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Diffraction des électrons par le graphite

par Jean Hoerni (Genéve).
(16. V. 1950.)

Résumé. La théorie dynamique de la diffraction est appliquée au graphite,
et ses résultats sont vérifiés expérimentalement. Chaque observation se trouve ex-
pliquée par la théorie et donne des résultats numériques précis sur le cristal et sa
structure. L’étude des différentes variétés de graphites donne des renseignements
nouveaux sur la disposition des couches atomiques successives.

Introduction.

L’étude rigoureuse de la propagation d’ondes a travers un milieu
périodique est donnée par la théorie dynamique, qui a fait 1’objet
des travaux d’Ewarp (1933) pour les rayons X dans les cristaux,
et a été appliquée a la diffraction des électrons par Berar (1928),
Lavur (1944) et Furs (1938), entre autres. Dans le domaine expéri-
mental de ce second cas, & part SHINomARA (1932), qui a recouru
a cette théorie dans 'interprétation des enveloppes et des bandes
de Kikucni, c¢’est en 1940 seulement que MacGILLAvVRY en donne
une vérification marquante, mais fragmentaire, d’aprés une photo-
graphie publiée par Kosser et MoLLENSTEDT (1939). Ces auteurs
ont inauguré une nouvelle technique expérimentale, que nousavons
reprise dans le présent travail. Notre intention a été de relier da-
vantage que cela n’a été le cas jusqu’a présent, I'expérience et la
théorie, par une vérification plus systématique de cette derniére.

On sait que les calculs ont été développés pour des cristaux
s’étendant indéfiniment dans deux dimensions, et limités dans la
troisitme par deux faces paralléles. A cause de la forte absorption
des électrons dans la matiere, I’épaisseur du cristal ne doit pas
excéder 2000 A environ si 'on veut étudier, comme nous I'avons
fait, la diffraction « par transmission». Notre choix, ainsi limité &
des substances clivables, s’est porté sur le graphite, qui présente
les avantages suivants: grande facilité de préparation, systéme
cristallin simple (hexagonal), atomes de petit nombre atomique.
Le graphite présente en outre une modification rhombohédrique,
découverte par Lipson et Storms (1942) sur des diagrammes de
poudre pris aux rayons X, et que nous avons clairement mise en
évidence sur des cristaux uniques.
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§ 1. Données théoriques du probléme.

Nous situerons l'origine des coordonnées sur la face du cristal frappée par les
électrons (face d’entrée). Si 'on désigne par n un vecteur unité normal a la face
de sortie (fig. 1), et par D I’épaisseur du cristal, les deux faces sont définies par

nr=20,
nr=2D,

(1)

Le cristal lui-méme résulte de la juxtaposition de mailles élémentaires cons-
truites sur les trois vecteurs de base a; (+ =1, 2, 3). Nous ne nous occuperons
que du cas ol a; est perpendiculaire & a,; et a,, et paralléle & n (a, et a, étant
paralléles aux faces du cristal). Les phénomenes de diffraction mettent en jeu le
réseau réciproque, de vecteurs de base b, (k = 1, 2, 3) satisfaisant aux relations

a; b, = 0.

-
n
Pt

Fig. 1.

Surface de dispersion dans le cas d’une onde (%, k,) intense a I'intérieur du cristal.

La construction indiquée permet d’associer & tout vecteur k de l’onde incidente

le vecteur k, satisfaisant aux conditions aux limites, et le vecteur K de 'onde &
la sortie.

Le potentiel @ (r), nul & 'extérieur du cristal, est triplement périodique & 1’in-
térieur (0 < nr < D), & part de petites perturbations prés des faces, que nous
négligeons; on peut donc le développer en triple série de FOURIER:

@(r):Z@nezﬂib”r, (2)

ol 7 est un indice triple, @, = ®* et b, = ny b; + 1y by + 153 by (1. Ny €t Ny
entiers).

Nous pouvons maintenant esquisser la théorie dynamique de la fagon suivante:

On admet que les élections ne perdent pas d’énergie en traversant le cristal —
qu’ils ne subissent que des chocs élastiques — et I’on cherche d’abord les ondes
possibles dans un milieu infini, ol1 le potentiel est donné par (2), et pour une énergie
donnée E des électrons. La solution de I’équation de ScHRODINGER est alors un
champ d’ondes planes*):

u(r) = > u, e "thnr, (3)
n

*) Une solution plus générale dépendrait du temps par le facteur e*” i (ElR)

dont il n’est pas nécessaire de s’occuper dans les phénomeénes stationnaires.
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ou les u,, doivent satisfaire aux équations de récurrence

lc - k2
Zen q% = Y> (4)
gFn
et les k, aux relations

k vaut ici I'inverse de la longueur d’onde qu’auraient les électrons dans le vide
{k = V2mE/h; m = masse de 1’électron), et les coefficients ¢ sont définis par

&g = 14+ @y/P = 1+ @ moyen/P ,

En = Pp/P (n + 0), (6)

P étant le potentiel accélérateur des électrons.

Pour le graphite, et P = 50000 volts, on a: g ~1410"% ~1 et ¢, ~ 5-1075,
Les équations (4) étant linéaires et homogénes, il existe une condition de compa-
tibilité (annulation du déterminant formé par les coefficients) qui permet de
calculer®) k, et grice a (5) les autres k, (pour une orientation de %, donnée).
On trouve en fait plusieurs valeurs propres pour k;, d’olt en définitive plusieurs
champs d’ondes du type (3), dont chacun est solution indépendante de 1’équation
de ScHRODINGER. Les amplitudes relatives de ces différents champs d’ondes
seront déterminées, lors du retour au cristal fini, par les conditions aux limites,
existant sur la face d’entrée entre la solution générale trouvée pour le milieu
périodique et la solution pour le vide (I'onde plane incidente). Les conditions aux
limites sur la face de sortie permettront finalement de calculer et de comparer
avec I’expérience la diffraction due au cristal.

Les calculs auxquels conduirait la théorie dans le cas général seraient inextri-
cables, aussi allons-nous passer en revue plusieurs cas particuliers, suggérés par
Pexpérience, et qui suffiront & l'interprétation de toutes les figures de diffraction
observées.

§ 2. La figure de diffraction ne montre qu’un seul spot intense.
Ce cas simple servira & préciser certaines notions. Soit %, ’amplitude de ’onde
intense & l'intérieur du cristal et k, son vecteur d’onde. Nous conviendrons de

désigner cette onde u, e* " %27 par la notation (u,, k,) et ferons de méme pour toute
onde. L’une des équations (4), & savoir:

komeokz
T -2e_qu, =0,

ne peut étre satisfaite que si k,=>~ V¢, k, puisque tous les ¢, sont du méme ordre
et que les u, sont trés petits par hypothése. L’onde (u,, ko) est alors simplement
Ponde incidente (4, k), qui s’est réfractée dans un milieu de constante diélec-
trique &, Les conditions de continuité auxquelles sont soumis, sur les faces du
cristal (1), la fonction d’onde et son gradient, impliquent, pour la face d’entrée,
Pégalité des composantes tangentielles de k et ky:

kt:koc,
A =u0.

et encore

¥ koz “‘0[-
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Nous négligeons en effet I'onde réfléchie sur cette face vu que gy~ 1. Les
mémes conditions aux limites appliquées & la face de sortie donnent:

kos = Koy (Ko = k),
et

uy eﬁnfékunD — UO QQHiKgnD,
ou (Uy, K,) est I'onde intense sortant du cristal et dont on observe l'intensité
U, U = |U, ? sur un écran ou une plaque photographique.

La numérotation des k,, selon (5) laissait le choix de k&, arbitraire; nous I’avons
une fois pour toutes déterminé comme le vecteur de 'onde qui reprend a la sortie
du cristal la direction de 1’onde incidente. Lorsque k varie en direction, mais que,
d’aprés la construction de la figure 1, 'extrémité de k, reste attachée au point
b, = 0 du réseau réciproque du cristal, l'origine de k, décrit une surface qui se
réduit, dans le cas particulier de ce paragraphe, & une sphére (figure 1). Cette
surface posséde dans le cas général du paragraphe 1 plusieurs nappes, puis qu’il
existe alors plusieurs valeurs propres de k, pour une direction donnée. Nous nom-
merons cette surface (lieu des origines du vecteur k) la surface de dispersion et
nous allons étudier ses modifications successives en présence de deux spots in-
tenses ou davantage dans la diffraction.

§ 3. La figure de diffraction montre deux spots intenses.

Supposons qu’a coté de ’onde (u,, k), I'onde (u,,, k,,) soit intense & 'intérieur
du cristal, donnant ainsi lieu & une onde diffractée intense (U,,, K,,;) & la sortie.
En approximant a I'unité g, le systéme d’équations (4) se réduit a:

2 2
ko =k Ug— E_p, Uy, = 0
I L2 o —-m “m 2
(7)
2 2
b= k, ]

—Ey g+ — e =5 Oy

koo
car les autres u, sont négligeables par hypotheése. L’introduction des variables
xy et x,,, définies par
Xy =k—Fky,
x, = k—-k,,

(8)

facilite le calcul des valeurs propres de &, L’annulation du déterminant des coeffi-
cients en (7) donne
o Ly = | &y |* K?/4 (9)

car dans le cas qui nous occupe, les « sont de 'ordre de 103 A1k de 20 A1, et
les termes d’ordre supérieur sont négligeables.

D’apreés la figure 2, la surface de dispersion s’écarte d’une sphére — dégénérée
& léchelle du dessin en un plan — lorsque celle-ci coupe une autre sphére, de
méme rayon k et centrée au point b,,. La surface de dispersion, qui présente
maintenant deux nappes, est de révolution autour du vecteur b,,, et la figure 2
en montre la trace (hyperbole) dans le plan contenant k&, et k,,. L’angle 2 ® sous
lequel 'intersection des sphéres a lieu est donné par la relation:

2ksin ® =5, (10)

qui n’est autre chose que la loi de BrRaga puisque k = 1/ et que b, est I'inverse
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de la distance entre deux plans réticulaires d’indices de MILLER m, m, m,; lorsque
les m; sont multiples d’un entier N, (10) s’écrit:

2ksin ® = Nby,y

(réflexion du Niéme ordre sur le plan d’indices m;/N, my/N, my/N).

Les deux nappes de la surface de dispersion donnent lieu & deux champs d’ondes,
que nous distinguerons par l'indice supérieur ¢ = 1, 2. Chaque champ posséde
deux ondes: (ug, kﬁ) et (uiz, kfnz k’é-i—b,m), le rapport p* entre uz et u;'n étant
fixé par (7):

T . 2 af,
. . M .. (11)
wl em k Em K

Sphéres de

Fig. 2.
Surface de dispersion dans le cas de deux ondes (u,, k,) et (u,,, k,,) intenses a
I'intérieur du cristal.
Les deux nappes hyperboliques de la surface s’appuyent sur deux sphéres de rayon
k, centrés aux points 0 et b,, du réseau réciproque, et qui ont dégénéré en des plans
a DI’échelle du dessin. Les origines des vecteurs de chaque champ d’ondessont
situées sur une méme nappe, et, d’aprés (15), toutes ces origines sont alignées
sur une méme normale n au cristal. Les distances xf) et x:n se mesurent perpendicu-
lairement aux sphéres centrées aux points 0, respectivement b,,, tandis que y! = CA
et y2 = CD se mesurent dans la direction de n. La petitesse de I'angle 2 & permet
de poser LB~ LC~~ 2 u Ok, u étant 1'angle dont on s’écarte de la position de
Braca (origines des vecteurs situées sur la normale passant par L).

Les amplitudes relatives des deux champs dépendent, nous ’avons vu, des con-
ditions aux limites sur la face d’entrée:

X 2
kt: th: kot’

Ad=udval, (12)

2

1
Ozum-i—um.

Ces conditions déterminent, pour une onde incidente (A, k) donnée, les origines
) i . . . 1
des vecteurs ki et k. sur la surface de dispersion d’une part, les amplitudes «,,
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et ufn d’autre part, aprés qu’on ait porté dans (12) les valeurs (11) pour u; et ug.
On obtient ainsi:

1 2
xT x
1 m 2 m
uo T A s 'l&o S P A; (13)
T~ Ty )
et
1 ek 1 e, k
1 . m 2 _ — __tm=
W, = — T 4, Uy == 5 — ‘ (14)
m m Lo m

Quant & la diffraction observée, elle dépend des conditions aux limites sur la face
de sortie:

ky, = k;, = K,, (K, = k),
k;@t:kfnt:Kmt (Km:k+bm)§

ute2miklr +u982nik3r= U eﬂ:‘z’iKor
X g ik P o ikl : °~ziK’r pour g p=10 (15)
T ~ I T < 7
U, € mr + u e Titkmr = e s
Posons:

ki =k+y'n, .
i _ i=1,2) (16)
k,=k+b,+yn.

D’aprés la figure 2, ! et 2 sont les distances (mesurées algébriquement selon n)
qui séparent la sphére centrée au point 0, de l'origine de kj, respectivement de
k}. Les deux derniéres équations (15) deviennent alors:

1 2yl 2 2miy?
g 8 B g o PHT D

0 0

1 Qnile 2 zniyzD#& 7
u, e + u, e ﬁlm.

(17)

On trouve ensuite, pour les intensités observées, et grice a (13) et (14):

| U, 12 (z,)+ (z2)* -2, ] cos2m(y'—y?) D

\MAQ | - (xl g )2 ’

m m

| 12 2 .2 (18)
| Em, ] o __|_8ﬂ_'._k__ Sin2 7T (’1/1 - ,UZ) 'D *
\ A \ (x:n_xfn)ﬂ . &

Comme langle 2 @ ne dépasse généralement pas 5° nous égalons cos 2 O a
I’'unité, avec une erreur inférieure & 0,5%. L’angle que fait par contre la direction
moyenne des vecteurs kf, et k’in avec la normale au cristal n dépasse parfois 60°;
nous désignerons par y son cosinus. Nous conviendrons encore de dire que k,
kf] k, , K, et K,, sont en position de Braca quand les origines de ces vecteurs sont
situées sur une normale au cristal qui passe par I'intersection des sphéres «asympto-
tiques» a la surface de dispersion (point L sur la figure 2). En vertu de (12) et
(15), tous ces vecteurs d’onde sont simultanément en position de Brage. Si 'on
désigne enfin par u ’angle dont ils s’écartent (dans un plan contenant le vecteur
b,,) de la position de BraGa, 'approximation cos 2 @ = 1 entraine:

Y —ut = (g, —2,) 7.

x;n—x;‘)n = 2:15:% +2u0k,
x:ﬂ xfn = —ux, x:n = —|¢&, |2 k%4 (cf. figure 2).
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Les équations (18) deviennent alors:

Uy |*_ 442 0%+ |ep|* cos®n k|4 u? 0%+ e, * Dy

b

A 4 u2 @2+ e, |2
| Iz |&ml (19)
Uy [P Len[?sint 2 £ Vi 4 6% (5 DIy
A | 4@ e, |2 .
L’intensité du spot diffracté s’annule done pour des angles u,, donnés par:
Pp = £ - Yn?— |e,,|2 k2 D2/y? (n entier). (20)
b,, D

La mesure expérimentale de ces angles permet ainsi de déterminer ¢, (ou @)
et D. Formulée par MacGiLLavry (1940) pour une incidence normale (y = 1),
la relation (20) montre que le cas d’une incidence oblique (y+ 1) est formellement
identique, puisque D/y est ’épaisseur effective de matiére traversée par les ondes.
Le paragraphe suivant sera consacré au dispositif expérimental que nous avons
utilisé pour vérifier, sur le graphite, cette derniére formule.

§ 4. Partie expérimentale et mesure des @, .

La figure 38 donne le schéma de I'appareil utilisé, construit par
TrUB, TAUBER & Cie. Le condenseur permet d’imager le premier
diaphragme a des hauteurs variables entre le second diaphragme
et I’écran. La vérification de la théorie exige que la portion du
cristal frappée par les électrons ne soit pas tordue et ne présente

Condenseur et Lrran
7% diaphragme 2Cdiaphragme !
(00tmm) (0.8mm) !
cathods
Gristal
L= 4/9 mm
Fig. 3.

Dispositif expérimental.
La cathode froide peut étre soumise & des tensions jusqu’a — 50000 volts. Les
dimensions indiquées pour les diaphragmes réduisent & 1 g le diamétre du faisceau,
dans le cristal et donnent a I’angle de convergence la valeur de 1,35° Deux cones
donnant lieu & deux spots, ont été reproduits.

pas de structure en mosaique. Il est donc indispensable de réduire
au minimum le diameétre du faisceau a la hauteur du cristal. La
méthode expérimentale de Kossgrn et MOLLENSTEDT (1939) permet
de le réaliser: au moyen du condenseur, on image le premier dia-
phragme dans le cristal, abaissant ainsi & 1 u le diameétre du fais-
ceau. A la sortie du cristal, les divers faisceaux diffractés divergent.

38
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Ils forment des cOnes et leurs intersections avec l'écran sont des
cercles dont le diamétre dépend de celui du second diaphragme, et
a l'intérieur desquels on observe les variations d’intensité prévues
par (19) (figure 4). I’onde convergente incidente peut en effet étre
décomposée en une somme d’ondes planes d’orientations différentes
qui tombent simultanément sur le cristal®).

Certains électrons subissent un choc non élastique dans le cristal;
leur perte d’énergie est négligeable, maisils donnent lieu 4 un fond
continu sur lequel se détachent les paires de lignes de Kikucsar
dues & la diffraction ultérieure de ces électrons (figure 5). Ces
lignes sont utiles pour déterminer I'orientation du cristal (mesure
de y) et peuvent servir a 'analyse de structures (Winman 1948).

Le nombre des chocs non élastiques augmente avec 1'épaisseur
du cristal et finit (& partir de 2000 A environ dans le cas du gra-
phite) par masquer la diffraction sans perte d’énergie (les cercles).

Nous avons utilisé des graphites de diverses provenances (Cey-
lan, Madagascar, Canada), qui se sont révélés structurellement in-
discernables; aussi ne nous sommes-nous plus occupé de leur origine.
Le clivage, effectué au moyen de bandes collantes Durex, permet
d’obtenir facilement des échantillons de 1'épaisseur désirée — appré-
clable & leur teinte grise plus ou moins claire par transparence.
Lorsque le cristal chevauche sur le bord de la bande collante, 1l n’est
pas méme nécessaire de l’'en détacher et le tout est fixé au porte-
cristal de 'appareil.

Le graphite résulte de la superposition de couches hexagonales
d’atomes de carbone (figure 6), ordinairement selon le schéma
ABAB..., les dimensions de la maille élémentaire étant a, = a, =
2,4562 A et a; = 6,6943 A (NeLson et RiLey 1945). La variété de
Lrrsox et Stoxes (1942) présente une superposition du type
ABCABC..., la distance entre chaque couche n’étant pas modifiée.
Le réseau réciproque du graphite ABC est ainsi contracté des 2/,
selon la direction normale aux couches, mais il est formellement
possible d’adopter le méme réseau réciproque pour les deux variétés,
en convenant, dans le cas du graphite ABC, de donner a I'indice
de MiLLER m4 des valeurs multiples de 2/;. Dans la suite, et sauf
mention du contraire, nos exemples et nos photographies se rap-
porteront & la variété ordinaire AB.

Faisons maintenant tomber le faisceau convergent sur le cristal
et orientons celui-ci de facon 4 ce que l'intensité soit appréciable

*) Cette décomposition est légitime du fait que le front de ces ondes planes
mesure au moins 1 u; cette distance est encore grande par rapport a la longueur
d’onde, ce qui rend négligeable la diffraction due & la section limitée de I'onde
plane.
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dans deux cercles seulement. L’un, généralement surexposé sur les
photographies, est dt aux ondes (U,, K,) qui se propagent dans
la direction des ondes incidentes; ’autre provient de la «réflexion»*)
sur le plan m. Les franges d’interférences observées dans les spots 0
et m obéissent a (19) (figure 4). Elles sont pratiquement rectilignes
et paralleles, vu que la surface de dispersion est de révolution et
que la variation de y est lente. Ces franges sont disposées symé-
triquement relativement & une droite (¢ = 0) qui correspond a la
position de Braca des vecteurs d’onde. La droite u = 0 qui tra-
verse ainsl le spot m est la ligne de KikucHi, m; m, mg, celle qui

em—— 0uche A

couche B
couche O

Fig. 6.
Les couches du graphite vuesgselon la direction de n (axe c).
Chaque sommet des hexagones est occupé par un atome de carbone. Le graphite
ordinaire résulte de la superposition des couches selon le schéma ABAB..., tandis
que la variété de LrpsoN et STorES adopte le schéma ABCABC... La base indiquée
de la maille élémentaire est la méme dans les deux cas. Les coordonnées relatives
o des atomes du graphite AB sont:
(000)5 (¥ 20); 003); (3% 1),
et celles du graphite ABC sont:
(000); (5 30); (00 5); (353 (333); (3% 3)-

traverse le spot 0 la ligne — (m; m, m3). Ces deux droites se pro-
longent & I'extérieur des spots a cause de l'existence des électrons
diffusés non élastiquement. En effet, les lignes de KirkucHI + m
sont définies comme le lieu des points ol parviennent des électrons
réfléchis en position de Braca sur le plan m.

Considérons avec plus d’attention les franges du spot m. En vertu
de (20), la relation graphique entre u? et n? est une droite. Con-

*) Ce terme facilite le langage, mais il faut remarquer que 1’angle de réflexion
n’est égal & 'angle d’incidence que pour la position de BrRaG@, leur somme égalant
toujours 2 6.
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struite sur les données expérimentales u,, cette droite permet de
déterminer D et |e,,|:

1/D = pente-b?/y2,
e | = V=73 bufk,

p? étant 'ordonnée (négative) A 'origine.

Il est pourtant préférable de déterminer @,, qui ne dépend pas
de la tension P. Désignons par A = 260L la distance surl’écran
entre deux points correspondants des spots O et m, et par p, =, L
la distance dans le spot m entre la position de Braee et le ni®me
minimum En se rappelant que @, = ¢, P et que I =}/ P/150 A1,
on trouve pour |@,| 'expression ott L n’intervient plus:

(@, = 150 B, y— 2 [ Avolts (b, en A1) (22)

(21)

D’autre part, et d’apreés la loi électrostatique qui relie les charges
electriques au potentiel, on peut montrer que:

e Z—s(b,,)
P, = 4 7% v b2, Fm’
ot e = 1,60-10-19 Ag,
%y = 8,86-10-12 As/Vm,
v = 8,56-1022 m? (volume de la maille élémentaire),
Z = 6 (nombre atomique du carbone),
b,, se mesure en m-1,

(28)

4
F, = 2exp[—2m (% my+ ;0 M+ ;5 My)]| (2,2 coordonnées
i=1
relatives de I’atome ¢ dans la maille élémentaire; cf. fig. 6),
et s(b) est la transformée de Fourirr (ou facteur d’atome) de

la densité électronique o(r) d'un atome de carbone:
5() = [ dv o(r) e2itr.

Dans le cas d’un atome présentant une symétrie sphérique, o (r) =
o(r) se calcule par la méthode de HARTREE et permet de dresser
des tables pour s(b). Nous pourrons comparer ces valeurs théoriques
avec les valeurs expérimentales déduites des @,, observés au moyen
de (23).

D’aprés (22) et (23), 'ordonn“e & l'origine p? de la droite u} =
f(n?) est inversément proportionnelle & b3: lerreur relative faite
sur cette quantité augmente donc rapidement avec des indices m;
croissants, et, outre d’autres raisons qui nous occuperont plus loin,
ne nous a permis d’obtenir des valeurs significatives que pour les
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Diom, et les Dy (Mg = 0,1, 2,...). Il semblerait, toujours d’apres
(22) et (23), que le choix d’'un cristal a petit réseau réciproque (b,
petits) et composé d’atomes de nombre atomique élevé, elit aug-
menté avantageusement u2 ; nous verrons au contraire que ces pro-
priétés, en créant d’autres spots intenses inévitables et un plus
fort couplage entre les ondes & l'intérieur du cristal, s’opposent &
Pemploi de la formule (22). 42 augmente quelque peu avec 4 lors-
que I'on abaisse la tension P; on ne peut guére cependant descendre
au-dessous de 25000 volts sans que la photographie devienne
floue.

Table 1.
Valeurs expérimentales des @, et des s(b,,).

m D, P.:% s(by)") $(by,)?)
100 1,53 1,47 3,42 3,562
10%/, 2,62 2,94 3,70 3,42
101 2,58 2,67 3.23 3,13
102 1,27 1,23 2,90 2,99
103 1,73 1,76 2,79 2,74
110 3,29 - 1,84 —
112 2,81 — 1,95 s
114 2,13 — 1,87 —

1) Valeurs obtenues au moyen des formules (22) et (23) du paragraphe 4.
?) Valeurs corrigées au moyen de la théorie du paragraphe 6.

Nous avons mesuré les distances u, & 0,02 mm. prés. La deu-
xieme colonne de la table I donne les résultats pour les @, examinés,
les erreurs moyennes dues aux mesures étant d’environ 2,5%;
chaque @,, a fait I’objet d'une dizaine de mesures, & partir de
cristaux différents, d’épaisseur D variant entre 400 et 1500 A et
pour des tensions P de 25000 a 50000 volts. Le fait de n’avoir pas
effectué les mesures d’'un @, pour des mémes valeurs de P et de D,
constitue déja une bonne vérification de la formule (20), puisque,
malgré la variation de ﬁg due a ces paramétres, la valeur de @,
en est effectivement indépendante.

En comparant, comme nous l'indiquions plus haut, les valeurs
calculées et observées des s(b,,), nous constatons dans certains cas
des différences excédant nettement les incertitudes expérimentales
(figure 7). Trois raisons possibles se présentent: a) L’hypothése de
deux spots intenses n’est pas rigoureusement réalisée; mais les cor-
rections que les calculs du paragraphe 6 apportent aux @, et s(b,,)
(troisieme et cinquiéme colonne de la table I) sont trop faibles —
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et parfois de signe opposé — pour expliquer cette divergence.
b) Les atomes de carbone d’une couche de graphite ne sont pas
situés dans un méme plan, mais sont alternativement décalés d’une
petite quantité 4+ u, perpendiculairement & la couche; il en résul-
terait une modification du facteur F',, dans (23). Le calcul des |F,,
montre cependant que ces quantités ne varient pas pour les indices
mg = 0 et 1, laissant donc entiéres les divergences relatives a s(0yq0)
et s(byg). ¢) Le facteur d’atome s(b,,) est modifié par la dissymétrie
des atomes de carbone qui s’«étalent» dans les plans des couches,

s/6)

0,2 0,4 0,6 0,8 7,0 ben (A1)
Fig. 7.
Le facteur d’atome s(b).

Les petits cercles donnent les valeurs s(b,,,) déduites des distances entre les franges
d’interférences, au moyen de (22) et (23). Les croix se rapportent & certaines des
valeurs précédentes corrigées selon la théorie du paragraphe 6. Les valeurs théo-
riques de s(b), calculées pour un atome de symétrie sphérique, sont données par
la courbe.

cette déformation affectant principalement les électrons périphé-
riques. S1 nous comparons (figure 7) les résultats expérimentaux
pour les s(b,,), avec les valeurs établies pour un atome de symé-
trique sphérique, nous ne constatons une différence que pour de
petites valeurs de b,,. La vraisemblance de notre troisiéme hypo-
thése trouve ainsi une confirmation, puisque, d’apres les propriétés
des transformées de Fourigr, les modifications périphériques de
la fonction p(r) se répercutent sur la portion centrale de la trans-
formée s(b).

Nous reprendrons au paragraphe 6 la discussion des résultats
expérimentaux pour les @ ,, a propos des valeurs obtenues par
I'emploi direct de la formule (22) et des corrections apportées par
la suite de la théorie, que nous développerons dans le cas de plus
de deux spots intenses.
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La mesure systématique de 1’épaisseur d'un cristal donné, au
moyen de (21), et & partir de diverses réflexions, dont chacune est
rendue successivement intense par des rotations du cristal, consti-
tue une autre vérification de la théorie du paragraphe 2. La table I1
en donne un exemple et montre que cette épaisseur peut étre éva-
luée & deux couches d’atomes prés. Dans ce cas encore, et bien que
laspect de certaines franges semble & premiére vue justifier la
détermination de D au moyen de (21); nous verrons que le domaine
d’application de cette formule doit étre soumis & une investigation
précise. En particulier, les spots situés a l'intérieur d’une bande
de K1ixucnr (zone comprise entre une paire de lignes de KikucHr)

Table II.
Mesures de 1’épaisseur D d’un cristal.

m Dfy Y D

100 731 0,990 723
100 1002 0,735 | 736
101 752 0,950 713
101 816 0,881 718
102 857 0,842 721
103 1030 0,717 738
110 732 0,985 720
110 813 0,891 725
112 848 0,862 730
114 903 0,795 718

Valeur moyenne: 724 - 6 A, soit 108 4 1 mailles élémentaires ou 216 -+ 2 couches
d’atomes.

d’'indices m; peu élevés, ne permettent pas la détermination de
@ ,, et D au moyen de (22) et (21).

En conclusion, la théorie de trois ou quatre spots intenses fixera
le domaine de validité de ces derniéres formules, en évitant d’abou-
tir & des résultats incorrects¥®).

§ 5. La figure de diifraction montre trois spots intenses.

Il n’est pas toujours facile d’orienter le cristal de facon & «isoler»
les deux spots intenses 0 et m dont nous avons donné la théorie au
paragraphe 3. En particulier, 'on ne peut guére éviter laprésence
sur la figure de diffraction de spots périphériques p (b, grands) de

*¥) Cf. un travail de J. AcKERMANN (1948) d’ol il résulte que 1’emploi de la
formule (20) n’est pas justifié dans le cas du mica et du iodure de plomb.
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forte intensité (les vecteurs K, de ces ondes étant donc en position
de Braca). Cependant, en vertu de (19), leur intensité décroit ra-
pidement deés qu’on s’écarte de la position de Braca, et nous ver-
rons que leur influence sur le spot m est négligeable. D’autres spots
peuvent se présenter de facon inévitable: ainsi, lorsque le spot
étudié m est intense, les spots — m et 2 m le sont déja suffisamment
pour que, vu leur proximité immeédiate du spot m, leur présence
perturbe les franges d’interférences de ce dernier. En d’autres
termes, 1l existe entre les réflexions du premier ordre et du second
ordre sur le plan m, un couplage qui entrave 1’étude séparée des
spots m et 2 m. Cet effet reste cependant relativement faible et ne
se remarque pas & premiére vue dans la disposition des franges. Si
nous voulons étudier au contraire un cas typique de trois ondes
intenses, 1l nous est facile d’orienter le cristal de telle maniére qu’un
spot p intense, non aligné sur les spots 0 et m, perturbe notable-
ment le spot m; 'effet étant d’autant plus marqué que les indices
m et p sont moins élevés.

a) Données théoriques.

La mise en équation des trois cas possibles que nous venons d’examiner est
évidemment identique. Désignons par (ug, ko), (,,, k,,) et (u,, k,) les ondes in-
tenses & l'intérieur du cristal, la premiére, comme précédemment, se propageant
approximativement dans la direction de ’onde incidente (4, k). Le systéme d’é-
quations (4) se réduit a:

e
—E Up—E_py Uy — E_pUp =0,
k2 —k°
et T Uty t, =0, (24)
k2"‘k2
P
—Ep U~ By Uy + g Uy = s

Si 'on pose de nouveau
2y = k—ky ete.

Iannulation du déterminant des coefficients en (24) donne I’expression suivante

pour la surface de dispersion:

I2
xﬂxmxl}:T{

Es|2 Zo+ | ey |2 Tt | €0 |2 2, — KR (2, _p &5)] (25)

(¢ = &,_,,; B = partie réelle).
La surface de dispersion posséde trois nappes s’appuyant sur trois sphéres de
rayon k, centrées aux points 0, b,, et b,, et que 'on peut considérer comme des

plans a I’échelle des x*). Il existe ainsi une relation linéaire entre les z, qui permet

*) Par la suite, nous désignerons simplement par sphére O celle de rayon k
centrée au point 0, etec.
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d’en éliminer un dans (25) et de calculer au moyen d’équations numériques du
second degré les points de la surface. Plusieurs coupes sont nécessaires pour la
représenter, puisqu’elle n’est plus de révolution (& moins que les points 0, b,, et b,
ne soient alignés). Il existe done en général un point commun aux trois sphéres,
et lorsque les origines des différents vecteurs d’onde sont situées sur la normale
au cristal passant par ce point, nous dirons que la position de BrRAGG est simulta-
nément réalisée pour les réflexions sur les plans m et p. L'interaction des ondes
(u’f,, kf)), (%;;l, k;”n) et (n;, k;',) est alors maximum*), tandis qu’elle diminue lors-
que les intersections deux a deux des sphéres s’éloignent.

Les amplitudes relatives p* et ¢° des ondes d’un méme champ se déduisent
des équations (24). Si 'on se propose d’étudier plus partloullerement le spot m,

il est avantageux d’exprimer u; et up en fonction de u) et de poser:

; ’M:"', 2.5_1,9:@' —ke_,, e,
p—u;MQES kem_g,“,
i i (26)
; Uy 28mxm—ks
= -
u;’n 2¢,x zp~k£ €,

Les amplitudes relatives des trois champs d’onde dépendent, ici encore, des
conditions aux limites sur la face d’entrée:

k,=Iky,=k;, =k,

3

Agu +u20+u30, @)
O:um+um+um,
1 2 3
O*up+up+up.

Ces conditions permettent de déterminer les orientations des vecteurs d’onde

a lintérieur du cristal d’une part, les amplitudes u;',n d’autre part, les ug et u;;)

g’exprimant en fonction de u:"n grice & (26); on obtient:

Uy =P
A 1 2 3
. 73— q? P PP J (28)
U, = = A4, Aee=s1 1 T |
A 1 2 3‘
1 q°—q* o
— gl
Uy =9q" —— A

et, pour ¢+ = 2 et 3, des expressions semblables obtenues par permutation circulaire
des indices 1, 2, 3.

Les conditions aux limites sur la face de sortie (ot les * sont de nouveau définis
par (16)):

1 -
kjo = kj = kj, = K;, (K;=k+b), (29)
u;eQﬂinD‘l‘ug QWEUD+M3 2riytD Uj (j:0:m7p)’

*) L’indice supérieur ¢ distingue ici les trois champs d’ondes qui sont chacun
une solution indépendante des équations (24).
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déterminent finalement les intensités des trois ondes quittant le cristal
\ —

Ainsi, cette derniére formule permet de calculer, a partir de mesures graphiques
effectuées sur la surface de dispersion (25), et pour diverses orientations de I'onde
incidente, les intensités des trois spots diffractés intenses, puisque les u;‘ dérivent
des x par 'intermédiaire de (28) et (26) et que D, ¢, ¢, et £, sont supposés connus.
En désignant, comme précédemment, par p le cosinus de ’angle moyen que font

tous les vecteurs d’ondes avec la normale au cristal (approximation cos 2 @ = 1),
nous obtenons, pour ces intensités, les sommes du type:

2nzy2Dj ) (30)

U,

Ui e DA a) cos 2 (o 1) Dl 1)
=183 j=0,mp.)

Les phases ﬁ;‘z dépendent de celles des ¢, et 'on peut facilement se rendre compte
qu’elles sont nulles pour ¢, &, et &, réels. La généralisation des formules (18) re-
latives & deux spots diffractés intenses est évidente, mais la complication de la
surface de dispersion empéche ici d’éliminer les x et d’obtenir une relation formelle
analogue 4 (20) entreles randeurs expérimentales (positions des minimums d’inten-
sité) et les constantes du probléme (D et les &): il n’existe plus d’équivalent de la
formule de MacGirLavry. Tel n’est d’ailleurs pas notre but dans ce paragraphe,
mais bien la comparaison avec 'expérience des intensités calculées au moyen de
(31), & partir des valeurs trouvées préalablement pour D et les ¢ par la méthode
du paragraphe 4%). 7

Le calcul numérique direct des intensités des. spots et de la posi-
tion des franges d’interférences au moyen-de (80) est fastidieux et
ne donne pas une idée nette de la perturbdtion subie par les franges
du spot m, par exemple, quand le spot p est intense. L’allure de ces
franges suggére pourtant que deux seulement sur trois des ampli-
tudes %}, u} et u} sont grandes dans (30) et que les sommes (31)
ne contiennent qu’un seul terme périodique prépondérant. Les
franges, en effet, bien que décalées ou localement déformées, ne
pwsentent pas de maximums secondaires irréguliérement disposés,
tels qu'on en observe lorsque plusieurs ondes & . mphtudes du méme
ordre interférent, c’est-a-dire lorsque les: ymmes (31) contiennent
plusieurs termes périodiques importants. Ce dernier cas se rencontre
avec le graphite lors de la transition, dans I'empilement des couches,
du schéma ABAB au schéma BCBO; les franges (figure 16) pré-
sentent alors une complication qu’on ne trouve pas dans le cas dé
trois spots intenses, et que nous étudierons 4 la fin de ce travail.

Ces considérations nous conduisent & _..oncer la régle suivante:

Dans le cas ot le systéeme de frangés dun spot m est perturbé
par la présence d’un troisiéme spot i..cnse p, les origines des vec-

*} Nous tirerons la phase des ¢ de la formule théorique (23).



Fig. 4.
Deux spots intenses.
A droite le spot m = 110, & gauche le spot central 000. Les variations d’intensité
dans les spots obéissent aux formules (19).

Fig. 5.
Diffraction duc & un cristal épais (D = 2240 A).

D
B
’ Fig. 10.
Décalement ¢ premiére espéce d’un systéme de franges.
Le décalement d’une un.. long de AB dans le spot m = 212 est dii & la présence

simultanée du spot p = 114. Le décalement associé de seconde espéce (cf. fig. 9a)

est nul & cause de la petitesge “elative de €306 . L& spot 330 (non visible sur la photo-

graphie) cause la perturbati... eslon CD, L’effet du spot 102 ne serait décelable
qu'a Pextéme droite du spot 212.




Fig. 8a
Trois spots intenses.
L’équidistance des franges du spot m = 101 (4 droite) est perturbée par le spot
P = 101 (b gauche).

N’
/
7/ﬂ m 7.?2
/
/
/
\
\

212 £ 122

N

Fig. 11a.
Décalements de seconde espéce d’un systéme de franges.

Le cristal cst assez épais pour que les décalements atteignent deux unités dans les
spots m = 110 et p = 212. Les droites perturbatrices qui ne sont pas des lignes
de Kikuchi sont tracées en pointillé.

71

o
Itig. 13a.

Quatre spots intenses.
m = 1—20, p = 101 et q = 221. On remarquera la diminution de gmin, entrainant
un accroissement apparent de @4y, lorsque les franges du spot m pénétrent & I’in-
térieur de la bande de Kikuchi - (101).

a7




Fig. 14.
Figure de diffraction & centre de symétrie obtenue avec une orientation du faisceau

normale au cristal (y = 1).
+ (100) et + (110), et les décale-

On remarquera les bandes de Kikuchi des types
ments de seconde espéce que subissent les franges a la frontiére de ces bandes.

Fig. 15.
Répartition de l'intensité dans quatre spots intenses,
La réflexion simultanée sur trois plans de facteur de structure élevé rend inhomo-
génes les franges de chaque spot. Cette photographie constitue également une con-
firmation de 'empilement des couches selon le schéma ABC.
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Fig. 16.
Aspect des franges dans le cas d’une transition ABCABC, BCABCA.
Le spot 120, dont les indices satisfont &4 (38) n’est pas affecté par la transition,

coutrairement aux autres spots. Il en est de méme pour les lignes de Kikuchi + (1_20)
et = (302).

Fig. 17,

Plusieurs spots intenses dans le cas d’un cristal & plusieurs transitions.
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teurs des deux ondes de grande amplitude parmi les trois ondes
(ut,, R), sont situées sur les portions de la surface de dispersion
s’écartant le moins de la surface — & deux nappes — qui existerait
en ’absence de perturbation.

Les portions ainsi déterminées forment ce que nous appellerons
la surface de dispersion efficace relatwe auw spot m; une normale au
cristal la coupe en deux points seulement, distants de

yi—yt = (af,—zl)y = 4 xufy.

Le comportement des franges du spot p est soumis a la méme
régle, a condition de permuter dans I’énoncé les indices m et p,
et de remarquer que la surface de dispersion efficace relative au
spot p est différente de celle relative au spot m. A vrai dire, si la
position de BrAce est simultanément réalisée pour les réflexions
sur les plans m et p, ou que, lors de ’étude du spot m, le spot p
soit en position de Brace*), cette régle est inapplicable, puisqu’il
v a alors ambiguité dans le choix de la surface de dispersion efficace
et qu’en fait les trois amplitudes ), #2, 43 sont du méme ordre
de grandeur pour ces orientations particulieres de I'onde incidente.
La encore, néanmoins, une description semi-quantitative du phé-
nomene reste possible en utilisant deux ondes et en extrapolant le
choix de la surface de dispersion efficace fait pour les orientations
volsines.

La régle mentionnée peut se justifier dans chacun des cas parti-
culiers que nous traiterons; nous en donnons un exemple dans.
I’Appendice II.

La détermination des minimums d’intensité d’un spot diffracté
7 = m ou p devient trés simple puisque, dans cette approximation
ou w¥, 'une des trois amplitudes, est négligeable par rapport aux
deux autres (u} et uf), nous avons, d’aprés les deux derniéres équa-
tions (27) ‘ '

u = — 'u,;,

et que (30) se réduit alors a:

;__mf_\ _ l%; p2aiyt D -J]—u; o2 m'yll)!2 — 4 luﬂz sin? 7 (w;"—:cﬁ) Djy. (32)

Il suffit done de tracer la surface de dispersion (25), de choisir,
pour chaque domaine angulaire du vecteur d’onde incident k, les
deux nappes particuliéres de la maniere que nous avons dite, et

*) Plus exactement, que le vecteur de ’onde (U, K) soit en position de Braca.
*
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de déterminer graphiquement les positions pour lesquelles les dis-
tances Az; = x! — a} satisfont a:

Ax;= % n  (n entier). (33)

Nous allons, sur quelques exemples, étudier principalement la
perturbation qu’apporte un spot intense p aux franges du spot m
qui sont éloignées de la position de Bracc. En 'absence du spot p,
les minimums d’intensité seraient équidistants et donnés par l'ex-
pression asymptotique de la formule (20):

autrement dit, la surface de dispersion efficace relative au spot m
se confondrait pratiquement avec les deux spheéres 0 et m.

b) Résultats expérimentauz.

Considérons, comme premier exemple, les franges du spot m =
101 de la figure 8a: leur équidustance est précisément rompue
lorsque k est en position de Braca pour le spot p = 101, ¢’est-a-dire
lorsque 'intensité de ce dernier spot est la plus forte. La figure 8b
donne en traits continus une coupe, calculée d’apres (25), de la
surface de dispersion (qui est de révolution puisque les points 0,
b, et b, sont alignés). La surface de dispersion efficace relative au
spot m est tracée en traits renforcés, on voit qu’elle est composée
des portions des nappes qui ¢’écartent le moins possible des deux
sphéres 0 et m — pointillées. Successivement Ax,, vaut, quand on
s’éloigne de la position de Braca pour le spot m (point L): a2 —
pour des normales au cristal situées entre L et L' ; x) —a) (entre
L" et L) et x)— x2 (& partir de L). Les fleches verticales et con-
tinues qui joignent les nappes de la surface de dispersion efficace
mesurent ny/D (n=1, 2, 3, ....) et déterminent donc les origines de
ki et K. pour lesquelles I'intensité du spot m s’annule. Ce calcul
graphique nécessite la connaissance de D et de y, 780 A et cos 18°
dans le cas particulier. S1 'on désigne comme précédemment par
tn =, L la distance sur I’écran entre la position de Brace du spot m
et le minimum du #*"¢ ordre, la distance correspondante [, sur la

- s
figure 8b vaut 1, — (k/L) 7

et permet de retrouver expérimentalement (dans la direction des
petites fleches pointillées) les origines de k! ct K’ associées aux
minimums d’intensité. La figure 8b montre une concordance satis-
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faisante entre les positions des fleches pointillées (expérience) et
continues (théorie).

Le resserrement des franges qui se produit quand l'origine des
vecteurs d’onde est voisine de L’ est d au fait qu’il existe deux
orientations correspondant & Az, = 10y/D: le minimum du di-
xieme ordre, donné par (33), s’est dédoublé, et I'on peut dire que
le spot perturbateur a fait apparaitre une frange supplémentaire.

S~

4 _sphére p
\ .

103/0

///

/ ~sphére m

Jx=/]7//0

Adx

’// \[
—a = '
P e e e — sphtre 0
il nappe J
ST e
’ ! i | ! ! =20
S : I ! il
Fig. 8b.

Surface de dispersion relative a la figure 8a.
En traits pointillés, les sphéres 0, m et p. En traits continus, les trois nappes de la
surface de dispersion. En traits renforcés, la surface de dispersion efficace relative
au spot m. Les fléches verticales et continues mesurent ny/D et déterminent les
origines de k;‘;% et kfn pour lesquelles I'intensité du spot m s’annule. Les fléches
pointillées donnent la direction trouvée expérimentalement pour ces mémes ori-
gines.
Valeurs numériques utilisées: k = 18,5 A-1, ¢ = ep = &g = —5,15-1075 4,
&, = £33 = 1,15-10-5, y=0951, D =1780A.

Selon I'épaisseur D, ¢’est-a-dire selon le rapport de /D a la discon-
tinuité de la surface de dispersion efficace pres de L/, 1l serait pos-
sible de n’observer aucun dédoublement (cristal mince), ou au con-
traire celul des minimums de deux ordres consécutifs (cristal épais).
Ce dernier cas, impliquant D > 2000 A, n’a pas été observé. Pour
des cristaux trés minces, les franges restent a peu pres équidistantes:
Ueffet perturbateur devient négligeable, comme en théorie ciné-
matique (voir Appendice I).

Quant & la discontinuité au voisinage de L, elle est, d’apres la
figure 8b, trop petite pour perturber notablement les franges du
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spot m. Dans le cas contraire, cette derniére discontinuité produi-
rait un espacement des franges; en effet, le minimum d’un certain
ordre, donné par (33), n’existerait plus, et une frange disparaitrait.
Nous donnerons le nom de premieére et de seconde espéce aux dis-
continuités de la surface de dispersion efficace, dont 'effet est de
resserrer, respectivement d’espacer, les franges du spot m.

Le cas ou les points 0, b,, et b, ne sont pas alignés nécessitent,
nous ’avons vu, plusieurs coupes de la surface de dispersion; nous
les prendrons, lors de I’étude des franges du spot m, selon les divers
plans d’un faisceau ayant tous le vecteur b,, commun. Alors que
les traces des sphéres 0 et m restent invariables, celle de la sphere
perturbatrice p se déplace d'une coupe a l'autre, parallelement a
elle-méme en pratique, a cause de la petitesse des variations angu-
laires mises en jeu (ordre du degré). Pour une coupe particuliére,
les traces des trois sphéres se coupent au méme point, la position
de Brace est alors simultanément réalisée pour les spots m et p
quand les origines des vecteurs d’onde sont situées sur la normale
au cristal par ce point. Un seul angle p, celul dont on s’écarte de
la position de Brace pour le spot m dans un plan contenant le
vecteur b, — c’est-a-dire dans une des coupes que nous venons
de définir — suffisait précédemment a repérer un point de la sur-
face de dispersion; un second angle s’introduit ici, celul dont on
s’écarte de la position simultanée de Braca pour les spots m et p,
dans une direction perpendiculaire a ces coupes. A ces angles u et
v correspondent sur le spot m les distances u et v (figure 9a).

Pour des angles » croissants, la trace de la sphére p coupe celles
des sphéres 0 et m en des points L’ et L" toujours plus éloignés de
I'intersection I. des spheres 0 et m. Comme les distances LL’ et
LL" augmentent linéairement avec », les lieux des points corres-
pondant dans le spot m a ces discontinuités sont deux droites. Nous
allons montrer quune de ces droites seulement s’identifie & une
ligne de Kikucnr (d'indices m—p), qu’en les traversant les franges
sont décalées, d’'une unité en général, et qu’il existe deux especes
de décalement, selon 'espéce de discontinuité qui leur donne nais-
sance.

Les figures 9 donnent une coupe de la surface de dispersion pour
les trois positions relatives essenticllement différentes des spots 0,
m et p. Lorsque » varie et change de signe — que L’ et L"" traver-
sent b —, on voit facilement que l'espéce de la discontinuité au
voisinage de L’ (ou de L") ne change pas. La discontinuité de pre-
miere espece dédouble un ordre en général et resserre les minimums;
les franges qui se resserrent pour un angle u variable, lequel aug-
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mente linéairement avec LL’ (LL'), c’est-a-dire avec », subissent
un décalement (de premiere espéce) d'une unité en général, le long
d’une droite, et en épousant la direction de cette droite. Une discon-
tinuité de deuxitme espéce, par contre, qui espace les minimums,
décale également les franges le long d’une droite, mais dans une
direction perpendiculaire & cette droite. Dans les deux cas, le rap-
port de y/D & ke; (ordre des discontinuités de la surface efficace)
détermine le nombre d'unités du décalement; nous n’avons pas
observé de cas ou il fat supérieur a deux. On voit sur les figures 9

. L ”
-7 mp m
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p-m
¥
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/ / 4
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Fig. 9a. Fig. 9b. Fig. 9c.

Les trois arrangements possibles de trois spots intenses.
En haut, la surface de dispersion efficace relative au spot m. Au milieu P’arrange-
ment des spots et les lignes de KikucHI qui les traversent. En bas, I'aspect des
franges du spot m. Les trois coefficients ¢, ¢,, ¢, ont été choisis du méme ordre
de grandeur. I et II dénombrent Iespéce des décalements qui se produisent au
niveau des droites perturbatrices. L'une de ces droites est la ligne de KIKUCHI m-p,
Pautre n’est que I'image dans le spot m de la ligne de K1ikucHI -p traversant le spot 0.

qu’une des droites est la ligne de Kikuvcur d’indice m —p: elle cor-
respond aux directions des ondes pour lesquelles le couplage entre
les spots m et p est maximum. L’autre droite, qui est en quelque
sorte I'image dans le spot m de la ligne de Kirkuvcnr d’indices — p
traversant le spot 0, correspond aux directions des ondes dans les-
quelles le couplage entre les spots 0 et p est maximum. La 8e droite
(v = 0) tracée dans le spot m correspond & la position de Braca
pour ce spot; elle s'identifie évidemment avec la ligne de KikucHi
d’indice m.

Dans les cas des figures 9a et 9b, et & cause de la grande sépara-
tion de deux spots (m et p, ou 0 et m respectivement), I'un des trois
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coefficients ¢ (g, ou ¢,) est généralement inférieur aux deux autres,
diminuant ainsi la discontinuité de seconde espece de la surface
de dispersion efficace et annulant le décalement correspondant des
franges; seul celul de premiére espeéce est alors observé (figure 10).
Dans le cas extréme ol le spot p est a la périphérie de la figure de
diffraction, a la fois ¢, et & sont petits vis-a-vis de ¢,, et I'influence
de ce spot devient négligeable, comme nous I’annoncions au début
de ce paragraphe. Le cas de la figure 9c est plus intéressant puisque,
les trois spots étant sensiblement a méme distance les uns des
autres, des décalements (de seconde espéce) se produisent au niveau
des deux droites perturbatrices. Nous avons étudié ce dernier cas
pour 0 = 000, m =110, p =212, et pour un cristal d’épaisseur
donnant lieu a des décalements de deux unités (figure 11a). L’allure
du spot p est fondamentalement analogue a celle du spot m; ce que
nous venons d’écrire au sujet de ce dernier s’appliquant en effet,
mutatis mutandis, au spot p.

De toute évidence cependant, les décalements observés sont in-
férieurs aux nombres entiers (un ou deux) théoriquement escomptés:
la surface de dispersion efficace relative au spot m ne revient ainsi
pas se confondre, malgré I’¢loignement de la sphére perturbatrice p,
avec la surface de dispersion qui existerait en ’absence de pertur-
bation; plus précisément, ce comportement asymptotique est si
lent & se réaliser que le décalement des franges parait rester cons-
tamment inférieur & 1 ou 2 dans le domaine étudié et que, une nou-
velle perturbation survenant, il ne peut plus étre atteint. Comme
il est malaisé de représenter sur un seul schéma ce décalement in-
complet des franges, nous insisterons plutdt sur un autre aspect du
méme phénomene. Considérons les deux minimums situés 1mmé-
diatement de part et d’autre de la position de Braca et repérés par
Pangle ppim (4 et plus rarement u, dans le cas du graphite). Il
est clair, d’apres la figure 2 par exemple, que pour deux spots in-
tenses dans la figure de diffraction, pp;, diminue lorsque l'axe
transverse 0 = |¢, |k de I’hyperbole (9) qu’est alors la surface de
dispersion, augmente, toutes choses égales d’ailleurs. De méme
fagon, pour trois spots intenses, yy;, dépend de 'axe d de la pseudo-
hyperbole que forme la surface de dispersion efficace au voisinage
de la position de Bracae du spot étudié. La variation de 6 avec
I'angle » précédemment défini s’étudie le plus simplement sur une
coupe de la surface de dispersion, prise cette fois selon un plan
contenant le point b,, et I'intersection des spheres 0 et m, c’est-a-
dire perpendiculairement aux coupes précédentes. La figure 11b
donne cette nouvelle coupe, calculée toujours d’apres (25), et qui
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concerne le spot m de notre dernier exemple (figure 11a); la posi-
tion simultanée de Braca pour les spots m et p est réalisée quand
les origines des vecteurs d’onde sont situées sur la normale passant
par le point L. Alors qu’en I’absence de la sphére perturbatrice p,
la surface de dispersion donnerait deux droites paralléles et dis-
tantes de | &,,|k, nous voyons sur la figure 11b que les deux nappes
appartenant a la surface de dispersion efficace se resserrent en
s’approchant de L par la gauche et s’écartent en s’en approchant
par la droite. L’effet perturbateur de la sphére p s’étend si loin
de part et d’autre de L et la variation de d est par conséquent si

-~ Sphere p

-

Ay
Fig. 11b.
Surface de dispersion relative a la figure 11a.
En traits renforcés, la surface de dispersion efficace relative au spot m.

lente que, dans le domaine délimité par I’angle de convergence du
spot, 0 semble garder a droite et & gauche de L deux valeurs presque
constantes, mais systématiquement différentes. La méme conclu-

sion s’applique & gy, (OU fy;,), puisque cet angle varie inversé-
ment & d. L’effet, bien visible sur la figure 11a, donne & u,;, des

valeurs plus petites & 'intérieur de la bande de Kikuvcar (122, 122)
qu’a I'extérieur. Ce comportement de franges qui chevauchent sur
le bord d’une bande de Kikucur d’indices peu élevés est général;
nous en donnerons un autre exemple au paragraphe suivant.

§ 6. La figure de diffraction montre quatre spots intenses ou davantage.

La généralisation formelle des formules du dernier paragraphe
dans le cas de quatre spots intenses est évidente, mais les calculs
numeériques deviennent trés longs et pratiquement impossibles en
toute généralité. De toute facon, la surface de dispersion s’obtient
par annulation d’'un déterminant du quatriéme ordre, et le calcul
complet de l'intensité diffractée nécessiterait la connaissance de
quatre champs d’ondes. Nous considérerons deux cas particuliers

39
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dans lesquels les spots seront soit alignés et & méme distance, soit
formant un rectangle. La symétrie introduite rend, dans les coupes
de la surface de dispersion, les traces des spheres 0, m, p et ¢ paral-
leles deux a deux, et permet de nouveau de calculer la surface au
moyen d’équations numériques du second degré. La surface de dis-
persion efficace se détermine d’apreés la méme regle que précédem-
ment et permet, sauf quand plusieurs spots sont simultanément en
position de Braca, de situer les minimums de 'intensité diffractée
au moyen de (33). Les franges d’un spot m subissent également des
décalements de premiére et de seconde espece, mais le nombre de
droites le long desquelles ces décalements ont lieu est plus élevé
puisque plusieurs lignes de Kixkucur traversent les spots 0 et m
(cf. la figure 10 ou il y a effectivement cinq spots intenses, dont un
en dehors de la photographie).

Considérons, comme premier exemple, les spots 0 = 000, m =
10 mg, p = 20 (2 my) et ¢ = 10 my. La figure 8a peut illustrer ce
cas, & condition d’y numéroter autrement les spots. Le spot m
étant en position de BrRacG, nous désirons savoir si les spots p et ¢
—non en position de Braca et donc peu intenses — ne vont pas
influer sur la position des franges du spot m. Un calcul élémentaire
donne pour la surface de dispersion I’expression suivante ol nous
avons poseé &,, = &, €y = &y €t &5, = &5:

Lo Loy Ty Ty = (Lo Ty + Ly T+, %) 61|25 4 + (g 2+ 20 T) +
c &g |2 k2[4 + Ty 1, | 512 K24
— (2o + ) R(ey e565) k34— (2, + x,) R(eley) 34— Ck*16 (85)

avee 0 = (ley[*— |92 —2 R (e ede]) —2 R(ed ) + [oy]? e

La figure 12 donne la trace schématique, selon un plan contenant
b,., b, et b, de la surface (35). Afin de mieux illustrer le phéno-
mene, nous avons exagéré les axes des pseudo-hyperboles, que nous
désignerons par les indices des deux sphéres sur lesquelles elles s’ap-
puient. Nous avons calculé (35) pour my = 0, 1, 2, 3 et %/; (gra-
phite ABC) et tracé dans chaque cas la pseudo-hyperbole (0, m), qui
n’est autre que la surface de dispersion efficace relative au spot m,
au voisinage de la position de Braaa. La comparaison avec I'hyper-
bole (9) qu’on obtiendrait en négligeant 1’effet des spots p et g
montre que cette hyperbole est d’abord décalée vers le bas, puis
que ses branches s’écartent ou se resserrent, suivant les phases
relatives de &, &, et &5: 11 y a écartement lorsque ces coefficients
sont tous réels et positifs (lorsque my; = 0 et 2), et resserrement dans
les autres cas (m; = 1, 3, 2/3). Quoi qu’il en soit, cette déformation
reste faible et si 'on détermine graphiquement, comme dans l’ex-
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emple de la figure 8b, les positions théoriques des minima d’inten-
sité, on trouve que la dépendance entre u? et n® est encore linéaire,
aux erreurs de mesures preés; la pseudo-hyperbole (0, m) reste ainsi
une hyperbole, mais d’axe ¢ % |e,|k. Ce fait est important: il
permet de déterminer d’aprés les quantités expérimentales u, et
la formule (22) une premiére valeur approximative @, (deuxiéme
colonne de la table I), et de calculer ensuite, & partir de ce @,,
les surfaces de dispersion efficaces, exacte (35) et simplifiée (9).
Le rapport des axes des deux hyperboles est alors égal & celui des
valeurs réelle et observée (®;,) de @,,; d’ou:

é

@,m = '6—, @Tn.

. ~sphéreq

Fig. 12,
Coupe schématique de la surface de dispersion pour les quatre spots 0 = 000,
m = 10 mg, p = 20 (2 my) et ¢ = 10 m,.
Les axes des pseudo-hyperboles voisines des intersections des sphéres sont exagérés,
afin de rendre le schéma plus clair.

Ces valeurs corrigées sont données dans la troisiéme colonne de
la table I. On constatera que la différence entre @,, et @,,, maxi-
mum (109%,) pour mg = 2/,, reste faible. Si elle était plus forte, ¢’est-
a-dire si les pseudo-hyperboles de la figure 12 «empiétaient» les
unes sur les autres, la fonction x? = f(n?%) ne serait plus une droite
et le procédé que nous avons employé deviendrait inapplicable. Ce
cas se produit pour des cristaux de poids atomique élevé (@, grand)
ou de grande maille élémentaire (b, petit), tels que la molybdénite,
I'iodure de plomb, le mica. Il n’est donc pas étonnant que ’emploi
de la formule de MacGiLLavry (20) ne se soit pas toujours révélé
correct pour ces cristaux.

Méme pour le graphite d’ailleurs, la détermination de @y (2,,) OU
D3y 3m, N'est pas possible. En effet, les pseudo- hyperboles de (35)
relatives & ces spots, celles que nous désignons d’apres la figure 12
par (0, p) et (p, q) respectivement, différent considérablement des
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hyperboles (9)*), et les fonctions 2 = f (n?) ne sont plus des droites.
Nous ne pouvons pas, en d’autres termes, déterminer directement
d’apres les franges observées les coefficients @,, relatifs au deuxiéme
ou au troisieme ordre d’une réflexion du type 10 ms. Tout au plus,
si I’'on approximait & des droites les fonctions u? = f (n?), la formule
(22) donnerait-elle 'ordre de grandeur de ces coefficients.

Nous pourrions appliquer également aux spots 11 my le procéde
d’investigation dont il vient d’étre question, mais les différences
pour @, auxquelles 1l conduit sont si petites qu’elles ne dépassent
pas les erreurs expérimentales. D’autre part, et comme nous ’avions
déja remarqué au paragraphe 4, la petitesse relative — en vertu
de (23) — de @y (3, 6t Py3(3m,) Ne Nous & pas permis de vérifier
la théorie en nous appuyant sur des données expérimentales suffi-
samment précises; il en a été de méme pour les spots excentriques
(|my by + my by > | by + by)|).

En résumé, nous constatons que la détermination des coefficients
®@,, du potentiel cristallin au moyen de la formule (22), dont I'in-
térét est de ne mettre en jeu que des mesures de longueurs, est
malheureusement inapplicable pour un grand nombre de spots,
méme pour un cristal léger tel que le graphite, et que le nombre
de cas favorables diminue avec 'augmentation du nombre ato-
mique des atomes du cristal étudié.

Dans un second exemple, nous considérerons les quatre spots 0 =
000, m = 120, p = 101 et ¢ — 221 (figure 13a). 1.'intérét est den ou-
veau dans le comportement différent des deux parties du spot m:
«tout se passe comme si le coefficient @,,, mesuré d’aprés (22),
¢tait plus grand pour les électrons se propageant a I'intérieur de la

bande de Kixucnr (101, 101) que pour ceux de l'extérieurs. L’ex-
plication en est donnée une fois de plus par la surface de dispersion,
dont I’équation, du méme genre que (35) et mettant en jeu les trois
coefficients ¢, ¢, et ¢,, permet le tracé exact d’une coupe (figure 18b),
prise selon un plan contenant le point b, et I'intersection des
sphéres 0 et m. Comme dans le cas de la figure 11b, la distance
moyenne 0" entre les deux nappes de la surface de dispersion effi-
cace relative au spot m, n’est pas la méme de part et d’autre de la
perturbation, c’est-a-dire de la frontitre de la bande (ligne de

Krixucnt 101). Cette différence est assez faible pour que, comme
dans I'exemple précédent, les valeurs apparentes @,, calculées au

*) En particulier, ¢’ + 0, méme si le @,, correspondant est nul (par exemple
Dyp).
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moyen de (22) de part et d’autre de la frontiére soient dans le rap-
port

®@,, (int)/D,, (ext) = ¢’ (int)/ &' (ext)

La mesure d’apreés (22) du membre de gauche, et le calcul d’aprés
I’équation pour la surface de dispersion de celul de droite, donnent
pour ce rapport la méme valeur de 1,10 + 0,02.

VAl

~2°. /
cenfre de 7A

/a2 bande
Fig. 13b.

Surface de dispersion relative & la figure 13a.
En traits renforcés, la surface de dispersion efficace relative au spot m.

Notons encore que le comportement asymptotique de la surface
de dispersion efficace (6" > 6 = |@,|k/P) ne se réalise pas & l'in-
térieur de la bande, & cause de son étroitesse; car il est impossible
de s’éloigner suffisammant de la ligne de Kikucmr 101 sans ren-

contrer la ligne 101 dont 'effet perturbateur est identique. L’effet
sur un systéme de franges diminue lorsque les indices de la bande
augmentent, puisque les deux lignes de Kikucnr qui la délimitent
s’écartent et que les coefficients ¢ entrant en jeu diminuent; pour
le graphite, seules les bandes du type + (10 mg) et £ (11 mg) ont
une action appréciable. Il faut donc éviter, lors de la détermination
d'un @,,, que les spots 0 ou m ne se trouvent & 'intérieur d’une
de ces bandes.

Lorsqu’une bande est située symétriquement par rapport au spot
000, on sait que I'intensité du fond continu, provenant des électrons
diffusés non élastiquement, est généralement différente a I'inté-
rieur et & l’extérieur de cette bande; pour le graphite, I'intensité est
toujours plus forte & l'intérieur (figure 14). Divers auteurs, parmi
lesquels Suivomara (1932a), Emsuie (1933) et, récemment, Art-
MANN (1948, 1949), ont étudié ce probléme. Artmann a démontré
notamment que le phénomeéne ne peut étre décrit en théorie dyna-
mique que par la considération de plusieurs ondes intenses (Vielstrahl-
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problem). Ainsi, dans les deux cas des électrons diffusés élastique-
ment — ceux que nous avons étudiés — et inélastiquement, leur
comportement particulier a l'intérieur des bandes de Kikucur de
bas indices procede d’une cause identique.

Les effets associés aux bandes augmentent également avec le
nombre atomique. Kosstrn et MoLLENsTEDT (1942) ont publié pour
le mica des photographies analogues a nos figures 11a et 13a, et qu’on
peut expliquer de la méme fagon.

Une discussion quantitative devient pratiquement impossible
lorsque le nombre des spots intenses dépasse quatre, a moins que
leur disposition ne présente une haute symeétrie. Le cas se produit
quand la normale au cristal n coincide avec 'axe du faisceau con-
vergent (figure 14). Furs (1943 et 1949) en a donné la théorie, pour
le mica, en considérant le spot central et les six spots immédiatement
voisins; 1l trouve également que le nombre d'unités du decalement
des franges augmente avec ’épaisseur, et que la structure fine des
franges dépend des phases relatives des e.

Nous donnerons la raison, pour terminer, de I'aspect ponctué de
certains spots étudiés aux paragraphes 5 et 6. Nous avons montré
que les mimimums d’intensité d'un spot m s’obtenalent de fagon
simple en considérant ce que nous avons appelé la surface de dis-
persion efficace relative au spot m, et nous ne nous sommes plus
par la suite intéressé qu’a la position de ces minimums. En effet,
sur la grandeur des maximums d’intensité, la regle que nous avons
énoncée a la page 602 ne peut rien dire. Elle détermine, d’aprés
I’Appendice 11, celle des trois amplitudes u,),, %2 et ) qui est
négligeable relativement aux deux autres, mais non le rapport de
ces dernieres a l'amplitude 4 de l'onde incidente, rapport qui
s’abaisse lorsque 'amplitude U, d’un spot diffracté perturbateur
est grande. Sans recourir aux formules exactes — (30) pour trois
spots —, 'on s’attendra, pour les maximums d’intensité des franges
du spot m, a une sensible diminution quand les franges du spot p
sont intenses. Le lieu des points ou s’exerce cette diminution est
donc I'image dans le spot m des franges du spot p. L’effet réci-
proque du spot m sur le spot p existe aussi, d’ailleurs, mais un spot
sera. d’autant plus influencé que son intensité moyenne est plus
faible et celle de I'autre plus forte. Le phénomeéne est visible dans
les spots des figures 11 et 13. La figure 15 en donne un exemple re-
marquable, d@ & un cristal de graphite ABC: les franges des trois
spots diffractés se «h@chent» littéralement les unes les autres.
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§ 7. Les struectures particuliéres du graphite.

Nous avons vu jusqu’a présent les complications successives que
présente un spot sous 'effet d’autres spots intenses, et avons con-
staté que les franges observées dépendaient de la surface de disper-
sion efficace, c’est-a-dire essentiellement de l'interférence de deux
ondes intenses seulement. Il nous reste a étudier briévement I’as-
pect de certaines franges, qu’on ne rencontre pas avec tous les
cristaux examinés et dont la figure 16 donne un exemple typique:
elles laissent supposer qu’un plus grand nombre d’ondes intenses
contribuent & leur formation. Elles n’appartiennent pas cependant
a des spots «supplémentaires», en ce sens qu'on peut assigner &
ceux-ci des indices my, m, et my entiers (ou my multiple de 2/; dans
le cas du graphite ABC). La complexité des franges révele par contre
un défaut du cristal, plus précisément une transition dans le schéma
d’empilement des couches. Dans les cristaux de graphite AB, par
exemple, 1l peut se produire une transition ABAB, ACAC (la vir-
gule marquant la transition): les deux cristaux partiels ainsi super-
posés ont la méme maille élémentaire, le méme réseau réciproque
par conséquent, mais leurs facteurs de structure*) F,,, semblables
en grandeur, peuvent différer en phase, et cette différence de phase
est responsable des franges observées. La méme conclusion s’ap-

pliquerait a une transition ABCABC, BCABCA.

Table III.

Facteurs de structure ¥,, relatifs & un empilement ABAB...
(premier nombre de chaque case) et ACAC... (second nombre).

i77?,2:'r.’m*,1i31@,?1vn2:m1+1ZI:Sn meg =my+1+3n

1 6275@'/3 1; 6_2”?:’;;3
V3i5 Y 3eme )3 YBemil0
netn =0,1,2, ...

Table 1V,

Facteurs de structure relatifs & un empilement ABCABC...
(premier nombre de chaque case) et BCABCA... (second nombre).

|
\
‘
|
i

m2:m1i3n'm2:m1+1i3nlm2=ml—1j:3n
my= +3n 6 ; 6 | 0;0 0350
my = 2[5 -+ 30/ 0;0 0;0 Elmalc'E ik
My = — /3130’ 0;0 \ g 743, g8 0;0
V] 2031,2,... n’zo, 2/3, 4/3, 6/’3,---

*) Nous désignons ainsi la quantité ¥, de la formule (23), bien qu’en toute
rigueur (Z—s (b,,)) F,, soit le facteur de structure.
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Le calcul par la théorie dynamique de la diffraction due & ces
cristaux n’est pratiquement réalisable que dans le cas d’une seule
transition, et lorsque la figure de diffraction présente deux spots
intenses seulement. Nous appliquerons donc la théorie du para-
graphe 8 a deux cristaux superposés, & faces paralleles, de méme
réseau réciproque, et se juxtaposant & la hauteur du plan ou se
produit la transition®). Les trois plans sur lesquels s’appliquent
les conditions aux limites sont définis par

nr=—D (face d’entrée 2),
nr—( (plan de la transition ),
nr=2D (face de sortie 2,).
Dans chaque cristal partiel existent deux champs d’ondes et les
rapports p* ou p ¢ des amplitudes des ondes d’'un méme champ sont

données par (11). Quant aux amplitudes relatives des divers champs,
elles dépendent des conditions aux limites sur 2, et 2,:

- sl 9 paa?
A _ ’pl‘Ml e 2miy D_{_pzui_;le 27ty .D,

Sur 2 : "
1- 1 . —2aiy'D 2 —2aiy:D
0=uwu,e + U, € ;
1,1 2.2 1l o252
p ‘u’m+p 04L-m ‘"p QUWL+p %m’
Sur X )

wl +u = ul

Ces quatre équations déterminent ), w2, u) et w2 en fonction
des p? et pi. Il reste & déterminer I'intensité |U,,|? dans le spot m
en appliquant la condition aux limites sur X:

2::{9’1]_)__!_"‘) 2:‘1'):;?}25:{)"

’U;m € me

7l
u,, €
La substitution des valeurs précédemment obtenues pour u), et
w2, donne:

. (p-p?) (p1-p?) = (pl 271V D_pt ETIVD) (27D 2ir D)
+(;Y;162na:y717_15282nf£;7‘17) (27iV'D_ 27y D) (36)

A moins que les vecteurs d’onde ne soient trés proches de la po-
sition de Brace (dans un domaine angulaire inférieur a 0,059),
I'an des p? (ou des p?) est d’apres (11) négligeable par rapport a
Iautre, et I'on a, par exemple, p? < pt et p?2 < pl. Les termes de
(36) contenant p? et P2 seront alors négligeables. En outre, les
facteurs de structure ne différant que d’'une phase 2me, on a

*) Nous distinguerons par une barre les quantités relatives au second cristal
partiel.
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Fon=1,¢e"t9 ¢t aussi, d’aprés (6) et (23) &, =¢, 27*?. Les sur-
faces de dispersion relatives aux deux cristaux sont donc identiques:
il s’ensuit que y* =97, et pt = pie=27t? (36) devient alors:

Lo 2 {expail2 ¢+ 291D+ (y -+ y) D] sina(y? —y?) D

A F
+exp w1 [2y2 D + (y* + y?) D] sin & (y* —y?) D} .

On obtient pour l'intensité observée, aprés quelques transfor-
mations trigonométriques:

Um

A

= 44 |5?1216 E [sin?x Ay (D+D)—4singpsinmdyD-

-sinzAyD sinw[Ady(D+ D)+ ¢]], (dy =y*—y?. (37)

D’apres (18) ou (19), le premier terme de cette formule représente
la diffraction due & un cristal de méme épaisseur totale D + D,
mails sans transition. Le second terme décrit les perturbations
subies par les franges sous leffet de la transition; il s’annule évi-
demment pour ¢ = 0, c¢’est-a-dire quand les facteurs de structure
F, et I, sont aussi égaux en phase. Tout se passe alors dans le
spot m comme s’il n’y avait pas de transition. Il existe ainsi un
moyen trés simple de justifier I'hypothese de ces transitions. On
observe les divers spots de la figure de diffraction et vérifie que les
franges de ceux pour lesquels F,, = F,, (¢ = 0) conservent l'aspect
qu’elles ont en 'absence de transition. D’apres les tables III et IV,
qui donnent les valeurs de I',, et I,, pour une transition ABAB,
ACAC, respectivement ABCABC, BCABCA, les indices de tels spots
satisfont a: . (38)

Le résultat est d’ailleurs plus général: quels que soient le nombre
et 'espeéce des transitions, ces spots conservent ’aspect qu’ils ont
en 'absence de transition®); ils permettront donc de déterminer,
sous les conditions que nous avons vues, I’épaisseur totale du cristal.
La figure 16 illustre clairement ce phénomeéne, que nous avons
retrouvé avec tous les cristaux & transition observés.

On pourrait ensuite déterminer les épaisseurs des cristaux par-
tiels grdce aux spots ot.my — my = 3 n, en donnant aux parametres
D et D dans (37) les valeurs convenables pour rendre identiques
les intensités calculée et observée. ‘

*) En toute rigueur quand deux spots seulement sont intenses. Dans le cas
d’un troisitme spot p, les facteurs de structure ¥, et ¥, _,, mis en jeu peuvent
varier en phase d’un cristal partiel & l'autre et modifier éventuellement la surface
de dispersion efficace relative au spot m. La figure 16 montre que cet effet n’est
pas décelable & premiere vue.
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L’effet des transitions est de «disperser» I'imtensité maximum de
part et d’autre de la position de Braca, comme on peut le constater
sur la figure 16. Il s’ensuit que les lignes de Kixucur associées a ces
réflexions perdent leur netteté, contrairement aux lignes dont les
indices satisfont & (38); c’est ainsi que sur la figure 15 les lignes

de Kikvcur + (120) et + (302) restent nettes.

Lorsque les nombres des spots intenses et des transitions aug-
mentent, la figure de diffraction (figure 17) atteint une complica-
tion beaucoup plus grande qu’en 'absence de transitions (figure 15).
Dans le cas d'une poudre cristalline et d’un grand nombre de transi-
tions, le phénomeéne peut étre étudié statistiquement et 'on trouve
que les anneaux de diffraction dont les indices satisfont a (38) ne
sont pas élargis (WiLson 1942). Warren (1941) a étudié le cas
extréme de graphite semi-amorphe ol les couches d’atomes restent
paralléles et équidistantes, mais sont déplacées de fagon arbitraire
les unes par rapport aux autres.

Il nous reste & citer les transitions mixtes, ABAB, CABCAB par
exemple, entre les deux variétés de graphite. Tous les spots com-
muns aux deux cristaux partiels ont le méme facteur de structure;
leurs franges permettent donc de déterminer I’épaisseur totale. Pour
les autres spots, la théorie de ce paragraphe n’est pas applicable
puisque l'un des deux facteurs de structure F,, et F',, est nul. En
premiére approximation, ces spotssontidentiques a ceux que four-
nirait indépendamment chaque cristal partiel. L’absence d’un ac-
cord quantitatif entre la somme des épaisseurs partielles ainsi dé-
terminées et ’épaisseur totale, nécessiterait une extension de la
théorie au cas de trois ondes intenses traversant le cristal & transi-
tion.

D’aprés les observations faites sur un grand nombre de cristaux
uniques, nous estimons & 59%, la proportion de graphite ABCrela-
tivement a la variété ordinaire AB. Cette valeur ne dépend pas de
I'origine du cristal et est en accord avec celle qu'a trouvée Bacon
(1950) d’apres des diagrammes de poudre. Les transitions sont re-
lativement plus fréquentes dans la variété ABC, mais il est de toute
facon peu fréquent de rencontrer un ecristal d’épaisseur supérieure
a 2000 A qui ne présente une transition. Nous n’avons observé
quune seule fols un empilement ABC sans transition (figure 15).
Nous avons pu vérifier sur ce cristal que les spots associés a un
facteur de structure nul étaient absents — ou tres faibles™) — et
justifier avec certitude 'existence de la variété ABC du graphite.

*) A cause de la présence d’autres spots intenses.
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Conclusions.

Nous avons montré dans ce travail que la théorie dynamique
rend correctement compte des diagrammes de diffraction dus au
passage des électrons & travers le graphite. Nous avons utilisé la
technique expérimentale de Kossen et MOLLENSTEDT, qul permet
d’observer de la fagon la plus favorable les variations d’intensité
prévues par la théorie.

Les résultats suivants ont été obtenus:

10 Dans le cas ou la figure de diffraction ne présente que deux
spots intenses, nous avons vérifié que la formule (20) permet une
détermination satisfaisante de l'épaisseur du cristal et de certains
facteurs de structure.

2° L’emploi de la formule en question reste malheureusement
trés restreint, car la présence d’autres spots intenses est souvent
inévitable.

3% Dans les cas de trois ou quatre spots intenses sur la figure de
diffraction, nous avons introduit la notion de surface de dispersion
efficace qui facilite l'interprétation des phénomeénes observés (dé-
calements des franges d’interférences, leur comportement particu-
lier & I'intérieur des bandes de Kixucur de bas indices).

4° Nous avons rencontré diverses particularités dans la maniére
dont s’empilent les couches du graphite; en particulier, nous avons
mis en évidence sur des cristaux uniques ’existence de la variété
rhombohédrique de ce cristal.

Le présent travail a été effectué a I'Institut de Physique de 1’Uni-
versité de Genéve sous la direction du professeur J. WrIGLE; je
tiens & le remercier pour 'intérét constant qu’il a porté & mes re-
cherches, dont il m’avait proposé le sujet.

Ma gratitude va également au professeur R.-C. EXTERMANN pour
ses précleux conseils.

Je remercie enfin Messieurs ANDERSEN, de la maison Caran
d’Ache, LukgesH, de la General Electric, et Bacon, de Harwell, qui
ont obligeamment mis & ma disposition des échantillons de graphite.
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Appendice I.
Le passage a la théorie cinématique*).

On sait que cette théorie adopte le procédé de calcul suivant: on détermine
d’abord la diffraction due & un seul atome, en considérant la déviation des électrons
incidents dans le champ de potentiel créé par les charges de cet atome. Puis on
additionne les amplitudes des ondes diffractées par tous les atomes du cristal,
compte tenu de leurs phases, pour obtenir I'effet total. Ce procédé relativement
simple n’est évidemment justifié que si 'on peut négliger la rediffraction par les
atomes suivants des électrons déja diffractés une premiére fois, Pintensité diffrac-
tée restant par conséquent toujours petite par rapport & I'intensité incidente. Dans
le cas d’une lame cristalline & faces paralléles, d’épaisseur D = Na,, on sait que
Pintensité I d’'un spot diffracté m vaut

sin?z N (a3, b)
sin? 7 (a3, b)

3

olt le vecteur b (tracé dans ’espace réciproque) est égal a la différence entre les
vecteurs des ondes diffractée et incidente. Pour la position de Brace (b = b,,),
I — CN?2; de part et d’autre de cette position, I décroit en s’annulant périodique-
ment lorsque

(as, b) = n/N (n entier) .

En transcrivant cette relation dans la notation de la théorie dynamique, nous
trouvons pour les distances angulaires u, séparant les minimums d’intensité de la
position de Braga:

Si nous comparons ces valeurs avec celles que donne la formule (20) du para-
graphe 3, nous constatons que les deux théories donnent des résultats identiques
pour |e,, [kD/yn << 1. 1l est donc inexact de restreindre I’application de la théorie
cinématique a des cristaux extrémement minces seulement. On peut toujours,
quelle que soit 1’épaisseur (finie) du cristal, trouver un ordre »’ & partir duquel
cette théorie est applicable, 'angle u,. correspondant restant d’ailleurs invariable,
puis que les minimums se resserrent quand DD augmente; ,,’ ne dépend que de |¢,,| k,
c’est-a-dire de la distance minimum séparant les deux nappes de la surface de dis-
persion. Pour g > uy’, les résultats dynamiques confirment la théorie cinématique;
I’hypothése de base de cette derniére doit donc se trouver vérifiée. Les formules
(19) le prouvent sans autre, puisque |U,/4|? — 1, et |U,,/A4|* — 0, pour tout angle
B>

En résumé, ce n’est pas ’épaisseur du cristal qui est déterminante pour savoir
si la théorie cinématique est applicable, mais bien la distance séparant la région
du spot étudié de la position de Braca (et des droites perturbatrices dans le cas
de trois spots intenses ou davantage). Comme ’angle critique u,,’ augmente avec
£, les «effets dynamiques» s’observeront surtout dans les spots d’indices peu
élevés.

*) Cf. Fums (1948).
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Appendiee II.

Justification dans un cas particulier des propriétés de la surface de dis~
persion efiicace.

Considérons la surface de dispersion de la figure 8b et une orientation des
vecteurs d’onde telle que leurs origines soient, par exemple, alignées sur une nor-
male au cristal rencontrant la surface de dispersion & mi-chemin des points L’ et
L”. En vertu de (8), les équations (24) valables pour chaque champ d’ondes 7,
peuvent étre mises sous la forme:

2xguy + e, kuy + e_pkuz) =0,
o b uf + 2a% wl 4+ kul =0, (1=1,2,3) (247)

; ; .
spku0+eskum 4+ 22" 4wt =

Désignant par ¢ la moyenne des axes des pseudo-hyperboles situées prés de L’
et de L" (8 ~|e|k en vertu de (9)), 'on voit que les 2 x; (j = 0, m, p) sont beau-
coup plus grands que & sauf 2 x-:;q‘, 2 x; et 2 x) qui sont beaucoup plus petits. On
trouve les ordres de grandeur relatifs des amplitudes du premier champ d’ondes,
par exemple, en mettant (24") sous la forme:

1 1 1
Nuy + Uy T Uy = 0, (N: nombre relativement grand

ki 1 wl 4wl dépendant de la surface de disper-
o N m Tp= " sion et de I'orientation choisie des
ul u:n n Nu;g 0, vecteurs d’onde.)

d’ott on déduit que

1,1 ..1 __ 1.nar.

uo.um.up_l.N.l.
On trouverait de méme:

2 2 £ r

uo.um.up_l.l.l\f,

3.3 ..,% _ AT.1 .

uo.um.up_l\.l.l.

Considérons maintenant les deux derniéres équations des conditions aux limites
(27); eu égard aux rapports que nous venons d’écrire elles peuvent se mettre sous
la forme:

1 2 8
um+um+um—0,
1 4 2 3
Fum+Num+umc_/O,
d’olr:

1 2 3
um.um.um—N.l.N.

Ainsi, pour lorientation choisie des vecteurs d’onde, ufn est négligeable par
rapport a u?ln et ufn , et il s’ensuit la régle énoncée & la page 602, Le méme raisonne-
ment s’appliquera & d’autres orientations: pour les origines des vecteurs d’onde
situées entre L et L”, u;n serait négligeable, etc. Il y a évidemment ambiguité
aux discontinuités de la surface de dispersion efficace (en L’ et L"), ou certains

des x;” sont de Pordre de d.
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