichungen ein
Mangel der Messung oder ein Mangel des Ansatzes sind, da alle
Messwerte mit der gleichen Unsicherheit behaftet sind. Darum
wurde die Feldabhängigkeit der Polarisation aus der Feldabhängigkeit

der DK (Dielektrizitätskonstante) also nach einer ganz anderen
Methode nochmals genauer bestimmt.

III. Die Dielektrizitätskonstante ec und ihre Abhängigkeit von einem

elektrischen Feld.

a) Methode, Apparatur und Verlauf der Messung.

Das Curie-Weiss'sche Gesetz:

B
T-0 d)

ist etwa bis 0,1° C oberhalb des Curiepunktes (0 — 150° C) gültig.
Am Curiepunkt 0 misst man nicht den Wert unendlich, sondern
einen Spitzenwert von 6000 bis 60000 je nach Vorgeschichte des
Kristalls. (Messfeldstärke ca. 40 Volt/cm, 1000 Hz). Ein Kristall,
der zum ersten Mal bis zum Curiepunkt abgekühlt wird, erreicht
eine D. K. von 60000 und darüber. Kühlt man weiter ab bis in das

Curiegebiet und klappt die Polarisation durch hohe Felder mehrere
Male um, so erreicht der Kristall nachher nur noch einen Spitzenwert

von 6000. Entsprechend dem kleineren Spitzenwert weicht
die D. K. auch schon 1° oberhalb 0 vom Curie-Weiss'schen Gesetz
ab. Wir vermuten, dass durch die mit dem Umpolarisieren
verbundenen Deformationsänderungen im Kristall feine Sprünge
entstehen. Da ein Dielektrikum mit sehr grosser Dielektrizitätskonstante

fast als Leiter wirkt, liegt ein grosser Teil des
Potentialunterschiedes an diesen feinen Spalten. Die Dielektrizitätskonstante

des Materials wird dann scheinbar viel kleiner. Bei unendlicher

D. K. würde z. B. bei einem Kristall von 1 mm Dicke ein
Spalt von 1,6-10~5 cm genügen, um den Wert der D. K. von
unendlich auf 6000 herunterzusetzen. Bei der Herstellung von
Kristallkondensatoren muss deshalb peinlich genau darauf geachtet werden,
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dass die Elektroden ohne Zwischenschicht unmittelbar auf dem
Kristallmaterial haften.

Die D. K. wurde aus der Kapazität von Kristallplatten von
0,5 cm2 und 1 mm Dicke berechnet, die Kapazität mit einer Brücke,
wie sie von Busch9) beschrieben worden ist, gemessen. Während
der Messung konnte eine Gleichspannung an den Kristall gelegt
werden (siehe Fig. 7). Der Kristall ist gegen die Brücke durch zwei

grosse Kapazitäten C abgeblockt, damit die Gleichspannung nicht
abfliesst. Da die Kapazität der Spannungsquelle dem
Kristallkondensator parallelgeschaltet ist und mitgemessen würde, müssen
die Widerstände R bedeutend grösser sein als der Schemwiderstand
des Kristalls für den Wechselstrom der Brücke. Die Gleichspannung

Mess
Brücke Kristall v=

Fig. 7.

Schema der Messapparatur zur Messung der Feldabhängigkeit der
Dielektrizitätskonstante.

am Kristall wird mit einem statischen Voltmeter gemessen. Die
Temperatur wurde mit dem Thermostaten konstant gehalten und
die Spannung schrittweise gesteigert. Bei jedem Schritt musste
zwei bis fünf Minuten gewartet werden, bis sich die Temperatur,
die durch den elektrokalorischen Effekt erhöht worden war, wieder
der Umgebung anpasste. Damit der Temperaturausgleich schneller
erfolgen konnte, war der Messtopf immer mit Wasserstoff gefüllt.

Die Messkurven für verschiedene Temperaturen sind in Fig. 8

dargestellt. Das elektrische Vorfeld der Abszisse wie auch die
Dielektrizitätskonstante ec in der Ordinate sind logarithmisch
aufgetragen. Die Temperatur (in T — 0 Anzahl Grad Celsius oberhalb

des Curiepunktes) ist als Parameter am Anfang jeder Kurve
angegeben. Sie wurde aus dem Wert der D. K. ohne Vorfeld mittels
des Curie-Weiss'schen Gesetzes (1) bestimmt. Es dauerte oft bis
zu 2 Stunden, bis eine Messreihe aufgenommen war. Im gleichen
Messtopf war ein zweiter KH2P04-Kristall vorhanden, dessen

Kapazität ohne Vorfeld mit einer zweiten Messbrücke gemessen
wurde, was ein dauernde Kontrolle der Temperatur ermöglichte.

Der Thermostat mit Toulonschaltung war so gebaut, dass die
Temperatur auf etwa 3/1000° C konstant gehalten werden konnte.
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Da das Curie-Weiss'sehe Gesetz nur etwa bis T — 0 0,1° gilt*),
existiert nur für die Messkurve T — 0 0,14° C eine gewisse
Unsicherheit in bezug auf die Temperatur. Die Curiepunkte
verschiedener Kristallindividuen können ziemlich stark variieren. Der
Curiepunkt des Kontrollkristalls war 0,12° höher als derjenige des
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Fig. 8.

Feldabhängigkeit der Dielektrizitätskonstante ec von einem elektrischen Vorfeld
bei verschiedenen Temperaturen.

(Temperatur als Parameter am Anfang der Kurven angegeben.)

Messkristalls, so dass seine D. K. praktisch den Spitzenwert schon
erreicht hatte und genaue Kontrolle der Temperatur nicht mehr
möglich war. So nahe am Curiepunkt sind die dielektrischen
Verluste sehr gross, was wahrscheinlich eine Folge der grossen
Restladungen ist**). Bei hohen Feldern sinken die Verluste dann wieder.

*) Eigene Messungen an verschiedenen Kristallindividuen mit Thermoelement.
**) Auch die Hysteresiskurve in Fig. 4 weist auf grosse Verluste hin.
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Dies mag etwa erklären, dass die Kurve 0,14° aus dem Rahmen
der übrigen fällt.

Als elektrisches Feld wurde der Quotient von Elektrodenspannung
und Elektrodenabstand genommen. Dies könnte Anlass zu

Kritik geben. Es ist bekannt, dass in Dielektriken, die Rückstandsladungen

zeigen, Raumladungen vorhanden sein müssen, die auch
ein elektrisches Feld erzeugen14). Das Potentialgefälle kann dann
bei der einen Elektrode viel steiler sein als bei der andern. Der
Quotient gibt also nur den Mittelwert des elektrischen Feldes an.
Diesen Feldunterschieden entspräche aber auch eine Variation
der Polarisation in der c-Richtung. Zwicker19) bestimmte jedoch
die Polarisation aus dem elektrooptischen Effekt. Inhomogenitäten
der Polarisation wären mit seiner Methode sichtbar gewesen.
Zwicker hat aber nichts derartiges bemerkt. Auch bei den
Messungen des inversen Piezoeffektes von Bantle und von Arx15)
hätten sich Verschiedenheiten der Polarisation bemerkbar machen
müssen, was aber nicht der Fall war.

b) Der Einfluss des elektrokalorischen Effektes auf die Dielektrizitäts¬
konstante.

Der Abfall der Dielektrizitätskonstanten mit steigendem Vorfeld
ist nicht allein die Folge der Sättigungserscheinungen, sondern er
rührt zum Teil vom elektrokalorischen Effekt her. Während die
Temperaturänderung, die von der Gleichspannung hervorgerufen
wird, genügend Zeit hat sich wieder auszugleichen, ist dies für die
von der Brückenwechselspannung hervorgerufenen Temperaturänderungen

nicht der Fall. Die Temperatur schwankt im Takte der
Wechselspannung auf und ab, wobei der Ausgleich während
1/1000 Sek. einer Schwankung nicht in Betracht fällt. Die
Temperaturänderung, die durch eine Polarisationsänderung dP adiabatisch
hervorgerufen wird, ist nach W. Thomson18) :

«¦-¦£¦(£),•"•• m

Oberhalb des Curiepunktes 0 ist die Polarisation P eine eindeutige

Funktion der Temperatur T und des elektrischen Feldes E;
dP lässt sich als totales Differential schreiben.

dP -(¦&),¦«¦*(¦£),•« <8>
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Wir setzen :

Hans Baumgartner.

dP
KdTÌE

\ dE )T V

¦ dP

(9)

(10)

p isotherme Suszeptibilität und \~rjf) _ x&A adiabatische

Suszeptibilität, die effektiv gemessen wird.
Gleichung (8) lässt sich auf die Form bringen:

dT
1-TP 1. (11)

Durch rein formale Umformung kann man die Gleichung erhalten

(12)
dE\ _q_
dT)p~ fa'

Die Kombination der Gleichungen (7), (11) und (12) führt zu der
Differentialgleichung :

1 T-q2
Cp- p2

Cp spezifische Wärme bei konstanter Polarisation.

- £-1
8,86-10-14 J3b

V- cm

(13)

(14)

c) Lösung der Differentialgleichung.

Um eine rechnerische Lösung zu bekommen, musste man die
e(E, T) -Kurven in eine analytische Form bringen und dann das

System lösen. Ohne grobe Vernachlässigungen zu machen ist dieser
Weg zu beschwerlich. Viel einfacher wäre eine graphische Integration.

Man führt graphisch die Integration P(E) pdE durch,
d. h. man spaltet das Integral in eine Summe von einzelnen Schritten

auf. P Zp-AE. Der erste Schritt kann ohne weiteres gemacht
werden, da p für kleine Felder gleich gross ist wie die adiabatische
Suszeptibilität, x, und diese ist bekannt. Nach dem ersten Schritt
sind aber adiabatische und isotherme Suszeptibilität nicht mehr
gleich gross. Das p muss aus Gleichung (13) bestimmt werden. Das
zu dieser Bestimmung nötige q kann vorerst noch aus dem exp.
Curie-Weiss'schen Gesetz bestimmt werden. Nach dem zweiten
Schritt muss aber das q aus den Werten der Polarisation, die man
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gerade erhalten hat, durch graphische Differentiation nach der
Temperatur gefunden werden. Diese Differentiation ist nicht genau.
Der Fehler verstärkt sich von Schritt zu Schritt sehr schnell.
Besonders die ungenaue Temperaturmessung in Nähe des
Curiepunktes verbreitet einen grossen Fehler über das ganze
Integrationsgebiet. Mit dieser Integrationsmethode kann man zu Fehlern
bis zu 30% kommen. Da die direkten Methoden nicht angewendet
werden können, musste man auf Umwegen das Ziel erreichen.

Das Endziel ist, an Hand des Verlaufes der Polarisation die
verschiedenen Theorien zu diskutieren (siehe Einleitung). Es schien
uns angebracht, anstatt die Ergebnisse nach einer ungewissen
Integration zu diskutieren, den Vergleich implizite durchzuführen,
d. h. aus dem vermutlichen Verlauf (Gleichung (2)) der Polarisation
die Feldabhängigkeit der adiabatischen Suszeptibilität zu bestimmen

und dies mit den gemessenen Kurven zu vergleichen. Aus
den Erkenntnissen, die wir in Kap. II gemacht haben, liegt es auf
der Hand, einen Ansatz mit einem innern Feld auch hier zu
verwenden.

1. Integration
unter der Annahme einer Langevin-Weiss'schen Theorie.

Wir verwenden wieder den Ansatz aus Kapitel II und differen-
tieren nach E

P=* (*¥-) (2)

« ^- (3)

Die isotherme Suszeptibilität wird dann:

®'(a.)

A Konstante aus dem Curie-Weiss'schen Gesetz (1), ferner ist:

d<t>(*)
ö>'(«) dx

Durch Differentiation von (2) nach T bei konstantem P erhält man
die einfache Beziehung:

idE\ q E + fP ,1R.(w)p 7=—r—= «• (16>
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Gleichung (15) und (16) in (13) eingesetzt:

A + 0 T r«™ +a2.A
X [ ® (OC) Cp

(17)

A"

K=^-l + «-.JL. (ig)
CP (a) Cp v '

Für den Klammerausdruck in Gleichung (17) führen wir das
Symbol K ein. Wenn" P konstant gehalten wird, bleibt aber auch
0'{a) und a. konstant, folglich bleibt der ganze Ausdruck K konstant,
wobei T nach Belieben variieren darf. K ist allein eine Funktion von
P resp. von oc

<9+4 ZT oder Xad=-^A_. (19)

Sowohl die isotherme [Gl. (15)] als auch die adiabatische [Gl .(19)]
Suszeptibilität folgen einem Curie-Weiss'sehen Gesetz, wenn die
Polarisation durch das Gleichfeld festgehalten und nur die Temperatur

variiert wird. Ein Unterschied besteht nur in den Konstanten
des Gesetzes. In Gleichung (15) müssen Curiekonstante und
Curietemperatur durch den Faktor 0'(O)/0'(a.) und in Gleichung (19)
durch K dividiert werden. Die Curietemperatur in Gleichung (15)
ist tiefer als 0 und bei (19) noch tiefer. Es ist noch zu bemerken,
dass der Temperaturbereich, in dem diese Gesetze gültig sind, sich
nicht bis zu diesen neuen Curietemperaturen erstreckt. Ihre Gültigkeit

hört an dem Temperaturpunkt gerade unterhalb 0, aber noch
oberhalb des neuen Curiepunktes auf. An diesem Punkt erreicht
die spontane Polarisation den Wert der Polarisation, der als
Parameterwert P in diesen Gesetzen festgehalten worden ist.

Fig. 9 zeigt die gleichen Messungen wie Fig. 8 in anderer
Darstellung. sc ist als Funktion der Temperatur T — 0 bei konstantem
Vorfeld aufgetragen. Temperatur T — 0 in der Abszisse und sc in
der Ordinate sind logarithmisch dargestellt. Die Vorfelder sind als
Parameter auf dem linken Rand bei jeder ausgezogenen Kurve
angegeben. Beim Vorfeld 0 gilt das Curie-Weiss'sche Gesetz, was
in dieser Darstellung eine Gerade mit der Neigung — 1 ergibt.

Die gestrichelten Kurven ergeben ec als Funktion von T — 0 bei
konstantem K resp. bei konstantem P, da die Polarisation P nur
eine Funktion von K allein ist. Die if-Werte, die in Fig. 8 als
Parameter angeschrieben sind, wurden ganz willkürlich gewählt.
Aus Gleichung (19) lassen sich die ec-Werte bestimmen und in Fig. 9

eintragen. Die K-Kurven in Fig. 9 sind somit keine Messkurven.
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Die Kurven geben an, welches sc das Material haben muss, damit
bei veränderlicher Temperatur die Polarisation konstant bleibt.
Dabei ist die Grösse der einzelnen Polarisationen zunächst noch
nicht bekannt, da man den Zusammenhang zwischen P und K noch
nicht kennt. Betrachtet man die Schnittpunkte einer iî-Kurve mit
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Fig. 9.

Dielektrizitätskonstante sc als Funktion der Temperatur T - © bei verschiedenen
konstant gehaltenen Vorfeldern.

Vorfeld als Parameter bei den einzelnen Kurven auf der linken Seite angegeben.
Gestrichelte Kurven: Dielektrizitätskonstante ec als Funktion der Temperatur
T— 0 bei konstanter Polarisation P. Als Parameter ist der Wert K (K f(P)) zu

jeder Kurve geschrieben.

den verschiedenen e (T — ©)£-Kurven, so lässt sich folgendes
ablesen: Bei einer bestimmten Temperatur (T — 0) des Schnittes
braucht man ein bestimmtes Feld (Parameter der e-Kurve) um die
bestimmte Polarisation zu erhalten, die dem betrachteten Ü-Wert
entspricht. Aus diesen Schnittpunkten längs einer K-Kurve ist es
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dann möglich die Kurve E(T — 0)P, das elektrische Feld als Funktion

der Temperatur für konstante Polarisation aufzuzeichnen.
Nach Gleichung (16) ist aber: {dE/dT)P oc. (dE/dT)P bedeutet
aber die Neigung unserer E(T — 0)-Kurve. Da bei konstanter
Polarisation P nach Gleichung (2) auch a konstant bleiben muss,
heisst dies, dass eine Kurve von konstanter Neigung vorliegt, dass

es sich also um eine Gerade handelt. Fig. 10 zeigt die nach dieser

V/cm

20000

06 296

69/ P.3

/

2,5°n T05° 1.5°

Fig. 10.

Elektrisches Feld als Funktion der Temperatur bei verschiedenen konstant ge¬

haltenen Polarisationen P.
Stark ausgezogene Geraden mit Kreisen: E(T- ©(-Geraden, die aus der Inte¬

gration mit dem Ansatz P ® (oc) hervorgehen.
Schwach ausgezogene Gerade mit kleinen ausgefüllten Kreisen: Integration in

Kichtung der Adiabaten.

Methode bestimmten E(T — 0)P-Geraden. (Stark ausgezogen mit
Kreisen.)

Die Abweichungen der zwei ersten Punkte jeder Geraden sind,
wie am Anfang des Kapitels beschrieben wurde, auf die Ungenauig-
keit der Temperaturmessung nahe am Curiepunkt zurückzuführen.

Die Geraden erlauben (dE/dTP) zu bestimmen. Aus Gleichung (18)

K
®'{a) cp m

erhält man &'(«.). Durch Integration käme man zu 0(a). Die
Funktion 0 (oc) ist auch in diesem Falle fast eine lineare Funktion.
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Um den Charakter der Funktion zu erkennen und zu diskutieren,
ist es besser, auf die Integration zu verzichten und die Differentiale
anzugeben. Tabelle 1 gibt die aus (18) errechnete Funktion

[0'(*)/0'{O)}-l
und Fig. 11 0'(a.)/0' (0) als Funktion der relativen Polarisation P/Ps-

Tabelle 1.

K P
inl0-6Cb/cm2

Volt/cm Grad ®'(0)

1,003
1,005
1,01

1,02
1,03

1,04

0,87
1,10
1,485
1,99
2,20
2,54

3080

3800
5125

6860
7900

8800

-0,00015
-0,00064
- 0,00214

- 0,00596

- 0,0114
-0,0167

1,05*)
1,06
1,08

2,77
2,98
3,25

9600
10320
11320

-0,0219
-0,0272
- 0,0394

*) Bei den drei letzten P-Werte gibt die Integration nicht mehr richtige Werte
für ®. Über 2,54-10"6 Cb/cm2 verwende man Tabelle 2.

\ £c«)

\ \
f.«

\\
\ --X-2

\\\
\
\

*
0,1 0.5

Fig. 11.
Verlauf der ^'-Funktion bei dem Ansatz P &(<*.). Verhältnis <2>'(a)/0'(O), d. h.
Neigung der Funktion bei P zur Neigung im 0-Punkt als Funktion der relativen

Polarisation PjPs.
L (cc) Langevinfunktion Lx!i.

Zur Brechnung von 0'(<x)/0'(O) muss 0'(O) und cP bekannt sein.
0' (0) ist, wie man aus Gleichung (1) und (2) nachrechnen kann,
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gleich der Curie-Weiss'schen Konstanten A 2,895° • 10~10 Cb/V- cm.
cm. Für den Wert cP liegen Messungen von Bantlb10) c 1,37
Joule/cm3 Grad und von Stephenson und Whooley20) c 1,175
Joule/cm3 Grad vor. Die grossen Unterschiede lassen auf
entsprechende Ungenauigkeit dieser Werte schhessen. Da aber
Gleichung (18) für 0'(a.) eine empfindliche Differenz ergibt, ist die

genaue Kenntnis des Wertes für cP unbedingt erforderlich.
Glücklicherweise war es möglich cP aus der Feldabhängigkeit der D. K.
selbst zu bestimmen. Man erhält den Wert cP 0,977 Joule/cm3
Grad. Das folgende Kapitel ist der Berechnung von cP gewidmet.

Die Polarisation P hängt von zwei Variablen E und T — 0 ab.
Durch den Ansatz (2) P 0 (oc) wird eine Beziehung zwischen den
Variablen gegeben, und es genügt eine einzige Messreihe, z. B. eine
P (E) y-Kurve, um die ^-Funktion zu bestimmen. In der oben
beschriebenen Berechnung ist 0(a) resp. P aus den E(T—0)P-
Geraden bestimmt worden. Da eine Gerade erst durch zwei Punkte
bestimmt ist, müssen zur direkten Konstruktion der E(T)P-Geradenschar

mindestens zwei P (E) T-Kurven bei verschiedenen Temperaturen

bekannt sein. In der E(T— 0)-Geradenschar steckt also
mehr, als man zur Bestimmung von 0(a.) notwendig hätte. 0(<z)
ist durch diese und den Parameter K einfach überbestimmt. Unsere
obige Berechnung verwendet daher nur den Parameter K und die
Neigung (dE/dT)P der Geraden. Die spezielle Lage, die zum
Beispiel durch den Schnittpunkt 0X der Geraden mit der (T — 0)-
Achse charakterisiert werden kann, geht nicht in die Rechnung ein.
Es gibt eine zweite Möglichkeit P 0(c) zu berechnen. Diese

benötigt die 6^-Werte, dafür lässt sie die K-Werte ausser Acht.
Die E(T — <9)-Geraden lassen sich durch folgende Gleichung

beschreiben :

E (fr)p(T-0x) E±!P-(T-0x),

unter Berücksichtigung der Beziehung / 0/A kommt man zu

p--sA{W)p- (2°)

Wenn der Ansatz (2) richtig ist, müssen die zwei Methoden zur
Bestimmung von P übereinstimmende Resultate ergeben. Beide
Berechnungsmethoden ergeben 0 resp. P als Funktion von oc. Der
Vergleich der beiden Methoden an Hand von P ist sehr unempfindlich.

Die kleinsten Unterschiede dieser zwei auf verschiedene Art
bestimmten Funktionen können sehr wichtig sein. Die Diskussion
dieser Überbestimmung, die Aufschlüsse über die Anwendbarkeit
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des Ansatzes mit der Funktion 0 gibt, lässt sich viel besser an
Hand der spontanen Polarisation durchführen. Die spontane
Polarisation kann direkt aus der E(T— <9)P-Schar berechnet werden,
wobei die Doppelspurigkeit der Bestimmungsmethode wieder
auftreten muss. Dieses Kriterium ist viel empfindlicher, zudem ist es

möglich, die Ergebnisse mit experimentell bestimmten Werten zu
vergleichen.

2. Die Berechnung der spontanen Polarisation.

Spontane Polarisation ist vorhanden, wenn das innere Feld die
Polarisation aufrecht zu halten vermag, so dass die Hilfe eines
äusseren Feldes nicht notwendig ist. Wir können für diesen Fall
einfach E 0 setzen.

Methode 1.

oc=^ oder 0x-0= ]~^0
©j 1 OL

Für / setzt man QjA ©/cp'(O) und für P setzt man <t>(<x) ein.

Dies führt zu der Gleichung:

o

Alle nötigen Werte zur graphischen Ermittlung des Integrals sind
aus Tabelle 1 ersichtlich. Das Integral gibt 0X — 0 als Funktion
von oc. Aus der Gleichung oc PSP/0x-f lässt sich die spontane
Polarisation P8P berechnen. Kurve 3 in Fig. 12 gibt das Ergebnis
dieser Integration. Kurve 2, Fig. 12, stellt die von von Arx21)
bestimmten experimentellen Werte dar.

Methode 2.

Die zweite Methode zur Bestimmung der spontanen Polarisation
ist noch einfacher als die erste. Als Werte für die spontane Polarisation

nimmt man die Parameter-Werte PimE(T — 0)r-Geraden-
diagramm (siehe Fig. 10). Die dazu gehörigen Temperaturen sind
die Schnittpunkte der Geraden mit der (T — 0)-Achse (E 0),
denn bei diesen Temperaturen braucht es gerade kein Feld um die
Polarisation aufrecht zu erhalten, das heisst die Polarisation ist
spontan. Kurve 4 in Fig. 12 gibt die nach dieser Methode bestimmten

Werte der spontanen Polarisation als Funktion der Temperatur.
Wenn unsere Annahme mit dem Ansatz P 0 (oc) (2) richtig wäre,
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müssten Methode 1 und 2 übereinstimmende Resultate ergeben.
Dies ist aber nur der Fall im Bereich 0 < Psp < 2,5 • 10~6 Cb/cm2.
In diesem Bereich stimmen diese zwei Kurven (3 und 4) mit der
experimentell bestimmten 2 überein. Unsere Integration ist also

nur in diesem Bereich richtig. Oberhalb dieses Bereiches gibt
Ansatz (2) nicht mehr die richtige Beziehung zwischen P, E und T.
Die den Werten K 1,05, K 1,06 und K 1,08 entsprechenden
Werte in Tabelle 1 und E(T — (9)-Geraden in Fig. 10 sind also
falsch.

Im restlichen Gebiet von 2,5 bis 3 • 10~6 Cb/cm2 lässt sich die
Berechnung der Polarisation aus der adiabatischen Suszeptibilität

r sp

10-6
Cb/cm2

4

2 3~. 4--o^

^%

0

-1,5° -1° -0,5° 0° T-0
Fig. 12.

Spontane Polarisation als Funktion der Temperatur.
Kurve 1 Allgemeine Integration ohne Ansatz.
Kurve 2 Experimentell bestimmte Werte nach von" Aex.
Kurve 3 Integration mit Ansatz P ® (a) nach der ersten Methode.
Kurve 4 Zweite Methode mit dem Ansatz P ® (oc).

durch eine allgemeine Integration ohne speziellen Ansatz ergänzen.
Die Integration wird auf folgende Weise durchgeführt :

Wir zerlegen die Integration wieder in eine Summe von einzelnen
Schritten EAP ExAE. Als Ausgangspunkt der Integration
wählen wir die Punkte der E(T— <9)P-Geraden mit P 2,28 Cb/
cm2. Bis zu diesem Wert ist der Ansatz P 0(ol) in Ordnung.
Unsere AE wählen wir so, dass sie für jedes T — 0 den gleichen
Polarisationszuwachs AP hervorrufen. Unser Integrationsschritt
besteht dann darin, dass wir von einer E(T — 6>)P-Geraden zu
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der E(T— 6>)P+/)P-Kurve gelangen. Dabei darf man den Schritt
von einem Punkt der alten zu einem Punkt der neuen Kurve in der
Richtung einer Adiabaten tun. Für einen bestimmten Punkt B
der E(T — 0)P-Geraden kann man aus Fig. 9 die dazu gehörige
adiabatische D.K. e herauslesen und x berechnen. Um die Polarisation

um den bestimmten Betrag AP zu erhöhen, muss man das
Feld E um AE AP/x vergrössern. Dieses Anwachsen des Feldes
bewirkt aber eine Temperaturerhöhung

T i dEAT=1~.(™) .AP
cP \dTJp

(nach Gl. 7). Der Punkt B', der um AE in der E-Richtung und
um AT in der (T— 0)-Richtung gegenüber B verschoben ist, hat
die Polarisation P + AP. Auf diese Weise können wir von vielen
Punkten der E(T — @)P-Geraden zu Punkten mit der Polarisation
P + AP gelangen und so die ganze E(T — <9)P+/)P-Kurve bestimmen,

die im allgemeinen keine Gerade mehr sein muss. In gleicher
Weise kann man die E(T — 0)P+2Ap bestimmen, wobei berücksichtigt

werden muss, dass (dE/dT)P eventuell von T— 0 abhängig
ist, wenn E(T—@)P+Z)P keine Gerade mehr ist. Die Genauigkeit
dieser Methode kann noch gesteigert werden, wenn nicht das x
des Anfangs des Integrationschrittes, sondern dasjenige der Mitte
des Schrittes einsetzt. Die schwächer ausgezogenen Geraden in
Fig. 10 sind E(T — 6>)P-Kurven, die aus dieser Integration
hervorgegangen sind. Die kleinen ausgefüllten Kreise sind die einzelnen
berechneten Punkte. Es zeigt sich, dass auch nach mehreren
Schritten die E(T— 0)-Kurven noch Geraden bleiben, die aber
schon nach einigen Integrationsschritten nicht mehr mit den
Geraden der ersten Integration (stark ausgezogen) übereinstimmen.
Auch bei diesen neuen E(T — 0)P kann man auf den Wert E 0

extrapolieren und so die spontane Polarisation als Funktion der
Temperatur bestimmen (siehe Fig. 12, Kurve 1).

Die E(T — 0)P-Geradenschar, Fig. 10, gibt uns für jedes Feld
und jede Temperatur die Polarisation, die vorhanden sein muss,
sie ist also schon die Lösung, die wir suchen. Die Funktion P(E, T)
wird aber durch diese Darstellung in einer ziemlich unübersichtlichen

Form wiedergegeben. Fig. 13 zeigt P(E)T_@, d. h. die Polarisation

als Funktion des Feldes bei verschiedenen konstant gehaltenen

Temperaturen, also die Kurven, die wir auch ballistisch
bestimmt haben. Es handelt sich um die gleichen Polarisationswerte
wie in Fig. 10 nur in anderer Darstellung.
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d) Vergleich mit den ballistischen Messungen.

Den Vergleich führt man wieder an Hand der Funktion

F
P(T-0)

(6)

durch. Die Konstruktion, die verwendet wurde, um aus den Kurven,
Fig. 5, die Funktion F zu bestimmen, kann man auch auf die
Kurven Fig. 13 anwenden. Im Bereich von 0 bis 2,5 -10~6 Cb/cm2
gilt der Ansatz P= 0(a). Gemäss den Ausführungen, S. 662 und

p
10-«

Cb/cm'
3,5

3,0

!,5

1,0

0,8° 0,2° 0,4»
T-e
0,6°
;o,8»

1.2°

-1,6°

2.0»/// .2,5°

If/// -3,0°

3,5°

[if/////f/y^ -4,0°

0 5000 10000 15000 E in Volt/cm

Fig. 13.

Polarisation als Funktion des elektrischen Feldes für verschiedene Temperaturen.
(Integration der DK -Werte.)

S. 663, sind dann die F-Funktionen, die aus den einzelnen P(E)T-
Kurven bestimmt worden sind, identisch. Fig. 6, Kurve 2 zeigt die
.F-Funktion, die sich ergibt, wenn man mit dem 0-Ansatz integriert.
(Zum Vergleich ist die Funktion absichtlich über den Bereich der
Gültigkeit bis 3-10-6 Cb/cm2 bestimmt worden.) Aber auch im
Bereich von 2,5 bis 3-10-6 Cb/cm2, wo die Integration ohne Ansatz
durchgeführt wurde, gibt es immer wieder die gleiche F-Funktion.
(Siehe Fig. 6, Kurve 1.)
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e) Betrachtungen zu den Abweichungen vom Ansatz P=0[(E + fP)/T].
Wir stellten uns die Aufgabe, das Versagen des Ansatzes P 0

[(E + fP)/T] (2) oberhalb P 2,5-10-6 Cb/cm2 zu erklären. Es
kann sich hier nicht um einen Fehler des Experimentes handeln,
da die Messfehler sicher kleiner als die in Frage stehende Diskrepanz

sind und nicht nur bei grosser Polarisation auftreten. Wir
mussten deshalb annehmen, dass für grössere Polarisationen der
Ansatz (2) die Verhältnisse in bezug auf Polarisation, elektrisches
Feld und Temperatur nicht mehr richtig beschreibt.

Der Ansatz (2) beruht auf der Annahme eines inneren Feldes, das
die Dipole ausrichtet. Dabei ist stillschweigend vorausgesetzt, dass
sowohl Anzahl als auch Grösse der Dipole temperaturunabhängig
sei. Ferner nimmt man auch einen temperatur- und
polarisationsunabhängigen Lorentzfaktor / an. (Polarisationsabhängigkeit der
Dipolanzahl oder Dipolgrösse kann angenommen werden ohne
Ansatz (2) zu verändern.) Unsere Diskrepanz rührt sehr wahrscheinlich

davon her, dass eine dieser Annahmen nicht richtig ist.
Wir ergänzten unseren Ansatz (2) durch eine Funktion xp, die der

eventuell vorhandenen Temperatur- oder Polarisationsabhängigkeit
der Dipole Rechnung tragen soll. Wir betrachteten die folgenden

vier Fälle:
1. P-W(T)=0(E^P-) (22)

(für temperaturabhängige Dipolanzahl)

2-P-*(w)) (23)

(für temperaturabhängige Dipolgrösse)

3. P=0[E+vf-iP-) (24)

(für temperaturabhängigen Lorentzfaktor)

4.P=0{E+^p-fP) (25)

(für polarisationsabbängigen Lorentzfaktor).

Da tp(T) nur eine kleine Korrektur sein soll, und unsere
Messungen sich nur über einen Temperaturbereich von etwa 5° C

erstrecken, fordern wir:

I. y(T) l + y>'(0)-(T-0) v'(9)-5°C<l (26)

(d. h. das erste Glied einer Potenzentwicklung nach T— 0 genüge).
Die allgemeine Integration ohne Ansatz (siehe S. 676) hat ergeben,
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dass die E(T— 0)-Kurven, in dem von uns betrachteten
Polarisationsgebiet, Geraden sind (siehe S. 677). Wir fordern also weiter:

II. Der verbesserte Ansatz ergebe für die E(T—0)-Kurven
wieder Geraden, die aber mit den richtigen Geraden (Fig. 10 schwach
ausgezogen) identisch sind.

Schliesslich wollen wir den Hauptzweck unserer Verbesserungsbestrebungen

nicht vergessen. Die auf Seite 674 beschriebene
Überbestimmung, die sich durch Einführen des Ansatzes (2) P 0
(E + fP/T) ergibt, bleibt erhalten, wenn wir (2) durch einen der
Ansätze (22) bis (25) ersetzen. Folglich muss es wieder zwei
verschiedene Methoden zur Bestimmung von 0 (oc) geben. Wir fordern:

III. Die zwei verschiedenen Methoden zur Bestimmung von
0(a), resp. 1 — 0'(«.)/0' (0) (entsprechend Gl. 18 und 20) sollen
übereinstimmende Resultate ergeben.

Analog dem Vorgehen mit Ansatz (2) führten wir die Integration
mit den Ansätzen (22) bis (25) durch. Die Rechnungen können ihres
grossen Umfangs wegen nicht wiedergegeben werden. Sie zeigen:

Ansatz (24) kann Forderung II und Ansatz (25) kann Forderung
III nicht erfüllen. Sie fallen deshalb ausser Betracht.

Ansatz (22) und (23) können nur dann alle drei Forderungen
erfüllen, wenn man für ip''(0) eine Polarisationsabhängigkeit zulässt.
Die Abnahme der Anzahl Dipole mit sinkender Temperatur wird
als „Einfrieren" der Dipole aufgefasst. Es wäre aber sehr schwer
zu verstehen, warum dieser Einfriervorgang von der Polarisation
abhängig sein sollte. Wir müssen also Fall 1 auch ausschliessen,
obwohl Ansatz (22) allen Anforderungen gerecht wird. Dagegen
könnte man sich leicht vorstellen, dass die durch das innere Feld
gestreckten Dipole einen andern Temperaturausdehnungskoeffizienten

haben als die ursprünglichen, da nach von Arx23) die
Dipolgrösse polarisationsabhängig sein soll. Es scheint also, dass
Fall 2 in Wirklichkeit zutrifft, d. h. : Die Grösse der Dipole ist
temperaturabhängig, wobei aber der Temperaturausdehnungskoeffizient yj'
(0, P) von der Polarisation abhängig ist.

Es gilt also :

P 0 E + f-P \
,21)\T-[l. + y>'<&, P)-(T-0)\] V >

(f 0/A 0,377/8,86 • 10-1\TC^—)
\ V-cm/

^'(0'P)=^öoW+^^P)-
fx'(P. 0) findet sich in Tabelle 2, wo auch die nach den zwei
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verschiedenen Methoden bestimmte Funktion 1 — 0'(oc)/0(0)
aufgeführt ist.

Tabelle 2.

* (dEjdT)p Vi' (&, P) f>'(a)
Pin in T-0 in P'(0)

lcre
Cb Volt/cm 0 C io-4 aus aus
cm' »C »C xad resp. K P* SP

2,64 9200 0,42 0,43 0,0256 0,0220
2,69 9290 0,47 -1,26 0,0260 0,0258
2,76 9450 0,56 -1,22 0,0324 0,0324
2,81 9560 0,63 -2,50 0,0358 0,0360
2,86 9600 0,72 -2,86 0,0439 0,0415
2,91 9680 0,81 -3,53 0,0479 0,0460
2,96 9860 0,90 -3,54 0,0502 0,0520
3,01 9920 1,02 -4,40 0,0601

i

0,0600

Für die P-Werte unter 2,64-10-6 Cb/cm2 ist Tabelle 1 massgebend.

f) Der elektrokalorische Effekt.

Nach Gleichung (7) ist

dT \dT )i dt oder dT T(E + fP)
CpT

' dP

E ist gegenüber /P so klein, dass es vernachlässigt werden kann.
(y>(T) wird hier vernachlässigt).

dT=-^-dP AT ^2 cP
(28)

Die durch den elektrokalorischen Effekt frei werdende Wärme Q ist :

AQ cPAT I

Wie Bantle10) festgestellt hat, wird bei der spontanen Polarisation
ebenfalls die Wärme Q f/2 • P2 frei. An Hand der Polarisationskurven

(Fig. 13 und Gl. (28)) lassen sich die Temperaturerhöhungen

T berechnen. Aber der elektrokalorische Effekt ist auch
direkt gemessen worden; da nämlich die Resonanzfrequenz der
Kristallplatten sehr stark von der Temperatur abhängt (vgl.
Kap. IIIc), besteht die Möglichkeit, die Temperatur aus der
Resonanzfrequenz sehr genau zu bestimmen. Die Messung geht in
folgender Weise vor sich. Die Temperatur wird vom Thermostaten
konstant gehalten und die Resonanzfrequenz gemessen. Sodann
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Elektrokalorischer Effekt: Tempelaturerhöhung als Funktion des elektrischen
Feldes; Vergleich einiger Messwerte mit der berechneten Kurve.
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Fig. 15.

Verhältnis von isothermer D. K. £iso zu der adiabatischen D. K. £ad als Funktion
des elektrischen Feldes für verschiedene Temperaturen (T'— ©).
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schaltet man das Feld ein und wartet, bis sich die Temperatur
wieder ausgeglichen hat. Beim Anschalten des Feldes sinkt die
Temperatur momentan unter den ursprünglichen Wert und kehrt
sogleich wieder, wegen der relativ kleinen Wärmekapazität des

Kristalls, zur Temperatur des Thermostaten zurück. Der
Temperaturgang wird nun an Hand der Resonanzfrequenz verfolgt und
die gefundenen Temperaturen werden auf den Wert im Augenblick
des Ausschaltens extra-poliert. Fig. 14 zeigt den Vergleich einer
berechneten Kurve mit einigen gemessenen Punkten.

Die unvollkommene Übereinstimmung zwischen Kurve und
Messpunkten beruht nur teilweise auf Messfehlern, hauptsächlich
dürfte sie darauf zurückzuführen sein, dass die Messungen an
verschiedenen Kristallen durchgeführt werden mussten.

Endlich soll noch quantitativ der Einfluss des elektrokalorischen
Effektes auf die Suszeptibilität untersucht werden. Aus Gleichung
(15) und (19) kann man das Verhältnis

¦ * s Ì52- berechnen. ^ —~=^~ (29)

WJolJ
fad

"
fad T g/(°) @

Die aus Gleichung (29) berechneten Verhältnisse sind in Fig. 15

dargestellt.*)

g) Bestimmung der spezifischen Wärme cP.

Es spielt eine grosse Rolle; unter welchen Nebenbedingungen die
spezifische Wärme gemessen wird. Die direkten Messungen der
spezifischen Wärme ergeben immer cE Q, das heisst, die
spezifische Wärme bei konstantem Feld 0. Unter dem Curiepunkt zeigt
cE eine grosse Temperaturabhängigkeit. Hier soll jedoch darauf
verzichtet werden, cE als Funktion von T in den Ansatz
einzuführen, da diese sehr komplizierte Rechnung in folgender Weise

umgangen werden kann. Man weiss nämlich, dass die Anomalie eine
Folge der Polarisationsänderungen mit der Temperatur ist. Oberhalb

und weit unterhalb des Curiepunktes, wo sich die Polarisation
nicht mehr verändert, bleibt cE, das dort gleich dem cP ist, konstant.
Dies legt den Gedanken nahe, dass diese Anomalie, wie übrigens
auch die Temperaturabhängigkeit der anderen Konstanten (D. K.
Piezomodul und Elastizitätsmodul) allein durch das anomale
Verhalten der Polarisation bedingt ist und sofort verschwindet, wenn
die Polarisation konstant gehalten wird. Es ist also viel zweck-

*) Oberhalb 2,5-10-6 Cb/cm2 ist £lso direkt aus den Kurven in Fig. 13 zu
bestimmen und durch £a(i (aus Fig. 9) zu dividieren.



684 Hans, Baumgartner.

massiger, die spezifische Wärme cP in die Rechnung einzuführen,
die man im ganzen in Frage kommenden Temperaturgebiet als
konstant annehmen darf.

Die Kurven in Fig. 8 tangieren eine umhüllende Gerade. Diese
erlaubt cP sehr genau zu bestimmen.

Als erste Näherung nehmen wir an : Der Abfall der x (E) T-Kurven
mit zunehmendem Feld sei allein eine Folge des elektrokalorischen
Effektes, und bis zum Berührungspunkt der Kurve mit der
Umhüllenden machen sich noch keinerlei Sättigungserscheinungen
bemerkbar. Es gelten dann die vereinfachten Beziehungen

P Po-E (30)
und

x* ad. Suszeptibilität, ohne Sättigungserscheinungen.

Der Index o ist zugefügt, um anzudeuten, dass es sich um p beim
Feld 0 handelt. Nach unserer vereinfachenden Voraussetzung ist
V Po- Po ist dann nur von T abhängig. Während ursprünglich T
als Parameter genommen wurde, kann man für diesen Fall p0 die
Rolle des Parameters übertragen. Gleichung (1) und (31) in (13)
eingesetzt ergibt

nach dem Parameter p0 differenziert ergibt:

(Variation von T vernachlässigt). Durch Elimination des
Parameters p0 aus Gleichung (32) und (33) erhält man die Gleichung
der Umhüllenden. Es ist vorteilhaft, zuerst das Glied mit E2 zu
eliminieren, was zu der Gleichung:

**=7sPo (34)

führt. (34) sagt aus, dass die Kurve die Umhüllende berührt,
wenn ihre Ordinate um 1/3 des Ausgangswertes gesunken ist. (34)
in (32) eingesetzt gibt

1/3- Ffa2/3. (35)* _x • i —=27

In der logarithmischen Darstellung wird diese Funktion eine
Gerade mit der Neigung — 2/3. In Fig. 8 ist die gestrichelte Gerade
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mit der Neigung — 2/3 an die Kurvenschar gelegt worden. Sie
berührt die Messkurve T — 0 0,755° C. Bei den anderen
Temperaturen weicht die Umhüllende etwas von der Geraden ab. Näher
am Curiepunkt stimmt die Temperatur nicht mehr und oberhalb
0,755° C macht sich die Sättigungserscheinung deutlicher bemerkbar.

Die an die 0,755° C-Kurve gelegte Gerade folgt am besten
der Gleichung (35). Nun lässt sich ein Punkt auf der Geraden
herausgreifen, z.H. E 1000 Volt/cm e 5140, und in Gleichung
(35) einsetzen, was den Wert cP 0,925**) Joule/cm3- Grad ergibt.

Zur genauen Bestimmung von cP dürfen die Sättigungserscheinungen

nicht vernachlässigt werden. Bei T — 0 0,755° erhalten
wir x/x* 0,9817

(x adiabatische Suszeptibilität mit Sättigungserscheinungen
x*= adiabetische Suszeptibilität ohne Sättigungserscheinungen).

In Gleichung (35) müssen wir für x* nicht 5140, sondern 5140/0,9817
einsetzen und erhalten für

cp 0,977 Joule/cm3 • Grad. (36)

IV. Feldabhängigkeit der Dielektrizitätskonstanten in der a-Richtung.

Mit der gleichen Apparatur, mit der die Abhängigkeit in der
c-Richtung gemessen wurde (Fig. 7 und 8), konnte auch die
Feldabhängigkeit in der a-Richtung bestimmt werden. Es zeigte sich
keinerlei Feldabhängigkeit. Die Dielektrizitätskonstante blieb im
Temperaturbereich in Nähe des Curiepunktes bis zu Feldern von
60000 Volt/cm konstant.

V. Feldabhängigkeit der Dielektrizitätskonstanten ea, wenn ein Feld in
der c-Riehtung angelegt wird.

Um diese Messungen auszuführen, kann man nicht einfach an
ein Parallelepiped an den Seiten senkrecht zu a und zu c zwei Paare
Elektroden anbringen, da sich diese gegenseitig stören würden.
Sowohl das Feld der Gleichspannung in der c-Richtung wie auch
das Feld in der a-Richtung (von der Wechselspannung herrührend)
würde verzerrt. Es wurde deshalb die Anordnung der Fig. 16
verwendet.

**) Die Vernachlässigung der Variation von T Gl. (32) und (33) ergibt einen
Fehler von weniger als 0,3°/00 für cP.
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Die Gleichspannung wurde mit einer schwach leitenden Schicht
auf die Kristalloberfläche geführt. Diese Schicht hat einen Widerstand

von etwa IO9 Ohm, während der Blindwiderstand des Kristalls
für die Wechselspannung von 5000 Hertz der Brücke nur etwa
3 • IO6 Ohm ist. Die IO9 Ohm Parallelwiderstand spielen dann keine
Rolle mehr. Der Widerstand des Kristalls selbst ist etwa IO12 Ohm.
Der Spannungsabfall in der Widerstandsschicht ist also unwesentlich.

Andererseits ist es nicht zu vermeiden, dass die
Wechselspannungselektrode das Gleichfeld beeinflusst. Um diesen Einfluss

>a

m J
<-c<

v,

Messbrücke
Fig. 16.

Anordnung um die D. K. fa zu messen, wenn das Material unter dem Einfluss
eines grossen Feldes in der c-Richtung steht. V ~ wird auf die Silberelektroden
geleitet, während V mit einer schlecht leitenden Schicht, die auf der Oberfläche

senkrecht c haftet, in Verbindung steht.

herabzusetzen ist nur ein Teil der Oberfläche mit der Widerstandselektrode

belegt. Das Feld dehnte sich dann nicht bis zu der
Wechselspannungselektrode aus. Leider sind auch in dieser Anordnung

die Felder noch lange nicht homogen, so dass man quantitativ
den Wert des Feldes nicht angeben kann. Ebenso sind die Kapazitäten,

die gemessen werden müssen, unter 10 pF, und die Messbrücke
erlaubt nur auf lpF genau zu messen. Beobachtet wird ein Abfall
der D. K., sobald ein Feld eingeschaltet wird. In gleicher Weise wie
unter dem Curiepunkt mit ansteigender Polarisation in der c-Richtung

die D. K. in der a-Richtung absinkt, fällt die D. K. ebenfalls
oberhalb des Curiepunktes, wenn die Polarisation mit einem Feld
erzeugt wird. Die Messungen von Busch9) und unsere Messungen
stimmen innerhalb der Messgenauigkeit (etwa 20%) überein. Eine
Darstellung erübrigt sich, da die Polarisationswerte aus der
vorliegenden, und die D. K.-Werte genauer aus der Arbeit von Busch
entnommen werden können.
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Der Einfluss eines Feldes in der a-Richtung auf ec ist nicht
gemessen worden. Es ist anzunehmen, dass keine solche Abhängigkeit
existiert.

VI. Feldabhängigkeit des Elastizitätsmoduls s66 und des Piezomoduls d36.

Den Elastizitätsmodul s66 misst man am einfachsten mit Hilfe
von Längsschwingungen quadratischer Platten, deren Ebene senkrecht

zu c steht und deren Seitenkanten um 45° gegen die a-Achsen
geneigt sind. Die Grundschwingung einer solchen Platte hat die
Kreisfrequenz :

v r- -, (37)
1/2 L]/r,-sm

L Länge der Seite der Platte,
q Dichte des Materials.

Die Dicke spielt keine Rolle. Der Vorteil dieser Methode ist, dass
die Resonanzfrequenz nur von s66 abhängig ist. Zur Messung wurde
Apparatur Fig. 17 benutzt.

V=

Oscillograf
Generator

Fig. 17.

Schema der Apparatur zur Messung der Resonanzfrequenz von Kristallplatten.

Bei Resonanz des Kristalls fällt der Blindwiderstand des
Kristallkondensators sehr steil ab. Der Kristall selbst stellt dann nur noch
einen kleinen ohmschen Widerstand dar. Der Spannungsabfall am
Eingangswiderstand des Oszillographen wird damit grösser, was
auf dem Schirm beobachtet werden kann.

Die Messungen mit aufgedampften Elektroden ergeben ein
anderes Resultat als diejenigen, bei denen zwischen Elektrode und
Kristall noch ein Luftspalt bleibt (siehe z. B. Fig. 19). In einem
Luftspalt erzeugen nämlich die freien Ladungen auf der
Oberfläche Felder, die die Tendenz haben, die Polarisation und damit
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auch die Deformation zu unterdrücken. Der Kristall scheint dann
härter zu sein; der Elastizitätsmodul wird dementsprechend kleiner.
Der Elastizitätsmodul gemessen ohne Luftspalt wird sE(E konst.)
genannt. Sobald ein Luftspalt mit der Breite d vorhanden ist, gilt
die Beziehung: ,„"d-^- + sE (38)Sd =-

D Kristalldicke 1 mm für unseren spez. Fall).

10-12

cm2/dyn

110 ,T-e

100

\o,65°

Uo,73»
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1,25» U\

60 1,45«_ü
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Fig. 18.
Elastizitätsmodul s66, ohne Luftspalt gemessen, als Funktion des elektrischen Vor¬

feldes gemessen, bei verschiedenen Temperaturen T - 0.

Wenn d unendlich ist, so gilt :

*oü Sisoliert= SE fa • V"»]
fcc

Wird der Luftspalt d 1 mm, so ist Djd 1 und kann in (38)
gegenüber s vernachlässigt werden. Man erhält praktisch s^.
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Die in Fig. 18 dargestellten Kurven zeigen sE als Funktion des
Vorfeldes E. Aus der Differenz des Elastizitätsmoduls mit und
ohne Luftspalt kann man (4jrd|8/e) berechnen und so die
Feldabhängigkeit des Piezomoduls d36 bestimmen. Es ist aber schwer
sTO mit einem Vorfeld zu messen, da die Elektroden, auf die man
die Gleichspannung geben könnte, nicht am Kristall aufliegen. Da
die D. K. des Kristallmaterials sehr gross ist, würde die ganze
Spannung am Luftspalt und nicht am Kristallmaterial liegen. Um
dies zu vermeiden, haben wir eine Widerstandsschicht auf die
Kristallfläche gebracht. Fig. 19 zeigt die Anordnung.

^S N\\KristalX \^ V= + Va,

Fig. 19.

Anordnung zur Messung der Resonanzfrequenz einer Kristallplatte, die in einem
Luftspalt zwischen zwei Metallplatten schwingt. Auf dem Kristallmaterial haftet
eine Widerstandsschicht, die es ermöglicht, den Kristall unter den Einfluss eines

elektrischen Gleichfeldes zu setzen.

Die Wirkung dieser dünnen Widerstandsschicht erklärt sich fol-
gendermassen : Schwingt der Kristall, so entstehen auf der
Oberfläche freie Ladungen, die bei aufgedampften Metallelektroden
sofort durch wahre Ladungen kompensiert werden, so dass keine
depolarisierenden Felder entstehen. Bei einer Frequenz von 100 Khz
ändert die Polarisation innerhalb 1/200000 sec ihr Vorzeichen. In
dieser Zeit vermag praktisch keine wahre Ladung auf die
Widerstandsschicht mit etwa IO9 Ohm zu fliessen und die depolarisierenden

Felder können sich ungestört ausbilden. Wir messen dann
tatsächlich sisonert. Die Gleichladung hingegen hat genügend Zeit,
um auf die Schicht zu fliessen und das Material unter ein Gleichfeld
zu setzen.

Eine solche schlechtleitende Schicht kann man durch Mischen
von kolloidalem Graphit und Zaponlack erhalten. Je nach
Mischverhältnis kann man Schichten von 103 bis 1012 Ohm herstellen.
Solche Widerstände sind jedoch stark spannungsabhängig. Der
Widerstand sinkt mit wachsender Spannung. Bei unseren Messungen

spielte dies aber keine Rolle.
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Die Messungen wurden für verschiedene Luftspaltbreiten
durchgeführt. Mit sehr kleinen Luftspalten zeigt sich noch deutlich eine
Feldabhängigkeit, was man auch erwartet hat. Ebenso konnte
festgestellt werden, wie sich die Kapazität der Metallplatten
verkleinerte, wenn eine Gleichspannung angelegt wurde. Dies gibt uns
die Gewissheit, dass das Material auch wirklich unter dem Einfluss
eines elektrischen Gleichfeldes stand. Die Feldabhängigkeit wurde
um so kleiner, je mehr man den Luftspalt vergrösserte. Bei einer
Spaltbreite von 5 mm (Kristalldicke 1 mm) konnte trotz grosser
Empfindlichkeit der Apparatur keine Verschiebung der Resonanzfrequenz

durch ein Gleichfeld beobachtet werden. Der Elastizitäts-

10 cm^iyn
14 35

14.34

14 33

1432

14 31

1430

14 29

-5° -4° -3° -2° -1° 0° 1° 2° 3° 4° 5° T-8

Fig. 20.

Elastizitätsmodul sm oo (Luftspaltmodul) als Funktion der Temperatur.

modul s66 des isolierten Kristalls ist also unabhängig von einem
elektrischen Feld.

Durch die Polarisation erleidet der Kristall eine Winkeländerung
von über 20', dazu kommt noch eine beträchtliche Aufblähung als
Effekt zweiter Ordnung. Gerade diese Aufblähung scheint darauf
hinzuweisen, dass sich die Gitterkräfte etwas ändern, was man auch
bei der Messung des Elastizitätsmoduls s66oo bemerken sollte. Die
Temperaturabhängigkeit von sN in der Nähe des Curiepunktes ist
aber äusserst gering, wie die Messungen zeigen.

Um d36 aus (39) zu ermitteln, wurde s^ in der Nähe des
Curiepunktes 0 mit möglichst grosser Genauigkeit bestimmt. Das
Resultat ist in Fig. 20 dargestellt.
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4° C unter dem Curiepunkt, wo der Kristall fast vollständig spontan

polarisiert ist, hat man den gleichen Elastizitätsmodul wie 4° C
oberhalb 0 bei der Polarisation 0. Am Curiepunkt 0 selbst sinkt
s66 nur um 1,5°/^. Dies zeigt, dass selbst die spontane Polarisation
s66 kaum ändert.

von Arx15) und Zwicker19) haben gezeigt, dass das Verhältnis
von Suszeptibilität zu Piezomodul x3/d36 k nur wenig temperaturabhängig

ist :

-pL fc 2,09 • IO6 cm"* g* sec-1 55,5 Cb/cm2. (40)

Erweitert man die linke Seite (40) mit E, so steht dort das
Verhältnis von Polarisation zu Deformation, und das muss wieder
gleich k sein. Wir wissen, dass bei hohen Feldern die Polarisation
nicht mehr proportional zum Feld E ist. Die différentielle
Suszeptibilität sinkt. De Quervain16) zeigte, dass unterhalb des
Curiepunktes das Verhältnis von spontaner Polarisation zu spontaner
Deformation ebenfalls den Wert k ergibt. In diesem Temperaturgebiet

ist die Polarisation dem elektrischen Feld nicht proportional.
Wir vermuten also, dass die Proportionalität (40) auch noch gilt,
wenn oberhalb des Curiepunktes das Sättigungsgebiet erreicht wird.
Bei jeder Messung des Elastizitätsmoduls ohne Luftspalt wurde
gleichzeitig die Suszeptibilität x bestimmt. Aus Gleichung (39) kann
man d36/x berechnen. Durch Division mit dem direkt gemessenen
x kommt man zu: d2/x2 k2.

Dies ist auch bei allen Messpunkten innerhalb der Fehlergrenzen
der Fall. Abweichungen kommen nur nahe am Curiepunkt bei kleinen

Feldern vor. Dies ist das Gebiet mit den grössten ^-Werten,
wo Verfälschungen durch feine Luftspalte auftreten können. Diese
Werte besitzen also kein Gewicht.

Analog dem elektrokalorischen Effekt existiert auch noch ein
mechanisch-kalorischer Effekt. In einem elektrischen Vorfeld
bewirkt ebenfalls eine Deformation eine Temperaturveränderung.
In einem Kristall, der in einem Vorfeld schwingt, schwankt die
Temperatur im Takte der Frequenz auf und ab. Analog wie die
Suszeptibilität durch diese Temperaturschwankungen verändert
wurde, wird in diesem Falle der Piezomodul verkleinert. Es gibt also
wieder einen isothermen und einen adiabatischen Piezomodul. Aus
Gleichung (39) erhalten wir den adiabatischen Modul. Wir müssen
wieder die Beziehung zwischen isotherm und adiabatisch aufstellen.
Wollte man dies korrekt durchführen, so musste man sämtliche
Formeln von Kapitel III mit Berücksichtigung der mechanischen
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Grössen neu bearbeiten. So würde zum Beispiel Gleichung (7)
heissen :

dT ^(**j-) .dP + (^r) ¦ dx (41)
cP,x \dT 'px \ÒT )px V '

x Deformation. X mechanische Spannung.

Es lohnt sich nicht das ganze Formelsystem neu zu schreiben,
da man nicht viel davon profitiert. Wir stützen uns auf Gleichung
(40) P/x k und machen die Annahme, sie gelte genau, was in
Wirklichkeit nicht ganz zutrifft, da k noch etwas temperaturabhängig

ist. Unsere ganzen Betrachtungen beschränken sich auf
den schmalen Temperaturbereich von 0 bis 0 + 4°, in welchem k
sehr wenig variiert. Es gilt dann auch dP k-dx. Dabei spielt es

keine Rolle, ob das dP durch eine Feldänderung dE oder durch
eine Temperaturänderung dT oder durch beide zusammen
verursacht worden ist.

dP\ /hdxw
fiso \ÒE Jt \ dE (42)
faa " (dP\ - /kdx\

\OEjad \ ÒE jad

eiso/ead kann aus Fig. 15 entnommen werden.
Nach Gleichung (39) berechnet sich:

«ad "lso

Auch bei dem Elastizitätsmodul gibt es zwei Möglichkeiten.
Adiabatischer und isothermer Modul hängen wie folgt zusammen:

(l — P&äP\ lso (44)
\ flso / ^lso

Es ist sowohl beim Piezomodul wie auch beim Elastizitätsmodul
darauf zu achten, ob man statisch oder dynamisch misst. Im ersten
Falle misst man die isothermen und im zweiten die adiabatischen
Grössen, die, wie Fig. 15 zeigt, erheblich voneinander verschieden
sein können.

VII. Vergleich mit der Slatersehen Theorie.

Die Messungen und ihre Auswertung haben gezeigt, dass die
Langevin-Weiss'sehe Theorie die beste Übereinstimmung mit der
Erfahrung erzielt. Die Deutung der gefundenen 0-Funktion aus
einer molekularen Statistik heraus bietet erhebliche Schwierigkeiten,

mit denen wir uns hier nicht befassen wollen. (Siehe
von Arx)23)24).
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Es bleibt noch zu diskutieren, ob eventuell die Slater'sche Theorie
bei näherer Betrachtung nicht das Gleiche wie die Langevin-
Weiss'sche Theorie leistet. Die exakte Durchrechnung der Slater-
schen Ansätze25) geben für die Polarisation die Funktion:

a fiE/kT r ujhT (i Dipolmoment h — Boltzmann'sehe Konstante
u Energieunterschied zwischen einem (H2P04)-Dipol in der a-Richtung und

einem entsprechenden in der c-Richtung.

Nach Gleichung (45) strebt die Polarisation P/Ps nicht etwa dem
Wert 1 zu, sondern steigt mit zunehmendem E immer steiler an.
Dasselbe gilt auch für die isotherme Suszeptibilität p. Bei der
Feldstärke

B-17860(2?- 0)-^~ (4ß)

erreicht x den Wert 1. Der Kristall kann aber nicht eine höhere
Polarisation als Ps erreichen, x 1 kann niemals überschritten
werden. Für höhere Felder würde die Polarisation konstant
bleiben. Wenn aber die Polarisation bei Variation des Feldes sich
nicht verändert, ist die Suszeptibilität p.= 0. In unserem Fall sind
nur die Dipole betrachtet worden. Die Dipolpolarisierbarkeit würde
wegfallen und die Suszeptibilität beim Feld Gleichung (46) mit
einem Sprung auf den Wert des Untergrundes herabsinken. Dies
bezieht sich auf die isotherme Suszeptibilität. Die adiabatische
Suszeptibilität musste diesen Sprung auch zeigen (nebst dem Abfall

infolge des elektrokalorischen Effektes). Das ist nicht der Fall.
Fig. 21 zeigt den Vergleich einer adiabatischen ec-Kurve, wie sie

wirklich bei (T — 0) 0,755° C als Funktion des Feldes gemessen
wurde, mit der ec-Kurve, wie sie nach der Slater'schen Theorie
verlaufen musste. Zur Konstruktion der letzteren Kurve kann man
Gleichung (45) nach E entwickeln. Es gilt dann:

P AE/(T — 0) + Glieder höherer Ordnung, welche vernachlässigt

(45 a) werden dürfen.
In der Nähe des Curiepunktes herrscht nach Gleichung (45)

zwischen Polarisation und Feld praktisch Proportionalität. (Im
Bereich x 0 bis x 1.)

Slater musste bei der Berechnung der Anzahl F der Anordnungen
mehrere Voraussetzungen machen, die ziemlich fragwürdig sind.
Es sei hier ein augenfälliges Beispiel herausgegriffen. Bei der
Berechnung der Rekursionsformel baut Slater theoretisch einen
Kristall auf, indem er an einen Kristall von N (Anzahl) P04-Gruppen
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an einer bestimmten Stelle die N + Iste Gruppe ansetzt. Die neue
PO4- Gruppe hängt über zwei Wasserstoffbrücken mit zwei alten
P04-Gruppen zusammen. Durch die Dipolrichtung der zwei
letzteren ist die Lage der Wasserstoffkerne auf der Brücke bestimmt.
Dadurch ergibt sich auch, ob die neue P04-Gruppe den Dipol in
+ c, — c oder senkrecht zu c hat. Die Berechnung der Richtung des
neuen Dipols führt zu der Rekursionsformel. Slater berechnet die
Wahrscheinlichkeit der Protonstellung auf der einen Brücke und
dann auf der anderen. Aus der Anordnung der Protonen auf beiden
Brücken ergibt sich die Dipolrichtung der neuen P04-Gruppen.
Die Wahrscheinlichkeit einer solchen Anordnung ist nach Slater
das Produkt der Wahrscheinlichkeiten der einzelnen Brücken. Dies
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Fig. 21.

Vergleich der nach der Slaterschen Theorie berechneten DK als Funktion des
Feldes E mit der gemessenen Kurve bei (T- 0) 0,755° C.

1 gemessene Kurve. 2 theoretische Kurve.

wäre richtig, wenn die zwei Brücken ganz unabhängig voneinander
wären. Sie hängen jedoch über viele Reihen von P04-Gruppen
zusammen. Die kürzesten dieser Reihen umfassen 6 Glieder. Eine
einzige solche Umwegkopplung setzt die Anzahl der möglichen
Dipolanordnungen mit dem neuen Dipol schon um einen Faktor 2
herunter.

Es wäre nun möglich, dass zwar das Slater'sehe Modell der
Dipolkopplung richtig ist, insbesondere da dies durch die Analogie mit
dem Eis sehr stark gestützt ist, dass aber die Berechnung von F
falsch ist. Wenn die obigen Betrachtungen zeigen, dass die Slater-
sche Abzahlung nicht exakt sein kann, so scheint sie doch eine sehr
gute Annäherung zu sein. Für den Wert x 0 stimmt die Theorie
gut mit dem Experiment überein, und es ist anzunehmen, dass in
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diesem Fall die Abzahlung auch stimmt. Für den total polarisierten
Zustand x fa 1 ergibt sie den Wert 2. Wie man sich direkt am
Modell überzeugen kann ist dies auch richtig. Wenn bei einem
vollständig polarisierten Kristall die Richtung einiger Dipole geändert
werden soll, so muss man eine ganze Kette von Dipolen, die sich
von einer Oberfläche senkrecht c bis zu der gegenüberliegenden
ausdehnt, umklappen. Es müssen bei einem Würfel von N H2P04-
Dipolen also N113 Dipole miteinander die Richtung ändern. Die
Kette hat bei jeder P04-Gruppe zwei Möglichkeiten um
weiterzulaufen. Sie kann irgendwo an den N213 P04-Gruppen der Grundfläche

beginnen. Es gibt also iV2/3. 2*1'3 Möglichkeiten eine solche
Kette auszubilden. Alle diese Möglichkeiten entsprechen einem
Zustand mit N — N113 Dipolen in + oder — c-Richtung und N1!3
senkrecht zur c-Richtung. Die Slater'sehe Abzahlung gibt nur 2Jvl/3

Möglichkeiten. Der Unterschied dieser zwei Werte spielt keine Rolle
mehr, sobald Thermodynamik getrieben wird, d. h. wenn die
Anzahl der Möglichkeiten logarithmiert wird. Der Faktor N2!3 ist
gegenüber 2N ' zu klein. Diese Art der Abzahlung der Zustands-
möglichkeiten lässt sich fortsetzen und auf mehrere Reihen
ausdehnen. Solange die Zahl der Reihen klein gegenüber N113 ist, gibt
es keine gegenseitige Beeinflussung der Ketten, und die Abzahlung
der möglichen Zustände ist leicht durchzuführen. Sobald
Beeinflussung da ist, d. h. zwei Ketten über die gleiche P04-Gruppe
laufen, entstehen Dipole in der entgegengesetzten c-Richtung, deren
Anzahl schwer zu berechnen ist. Soweit die Anzahl der Zustände
direkt berechnet werden konnte, stimmt sie, bis auf die erwähnte
Abweichung (Faktor N2IS), mit der Slater'sehen Gleichung (45)
überein. Für den vollständig polarisierten Zustand ist die Slater-
sche Theorie nicht nur im Punkt x 1 richtig, sondern auch in
dessen Nachbarschaft. Gleichung (45) gibt für x 1 das exakte
dx/dE, obwohl die Gleichung zwischen x — 1 und x + 1 wegen
der ungenügenden Abzahlung falsch sein kann. Da die Slater'sche
Theorie auch im Punkte x 0 richtig ist und auf dieselbe
Suszeptibilität führt, so musste die isotherme Suszeptibilität im unpolari-
sierten (x 0) und im vollständig polarisierten Zustande (x 1) in
Nähe des Curiepunktes gleich sein, und zwar sehr gross. Somit sinkt
die D. K. sprunghaft auf den Wert des Untergrundes, sobald x 1

erreicht wird. Der D.K.-Sprung, den Gleichung (45) voraussagt,
ist also sicher nicht eine Unzulänglichkeit der Rechnung, sondern
eine Erscheinung, die auftreten sollte, wenn die Dipolwechselwirkung

so ist, wie sie Slater beschreibt. Die Slater'sche Theorie gilt
zwar nur für den starren Kristall, der durch die Polarisation nicht
piezoelektrisch deformiert wird. Unsere Messungen beziehen sich
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auf den freien Kristall. Nach den Ausführungen von Nagamiya
undYoMOSA25) und Oechslin26) verschiebt sich beim freien Kristall
der Curiepunkt um 3,7° C nach oben; der sprunghafte Charakter
der Umwandlung bleibt aber erhalten. Ebenso ist der plötzliche
Abfall der D. K. bei hohen Feldern auch in diesem Falle zu
erwarten. Dieser Abfall ist experimentell nicht gefunden worden, und
dies bedeutet, dass schon in den Grundlagen der Slater'schen Theorie
eine Voraussetzung gemacht worden ist, die in Wirklichkeit nicht
zutrifft.

Auch alle anderen in der Einleitung erwähnten Ansätze 4)5)6)7)8)

werden von unsern Messungen nicht bestätigt.
Meinem verehrten Lehrer, Herrn Prof. Dr. Scherrer möchte

ich für seine wertvolle Unterstützung und sein Interesse an dieser
Arbeit besonders danken.

Zürich, Physikalisches Institut der E.T.H.

Literaturverzeichnis.

J. C. Slater, Journal of Chem. Phys. 9, 16 (1941).
G. Busch, Helv. Phys. Acta 11, 269 (1938).
Debye, S., Polare Molekel, Hirzel Verlag (1929).
L. Onsager, Journal of the Am. Chem. Soc. 58, 1486 (1936).
C. Böttcher, Physiea 9, 937 (1942).
J. van Vlek, Journal of Chem. Phvs. 5, 565 (1937).
J. G. Kirkwood, Journal of Chem." Phys. 7, 911 (1939).
H. Fröhlich, Trans. Farad. Soc. 54, 238 (1948).
J. Pirenne, Helv. Phys. Acta 22, 479 (1949).
L. Paulino, Nature of Chemical Bonds, 303, Cornell University Press (1940).
W. Bantle, Helv. Phys. Acta 15, 373 (1942).
W. Bantle und Ch. Caflisch, Helv. Phys. Acta 16, 235 (1943).
Scott und Brickwedde, Bur. Stand. J. Res. 6, 401.
P. Boning, Verlag Vieweg Braunschweig (1938).
A. von Arx und W. Bantle, Helv. Phys. Acta 17, 298 (1944).
M. de Quervin, Helv. Phys. Acta 17, 509 (1944).
C. B. Sawyer und C. H. Tower, Phys. Rev. 35, 269 (1930).
R. Becker und W. Dörring, Ferromagnetismus, 69, Jul. Springer, Berlin
(1939).
B. Zwicker, Helv. Phys. Acta 17, 346 (1944).
C. C. Stephenson undfa. G. Hooly, Jour, of Am. Chem. Soc. 66,1397 (1944).
A. von Arx und W. Bantle, Helv. Phys. Acta 16, 211 (1943).
A. von Arx, Helv. Phys. Acta 22, 403 (1943).
A. von Arx, Helv. Phys. Acta, demnächst.
E. Trucco, Diplomarbeit E.T.H. Zürich (1945), unveröffentlicht.
T. Nagamiya und S. Yomosa, Jour, of Chem. Phys. 17, 102 (1949).
R. Oechslin, Helv. Phys. Acta, demnächst.


	Elektrische Sättigungserscheinungen und elektrokalorischer Effekt von Kaliumphosphat KH2PO4

