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Elektrisehe Sittigungserscheinungen und elektrokalorischer
Effekt von Kaliumphosphat KH;PO,

von Hans Baumgartner.
(24. VII. 1950.)

Zusammenfassung. Die vorliegende Arbeit befasst sich mit dem seignette-
elektrischen Verhalten von KH,PO,-Kristallen in einem sehr engen Temperatur-
bereich direkt oberhalb des Curiepunktes (—145° C bis —150° C). Bei diesen
Temperaturen werden zwei Effekte, die sonst kaum beobachtbar sind, sehr gross
und der Messung zuginglich. Es handelt sich um den elektrokalorischen Effekt
einerseits und den Abfall der differentiellen Dielektrizitétskonstanten beim An-
legen eines elektrischen Vorfeldes andererseits. Solche Messungen haben eine grosse
Bedeutung fiir die Theorie der Seignetteelektrika.

Die oben erwiahnten Kristalle (und ihre Isomorphen) sind wohl die einzigen
Substanzen, die einen deutlich messbaren elektrokalorischen Effekt zeigen: ein
Feld von 10000 Volt/em bewirkt bei der Temperatur 1° oberhalb des Curiepunktes
bereits eine adiabatische Temperaturianderung von iber 1° C.

Durch umfangreiche Messungen und durch theoretische Uberlegungen wird
gezeigt, dass und in welcher Weise der Abfall der Dielektrizititskonstante mit
steigender Feldstiarke verkniipft ist, einerseits mit dem elektrokalorischen Effekt
und andererseits mit den Sattigungserscheinungen der elektrischen Polarisation.
Der elektrokalorische Effekt erzeugt durch Temperaturschwankungen als Funktion
des Feldes Polarisationsianderungen, die den urspriinglichen durch das Feld er-
zeugten entgegengesetzt sind und so die Dielektrizitatskonstante verkleinern.
Ausserdem steigt schon oberhalb des Curiepunktes die Polarisation bei hohen elek-
trischen Feldern nicht mehr proportional mit dem Felde an, sie strebt auch da
einem Sittigungswerte zu. Die Messungen wurden dazu verwendet, um zu ent-
scheiden, ob es moglich ist, die Seignetteelektrizitat durch eine Theorie mit innerem
Feld, entsprechend der Langevin-Weiss’schen Theorie des Ferromagnetismus, oder
durch die statistische Theorie von SraTER!') darzustellen. Die beiden Theorien
unterscheiden sich in bezug auf die Sattigungserscheinungen sehr stark voneinander.
Die gemessenen Sattigungskurven oberhalb der Curietemperatur sind ganz im
Widerspruch mit der Slater’schen Theorie; sie zeigen eher den Charakter, der
nach dem Langevin-Weiss’schen Ansatz zu erwarten ist. Damit aber die letztere
Theorie verwendet werden kann, muss man die Langevinfunktion L (o) durch eine
allgemeinere @ (x) ersetzen und ausserdem eine ganz geringfiigige Temperatur-
abhingigkeit des Dipolmomentes annehmen. Dann aber kann man das Verhalten
oberhalb und unterhalb der Curietemperatur quantitativ richtig darstellen. Inter-
essant ist auch die Tatsache, dass die anomale Feldabhéngigkeit des Piezomoduls
und des Elastizitdtsmoduls auch im Sattigungsgebiet oberhalb der Curietem-
peratur auf das anomale Verhalten der Polarisation zuriickgefiihrt werden
kann: die Deformation bleibt auch im Sittigungsgebiet streng proportional zur
Polarisation.
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652 Hans Baumgartner.

I. Einleitung.

Kaliumphosphatkristalle zeigen in ihrer c-Achsenrichtung ein
elektrisches Verhalten, das dem magnetischen Verhalten der Ferro-
magnetika in vielen Beziehungen analog ist. Oberhalb der Curle-
temperatur @ 1st ein KH,PO,-Kristall paraelektrisch. Die Dielek-
trizitdtskonstante steigt mit sinkender Temperatur hyperbolisch an
und folgt dem Curie-Weiss’schen Gesetz:

B
82:80+ 71,_6 (1)

Unterhalb der Curie-Temperatur herrscht spontane Polarisation.
Wie beim Ferromagnetismus werden von vielen Autoren perma-
nente, bewegliche Dipole fiir diese Erscheinung verantwortlich
gemacht. Im Falle des KH,PO, kinnen die Wasserstoftbindungen,
die zwei PO,-Gruppen verkniipfen, als Dipole betrachtet werden.
Der Wasserstoffkern liegt nicht genau in der Mitte zwischen den
zwel Sauerstoffatomen der Ilydrogenbindung O—II...0. Dieser
asymmetrischen Bindung miissen wir ein elektrisches Dipolmoment
zuschreiben. Wenn der Wasserstoffkern von einem Sauerstoff in
die Nihe des andern springt, wechselt der Dipol sein Vorzeichen.

Die Analogie zum Ferromagnetismus veranlasste Buscu?) die
Langevin-Weiss’sche Theorie fiir den elektrischen Fall des KH,PO,
anzuwenden. Es zeigte sich, dass gewisse Modifikationen der Theo-
rie notwendig sind. Bei der Polarisation spielen nicht nur die Dipole
eine Rolle, sondern auch der Untergrund muss in einem betrécht-
lichen Masse beteiligt sein. Ferner wird der Zusammenhang zwischen
Polarisation und innerem Feld nicht durch eine Langevinfunktion
vermittelt: Der Anstieg der spontanen Polarisation mit sinkender
Temperatur unterhalb des Curiepunktes ist viel steiler als zum
Beispiel beim Eisen.

Die erste der Langevin-Weiss’schen Theorie entsprechende Theo-
rie der Dielektrika mit Dipolen stammt von DeBYE3). DEBYE be-
trachtet die Lorentzkugel, die einen Dipol umgibt. Die polarisierte
Materie ausserhalb der Kugel erzeugt im Innern derselben ein Feld
von 4 7/3- P. Wenn die Wirkung der Dipole innerhalb der Lorentz-
kugel auf den betrachteten Dipol verschwindet oder vernach-
lassigbar klein ist, gelangt man zu der Gleichung:

e—1 4 ]
= — N
e+ 2 3 (Oto—i—

u
3 /CT_,) )

Diese Gleichung stimmt bei Gasen und Flissigkeiten mit geringer
Dipolkonzentration mit der Erfahrung gut iiberein. Bel grosseren
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Konzentrationen stellt man Abweichungen fest, die mit der Kon-
zentration anwachsen. Diese Abweichungen werden als Folge der
Assoziation der Dipole angesehen. Die Dipole selbst erzeugen eben-
falls ein elektrisches Feld, das in.der Ndéhe der Dipole sehr stark
ist. Steigert man die Dipolkonzentration bis die Dipole gegenseitig
in 1hre Nahfelder gelangen, so tritt die Tendenz auf, sich nach Mog-
lichkeit antiparallel zu stellen. Jeder Dipol besitzt dann eine ent-
gegengesetzt polarisierte Umgebung, die sein Dipolmoment nach
aussen abschirmt und die, wie ONsSAGER?Y) gezeigt hat, auch das den
Dipol richtende Feld heruntersetzt. Ohne Assoziation miisste nach
der Debyeschen Theorie wie beim Ferromagnetismus die Suszep-
tibilitét mit smkender Temperatur zunehmen und am Curiepunkt @
unendlich werden. Ebenso miisste spontane Polarisation auftreten
(4 7/3-Katastrophe). Die Assoziation ist stark genug, um das An-
wachsen der D. K. ins Unendliche zu verhindern; es sind keine
Flissigkeiten mit spontaner Polarisation bekannt.

Mehrere Autoren versuchen die Wirkung der Assoziation rech-
nerisch zu erfassen. Onsacer?) betrachtet die Umgebung eines
Dipols als homogenes Dielektrikum, das vom Dipolfeld momentan
entsprechend der Lage des Dipols (die infolge der Temperatur-
bewegung des Dipols stark wechselt) polarisiert wird. Nach Ox~-
sAGER wird dann das den Dipol richtende Feld nicht mehr E +
4 nf3- P, sondern (B +4nP)/(2¢+1). BoTrcHER®) wies darauf hin,
dass die Onsagersche Theorie auf die empirisch ermittelte Formel
von VAN ArRkEL und Swoexk fiir die D. K. von Dipolsubstanz in
dipolfreier Dipolfliissigkeit fiihrt. Die Onsager’sche Theorie ist
folglich experimentell gut gestiitzt*). Theoretische Ansitze im
gleichen Sinne sind von Vax Vwiek®), Kirkwoop”’) und FrovLicu®)
gemacht worden. Die Onsagersche Theorie zeigt, wie bei wachsender
Dipolkonzentration die Wechselwirkung eines Dipols mit seinen
unmittelbaren Nachbarn immer wichtiger wird und schliesslich
fast allein fiir die Richtung eines Dipols massgebend wird. Be1
festen Dielektrika kann der Einfluss der nédchsten Nachbarn noch
deutlicher zum Ausdruck kommen. In diesen Stoffen sind meistens
nur einzelne diskrete Dipolrichtungen moglich, wobel zwischen der
Richtung eines Dipols und den Richtungen der umgebenden Dipole
gewisse strukturbedingte Beziehungen eingehalten werden miissen,
die nur von einer einzigen Dipolrichtung erfiillt sind. Jeder Dipol
ist gezwungen, sich so einzustellen, dass er zu Nachbarn passt, und
das elektrische Feld der entfernteren polarisierten Materie vermag

*) PIRENNE?) weist darauf hin, dass auch bei dieser Theorie eine 4 7/3-Kata-
strophe moglich ist, was den Behauptungen ONSAGERS widerspricht.
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die Dipolrichtung nicht zu beeinflussen. Auf diese Weise ist vor
allem das anomale dielektrische Verhalten von Eis'®) erklirt
worden. Sobald das Eis schmilzt, verschwinden natiirlich die Struk-
turbedingungen fiir die Dipolrichtung. An ihre Stelle tritt aber
die Assoziation. Beim Schmelzpunkt des Eises tritt aber keine Un-
stetigkeit der Dielektrizititskonstanten auf, was die Wesensver-
wandtschaft dieser Strukturbedingungen und der Assoziation bei
Flissigkeiten beleuchten mag.

SLATER?') weist darauf hin, dass in bezug auf die Anordnung der
Hydrogenbindungen, welche die Dipole verkorpern, zwischen
KH,PO, und Eis eine grosse Ahnlichkeit besteht. Es sei anzuneh-
men, dass die Dipolrichtungen wie beim Eis voneinander abhangig
seien, und emne Wechselwirkung zwischen Dipolen, wie sie die
Langevin-Weiss’sche Theorie beschreibt, komme bei einer Dipol-
dichte, wie sie im KH,PO, vorhanden ist, nicht in Betracht. Seine
auf Grund dieser Erkenntnisse aufgebaute Theorie vermag das
Curie-Weiss’sche Gesetz (1) richtig wiederzugeben, wobei die Kon-
stante 4 besser mit der Erfahrung tibereinstimmt als bei der Debye-
schen Theorie. Sie sagt eine Umwandlung erster Art mit latenter
Wiarme an einem bestimmten Temperaturpunkt @ voraus. Die
Umwandlung dehnt sich also hier nicht iber einen endlichen Tem-
peraturbereich aus, wie dies die Langevin-Weiss’sche Theorie ver-
langt. In Wirklichkeit erstreckt sich die Umwandlung iber einen
Bereich von etwa 7° C (Breite der Anomalie der spez. Warme), was
weder den Voraussetzungen der einen, noch denjenigen der andern
Theorie entspricht. Slater dussert die Ansicht, die Umwandlung sei
im Grunde genommen erster Art, wiirde aber durch Effekte sekun-
déarer Natur, wie innere Spannungen usw. verwischt. Es besteht
die Méglichkeit, aus dem dielektrischen Verhalten oberhalb des
Curiepunktes, wo noch keine dielektrische Hysteresis herrscht,
Aufschluss iiber die Giiltigkeit der einen oder der andern Theorie
zu erhalten. Beide Theorien sagen einen hyperbolischen Anstieg
der Suszeptibilitdt mit sinkender Temperatur voraus, was mit dem
Experiment iibereinstimmt. Aber die Feldabhingigkeit der Suszep-
tibilitat ist bei den beiden Theorien verschieden.

Bei den meisten Dielektrika sind Polarisation und elektrisches
Feld zueinander proportional, d. h. es gelingt nicht, aus dem Pro-
portionalitédtsbereich heraus zu kommen. Bei KH,PO, ist dies nicht
der Fall. Z. B. 0,3° C oberhalb des Curiepunktes erreicht die Di-
elektrizitdtskonstante den Wert 10000. Nimmt man Proportionali-
tat zwischen Polarisation und Feld an, so berechnet sich die Polari-
sation bei 20000 Volt/cm (hichster experimentell erreichbarer Wert
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fir KH,PO,) zu 17,7-10-% Clb/cm?2, wenn man die bei kleinen Fel-
dern gemessene DK ¢, = 10000 zugrunde legt. Die grisste gemes-
sene spontane Polarisation, die wahrscheinlich der Parallelstellung
aller Dipole entspricht, ist aber nur 5-10-¢ Clb/ecm2. Es besteht
somit kein Zweifel, dass man auch im paraelektrischen Gebiet den
Linearitdtsbereich verlassen kann. Es schien uns deshalb lohnend,
diese Siattigungserscheinungen genau zu studieren und mit der
Theorie zu vergleichen. Das ist die Hauptaufgabe der vorliegenden
Arbeit.

Die Sattigungserscheinungen sind ausserdem noch insofern inter-
essant, als sie sich auch auf die mit der Polarisation verkniipften
Konstanten, wie Dielektrizitdtskonstante, Elastizitdtsmodul und
Piezomodul auswirken, welche hier starke Feldabhiingigkeit zeigen.
Diese Feldabhéngigkeit der DK erlaubt eine genauere Bestimmung
der Polarisation, als die in mancher Beziehung nicht einwandfreie
ballistische Methode.

Spezielle Aufmerksamkeit verdient der elektrokalorische Effekt,
der in diesem Temperaturbereich besonders gross ist. Ein Kristall,
der bis zum Curiepunkt abgekiihlt worden ist, erwérmt sich bei
Anlegen eines Feldes von 20000 Volt/ecm um 2,9° C. Die entspre-
chende Erscheinung beim Magnetismus, der magnetokalorische
Effekt, 1st wohl bekannt und wird zur Erzeugung besonders tiefer
Temperaturen verwendet. Der elektrokalorische Effekt beeinflusst
in Néhe des Curiepunktes die Dielektrizitatskonstante ganz wesent-
lich. (Im Mittel Faktor 2.) Es war eine interessante und nicht ein-
tache Aufgabe, diesen Effekt einmal genau zu untersuchen.

II. Ballistische Messungen der Polarisation.

Zur Messung dienten Kristallplatten von etwa 1 mm Dicke und
0,5 em? Flache, auf welche Silberelektroden aufgedampft wurden.
Ein Schema der Messapparatur ist in Fig. 1 dargestellt.

Der Schalter erlaubt die Gleichspannung V_ an den Kristall zu
legen, wobei die auf den Kristall geflossene Ladung mit dem balli-
stischen Galvanometer gemessen werden kann. Aus dem Ladungs-
stoss und der Grosse der Kristallfliche lasst sich die Polarisation
berechnen. Zur Messung des Entladungsstosses schliesst man den
Kristall iiber das ballistische Galvanometer kurz. Will man die
Summe von Ladungs- und Entladungsstoss messen, so muss man
bel angelegter Spannung den Umpoler bedienen.

Die Temperatur wurde mit einem Flissigkeitsthermostaten, wie
ihn schon BaxtrLe!!) und Carriscu!?) bzw. Scorr und Brick-
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wEDDE!3) beschrieben haben, konstant gehalten. Bei den Messungen
1st darauf zu achten, dass die Temperatur nicht durch den elektro-
kalorischen Effekt verfilscht wird. Nach dem FEinschalten der
Gleichspannung muss man warten, bis sich die Temperatur der
Badtemperatur angepasst hat. Aut die durch Umpolen gemessenen
Werte wirkt sich der elektrokalorische Effekt fast nicht aus. Im
Moment der Entladung kiihlt sich der Kristall ab, um bei der nach-
folgenden Aufladung wieder die urspriingliche Temperatur zu er-
reichen. Der Prozess verlduft praktisch adiabatisch. Auch beim
Entladen spielt der elektrokalorische Effekt keine Rolle. Schwierig-
keiten bieten sich beim Aufladen. Ist der Kristall auf einer bestimm-
ten Temperatur des Thermostaten und legt man ein Feld an, so
erhoht sich die Temperatur auf einen unbekannten Wert. Man muss

R Galvanometer

Kl"istul[ V=

I T .

Umpoler Schalter

Fig. 1.

Schema der Messapparatur zur Messung der Polarisation
nach einer ballistischen Methode.

das Feld anlegen und warten, bis der Kristall den bekannten Tempe-
raturwert des Thermostaten hat. Darauf muss mit kurzgeschlosse-
nem Galvanometer entladen und sofort wieder aufgeladen werden.
Wenn der Prozess schnell genug vor sich geht, so nimmt der Kristall
gerade wieder die Temperatur des Bades an. Es gibt also drei Mog-
lichkeiten, die Polarisation zu messen: Laden, Entladen und Um-
polen, die aber nicht iibereinstimmende Resultate liefern.

Die untere Kurve in Fig. 2 zeigt die Polarisation die man misst*),
wenn der Kristall immer 1m gleichen Sinne aufgeladen oder ent-
laden wird. Laden und Entladen geben in diesem Falle die gleichen
Kurven. Polt man nach jeder Entladung um, so erhélt man beim
Aufladen Werte, die der obersten Kurve entsprechen, also wesent-
lich grosser sind. Die Entladung gibt aber auch in diesem Falle
wieder die untere Kurve. Es scheint, dass sich der Kristall nicht
ganz entladen kann, so dass im allgemeinen zu kleine Entladungs-
werte gemessen werden. Nachdem umgepolt worden ist, muss der
Kristall zuerst vollig entladen werden, und erst nachher kann er
sich im ungekehrten Sinne aufladen. Dabei addiert sich die restliche
Entladung mit dem Aufladungsstoss.

*) Die entsprechende Streuung der Messpunkte ist etwa 29, also etwa die
doppelte Strichdicke der Zeichnung.
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Beim Aufladen misst man den gleichen Betrag zu viel wie beim
Entladen zu wenig. Die beiden Messungen sind also um den dop-
pelten Restladungswert verschieden. Der Mittelwert miisste die
richtige Grisse ergeben. Bei den Umpolwerten tritt diese Rest-
ladungserscheinung nicht auf, da der Kristall immer in geladenem
Zustand bleibt. In Fig. 2 1st die mittlere die durch Umpolen er-
haltene Kurve. Sie 1st nahezu der Mittelwert der beiden andern.

10~
Cb/cm?
///
20 "
—
e
15 ] e
y //
/ d // ol
10 A
1 / /
//// 1
L

0 2000 4000 6000 8000 10000 12000 14000 16000
Volt/cm

Fig. 2.
Polarisation als Funktion des Feldes bei T— @& = 1,37°.
Untere Kurve: Werte, gerechnet aus Lade- und Entladestromstossen, wenn der
Kristall immer im selben Sinne aufgeladen wurde.
Mittlere Kurve: Durch Umpolen gefundene Werte.

Obere Kurve: Werte gerechnet aus den Ladestdssen, wenn der Kristall vorher
umgekehrt aufgeladen war.

Es hiéngt von der Vorgeschichte des Kristalls ab, was fiir eine
Polarisation man misst. Aus diesem Grunde muss in dem Entla-
dungsstromkreis ein Widerstand eingeschaltet werden. Dieser
Widerstand K muss so gross sein, dass der Schwingkreis, den die
Induktivitdaten der Zuleitungen mit der Kristallkapazitit bilden,
aperiodisch ist. Im periodischen Falle erhilt man nicht reproduzier-
bare Werte fiir die Polarisation.

Restladungen sind bei allen festen und fliissigen Dielektra zu fin-
den. Bei Seignetteelektrika sind sie aber besonders gross. Boning!4)
zeigte, dass Substanzen, die Feuchtigkeit enthalten, besonders
grosse Nachentladungen zeigen. Seignettesalz hat viel Kristall-

42
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wasser, das nicht fest im Kristallgitter gebunden ist, was méglicher-
weise die Ursache der Restladungen ist. Auch sind dort diese Rest-
ladungserscheinungen besonders im Curiegebiet sehr gross. Bei
KH,PO, konnen diese Effekte nicht mit der Feuchtigkeit zusam-
menhéngen, da kein Kristallwasser vorhanden ist und die anhaf-
tende Feuchtigkeit in dem in Frage kommenden Temperaturgebiet
langst gefroren ist. 10° iiber dem Curiepunkt ist KH,PO, ein fast
verlustfreies Dielektrikum was darauf hindeutet, dass die Rest-
ladung nur &dusserst wenig ausmacht. Die Restladungen werden
um so bedeutender, je mehr man sich dem Curiepunkt nihert.

P
10-6
Cb/cm?

20

_—

i

1,0

05

0 5000 10000 15000 E

Volt/cm
Fig. 3.

Polarisation als Funktion des elektrischen Feldes bei 7'— 6 = 0,66° und
T—- 60 =0,48" mit Entladungen gemessen, wenn der Kristall immer in
gleichem Sinne polarisiert wird.

Fig. 8 zeigt die Polarisation die man aus Entladungen misst bei
T-— 6 =0,66°und bei T — @ = 0,48°. Bei der Messreihe niher
am Curiepunkt T — @ = 0,489, die anfangs steiler ansteigt, tritt
der IFehler durch die Restladung deutlicher in Erscheinung. Der
Fehler wird so gross, dass die Kurve sogar unter derjenigen bei
hoherer Temperatur bleibt, sie also tiberschneidet. Da sich die
Kurven P (E)y der wahren Polarisation bei konstanter Temperatur
naturgeméss nicht tiberschneiden kénnen, so kann dies Verhalten
nur auf Restladungen zuriickgefiihrt werden. Wenn ein Fehler hin-
zukommt, der proportional der Polarisation ist, so kénnen sich auch
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die verfialschten Kurven nicht iiberschneiden, was aber, wie Fig. 3
zeigt, der Fall ist. Gegen den Curiepunkt nimmt also die Restladung
nicht nur absolut zu, sondern auch relativ zur Polarisation wird
sie grosser. Dies schliesst die Moglichkeit aus, dass die Restladungen
eine Folge der Deformationen sind, wie man aus der Theorie von

Polarisation als Funktion des elektrischen Feldes; maximales Feld = 1000 Volt/cm.

Fig. 4.
Polarisation als Funktion des elektrischen Feldes, gemessen mit dem Kathoden-
strahloszillografen nach der Methode von Sawykr und TowER; maximales elek-
trisches Feld = 10000 Volt/cm.

Boning!4) schliessen mochte. Die Deformation ist bekanntlich'5)26)
streng proporitonal der Polarisation. Da aber die Restladungen
nicht proportional der Polarisation sind, so kénnen sie auch nicht
eine Folge der Deformation sein.
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Die Restladungen dussern sich bei der Messung wie eine- Rema-
nenz (wie man sie nur im Gebiet der spontanen Polarisation an-
trifft). Dies kann unter Umstéinden sogar zu Verwechslungen fiihren.
Fig. 4 zeigt zwei Aufnahmen, nach der Methode von Sawyer und
TowgRr!7), die normalerweise zur Aufnahme von Hysteresisschleifen
verwendet wird und ausserhalb des Curiegebietes aufgenommen
wurde. Bel hoheren Feldern zeigt sich eine Art Ilysteresis mit einer
Remanenz, die aber in Wirklichkeit nichts anderes als Restladungen
sind. Be1 kleinen Feldern erhidlt man nur eine S-Kurve, die keine
Fliche einschliesst, wiahrend echte spontane Polarisation eine ellip-
sendhnliche Kurve geben sollte, sofern die Sittigung nicht erreicht

10-¢

Ampere
7

|
5

\ - /— -\\
\\
0 50 100 150 200 250 300 350 sec

Fig. 4a.
Nachentladungsstrom eines KH2P04-Kristalls als Funktion der Zeit.

wird. Fig. 4 zeigt deutlich wie die Restladungen erst bei hoheren
Feldern auftreten, wie auch aus Fig. 2 folgt.

Die Restladungen fliessen im Gegensatz zu der echten Remanenz
mit der Zeit wieder ab. Fig. 4a zeigt eine solche Nachentladung, die
eine Kristaliplatte von 0,573 cm? Flidche nach der ballistisch ge-
messenen Entladung zeigt. Der Entladungsstrom steigt merkwiir-
digerweise noch einmal an. Insgesamt fliesst in diesem Falle noch
eine Ladung von 0,8 Clb/em? ab. Dieser Wert ist etwas grosser als
die Restladung, die man durch die verschiedenen ballistischen Me-
thoden (siehe Fig. 2) ermitteln konnte.

Da weitere Untersuchungen dieses Effektes nicht in den Rahmen
dieser Arbeit passen, gaben wir uns mit der Feststellung zufrieden,
dass die durch Umpolen erhaltenen Werte der Polarisation am
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wenigsten durch Restladungen verfilscht sind. Fig. 5 zeigt die
Werte, die durch Umpolen gemessen wurden.

Von kleinen Werten ausgehend wurde langsam die Spannung
gesteigert. Bel jedem Messpunkt polte man mehrere Male um, bis
sich reproduzierbare Werte ergaben. Die Kurven zeigen deutlich,
wie die Polarisation einem Séttigungswert zustrebt. Bei den Kurven
mit negativem Parameter (Temperaturen unter dem Curiepunkt)
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Fig. 5.

Ballistische Messungen der Polarisation als Funktion des elektrischen Feldes bei
verschiedenen Temperaturen.

wurde die spontane Polarisation mitgemessen. Bei Feldstirken
unterhalb der Sattigungsfeldstirke sind diese Messwerte von der
Form der Hysteresiskurve abhingig. Diese Kurven in Fig. 5 sind
daher von unseren Betrachtungen ausgeschlossen

Wie 1m letzten Kapitel noch gezeigt wird, haben die Kurven nicht
den Charakter, den man nach der Slater’schen Theorie erwarten
wiirde. Es bleibt noch zu diskutieren, ob eine Theorie mit innern -
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Feldern noch haltbar ist. Beim Ferromagnetismus macht man nach
der Langevin-Weiss’schen Theorie den Ansatz:

. H+fP )
H = magnetisches Feld, f= Lorentzfaktor, k& = Boltzmannsche Konstante,

# = Dipolmoment.

Bei Kaliumphosphat zeigt schon der Verlauf der spontanen Polari-
sation bei sinkender Temperatur, dass es sich nicht um eine Lange-
vin’sche Funktion handeln kann. Wir verallgemeinern den Ansatz
und nehmen an Stelle der Langevinschen eine beliebige, noch fiir
unseren speziellen Fall zu bestimmende Funktion @ und schreiben

P=o(«) (2)
wobel
E+fP
-5 &)
Der Lorentzfaktor f ldsst sich aus der Gleichung : f = g :
A4=DB-8,86-10"14Ch/V.cm (4)

(siehe z. B. Becker-DorinGg Ferromagnetismus?®), S, 83, Gl. 10Db)
bestimmen. Somit wiare auch die @-Funktion aus den ballistischen
Messungen bestimmbar. Durch den Ansatz und eine einzige Mes-
sung P (E) bei T = const. ist die Abhingigkeit der Polarisation
von Y und T oberhalb des Curiepunktes festgelegt. Wenn der Ansatz
brauchbar ist, miissen die @-Funktionen, die aus zwei Kurven mit
verschiedenen Temperaturen berechnet werden, iibereinstimmen.
Diese Priifung soll in folgendem durchgefiihrt werden. Es 1st aber
nicht ratsam, die Funktion @ («) selbst zu bestimmen, da diese nur
sehr wenig von einer Geraden verschieden ist, sondern es ist besser,
die Funktion

I P i (5)

(4 = Konstante aus dem Curie-Weiss’schen Gesetz) zu betrachten.
Dies 1st eine Differenz einer Geraden mit einer von diesen Geraden
schwach verschiedenen Funktion, also eine empfindliche Difterenz.
Wenn @ («) fiir die einzelnen Messkurven iibereinstimmt, so muss
auch F' iibereinstimmen. F' ldsst sich leicht bestimmen. Dabei ist es
giinstiger, anstatt F' als Funktion von « darzustellen, @ («) = P
als Variable zu nehmen. Durch Einsetzen in Gleichung (4), (3) und
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(2) mm Gleichung (5) kommt man durch leichte Umformung zur
Gleichung

F— L. (6)

Nach Gleichung (1) ist aber 4/(T — @) = x (3, darf gegeniiber dem
viel grosseren temperaturabhédngigen Term vernachldssigt werden).
In den P (E)-Kurven ist aber die Suszeptibilitét bei kleinen Feldern
gerade die Neigung der Tangente im Nullpunkt. Legt man die
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Fig. 6.
Funktion F' = x— @ («)/4 (Abszisse) als Funktion der Polarisation P (Ordin.)
Ausgezogene Kurve: Die aus den ballistischen Messungen bestimmten Werte.

Gestrichelte Kurve: Die aus der Feldabhingigkeit der Dielektrizitatskonstante
bestimmten Werte.

Tangente an eine P(E)-Kurve im Nullpunkt und betrachtet einen
festen Ordinatenwert P, so liegt in der Abszissenrichtung auf der
Tangente der Punkt mit der Abszisse P/x (siehe Fig. 5 gestrichelte
Linien). Noch weiter in der Abszissenrichtung treffen wir auf die
P(E)-Kurve mit der zu P gehorenden Abszisse E. Die Differenz
dieser zwel Punkte ist folglich: E — P/»x = I’ T' (siehe auch Fig. 5).
Division durch T ergibt dann F. In Fig. 6 sind die F'-Werte (Ab-
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szisse), die sich aus der Kurvenschar Fig. 5 bestimmen lassen, auf-
getragen.

Die einzelnen Kurven zeigen grosse Unterschiede. In Anbetracht
der Restladung, die moglicherweise noch unkontrollierbare Fehler
in die Messung hineinbringt, und der Empfindlichkeit der Darstel-
lung kann aber keine bessere Ubereinstimmung erwartet werden.
Es ldasst sich auch nicht entscheiden, ob die Abweichungen ein
Mangel der Messung oder ein Mangel des Ansatzes sind, da alle
Messwerte mit der gleichen Unsicherheit behaftet sind. Darum
wurde die Feldabhéangigkeit der Polarisation aus der Feldabhéngig-
keit der DK (Dielektrizititskonstante) also nach einer ganz anderen
Methode nochmals genauer bestimmt.

III. Die Dielekt.rizitﬁtskonstante €, und ihre Abhiingigkeit von einem
elektrischen Feld.

a) Methode, Apparatur und Verlauf der Messung.

Das Curie-Weiss’sche Gesetz:

B
= p_g (1)

ist etwa bis 0,19 C oberhalb des Curiepunktes (@ = — 150° C) giiltig.
Am Curiepunkt @ misst man nicht den Wert unendlich, sondern
einen Spitzenwert von 6000 bis 60000 je nach Vorgeschichte des
Kristalls. (Messfeldstirke ca. 40 Volt/em, 1000 Hz). Ein Kristall,
der zum ersten Mal bis zum Curiepunkt abgekiihlt wird, erreicht
eine D. K. von 60000 und dariiber. Kiihlt man weiter ab bis in das
Curiegebiet und klappt die Polarisation durch hohe Felder mehrere
Male um, so erreicht der Kristall nachher nur noch einen Spitzen-
wert von 6000. Entsprechend dem kleineren Spitzenwert weicht
die D. K. auch schon 1° oberhalb ® vom Curie-Weiss’schen Gesetz
ab. Wir vermuten, dass durch die mit dem Umpolarisieren ver-
bundenen Deformationsidnderungen im Kristall feine Spriinge ent-
stehen. Da ein Dielektrikum mit sehr grosser Dielektrizitatskon-
stante fast als Leiter wirkt, liegt ein grosser Teil des Potential-
unterschiedes an diesen feinen Spalten. Die Dielektrizitétskon-
stante des Materials wird dann scheinbar viel kleiner. Beil unend-
licher D. K. wiirde z. B. bei einem Kristall von 1 mm Dicke ein
Spalt von 1,6-10-% cm geniigen, um den Wert der D. K. von un-
endlich auf 6000 herunterzusetzen. Bei der Herstellung von Kristall-
kondensatoren muss deshalb peinlich genau darauf geachtet werden,
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dass die Elektroden ohne Zwischenschicht unmlttelbar auf dem
Kristallmaterial haften.

Die D. K. wurde aus der Kapazitat von Kristallplatten von
0,5 cm? und 1 mm Dicke berechnet, die Kapazitat mit einer Briicke,
wie sie von Buscm?) beschrieben worden ist, gemessen. Wiahrend
der Messung konnte eine Gleichspannung an den Kristall gelegt
werden (siehe Fig. 7). Der Kristall ist gegen die Briicke durch zwei
orosse Kapazititen C abgeblockt, damit die Gleichspannung nicht
abfliesst. Da die Kapazitdt der Spannungsquelle dem Kristall-
kondensator parallelgeschaltet ist und mitgemessen wiirde, miissen
die Widerstinde R bedeutend grosser sein als der Scheinwiderstand
des Kristalls fiir den Wechselstrom der Briicke. Die Gleichspannung

-

Mess -

Briitie Kristall

o

J-

Fig. 7.
Schema der Messapparatur zur Messung der Feldabhangigkeit der
Dielektrizititskonstante.

am Kristall wird mit einem statischen Voltmeter gemessen. Die
Temperatur wurde mit dem Thermostaten konstant gehalten und
die Spannung schrittweise gesteigert. Bei jedem Schritt musste
zwel bis finf Minuten gewartet werden, bis sich die Temperatur,
die durch den elektrokalorischen Effekt erhéht worden war, wieder
der Umgebung anpasste. Damit der Temperaturausgleich schneller
erfolgen konnte, war der Messtopf immer mit Wasserstoff gefiillt.

Die Messkurven fiir verschiedene Temperaturen sind in Fig. 8
dargestellt. Das elektrische Vorfeld der Abszisse wie auch die Di-
elektrizitdtskonstante ¢, in der Ordinate sind logarithmisch auf-
getragen. Die Temperatur (in T'— @ = Anzahl Grad Celsius ober-
halb des Curiepunktes) ist als Parameter am Anfang jeder Kurve
angegeben. Sie wurde aus dem Wert der D. K. ohne Vorfeld mittels
des Curie-Weiss’schen Gesetzes (1) bestimmt. Es dauerte oft bis
zu 2 Stunden, bis eine Messreihe aufgenommen war. Im gleichen
Messtopt war ein zweiter KH,PO,-Kristall vorhanden, dessen
Kapazitdat ohne Vorfeld mit einer zweiten Messbriicke gemessen
wurde, was ein dauernde Kontrolle der Temperatur ermdglichte.

Der Thermostat mit Toulonschaltung war so gebaut, dass die
Temperatur auf etwa 3/1000° C konstant gehalten werden konnte.
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Da das Curie-Weiss’sche Gesetz nur etwa bis T — @ = (),19 gilt*),
existiert nur fiir die Messkurve T — @ = 0,14° C eine gewisse
Unsicherheit in bezug auf die Temperatur. Die Curiepunkte ver-
schiedener Kristallindividuen kénnen ziemlich stark variieren. Der
Curiepunkt des Kontrollkristalls war 0,12° hoher als derjenige des
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Feldabhangigkeit der Dielektrizititskonstante ¢, von einem elektrischen Vorfeld
bei verschiedenen Temperaturen.

(Temperatur als Parameter am Anfang der Kurven angegeben.)

Messkristalls, so dass seine D. K. praktisch den Spitzenwert schon
erreicht hatte und genaue Kontrolle der Temperatur nicht mehr
moglich war. So nahe am Curiepunkt sind die dielektrischen Ver-
luste sehr gross, was wahrscheinlich eine Folge der grossen Rest-
ladungen 1st**). Bei hohen Feldern sinken die Verluste dann wieder.

"
**)

Eigene Messungen an verschiedenen Kristallindividuen mit Thermoelement.
Auch die Hysteresiskurve in Fig. 4 weist auf grosse Verluste hin.
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Dies mag etwa erklaren, dass die Kurve 0,14° aus dem Rahmen
der iibrigen fallt.

Als elektrisches Feld wurde der Quotient von Elektrodenspan-
nung und Elektrodenabstand genommen. Dies konnte Anlass zu
Kritik geben. Es ist bekannt, dass in Dielektriken, die Riickstands-
ladungen zeigen, Raumladungen vorhanden sein miissen, die auch
ein elektrisches Feld erzeugen'4). Das Potentialgefille kann dann
bei der einen Elektrode viel steiler sein als bei der andern. Der
Quotient gibt also nur den Mittelwert des elektrischen Feldes an.
Diesen Feldunterschieden entspriche aber auch eine Variation
der Polarisation in der ¢-Richtung. Zwicker!®) bestimmte jedoch
die Polarisation aus dem elektrooptischen Effekt. Inhomogenitéten
der Polarisation wiren mit seiner Methode sichtbar gewesen.
ZwIcKER hat aber nichts derartiges bemerkt. Auch bei den Mes-
sungen des inversen Piezoeffektes von BanTLE und vox Arx!9)
héatten sich Verschiedenheiten der Polarisation bemerkbar machen
miissen, was aber nicht der Fall war.

b) Der Ewnfluss des elektrokalorischen Effektes auf die Dieleltrizitits-
konstante.

Der Abfall der Dielektrizitétskonstanten mit steigendem Vorfeld
1st nicht allemn die Folge der S#ttigungserscheinungen, sondern er
rithrt zum Teil vom elektrokalorischen Effekt her. Wahrend die
Temperaturdnderung, die von der Gleichspannung hervorgerufen
wird, geniigend Zeit hat sich wieder auszugleichen, ist dies fiir die
von der Briickenwechselspannung hervorgerufenen Temperatur-
danderungen nicht der Fall. Die Temperatur schwankt im Takte der
Wechselspannung auf und ab, wobei der Ausgleich wihrend
1/1000 Sek. einer Schwankung nicht in Betracht fallt. Die Tempe-
raturdnderung, die durch eine Polarisationsanderung d P adiabatisch
hervorgerufen wird, ist nach W. Tromson!8):

dT=L£(g?) . dP. (M)

Oberhalb des Curiepunktes @ ist die Polarisation P eine eindeu-
tige Funktion der Temperatur T und des elektrischen Feldes E;
dP lisst sich als totales Differential schreiben.

i s ( ) dT+( ) .dE ®

*
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Wir setzen:
(_g;)E: q @)
(8)2=7 (10)
da P

p =1sotherme Suszeptibilitit und (W)dg _ o= Had = adiabatische

Suszeptibilitat, die effektiv gemessen wird.
Gleichung (8) lasst sich auf die Form bringen:

dar

Durch rein formale Umformung kann man die Gleichung erhalten
0E\ ¢q
(W)P_ P

Die Kombination der Gleichungen (7), (11) und (12) fithrt zu der
Differentialgleichung:

(12)

1t T (13)

ad P cpp?

¢p = spezifische Wiarme bei konstanter Polarisation.
P P

®

e 14
8,86-10-14 Vg;m ] o

¢) Losung der Differentialgleichung.

Um eine rechnerische Losung zu bekommen, miisste man die
e(ll, T)-Kurven in eine analytische I'orm bringen und dann das
System losen. Ohne grobe Vernachléssigungen zu machen ist dieser
Weg zu beschwerlich. Viel einfacher wire eine graphische Integra-

tion. Man fithrt graphisch die Integration P(E) — f pdE durch,

d. h. man spaltet das Integral in eine Summe von einzelnen Schrit-
ten auf. P = X2p-AK. Der erste Schritt kann ohne weiteres gemacht
werden, da p fir kleine Felder gleich gross ist wie die adiabatische
Suszeptibilitdt, », und diese ist bekannt. Nach dem ersten Schritt
sind aber adiabatische und isotherme Suszeptibilitit nicht mehr
gleich gross. Das p muss aus Gleichung (13) bestimmt werden. Das
zu dieser Bestimmung nétige g kann vorerst noch aus dem exp.
Curie-Weiss’schen Gesetz bestimmt werden. Nach dem zweiten
Schritt muss aber das g aus den Werten der Polarisation, die man
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gerade erhalten hat, durch graphische Differentiation nach der
Temperatur gefunden werden. Diese Differentiation ist nicht genau.
Der Fehler verstiirkt sich von Schritt zu Schritt sehr schnell. Be-
sonders die ungenaue Temperaturmessung in Nghe des Curle-
punktes verbreitet einen grossen Fehler tiber das ganze Integra-
tionsgebiet. Mit dieser Integrationsmethode kann man zu Fehlern
bis zu 809, kommen. Da die direkten Methoden nicht angewendet
werden kénnen, musste man auf Umwegen das Ziel erreichen.

Das Endziel ist, an Hand des Verlaufes der Polarisation die ver-
schiedenen Theorien zu diskutieren (siche Einleitung). Es schien
uns angebracht, anstatt die Ergebnisse nach einer ungewissen In-
tegration zu diskutieren, den Vergleich implizite durchzufiihren,
d. h. aus dem vermutlichen Verlauf (Gleichung (2)) der Polarisation
die Feldabhingigkeit der adiabatischen Suszeptibilitéat zu bestim-
men und dies mit den gemessenen Kurven zu vergleichen. Aus
den Erkenntnissen, die wir in Kap. IT gemacht haben, liegt es auf
der Hand, einen Ansatz mit einem innern Feld auch hier zu ver-
wenden.

1. Integration
unter der Annahme einer Langevin-Weiss’schen Theorie.

Wir verwenden wieder den Ansatz aus Kapitel 1I und differen-
tieren nach K

E+fP
p-o(® e
“= St ®
Die isotherme Suszeptibilitdt wird dann:
oP A
p= (W)T: 70 . o o)
D)

4 = Konstante aus dem Curie-Weiss’schen Gesetz (1), ferner ist:

’ do
@'(o) = L2
Durch Ditferentiation von (2) nach T bei konstantem P erhélt man

die einfache Beziehung:

(#)-t-"e o

oT)p » T
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Gleichung (15) und (16) in (13) eingesetzt:

A B @'(0) A
0= | et (17)
K
_ @(0) A
K= g@ % o 8)

Fir den Klammerausdruck in Gleichung (17) fithren wir das
Symbol K ein. Wenn" P konstant gehalten wird, bleibt aber auch
@'(a) und « konstant, folglich bleibt der ganze Ausdruck K konstant,
wobel T’ nach Belieben variieren darf. K ist allein eine Funktion von
P resp. von «

A

A
@ +7ﬁKT OdeI' *5a Zm. (19)

Sowohl die 1sotherme [Gl. (15)] als auch die adiabatische [ Gl .(19)]
Suszeptibilitat folgen einem Curie-Weiss’schen Gesetz, wenn die
Polarisation durch das Gleichfeld festgehalten und nur die Tempe-
ratur varilert wird. Ein Unterschied besteht nur in den Konstanten
des Gesetzes. In Gleichung (15) miissen Curiekonstante und Curie-
temperatur durch den Faktor @'(0)/®'(x) und in Gleichung (19)
durch K dividiert werden. Die Curietemperatur in Gleichung (15)
1st tiefer als @ und bei (19) noch tiefer. Es ist noch zu bemerken,
dass der Temperaturbereich, in dem diese Gesetze giiltig sind, sich
nicht bis zu diesen neuen Curietemperaturen erstreckt. Ihre Giiltig-
keit hort an dem Temperaturpunkt gerade unterhalb @, aber noch
oberhalb des neuen Curiepunktes auf. An diesem Punkt erreicht
die spontane Polarisation den Wert der Polarisation, der als Para-
meterwert P in diesen Gesetzen festgehalten worden ist.

Fig. 9 zeigt die gleichen Messungen wie Fig.8 in anderer Dar-
stellung. e, 1st als Funktion der Temperatur I' — @ bei konstantem
Vorfeld aufgetragen. Temperatur 7' — @ in der Abszisse und &, in
der Ordinate sind logarithmisch dargestellt. Die Vorfelder sind als
Parameter auf dem linken Rand bei jeder ausgezogenen Kurve
angegeben. Beim Vorfeld O gilt das Curie-Weiss’sche Gesetz, was
in dieser Darstellung eine Gerade mit der Neigung — 1 ergibt.

Die gestrichelten Kurven ergeben ¢, als Funktion von T' — @ bel
konstantem K resp. bei konstantem P, da die Polarisation P nur
eine Funktion von K allein ist. Die K-Werte, die in Figz. 8 als
Parameter angeschrieben sind, wurden ganz willkiirlich gewahlt.
Aus Gleichung (19) lassen sich die ¢,-Werte bestimmen und in Fig. 9
eintragen. Die K-Kurven in Fig. 9 sind somit keine Messkurven.
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Die Kurven geben an, welches ¢, das Material haben muss, damit
bei verdnderlicher Temperatur die Polarisation konstant bleibt.
Dabei ist die Grisse der einzelnen Polarisationen zunéchst noch
nicht bekannt, da man den Zusammenhang zwischen P und K noch
nicht kennt. Betrachtet man die Schnittpunkte einer K-Kurve mit
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Dielektrizitdtskonstante &, als Funktion der Temperatur 7'— @ bei verschiedenen
konstant gehaltenen Vorfeldern.

Vorfeld als Parameter bei den einzelnen Kurven auf der linken Seite angegeben.

Gestrichelte Kurven: Dielektrizititskonstante &, als Funktion der Temperatur

T — O bei konstanter Polarisation P. Als Parameter ist der Wert K (K = f(P)) zu
jeder Kurve geschrieben.

den verschiedenen &(T — @)z-Kurven, so lidsst sich folgendes ab-
lesen: Bei einer bestimmten Temperatur (T — @) des Schnittes
braucht man ein bestimmtes Feld (Parameter der e-Kurve) um die
bestimmte Polarisation zu erhalten, die dem betrachteten K-Wert
entspricht. Aus diesen Schnittpunkten lings einer K-Kurve ist es
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dann moglich die Kurve E(T — ), das elektrische Feld als Funk-
tion der Temperatur fiir konstante Polarisation aufzuzeichnen.
Nach Gleichung (16) ist aber: (0E/0T)p = a. (0E/0T)p bedeutet
aber die Neigung unserer E (T — @)-Kurve. Da be1 konstanter
Polarisation P nach Gleichung (2) auch « konstant bleiben muss,
heisst dies, dass eine Kurve von konstanter Neigung vorliegt, dass
es sich also um eine Gerade handelt. Fig. 10 zeigt die nach dieser
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Fig. 10.
Elektrisches Feld als Funktion der Temperatur bei verschiedenen konstant ge-
haltenen Polarisationen P.
Stark ausgezogene Geraden mit Kreisen: E (7 — 0)-Geraden, die aus der Inte-
gration mit dem Ansatz P = @ (a) hervorgehen.

Schwach ausgezogene Gerade mit kleinen ausgefiillten Kreisen: Integration in
Richtung der Adiabaten.

N\
AR

5000
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\

Methode bestimmten E (T — ©)p-Geraden. (Stark ausgezogen mit
Kreisen.)

Die Abweichungen der zwei ersten Punkte jeder Geraden sind,
wie am Anfang des Kapitels beschrieben wurde, auf die Ungenauig-

keit der Temperaturmessung nahe am Curiepunkt zurtickzufiihren.
Die Geraden erlauben (0E/0T p) zu bestimmen. Aus Gleichung (18)

K — @'(0) A (0E)2

D) ' cp \OT Jp
erhilt man @’ («). Durch Integration kime man zu @ (). Die
Funktion @ («) ist auch in diesem Falle fast eine lineare Funktion.
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Um den Charakter der Funktion zu erkennen und zu diskutieren,
ist es besser, auf die Integration zu verzichten und die Differentiale

anzugeben. Tabelle 1 gibt die aus (18) errechnete Funktion

(B'() /@' (0)] — 1
und Fig. 11 @'(a) /@’ (0) als Funktion der relativen Polarisation P/ P,

Tabelle 1.
K o (%)PE * i -1

in 10-6 2 7

in 1072 Cb/em Volt/em Grad 2(0)
1,003 0,87 3080 —0,00015
1,005 1,10 3800 —0,00064
1,01 1,485 5125 —0,00214
1,02 1,99 6860 - 0,00596
1,03 2,20 7900 —0,0114
1,04 2,54 8800 —0,0167
1,05%) 2,77 9600 —0,0219
1,06 2,98 10320 —0,0272
1,08 3,25 11320 -0,0394

*) Bei den drei letzten P-Werte gibt die Integration nicht mehr richtige Werte

fiir @. Uber 2,54-10-% Ch/cm? verwende man Tabelle 2.
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Verlauf der @’-Funktion bei dem Ansatz P — @ («). Verhiltnis @'(a)/®’(0), d. h.
Neigung der Funktion bei P zur Neigung im 0-Punkt als Funktion der relativen

Polarisation P/P,.
L (x) = Langevinfunktion L,,,.

Zur Brechnung von @'(«)/®’(0) muss @'(0) und ¢, bekannt sein.
@'(0) ist, wie man aus Gleichung (1) und (2) nachrechnen kann,

43
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gleich der Curie-Weiss’schen Konstanten 4 =2,895%-10-1°Cb/V. cm.
cm. Fir den Wert ¢p liegen Messungen von BanTLE!?) ¢ = 1,37
Joule/em? Grad und von SteprENsoN und Wnxoorry??) ¢ = 1,175
Joule/cm® Grad vor. Die grossen Unterschiede lassen auf ent-
sprechende Ungenauigkeit dieser Werte schliessen. Da aber Glei-
chung (18) fiir @'(x) eine empfindliche Differenz ergibt, ist die
genaue Kenntnis des Wertes fiir ¢p unbedingt erforderlich. Gliick-
licherweise war es moglich ¢, aus der Feldabhéngigkeit der D. K.
selbst zu bestimmen. Man erhilt den Wert ¢p = 0,977 Joule/cm?
Grad. Das folgende Kapitel ist der Berechnung von ¢, gewidmet.

Die Polarisation P héngt von zwel Variablen K und T — @ ab.
Durch den Ansatz (2) P = @ («) wird eine Beziehung zwischen den
Variablen gegeben, und es geniigt eine einzige Messreihe, z. B. eine
P (E)-Kurve, um die @-Funktion zu bestimmen. In der oben be-
schriebenen Berechnung ist @(«x) resp. P aus den H(T — 0),-
Geraden bestimmt worden. Da eine Gerade erst durch zwei Punkte
bestimmt ist, miissen zur direkten Konstruktion der K (T')p-Gera-
denschar mindestens zwei P (E)-Kurven bei verschiedenen Tempe-
raturen bekannt sein. In der E (I — @)-Geradenschar steckt also
mehr, als man zur Bestimmung von @ («) notwendig héatte. @ (x)
1st durch diese und den Parameter K einfach tiberbestimmt. Unsere
obige Berechnung verwendet daher nur den Parameter K und die
Neigung (0E/0T), der Geraden. Die spezielle Lage, die zum Bei-
spiel durch den Schnittpunkt @, der Geraden mit der (T — ©)-
Achse charakterisiert werden kann, geht nicht in die Rechnung ein.
Es gibt emne zweite Moglichkeit P = @(x) zu berechnen. Diese
benotigt die ©;-Werte, dafiir lasst sie die K-Werte ausser Acht.

Die E (T — ©)-Geraden lassen sich durch folgende Gleichung be-
schreiben:

0E E+fP
(), 000 2 e

unter Beriicksichtigung der Beziehung f = /4 kommt man zu
e 0E

Wenn der Ansatz (2) richtig ist, miissen die zwei Methoden zur
Bestimmung von P tiibereinstimmende Resultate ergeben. Beide
Berechnungsmethoden ergeben @ resp. P als Funktion von «. Der
Vergleich der beiden Methoden an Hand von P ist sehr unempfind-
lich. Die kleinsten Unterschiede dieser zwei auf verschiedene Art
bestimmten Funktionen konnen sehr wichtig sein. Die Diskussion
dieser Uberbestimmung, die Aufschliisse iiber die Anwendbarkeit
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des Ansatzes mit der Funktion @ gibt, ldsst sich viel besser an
Hand der spontanen Polarisation durchfiihren. Die spontane Pola-
risation kann direkt aus der E(T — @)p-Schar berechnet werden,
wobei die Doppelspurigkeit der Bestimmungsmethode wieder auf-
treten muss. Dieses Kriterium ist viel empfindlicher, zudem ist es
moglich, die Ergebnisse mit experimentell bestimmten Werten zu
vergleichen.

2. Die Berechnung der spontanen Polarisation.

Spontane Polarisation ist vorhanden, wenn das innere Feld die
Polarisation aufrecht zu halten vermag, so dass die Hilfe eines
dusseren Feldes nicht notwendig ist. Wir kénnen fiir diesen Fall
einfach I = 0 setzen.

Methode 1.

azfﬂ oder 6;,—06 = iF .
0,

Fiir f setzt man ©/4 = O/®’(0) und fiir P setzt man @ (a) ein.

Dies fithrt zu der Gleichung:

0,— @——-f( g’%ﬁ“ ) da. (21)

0
Alle notigen Werte zur graphischen Ermittlung des Integrals sind
aus Tabelle 1 ersichtlich. Das Integral gibt @, — @ als Funktion
von «. Aus der Gleichung o« = F,,/@,-f lasst sich die spontane
Polarisation P,, berechnen. Kurve 8 in Fig. 12 gibt das Ergebnis
dieser Integration. Kurve 2, Fig. 12, stellt die von voxn Arx?2!) be-
stimmten experimentellen Werte dar.

Methode 2.

Die zweite Methode zur Bestimmung der spontanen Polarisation
1st noch einfacher als die erste. Als Werte fiir die spontane Polari-
sation nimmt man die Parameter-Werte P im E (I' — ©) p-Geraden-
diagramm (siehe Fig. 10). Die dazu gehérigen Temperaturen sind
die Schnittpunkte der Geraden mit der (7 — @)-Achse (E = 0),
denn bei diesen Temperaturen braucht es gerade kein Feld um die
Polarisation aufrecht zu erhalten, das heisst die Polarisation ist
spontan. Kurve 4 in Fig. 12 gibt die nach dieser Methode bestimm-
‘ten Werte der spontanen Polarisation als Funktion der Temperatur.
Wenn unsere Annahme mit dem Ansatz P = @ («) (2) richtig wiire,
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miissten Methode 1 und 2 ibereinstimmende Resultate ergeben.
Dies ist aber nur der Fall im Bereich 0 < P, < 2,5-10-¢ Cb/cm?2.
In diesem Bereich stimmen diese zwel Kurven (3 und 4) mit der
experimentell bestimmten 2 {iberein. Unsere Integration ist also
nur in diesem Bereich richtig. Oberhalb dieses Bereiches gibt An-
satz (2) nicht mehr die richtige Beziehung zwischen P, E und T.
Die den Werten K = 1,05, K = 1,06 und K = 1,08 entsprechenden
Werte in Tabelle 1 und E (T — @)-Geraden in Fig. 10 sind also
falsch.

Im restlichen Gebiet von 2,5 bis 3-10-% Cb/cm? lasst sich die Be-
rechnung der Polarisation aus der adiabatischen Suszeptibilitit

Pis
10-¢
Ch/cm?
4
o_ 3 e
3 1 :‘"“-—:\ §\\\“i“

2 \\

0
e P =12 -0,5° o -8
Fig. 12.
Spontane Polarisation als Funktion der Temperatur.
Kurve 1 Allgemeine Integration ohne Ansatz.
Kurve 2 Experimentell bestimmte Werte nach vox Arx.
Kurve 3 Integration mit Ansatz P = @ (x) nach der ersten Methode.
Kurve 4 Zweite Methode mit dem Ansatz P = @ («).

durch eine allgemeine Integration ohne speziellen Ansatz ergénzen.
Die Integration wird auf folgende Weise durchgefiihrt:

Wir zerlegen die Integration wieder in eine Summe von einzelnen
Schritten XAP = XxAFK. Als Ausgangspunkt der Integration
wihlen wir die Punkte der (T — ©)p-Geraden mit P = 2,28 Cb/
cm? Bis zu diesem Wert ist der Ansatz P = @(x) in Ordnung.
Unsere AE wiahlen wir so, dass sie fiir jedes T'— © den gleichen
Polarisationszuwachs AP hervorrufen. Unser Integrationsschritt
besteht dann darin, dass wir von einer E (T — 0)p-Geraden zu
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der E (T — 0)p, 4p-Kurve gelangen. Dabei darf man den Schritt
von einem Punkt der alten zu einem Punkt der neuen Kurve inder
Richtung emer Adiabaten tun. Fiir einen bestimmten Punkt B
der E(T — O)p-Geraden kann man aus Fig. 9 die dazu gehorige
adiabatische D.K. ¢ herauslesen und » berechnen. Um die Polari-
sation um den bestimmten Betrag AP zu erhohen, muss man das
Feld E um AE = AP[x vergrossern. Dieses Anwachsen des Feldes
bewirkt aber eine Temperaturerhthung

AT:—CT;- (o), 4P

(nach GIl. 7). Der Punkt B’, der um AE in der E-Richtung und
um AT in der (T — @)-Richtung gegeniiber B verschoben ist, hat
die Polarisation P + AP. Auf diese Weise konnen wir von vielen
Punkten der E(T'— 0)p-Geraden zu Punkten mit der Polarisation
P + AP gelangen und so die ganze E (T — 0)p, 4p-Kurve bestim-
men, die im allgemeinen keine Gerade mehr sein muss. In gleicher
Weise kann man die K (T — 0)p,, 4p bestimmen, wobel beriicksich-
tigt werden muss, dass (0E/0T), eventuell von T — @ abhéngig
1st, wenn E (T — @)p, 4p keine Gerade mehr ist. Die Genauigkeit
dieser Methode kann noch gesteigert werden, wenn nicht das x
des Anfangs des Integrationschrittes, sondern dasjenige der Mitte
des Schrittes einsetzt. Die schwicher ausgezogenen Geraden in
Fig. 10 sind E (T — 6)p-Kurven, die aus dieser Integration hervor-
gegangen sind. Die kleinen ausgefiillten Kreise sind die einzelnen
berechneten Punkte. Es zeigt sich, dass auch nach mehreren
Schritten die E (T — @)-Kurven noch Geraden bleiben, die aber
schon nach einigen Integrationsschritten nicht mehr mit den
Geraden der ersten Integration (stark ausgezogen) iibereinstimmen.
Auch bei diesen neuen E (T — ©), kann man auf den Wert &/ = 0
extrapolieren und so die spontane Polarisation als Funktion der
Temperatur bestimmen (siehe Fig. 12, Kurve 1).

Die E(T — 0)p-Geradenschar, Fig. 10, gibt uns fiir jedes Feld
und jede Temperatur die Polarisation, die vorhanden sein muss,
sie ist also schon die Losung, die wir suchen. Die Funktion P (E, T)
wird aber durch diese Darstellung in einer ziemlich untibersicht-
lichen Form wiedergegeben. Fig.13 zeigt P (E)y_g, d. h. die Polari-
sation als Funktion des Feldes bel verschiedenen konstant gehal-
tenen Temperaturen, also die Kurven, die wir auch ballistisch be-
stimmt haben. Es handelt sich um die gleichen Polarisationswerte
wie in Fig, 10 nur in anderer Darstellung.
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d) Vergleich mit den ballistischen Messungen.

Den Vergleich fithrt man wieder an Hand der Funktion

R .

durch. Die Konstruktion, die verwendet wurde, um aus den Kurven,
Fig. 5, die Funktion F' zu bestimmen, kann man auch auf die
Kurven Fig. 13 anwenden. Im Bereich von 0 bis 2,5-10-¢ Cb/cm?
gilt der Ansatz P = @(x). Gemiss den Ausfithrungen, S. 662 und

>
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Fig. 13.

Polarisation als Funktion des elektrischen Feldes fiir verschiedene Temperaturen.
(Integration der DK-Werte.)
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S. 663, sind dann die F-Funktionen, die aus den einzelnen P(E),-
Kurven bestimmt worden sind, identisch. Fig. 6, Kurve 2 zeigt die
F-Funktion, die sich ergibt, wenn man mit dem @-Ansatz integriert.
(Zum Vergleich ist die Funktion absichtlich iiber den Bereich der
Giiltigkeit bis 3-10-¢ Cb/cm? bestimmt worden.) Aber auch im
Bereich von 2,5 bis 8-10-% Cb/cm?2, wo die Integration ohne Ansatz
durchgefiihrt wurde, gibt es immer wieder die gleiche F-Funktion.
(Siehe Fig. 6, Kurve 1.)
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e) Betrachtungen zu den Abweichungen vom Ansatz P=®1(E +fP)/T.

Wir stellten uns die Aufgabe, das Versagen des Ansatzes P = @
[(E + fP)/T] (2) oberhalb P = 2,5:10-% Cb/cm? zu erklidren. Es
kann sich hier nicht um einen Fehler des Experimentes handeln,
da die Messfehler sicher kleiner als die in Frage stehende Diskre-
panz sind und nicht nur bei grosser Polarisation auftreten. Wir
mussten deshalb annehmen, dass fiir grossere Polarisationen der
Ansatz (2) die Verhaltnisse in bezug auf Polarisation, elektrisches
Feld und Temperatur nicht mehr richtig beschreibt.

Der Ansatz (2) beruht auf der Annahme eines inneren Feldes, das
die Dipole ausrichtet. Dabei ist stillschweigend vorausgesetzt, dass
sowohl Anzahl als auch Grosse der Dipole temperaturunabhéngig
sel. Ferner nimmt man auch einen temperatur- und polarisations-
unabhéngigen Lorentzfaktor f an. (Polarisationsabhéngigkeit der
Dipolanzahl oder Dipolgriosse kann angenommen werden ohne An-
satz (2) zu verindern.) Unsere Diskrepanz rithrt sehr wahrschein-
lich davon her, dass eine dieser Annahmen nicht richtig ist.

Wir ergénzten unseren Ansatz (2) durch eine Funktion g, die der
eventuell vorhandenen Temperatur- oder Polarisationsabhéngig-
keit der Dipole Rechnung tragen soll. Wir betrachteten die folgenden
vier Fille:

. E+fP '

1. P.y(T) = @(fl—f) (22)

(fiur temperaturabhingige Dipolanzahl)
_ E+fP 0

2. P =&zl (28)
(fiir temperaturabhingige Dipolgrosse)

5. P=o(Z¥iNIE) (24)
(fiir temperaturabhingigen Lorentzfaktor)

4. P:@(E”’Ef)'fp) (25)

(fir polarisationsabbingigen Lorentzfaktor).

Da (T) nur eine kleine Korrektur sein soll, und unsere Mes-
sungen sich nur iiber einen Temperaturbereich von etwa 5° C er-
strecken, fordern wir:

Ly(T)=1+¢'(0):(I—6) ' (6)5°0<1  (26)

(d. h. das erste Glied einer Potenzentwicklung nach T'— @ geniige).
Die allgemeine Integration ohne Ansatz (siehe S. 676) hat ergeben,
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dass die B (T — @)-Kurven, in dem von uns betrachteten Polari-
sationsgebiet, Geraden sind (siehe S.677). Wir fordern also weiter:

II. Der verbesserte Ansatz ergebe fir die E(T — @)-Kurven
wieder Geraden, die aber mit den richtigen Geraden (Fig. 10 schwach
ausgezogen) 1dentisch sind.

Schliesslich wollen wir den Hauptzweck unserer Verbesserungs-
bestrebungen nicht vergessen. Die auf Seite 674 beschriebene Uber-
bestimmung, die sich durch Einfiihren des Ansatzes (2) P = @
(B8 + fP/T) ergibt, bleibt erhalten, wenn wir (2) durch einen der
Ansétze (22) bis (25) ersetzen. Folglich muss es wieder zwel ver-
schiedene Methoden zur Bestimmung von @ («) geben. Wir fordern:

III. Die zwei verschiedenen Methoden zur Bestimmung von
D(a), resp. 1 — D'(a)/ D’ (0) (entsprechend Gl. 18 und 20) sollen
ibereinstimmende Resultate ergeben.

Analog dem Vorgehen mit Ansatz (2) fithrten wir die Integration
mit den Ansétzen (22) bis (25) durch. Die Rechnungen kénnen ihres
grossen Umfangs wegen nicht wiedergegeben werden. Sie zeigen:

Ansatz (24) kann Forderung IT und Ansatz (25) kann Forderung
III nicht erfiillen. Sie fallen deshalb ausser Betracht.

Ansatz (22) und (23) koénnen nur dann alle drei Forderungen er-
fiillen, wenn man fiir v’ (@) eine Polarisationsabhingigkeit zulédsst.
Die Abnahme der Anzahl Dipole mit sinkender Temperatur wird
als ,,Einfrieren* der Dipole aufgefasst. Es wire aber sehr schwer
zu verstehen, warum dieser Einfriervorgang von der Polarisation
abhiingig sein sollte. Wir miissen also Fall 1 auch ausschliessen,
obwohl Ansatz (22) allen Anforderungen gerecht wird. Dagegen
konnte man sich leicht vorstellen, dass die durch das innere Feld
gestreckten Dipole einen andern Temperaturausdehnungskoeffi-
zienten haben als die urspriinglichen, da nach vox Arx??®) die
Dipolgrosse polarisationsabhéngig sein soll. Es scheint also, dass
Fall 2 in Wirklichkeit zutrifft, d. h.: Die Grisse der Dipole ist tempe-
raturabhingig, wobei aber der Temperaturausdehnungskoeffizient v’
(O, P) von der Polarisation abhingig ist.

Es gilt also:

B _ E+j-P
P—@(T'Ll+w'(@,P)'(T—@)J) 27)

(f = 0/4 = 0,377/8,86 - 101%9]04_-)

« CIM

’ 1 ’
Y (0, P) =~—rmsee+ 9,(6, P).

p, (P. ©) findet sich in Tabelle 2, wo auch die nach den zwei
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verschiedenen Methoden bestimmte Funktion 1 — @' («)/®(0) auf-
gefiithrt 1st.

Tabelle 2.
* | BT, v (0, P) | L Pl
Pin in T-6 in ! @’ (0)
10~ Cb ‘ Volt/em °C Ag-e I aus aus
cm? | oC °C | #aq TESP. K V-
2,64 9200 0,42 0,43 0,0256 0,0220
2,69 9290 0,47 ~1,26 0,0260 0,0258
2,76 . 9450 0,56 ~1,22 0,0324 0,0324
2,81 9560 0,63 | -250 00358 | 00360
2,86 9600 072 —2,86 | 0,439 | 0,0415
291 | 9680 0,81 — 3,53 0,0479 0,0460
2,96 9860 0,90 |  —3,54 0,0502 0,0520
3,00 9920 1,02 4,40 | 0,0601 0,0600
\ ! |

* Fiir die P-Werte unter 2,64-10-¢ Cb/cm? ist Tabelle 1 massgebend.

f) Der elektrokalorische Effelt.
Nach Gleichung (7) ist

0F
/il Bt

aT = (fT)P dt oder dT 2ﬁ;T—v)AdP
P

E 1st gegentiber fP so klein, dass es vernachldssigt werden kann.
(w(T) wird hier vernachlassigt).

P ap AT = 127 (28)

CP 2 Cp
Die durch den elektrokalorischen Effekt fre1 werdende Warme ¢) 1st:

dT =

AQ=cp AT =L P2

Wie BanTLE!Y) festgestellt hat, wird bei der spontanen Polarisation
ebenfalls die Warme ¢ = f/2- P2 frei. An Hand der Polarisations-
kurven (Iig.18 und GI. (28)) lassen sich die Temperaturerho-
hungen T' berechnen. Aber der elektrokalorische Effekt ist auch
direkt gemessen worden; da nédmlich die Resonanzfrequenz der
Kristallplatten sehr stark von der Temperatur abhéngt (vgl.
Kap. IIlc), besteht die Moglichkeit, die Temperatur aus der Reso-
nanzfrequenz sehr genau zu bestimmen. Die Messung geht in fol-
gender Weise vor sich. Die Temperatur wird vom Thermostaten
konstant gehalten und die Resonanzfrequenz gemessen. Sodann
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Elektrokalorischer Effekt: Temperaturerhohung als Funktion des elektrischen
Feldes; Vergleich einiger Messwerte mit der berechneten Kurve.
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Verhiltnis von isothermer D. K. g4, zu der adiabatischen D. K. g4 als Funktion
des elektrischen Feldes fiir verschiedene Temperaturen (7' — ©).
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schaltet man das Feld ein und wartet, bis sich die Temperatur
wieder ausgeglichen hat. Beim Anschalten des Feldes sinkt die
Temperatur momentan unter den urspriinglichen Wert und kehrt
sogleich wieder, wegen der relativ kleinen Wéirmekapazitat des
Kristalls, zur Temperatur des Thermostaten zuriick. Der Tempe-
raturgang wird nun an Hand der Resonanzfrequenz verfolgt und
die gefundenen Temperaturen werden auf den Wert im Augenblick
des Ausschaltens extra-poliert. Fig. 14 zeigt den Vergleich einer
berechneten Kurve mit einigen gemessenen Punkten.

Die unvollkommene Ubereinstimmung zwischen Kurve und
Messpunkten beruht nur teilweise auf Messfehlern, hauptsachlich
diirfte sie darauf zurtickzufithren sein, dass die Messungen an ver-
schiedenen Kristallen durchgefiihrt werden mussten.

Endlich soll noch quantitativ der Einfluss des elektrokalorischen
Effektes auf die Suszeptibilitdt untersucht werden. Aus Gleichung
(15) und (19) kann man das Verhiltnis -

ET—-6
L ~ 5% Yerechnen. flso . ; (29)
x Ead fad T (0) -

D'()

Die aus Gleichung (29) berechneten Verhaltnisse sind in Fig. 15
dargestellt.*)

g) Bestimmung der spezifischen Wirme cp.

Es spielt eine grosse Rolle; unter welchen Nebenbedingungen die
spezifische Warme gemessen wird. Die direkten Messungen der
spezifischen Warme ergeben immer cz_,, das heisst, die spezi-
fische Wérme bei konstantem Feld 0. Unter dem Curiepunkt zeigt
cg eine grosse Temperaturabhéngigkeit. Iier soll jedoch darauf
verzichtet werden, ¢z als Funktion von T in den Ansatz einzu-
fihren, da diese sehr komplizierte Rechnung in folgender Weise
umgangen werden kann. Man weiss namlich, dass die Anomalie eine
Folge der Polarisationséinderungen mit der Temperatur ist. Ober-
halb und weit unterhalb des Curiepunktes, wo sich die Polarisation
nicht mehr verindert, bleibt ¢z, das dort gleich dem ¢pist, konstant.
Dies legt den Gedanken nahe, dass diese Anomalie, wie tibrigens
auch die Temperaturabhéingigkeit der anderen Konstanten (D. K.
Piezomodul und Elastizitdtsmodul) allein durch das anomale Ver-
halten der Polarisation bedingt ist und sofort verschwindet, wenn
die Polarisation konstant gehalten wird. Es ist also viel zweck-

*) Oberhalb 2,5-10-¢ Cb/em? ist g direkt aus den Kurven in Fig. 13 zu
bestimmen und durch g4 (aus Fig. 9) zu dividieren.
%*
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massiger, die spezifische Wéirme cp in die Rechnung einzufiihren,
die man im ganzen In Frage kommenden Temperaturgebiet als
konstant annehmen darf.

Die Kurven in Fig. 8 tangieren eine umhiillende Gerade. Diese
erlaubt ¢, sehr genau zu bestimmen.

Als erste Naherung nehmen wir an: Der Abfall der »(E)-Kurven
mit zunehmendem Feld sei allein eine Folge des elektrokalorischen
Effektes, und bis zum Berithrungspunkt der Kurve mit der Um-
hiillenden machen sich noch keinerler Séttigungserscheinungen be-
merkbar. Es gelten dann die vereinfachten Beziehungen

P=p,E (30)

A * /0P :-E
Po=p_g % (1) q= (*oT) B i (31)

und

»* = ad. Suszeptibilitit, ohne Sattigungserscheinungen.

Der Index o ist zugefiigt, um anzudeuten, dass es sich um p beim
Feld 0 handelt. Nach unserer vereinfachenden Voraussetzung ist
P = Po- Po 18t dann nur von T abhéingig. Wéahrend urspriinglich T
als Parameter genommen wurde, kann man fiir diesen Fall p, die
Rolle des Parameters iibertragen. Gleichung (1) und (31) in (13)

eingesetzt ergibt :

11, TEpg
W T oprar =0 %)

nach dem Parameter p, differenziert ergibt:
—mmt B2 = 0 | (33)

(Variation von I' vernachléssigt). Durch Elimination des Para-
meters p, aus Gleichung (32) und (33) erh&élt man die Gleichung
der Umbhiillenden. Es ist vorteilhaft, zuerst das Glied mit K2 zu
eliminieren, was zu der Gleichung:

w* = 2/3 Po (34)

fihrt. (34) sagt aus, dass die Kurve die Umbhillende beriihrt,
wenn ihre Ordinate um 1/3 des Ausgangswertes gesunken ist. (34)
m (32) eingesetzt gibt

= (mﬁﬂf) *o, (35)
z.z

In der logarithmischen Darstellung wird diese Funktion eine
Gerade mit der Neigung — 2/3. In Fig. 8 1st die gestrichelte Gerade
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mit der Neigung —2/3 an die Kurvenschar gelegt worden. Sie
beriihrt.die Messkurve T'— 6@ = 0,755° C. Bei den anderen Tempe-
raturen weicht die Umbhiillende etwas von der Geraden ab. Néher
am Curiepunkt stimmt die Temperatur nicht mehr und oberhalb
0,755° C macht sich die Sattigungserscheinung deutlicher bemerk-
bar. Die an die 0,755° C-Kurve gelegte Gerade folgt am besten
der Gleichung (35). Nun lésst sich ein Punkt auf der Geraden
herausgreifen, z. B. E = 1000 Volt/cm ¢ = 5140, und in Gleichung
(35) einsetzen, was den Wert ¢p = 0,925%*) Joule/em3: Grad ergibt.

Zur genauen Bestimmung von c¢p diirfen die Sattigungserschei-
nungen nicht vernachlidssigt werden. Bei T'— @ = 0,755° erhalten
wir »/x* = 0,9817

(x = adiabatische Suszeptibilitit mit S#ttigungserscheinungen
»*—= adiabetische Suszeptibilitit ohne Sattigungserscheinungen).

In Gleichung (35) miissen wir fiir »* nicht 5140, sondern 5140/0,9817
einsetzen und erhalten fiir

¢p= 0,977 Joule/cm?. Grad. (36)

IV. Feldabhingigkeit der Diclektrizitiitskonstanten in der a-Richtung.

Mit der gleichen Apparatur, mit der die Abhéingigkeit in der
c-Richtung gemessen wurde (Fig. 7 und 8), konnte auch die Feld-
abhéngigkeit in der a-Richtung bestimmt werden. Es zeigte sich
keinerler Feldabhingigkeit. Die Dielektrizitdtskonstante blieb im
Temperaturbereich in Néhe des Curiepunktes bis zu Feldern von
60000 Volt/ecm konstant.

V. Feldabhiingigkeit der Dielektrizitiitskonstanten &,, wenn ein Feld in
der c-Richtung angelegt wird.,

Um diese Messungen auszufithren, kann man nicht einfach an
ein Parallelepiped an den Seiten senkrecht zu @ und zu ¢ zwei Paare
Elektroden anbringen, da sich diese gegenseitig storen wiirden.
Sowohl das Feld der Gleichspannung in der ¢-Richtung wie auch
das Feld in der a-Richtung (von der Wechselspannung herriihrend)
wiirde verzerrt. KEs wurde deshalb die Anordnung der Iig. 16
verwendet.

**) Die Vernachlissigung der Variation von 7' Gl. (32) und (33) ergibt einen
Fehler von weniger als 0,3%, fiir cp. '
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Die Gleichspannung wurde mit einer schwach leitenden Schicht
auf die Kristalloberflache gefithrt. Diese Schicht hat einen Wider-
stand von etwa 10° Ohm, wihrend der Blindwiderstand des Kristalls
fir die Wechselspannung von 5000 Hertz der Briicke nur etwa
3-10% Ohm ist. Die 10°® Ohm Parallelwiderstand spielen dann keine
Rolle mehr. Der Widerstand des Kristalls selbst ist etwa 1012 Ohm.
Der Spannungsabfall in der Widerstandsschicht 1st also unwesent-
lich. Andererseits ist es nicht zu vermeiden, dass die Wechsel-
spannungselektrode das Gleichfeld beeinflusst. Um diesen Hinfluss

c

L.

—mﬁ

o ©
VAo
Messbrucke

Fig. 16.

Anordnung um die D. K. ¢, zu messen, wenn das Material unter dem Einfluss

eines grossen Feldes in der c-Richtung steht. V ~ wird auf die Silberelektroden

geleitet, wihrend ¥ = mit einer schlecht leitenden Schicht, die auf der Oberfliche
senkrecht ¢ haftet, in Verbindung steht.

o—

herabzusetzen 1st nur ein Teil der Oberflache mit der Widerstands-
elektrode belegt. Das I'eld dehnte sich dann nicht bis zu der
Wechselspannungselektrode aus. Leider sind auch in dieser Anord-
nung die Felder noch lange nicht homogen, so dass man quantitativ
den Wert des Feldes nicht angeben kann. Ebenso sind die Kapazi-
téten, die gemessen werden miissen, unter 10 pI', und die Messbriicke
erlaubt nur auf 1pF genau zu messen. Beobachtet wird ein Abfall
der D. K., sobald ein Feld eingeschaltet wird. In gleicher Weise wie
unter dem Curiepunkt mit ansteigender Polarisation in der ¢-Rich-
tung die D. K. in der a-Richtung absinkt, fallt die D. K. ebenfalls
oberhalb des Curiepunktes, wenn die Polarisation mit einem Feld
erzeugt wird. Die Messungen von Buscr®?) und unsere Messungen
stimmen innerhalb der Messgenauigkeit (etwa 209, iiberein. Eine
Darstellung ertibrigt sich, da die Polarisationswerte aus der vor-
liegenden, und die D. K.-Werte genauer aus der Arbeit von Buscr
entnommen werden kénnen.
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Der Einfluss eines Feldes in der a-Richtung auf ¢, ist nicht ge-
messen worden. Es ist anzunehmen, dass keine solche Abhéngigkeit
existiert. -

VI. Feldabhiingigkeit des Elastizitiitsmoduls sgg und des Piezomoduls dgg.

Den Elastizitéitsmodul sg misst man am einfachsten mit Hilfe
von Léngsschwingungen quadratischer Platten, deren Ebene senk-
recht zu ¢ steht und deren Seitenkanten um 45° gegen die a-Achsen
geneigt sind. Die Grundschwingung einer solchen Platte hat die
Kreisfrequenz:

P 37
l/2 L VQ " Sg¢ ( )
L = Lange der Seite der Platte, '
¢ = Dichte des Materials.

Die Dicke spielt keine Rolle. Der Vorteil dieser Methode ist, dass
die Resonanzfrequenz nur von sgg abhiingig ist. Zur Messung wurde
Apparatur Fig. 17 benutzt.

H.F-
Generator

Oscillograf ?‘

Fig. 17.
Schema der Apparatur zur Messung der Resonanzfrequenz von Kristallplatten.

Bei Resonanz des Kristalls fallt der Blindwiderstand des Kristall-
kondensators sehr steil ab. Der Kristall selbst stellt dann nur noch
einen kleinen ohmschen Widerstand dar. Der Spannungsabfall am
Eingangswiderstand des Oszillographen wird damit grosser, was
auf dem Schirm beobachtet werden kann.

Die Messungen mit aufgedampften Elektroden ergeben ein an-
deres Resultat als diejenigen, bei denen zwischen Elektrode und
Kristall noch ein Luftspalt bleibt (siehe z. B. Fig. 19). In einem
Luftspalt erzeugen ndmlich die freien Ladungen auf der Ober-
fliche Felder, die die Tendenz haben, die Polarisation und damit
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auch die Deformation zu unterdriicken. Der Kristall scheint dann
hérter zu sein; der Elastizitatsmodul wird dementsprechend kleiner.
Der Elastizitdtsmodul gemessen ohne Luftspalt wird sz (F = konst.)
genannt. Sobald ein Luftspalt mit der Breite d vorhanden ist, gilt

die Beziehung: smdy, | |
Sa= p T3 (38)
q T
D = Kristalldicke (= 1 mm fiir unseren spez. Fall). -
Se6 5
10-2
cmé?/dyn

110

\0,55D
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“0,730
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Y\o,gw
80

1 1,250 |\
60 |1,450 \
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=R
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10

0

0 2000 4000 6000 8000 10000 12000 14000 E
Volt/ecm

Fig. 18.
Elastizititsmodul sg, ohne Luftspalt gemessen, als Funktion des elektrischen Vor-
feldes gemessen, bei verschiedenen Temperaturen 7' — @,

Wenn d = unendlich ist, so gilt:

4nd?,
Soo = Sisotiert — S~ £ (89)

o0

Wird der Luftspalt d =1 mm, so ist D/d =1 und kann in (88)
gegeniiber ¢ vernachlissigt werden. Man erhilt praktisch s..
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Die in Fig. 18 dargestellten Kurven zeigen sy als Funktion des
Vorfeldes E. Aus der Differenz des Elastizitdtsmoduls mit und
ohne Luftspalt kann man (47w d3s/e) berechnen und so die Feld-
abhingigkeit des Piezomoduls dsg bestimmen. Es ist aber schwer
S, mit einem Vorfeld zu messen, da die Elektroden, auf die man
die Gleichspannung geben kénnte, nicht am Kristall aufliegen. Da
die D. K. des Kristallmaterials sehr gross ist, wiirde die ganze
Spannung am Luftspalt und nicht am Kristallmaterial liegen. Um
dies zu vermeiden, haben wir eine Widerstandsschicht auf die
Kristallflaiche gebracht. Fig. 19 zeigt die Anordnung.

Fig. 19.

Anordnung zur Messung der Resonanzfrequenz einer Kristallplatte, die in einem

Luftspalt zwischen zwei Metallplatten schwingt. Auf dem Kristallmaterial haftet

eine Widerstandsschicht, die es erméglicht, den Kristall unter den Kinfluss eines
elektrischen Gleichfeldes zu setzen.

Die Wirkung dieser diinnen Widerstandsschicht erklart sich fol-
gendermassen: Schwingt der Kristall, so entstehen auf der Ober-
fliche freie Ladungen, die bei aufgedampften Metallelektroden
sofort durch wahre Ladungen kompensiert werden, so dass keine
depolarisierenden Felder entstehen. Bei einer Frequenz von 100 Khz
dndert die Polarisation innerhalb 1/200000 sec ihr Vorzeichen. In
dieser Zeit vermag praktisch keine wahre Ladung auf die Wider-
standsschicht mit etwa 10? Ohm zu fliessen und die depolarisieren-
den Felder konnen sich ungestort ausbilden. Wir messen dann
tatsdchlich sy et - Die Gleichladung hingegen hat gentigend Zeit,
um auf die Schicht zu fliessen und das Material unter ein Gleichfeld
zu setzen. | |

Eine solche schlechtleitende Schicht kann man durch Mischen
von kolloidalem Graphit und Zaponlack erhalten. Je nach Misch-
verhéltnis kann man Schichten von 103 bis 10'2 Ohm herstellen.
Solche Widerstande sind jedoch stark spannungsabhingig. Der
Widerstand sinkt mit wachsender Spannung. Bei unseren Messun-
gen spielte dies aber keine Rolle.

44
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Die Messungen wurden fiir verschiedene Luftspaltbreiten durch-
gefiihrt. Mit sehr kleinen Luftspalten zeigt sich noch deutlich eine
Feldabhiéngigkeit, was man auch erwartet hat. Ebenso konnte
festgestellt werden, wie sich die Kapazitidt der Metallplatten ver-
kleinerte, wenn eine Gleichspannung angelegt wurde. Dies gibt uns
die Gewissheit, dass das Material auch wirklich unter dem Einfluss
emes elektrischen Gleichfeldes stand. Die Feldabhingigkeit wurde
um so kleiner, je mehr man den Luftspalt vergrosserte. Bei einer
Spaltbreite von 5 mm (Kristalldicke 1 mm) konnte trotz grosser
Empfindlichkeit der Apparatur keine Verschiebung der Resonanz-
frequenz durch ein Gleichfeld beobachtet werden. Der Elastizitits-

S¢6

10" emAlyn
143%

14.34

1433

1432

14.31 N o2
14.30 //

14 29

-5 _4° .39 .20 .o (o 10 2 3° 4o 5° T-9
Fig. 20.

Elastizitdtsmodul sg 0o (Luftspaltmodul) als Funktion der Temperatur.

modul sgg des isolierten Kristalls ist also unabhingig von einem elek-
trischen Feld.

Durch die Polarisation erleidet der Kristall eine Winkelinderung
von iiber 20°, dazu kommt noch eine betrichtliche Awufblihung als
Effekt zweiter Ordnung. Gerade diese Aufblihung scheint darauf
hinzuweisen, dass sich die Gitterkriafte etwas #ndern, was man auch
bei der Messung des Elastizitdtsmoduls sgg,, bemerken sollte. Die
Temperaturabhang1gkelt von S In der Nahe des Cunepunktes 1st
aber dusserst gering, wie die Messungen zeigen.

Um dgg aus (39) zu ermitteln, wurde s, in der Nahe des Curie-
punktes @ mit moglichst grosser Genauigkeit bestimmt. Das Re-
sultat 1st in Fig. 20 dargestellt.
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4° C unter dem Curiepunkt, wo der Kristall fast vollstéindig spon-
tan polarisiert ist, hat man den gleichen Elastizititsmodul wie 4° C
oberhalb @ bei der Polarisation 0. Am Curiepunkt & selbst sinkt
sgg nur um 1,5%,. Dies zeigt, dass selbst die spontane Polarisation
Sgg kaum dndert.

voN Arx'%) und Zwicker'?) haben gezeigt, dass das Verhiltnis
von Suszeptibilitdt zu Piezomodul #4/dsg = k nur wenig temperatur-
abhéangig ist:

7"- — k= 2,09-10% cm* g¥ sec—! = 55,5 Cb/cm?. (40)
Erweitert man die linke Seite (40) mit E, so steht dort das Ver-
hiltnis von Polarisation zu Deformation, und das muss wieder
gleich k sein. Wir wissen, dass bei hohen Feldern die Polarisation
nicht mehr proportional zum Feld K ist. Die differentielle Suszep-
tibilitdt sinkt. DE QUERVAIN'®) zeigte, dass unterhalb des Curie-
punktes das Verhaltnis von spontaner Polarisation zu spontaner
Deformation ebenfalls den Wert k ergibt. In diesem Temperatur-
gebiet ist die Polarisation dem elektrischen Feld nicht proportional.
Wir vermuten also, dass die Proportionalitit (40) auch noch gilt,
wenn oberhalb des Curiepunktes das Sdttigungsgebiet erreicht wird.
Bei jeder Messung des Elastizitdtsmoduls ohne Luftspalt wurde
gleichzeitig die Suszeptibilitidt » bestimmt. Aus Gleichung (39) kann
man dg/» berechnen. Durch Division mit dem direkt gemessenen
% kommt man zu: d?/»? = k2.

Dies ist auch bei allen Messpunkten innerhalb der Fehlergrenzen
der Fall. Abweichungen kommen nur nahe am Curiepunkt bei klei-
nen Feldern vor. Dies 1st das Gebiet mit den grossten »-Werten,
wo Verfialschungen durch feine Luftspalte auftreten konnen. Diese
Werte besitzen also kein Gewicht.

Analog dem elektrokalorischen Effekt existiert auch noch ein
mechanisch-kalorischer Effekt. In einem elektrischen Vorfeld be-
wirkt ebenfalls eine Deformation eine Temperaturverinderung.
In emmem Kristall, der in einem Vorfeld schwingt, schwankt die
Temperatur im Takte der Frequenz auf und ab. Analog wie die
Suszeptibilitdt durch diese Temperaturschwankungen verindert
wurde, wird in diesem Falle der Piezomodul verkleinert. Es gibt also
wieder einen isothermen und einen adiabatischen Piezomodul. Aus
Gleichung (39) erhalten wir den adiabatischen Modul. Wir miissen
wieder die Beziehung zwischen isotherm und adiabatisch aufstellen.
Wollte man dies korrekt durchfiihren, so miisste man sdmtliche
Formeln von Kapitel 1II mit Beriicksichtigung der mechanischen
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Grossen neu bearbeiten. So wiirde zum Beispiel Gleichung (7)
heissen:

7 0F 0X
=— =] - ) - dx 4
aT °p,x (OT)P:I: dP+(0T)Px oy (1)
x = Deformation. X = mechanische Spannung.

Es lohnt sich nicht das ganze Formelsystem neu zu schreiben,
da man nicht viel davon profitiert. Wir stiitzen uns auf Gleichung
(40) P/x =k und machen die Annahme, sie gelte genau, was in
Wirklichkeit nicht ganz zutrifft, da k noch etwas temperatur-
abhingig ist. Unsere ganzen Betrachtungen beschrénken sich auf
den schmalen Temperaturbereich von @ bis @ +4° in welchem k
sehr wenig variiert. Es gilt dann auch dP = k-dz. Dabei spielt es
keine Rolle, ob das dP durch eine Felddnderung dE oder durch
eine Temperaturinderung dT' oder durch beide zusammen ver-
ursacht worden 1st.

oP kox
€150 _ (W)T _ (OE, )T _ diso (42)
= 0P oz daa
(Eﬁ)ad ( oF )ad
Eiso/€aa kann aus Fig. 15 entnommen werden.
Nach Gleichung (39) berechnet sich:

g (48)

dad _31;:

Auch bei dem Elastizitatsmodul gibt es zwei Moglichkeiten.
Adiabatischer und isothermer Modul héngen wie folgt zusammen:

Spq = Sigo— (1 —ri%d—) B ; (44)

€is0 / im0

Es 1st sowohl beim Piezomodul wie auch beim Elastizitatsmodul
darauf zu achten, ob man statisch oder dynamisch misst. Im ersten
Falle misst man die isothermen und im zweiten die adiabatischen
Grossen, die, wie Fig. 15 zeigt, erheblich voneinander verschieden
sein konnen.

VII. Vergleich mit der Slaterschen Theorie.

Die Messungen und ihre Auswertung haben gezeigt, dass die
Langevin-Weiss’sche Theorie die beste Ubereinstimmung mit der
Erfahrung erzielt. Die Deutung der gefundenen @-Funktion aus
einer molekularen Statistik heraus bietet erhebliche Schwierig-

keiten, mit denen wir uns hier nicht befassen wollen. (Siehe
VON ARXx)23)%%),
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Es bleibt noch zu diskutieren, ob eventuell die Slater’sche Theorie
bei niherer Betrachtung nicht das Gleiche wie 'die Langevin-
Weiss’sche Theorie leistet. Die exakte Durchrechnung der Slater-
schen Ansiitze?) geben fiir die Polarisation die Funktion:

Sh (a)
Fr_Ch(a)
a = plkT r =u/kT p = Dipolmoment k= Boltzmann’sche Konstante
u = Energieunterschied zwischen einem (H,PO,)-Dipol in der a-Richtung und
einem entsprechenden in der c¢-Richtung.

z=P|P;= (45)

Nach Glelchung (45) strebt die Polarisation P/P, nicht etwa dem
Wert 1 zu, sondern steigt mit zunehmendem E immer steiler an.

Dasselbe gilt auch fiir die isotherme Suszeptibilitat p. Bei der

Feldstarke
Volt
cm Grad

E = 17360 (T — 6) -

(46)

erreicht £ den Wert 1. Der Kristall kann aber nicht eine hohere
Polarisation als P, erreichen. x = 1 kann niemals iiberschritten
werden. Fir hohere Felder wiirde die Polarisation konstant
bleitben. Wenn aber die Polarisation bei Variation des Feldes sich
nicht veradndert, ist- die Suszeptibilitit p = 0. In unserem Fall sind
nur die Dipole betrachtet worden. Die Dipolpolarisierbarkeit wiirde
wegfallen und die Suszeptibilitit beim Feld Gleichung (46) mit
einem Sprung auf den Wert des Untergrundes herabsinken. Dies
bezieht sich auf die isotherme Suszeptibilitit. Die adiabatische
Suszeptibilitdt miisste diesen Sprung auch zeigen (nebst dem Ab-
fall infolge des elektrokalorischen Effektes). Das ist nicht der Fall.
Fig. 21 zeigt den Vergleich einer adiabatischen e-Kurve, wie sie
wirklich bei (T — @) = 0,755° C als Funktion des Feldes gemessen
wurde, mit der e,-Kurve, wie sie nach der-Slater’schen Theorie ver-
laufen. miisste. Zur Konstruktion der letzteren Kurve kann man
Gleichung (45) nach: E entwickeln. Es gilt dann:

P =A4E/(T — @) + Glieder hoherer Ordnung, welche vernach-
lassigt (45a) werden diirfen.

In der Nahe des Curiepunktes herrscht nach Gleichung (45)
zwischen Polarisation und IFeld praktisch Proportionalitit. (Im Be-
reich x = 0 bis = 1.)

Slater musste bei der Berechnung der Anzahl F' der Anordnungen
mehrere Voraussetzungen machen, die ziemlich fragwiirdig sind.
Es sei hier ein augenfilliges Beispiel herausgegriffen. Bei der Be-
rechnung der Rekursionsformel baut Slater theoretisch einen Kri-
stall auf, indem er an einen Kristall von N (Anzahl) PO,-Gruppen
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an einer bestimmten Stelle die N + 1ste Gruppe ansetzt. Die neue
PO,-Gruppe héngt tiber zwei Wasserstoffbriicken mit zwei alten
PO,-Gruppen zusammen. Durch die Dipolrichtung der zwei letz-
teren 1st die Lage der Wasserstoffkerne auf der Briicke bestimmt.
Dadurch ergibt sich auch, ob die neue PO,-Gruppe den Dipol in
+ ¢, — ¢ oder senkrecht zu ¢ hat. Die Berechnung der Richtung des
neuen Dipols fithrt zu der Rekursionsformel. Slater berechnet die
Wahrscheinlichkeit der Protonstellung auf der einen Briicke und
dann auf der anderen. Aus der Anordnung der Protonen auf beiden
Briicken ergibt sich die Dipolrichtung der neuen PO,-Gruppen.
Die Wahrscheinlichkeit einer solchen Anordnung ist nach Slater
das Produkt der Wahrscheinlichkeiten der einzelnen Briicken. Dies
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Fig. 21.

Vergleich der nach der Slaterschen Theorie berechneten DK als Funktion des
Feldes E mit der gemessenen Kurve bei (7 — @) = 0,755° C.

1 gemessene Kurve, 2 theoretische Kurve,

wire richtig, wenn die zwei Briicken ganz unabhingig voneinander
wiren. Sie héingen jedoch tiber viele Reihen von PO,-Gruppen zu-
sammen. Die kiirzesten dieser Reihen umfassen 6 Glieder. Eine
einzige solche Umwegkopplung setzt die Anzahl der moglichen
Dipolanordnungen mit dem neuen Dipol schon um einen Faktor 2
herunter.

Es wire nun moglich, dass zwar das Slater’sche Modell der Dipol-
kopplung richtig ist, inshesondere da dies durch die Analogie mit
dem KEis sehr stark gestiitzt ist, dass aber die Berechnung von F
falsch ist. Wenn die obigen Betrachtungen zeigen, dass die Slater-
sche Abziahlung nicht exakt sein kann, so scheint sie doch eine sehr
gute Annaherung zu sein. Fiir den Wert x = 0 stimmt die Theorie
gut mit dem Experiment iiberein, und es ist anzunehmen, dass in
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diesem Fall die Abzéhlung auch stimmt. Fiir den total polarisierten
Zustand ¢ = 4 1 ergibt sie den Wert 2. Wie man sich direkt am
Modell iiberzeugen kann ist dies auch richtig. Wenn bei einem voll-
standig polarisierten Kristall die Richtung einiger Dipole geéindert
werden soll, so muss man eine ganze Kette von Dipolen, die sich
von einer Oberfldche senkrecht ¢ bis zu der gegeniiberliegenden aus-
dehnt, umklappen. Es miissen bei einem Wiirfel von N Hy,PO,-
Dipolen also N'® Dipole miteinander die Richtung #ndern. Die
Kette hat bei jeder PO,-Gruppe zwei Moglichkeiten um weiter-
zulaufen. Sie kann irgendwo an den N2 PO,-Gruppen der Grund-
flache beginnen. Es gibt also N3, 28" Mgglichkeiten eine solche
Kette auszubilden. Alle diese Moglichkeiten entsprechen einem Zu-
stand mit N — N3 Dipolen in + oder — ¢-Richtung und N3 senk-
recht zur c¢-Richtung. Die Slater’sche Abzahlung gibt nur 2%/
Mbglichkeiten. Der Unterschied dieser zwei Werte spielt keine Rolle
mehr, sobald Thermodynamik getrieben wird, d. h. wenn die An-
zahl der Moglichkeiten logarithmiert wird. Der Faktor N23 ist
gegeniiber 2¥'" zu klein. Diese Art der Abzahlung der Zustands-
moglichkeiten lasst sich fortsetzen und auf mehrere Rethen aus-
dehnen. Solange die Zahl der Reihen klein gegeniiber N3 ist, gibt
es keine gegenseitige Beeinflussung der Ketten, und die Abzéhlung
der moglichen Zusténde ist leicht durchzufiihren. Sobald Beein-
flussung da ist, d.h. zwei Ketten tiber die gleiche PO,-Gruppe
laufen, entstehen Dipole in der entgegengesetzten ¢-Richtung, deren
Anzahl schwer zu berechnen ist. Soweit die Anzahl der Zustdnde
direkt berechnet werden konnte, stimmt sie, bis auf die erwéhnte
Abweichung (Faktor N22), mit der Slater’schen Gleichung (45)
iiberein. Fir den vollstandig polarisierten Zustand ist die Slater-
sche Theorie nicht nur im Punkt 2 = 1 richtig, sondern auch in
dessen Nachbarschaft. Gleichung (45) gibt fiir £ =1 das exakte
dx/dE, obwohl die Gleichung zwischen 2 = — 1 und z = -+ 1 wegen
der ungentigenden Abzéhlung falsch sein kann. Da die Slater’sche
Theorie auch im Punkte x = 0 richtig ist und auf dieselbe Suszep-
tibilitét fithrt, so misste die isotherme Suszeptibilitét im unpolari-
sierten (z = 0) und im vollstdndig polarisierten Zustande (z = 1) in
Nahe des Curiepunktes gleich sein, und zwar sehr gross. Somit sinkt
die D. K. sprunghaft auf den Wert des Untergrundes, sobald 2 =1
erreicht wird. Der D.K.-Sprung, den Gleichung (45) voraussagt,
1st also sicher nicht eine Unzuldnglichkeit der Rechnung, sondern
eine Erscheinung, die auftreten sollte, wenn die Dipolwechselwir-
kung so ist, wie sie Slater beschreibt. Die Slater’sche Theorie gilt
zwar nur fiir den starren Kristall, der durch die Polarisation nicht
piezoelektrisch deformiert wird. Unsere Messungen beziehen sich
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auf den freien Kristall. Nach den Ausfithrungen von Nacamiva
und Yomosa?®) und Orcusrin?®) verschiebt sich beim freien Kristall
der Curiepunkt um 3,7° C nach oben; der sprunghafte Charakter
der Umwandlung bleibt aber erhalten. Ebenso ist der plotzliche
Abfall der D. K. bei hohen Feldern auch in diesem IFalle zu er-
warten. Dieser Abfall ist experimentell nicht gefunden worden, und
dies bedeutet, dass schon in den Grundlager. der Slater’schen Theorie
ewne Voraussetzung gemacht worden ist, die wn Wirklichkeit nicht
zutrifft.

Auch alle anderen in der Einleitung erwihnten Ansatze HaorTe)
werden von unsern Messungen nicht bestitigt.

Meinem verehrten Lehrer, Herrn Prof. Dr. ScHERRER mochte
ich fiir seine wertvolle Unterstiitzung und sein Interesse an dieser
Arbeit besonders danken.

Zirich, Physikalisches Institut der E.T.H.
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