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Diffraction des électrons par le graphite
par Jean Hoerni (Genève).

(16. V. 1950.)

Résumé. La théorie dynamique de la diffraction est appliquée au graphite,
et ses résultats sont vérifiés expérimentalement. Chaque observation se trouve
expliquée par la théorie et donne des résultats numériques précis sur le cristal et sa

structure. L'étude des différentes variétés de graphites donne des renseignements
nouveaux sur la disposition des couches atomiques successives.

Introduction.

L'étude rigoureuse de la propagation d'ondes à travers un milieu
périodique est donnée par la théorie dynamique, qui a fait l'objet
des travaux d'Ewald (1933) pour les rayons X dans les cristaux,
et a été appliquée à la diffraction des électrons par Bethb (1928),
Laue (1944) et Fues (1938), entre autres. Dans le domaine
expérimental de ce second cas, à part Shinoiiara (1932), qui a recouru
à cette théorie dans l'interprétation des enveloppes et des bandes
de Kikuciii, c'est en 1940 seulement que MacGillavry en donne
une vérification marquante, mais fragmentaire, d'api es une
photographie publiée par Kossel et Möllenstbdt (1939). Ces auteurs
ont inauguré une nouvelle technique expérimentale, que nous avons
reprise dans le présent travail. Notre intention a été de relier
davantage que cela n'a été le cas jusqu'à présent, l'expérience et la
théorie, par une vérification plus systématique de cette dernière.

On sait que les calculs ont été développés pour des cristaux
s'étendant indéfiniment dans daux dimensions, et limités dans la
troisième par deux faces parallèles. A cause de la forte absorption
des électrons dans la matière, l'épaisseur du cristal ne doit pas
excéder 2000 Â environ si l'on veut étudier, comme nous l'avons
fait, la diffraction «par transmission». Notre choix, ainsi limité à
des substances clivables, s'est porté sur le graphite, qui présente
les avantages suivants: grande facilité de préparation, système
cristallin simple (hexagonal), atomes de petit nombre atomique.
Le graphite présente en outre une modification rhombohédrique,
découverte par Lipson et Stores (1942) sur des diagrammes de

poudre pris aux rayons X, et que nous avons clairement mise en
évidence sur des cristaux uniques.
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§ 1. Données théoriques du problème.

Nous situerons l'origine des coordonnées sur la face du cristal frappée par les
électrons (face d'entrée). Si l'on désigne par n un vecteur unité normal à la face
de sortie (fig. 1), et par D l'épaisseur du cristal, les deux faces sont définies par

nr= 0,
nr D. (1)

Le cristal lui-même résulte de la juxtaposition de mailles élémentaires
construites sur les trois vecteurs de base a,- (i 1, 2, 3). Nous ne nous occuperons
que du cas où a3 est perpendiculaire à ax et a2, et parallèle à n (ax et a2 étant
parallèles aux faces du cristal). Les phénomènes de diffraction mettent en jeu le
réseau réciproque, de vecteurs de base bk (k 1, 2, 3) satisfaisant aux relations

v
0

Fig. 1.

Surface de dispersion dans le cas d'une onde (u0, k0) intense à l'intérieur du cristal.
La construction indiquée permet d'associer à tout vecteur fe de l'onde incidente
le vecteur k0 satisfaisant aux conditions aux limites, et le vecteur K de l'onde à

la sortie.

Le potentiel 0 (r), nul à l'extérieur du cristal, est triplement périodique à
l'intérieur (0 < n r < D), à part de petites perturbations près des faces, que nous
négligeons; on peut donc le développer en triple série de Fourier:

*w=2>» ,2 n i bn r (2)

où n est un indice triple, 0n 0*_ n et bn nx bx + n2 b2 + nz b3 (nlf n2 et n3
entiers).

Nous pouvons maintenant esquisser la théorie dynamique de la façon suivante :

On admet que les élections ne perdent pas d'énergie en traversant le cristal —
qu'ils ne subissent que des chocs élastiques — et l'on cherche d'abord les ondes
possibles dans un milieu infini, où le potentiel est donné par (2), et pour une énergie
donnée E des électrons. La solution de l'équation de Schrödinger est alors un
champ d'ondes planes*):

u(r) 2^x 2niknr (3)

*) Une solution plus générale dépendrait du temps par le facteur e2 " * ' ' '
dont il n'est pas nécessaire de s'occuper dans les phénomènes stationnaires.
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où les un doivent satisfaire aux équations de récurrence

/1- """ Ort A/ v—^-v-vr«.-,«.=». (4)Zu "»-

et les kn aux relations
kn k0 + bn (5)

k vaut ici l'inverse de la longueur d'onde qu'auraient les électrons dans le vide
(k \l2mEJh; m masse de l'électron), et les coefficients e sont définis par

£0 1 + 0JP 1 + 0 moyen/P
en 0JP (n * 0) W

P étant le potentiel accélérateur des électrons.
Pour le graphite, et P 50000 volts, on a: e0 ~ 1+10"4 ~ 1 et en ~ 5-10"5.

Les équations (4) étant linéaires et homogènes, il existe une condition de compatibilité

(annulation du déterminant formé par les coefficients) qui permet de
calculer*) ka et grâce à (5) les autres kn (pour une orientation de fc0 donnée).
On trouve en fait plusieurs valeurs propres pour k0, d'où en définitive plusieurs
champs d'ondes du type (3), dont chacun est solution indépendante de l'équation
de Schrödinger. Les amplitudes relatives de ces différents champs d'ondes
seront déterminées, lors du retour au cristal fini, par les conditions aux limites,
existant sur la face d'entrée entre la solution générale trouvée pour le milieu
périodique et la solution pour le vide (l'onde plane incidente). Les conditions aux
limites sur la face de sortie permettront finalement de calculer et de comparer
avec l'expérience la diffraction due au cristal.

Les calculs auxquels conduirait la théorie dans le cas général seraient inextricables,

aussi allons-nous passer en revue plusieurs cas particuliers, suggérés par
l'expérience, et qui suffiront à l'interprétation de toutes les figures de diffraction
observées.

§ 2. La figure de diffraction ne montre qu'un seul spot intense.

Ce cas simple servira à préciser certaines notions. Soit u0 l'amplitude de l'onde
intense à l'intérieur du cristal et k0 son vecteur d'onde. Nous conviendrons de

désigner cette onde u0 e2 * 'fe° r par la notation (xi0, k0) et ferons de même pour toute
onde. L'une des équations (4), à savoir:

k2-F k2

M„-i?£_„ U„ 0,
k2

ne peut être satisfaite que si k0ç^. YT0 k, puisque tous les e„ sont du même ordre
et que les un sont très petits par hypothèse. L'onde (u0, k0) est alors simplement
l'onde incidente (A, k), qui s'est réfractée dans un milieu de constante diélectrique

£„. Les conditions de continuité auxquelles sont soumis, sur les faces du
cristal (1), la fonction d'onde et son gradient, impliquent, pour la face d'entrée,
l'égalité des composantes tangentielles de k et k0:

kt k0 j,et encore
A u0.

*) *o=ifco|-
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Nous négligeons en effet l'onde réfléchie sur cette face vu que £0r^ 1. Les
mêmes conditions aux limites appliquées à la face de sortie donnent :

kot Koi (K0 k),
et

u e%nik0nD __ jj ^niKanl)
où U0, K0) est l'onde intense sortant du cristal et dont on observe l'intensité
J70 U* \U0 2 sur un écran ou une plaque photographique.

La numérotation des kn selon (5) laissait le choix de /t0 arbitraire; nous l'avons
une fois pour toutes déterminé comme le vecteur de l'onde qui reprend à la sortie
du cristal la direction de l'onde incidente. Lorsque k varie en direction, mais que,
d'après la construction de la figure 1, l'extrémité de k0 reste attachée au point
b0 0 du réseau réciproque du cristal, l'origine de k0 décrit une surface qui se

réduit, dans le cas particulier de ce paragraphe, à une sphère (figure 1). Cette
surface possède dans le cas général du paragraphe 1 plusieurs nappes, puis qu'il
existe alors plusieurs valeurs propres de k0 pour une direction donnée. Nous
nommerons cette surface (lieu des origines du vecteur jfc0) la surface de dispersion et
nous allons étudier ses modifications successives en présence de deux spots
intenses ou davantage dans la diffraction.

§ 3. La figure de diffraction montre deux spots intenses.

Supposons qu'à côté de l'onde (u0, k0), l'onde (um, km) soit intense à l'intérieur
du cristal, donnant ainsi lieu à une onde diffractée intense Um, Km) a la sortie.
En approximant à l'unité £0, le système d'équations (4) se réduit à:

k2

— £m M0+
2

— wm 0 >

car les autres un sont négligeables par hypothèse. L'introduction des variables
x0 et xm, définies par

xo — k — k0

x —k-k '
xm "" "'m '

facilite le calcul des valeurs propres de k0. L'annulation du déterminant des coefficients

en (7) donne
*o *m I «» la k2l4 (9)

car dans le cas qui nous occupe, les x sont de l'ordre de 10~3 Â-1, k de 20 A-1, et
les termes d'ordre supérieur sont négligeables.

D'après la figure 2, la surface de dispersion s'écarte d'une sphère — dégénérée
à l'échelle du dessin en un plan — lorsque celle-ci coupe une autre sphère, de
même rayon k et centrée au point bm. La surface de dispersion, qui présente
maintenant deux nappes, est de révolution autour du vecteur bm, et la figure 2

en montre la trace (hyperbole) dans le plan contenant k0 et km. L'angle 2 © sous
lequel l'intersection des sphères a lieu est donné par la relation:

2&sin® 6m (10)

qui n'est autre chose que la loi de Brjìgg puisque k 1/ et que bm est l'inverse
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de la distance entre deux plans réticulaires d'indices de Miller m1 m2 ma; lorsque
les m( sont multiples d'un entier N, (10) s'écrit:

2 k sin 0 NbmiN

(réflexion du Même ordre sur le plan d'indices mJN, m2/N, m3/N).
Les deux nappes de la surface de dispersion donnent lieu à deux champs d'ondes,

que nous distinguerons par l'indice supérieur i 1, 2. Chaque champ possède

deux ondes: (u\, k\) et (ulm, klm= k\ + bm), le rapport p* entre u\ et u%m étant
fixé par (7):

u\ kl - k? 2 xi
(11)

salières de

rsyofl

28

Fig. 2.

Surface de dispersion dans le cas de deux ondes (u0, k0) et (um, km) intenses à

l'intérieur du cristal.
Les deux nappes hyperboliques de la surface s'appuyent sur deux sphères de rayon
k, centrés aux points 0 et bm du réseau réciproque, et qui ont dégénéré en des plans
à l'échelle du dessin. Les origines des vecteurs de chaque champ d'ondes sont
situées sur une même nappe, et, d'après (15), toutes ces origines sont alignées
sur une même normale n au cristal. Les distances x\ et xlm se mesurent perpendiculairement

aux sphères centrées aux points 0, respectivement bm, tandis que y1 CA
et y2 CD se mesurent dans la direction de n. La petitesse de l'angle 2 & permet
de poser LB c^l LC c=l 2 (i @k, /u étant l'angle dont on s'écarte de la position de

Bragg (origines des vecteurs situées sur la normale passant par L).

Les amplitudes relatives des deux champs dépendent, nous l'avons vu, des
conditions aux limites sur la face d'entrée:

k k1 k2Kt of "o
A

0

+ u0

„ + XI,

(12)

Ces conditions déterminent, pour une onde incidente (A, k) donnée, les origines
des vecteurs k\ et kL, sur la surface de dispersion d'une part, les amplitudes «^
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et M2 d'autre part, après qu'on ait porté dans (12) les valeurs (11) pour u\ et u\.
On obtient ainsi :

x1
i m a 2 m a /IO\"o ^ x

_
2

A > «0 -^, î-^; (13)

et

«i, - Y - r^ i" 4 • "« v -r^ A ¦ <14>

*m *m *m m

Quant à la diffraction observée, elle dépend des conditions aux limites sur la face
de sortie:

kot k(,t Kot (K0 k),
km t "mi "-m t 'm k + bm) ;

pour nr D (15)

m
œ1 -X2 '

1 £m K

Posons :

«me e2*t**,r r/ ^niKmr
„b m

k\ k + yin,
(i 1, 2) (16)

fem * + 6m + V1 " •

D'après la figure 2, i/1 et y2 sont les distances (mesurées algébriquement selon n)
qui séparent la sphère centrée au point 0, de l'origine de k], respectivement de

k%. Les deux dernières équations (15) deviennent alors:

1 iniy1D ,2 ¦2niy2D_ tj '

On trouve ensuite, pour les intensités observées, et grâce à (13) et (14):

U0 I»
__

«)2 + KT - 2 -£ < cob 2 * (y* - y«) -P

1
m J

(18,

-j- sin* n (y1 -y2) D
A

\Xm

Comme l'angle 2 © ne dépasse généralement pas 5°, nous égalons cos 2 © à

l'unité, avec une erreur inférieure à 0,5%. L'angle que fait par contre la direction

moyenne des vecteurs k\ et k%m avec la normale au cristal /i dépasse parfois 60°;
nous désignerons par y son cosinus. Nous conviendrons encore de dire que k,
k\ k%m, Kn et Km sont en position de Bragg quand les origines de ces vecteurs sont
situées sur une normale au cristal qui passe par l'intersection des sphères «asympto-
tiques» à la surface de dispersion (point L sur la figure 2). En vertu de (12) et
(15), tous ces vecteurs d'onde sont simultanément en position de Bragg. Si l'on
désigne enfin par ,u l'angle dont ils s'écartent (dans un plan contenant le vecteur
bm) de la position de Bragg, l'approximation cos 2 0 1 entraîne:

¦ k2/4 (cf. figure 2).

y1-— y2 — (xm~ xm)!y-
x1 xm 2a4 + 2fx@k,

< X2 - i i
xo xm ~ 1 em
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Les équations (18) deviennent alors:

U^_ 12__ 4fi202 + | sm\2 cos2 n k |/4ix2 ©2+ | eJ2 Djy
A 4tx2Q2+\sm\2

\em\2mn2nk^4p2&2+\em\2Dly
4yu2@2+l£m|2

L'intensité du spot diffracté s'annule donc pour des angles /Ltn donnés par:

7

(19)

fin= ± J^p ]/n~2-\em\2k2D2ly2 (n entier). (20)

La mesure expérimentale de ces angles permet ainsi de déterminer em (ou 0m)
et D. Formulée par MacGillavry (1940) pour une incidence normale (y 1),
la relation (20) montre que le cas d'une incidence oblique (y+. 1) est formellement
identique, puisque D/y est l'épaisseur effective de matière traversée par les ondes.
Le paragraphe suivant sera consacré au dispositif expérimental que nous avons
utilisé pour vérifier, sur le graphite, cette dernière formule.

§ 4. Partie expérimentale et mesure des &m.

La figure 3 donne le schéma de l'appareil utilisé, construit par
Trüb, Täuber & Cie. Le condenseur permet d'imager le premier
diaphragme à des hauteurs variables entre le second diaphragme
et l'écran. La vérification de la théorie exige que la portion du
cristal frappée par les électrons ne soit pas tordue et ne présente

Condenseur et
î : diaphragme 2 .-diaphragme

(0,01mm) (0,8 mm)

Ecran

L - b 19 mm

Fig. 3.

Dispositif expérimental.
La cathode froide peut être soumise à des tensions jusqu'à —50000 volts. Les
dimensions indiquées pour les diaphragmes réduisent à 1 p le diamètre du faisceau,
dans le cristal et donnent à l'angle de convergence la valeur de 1,35°. Deux cônes

donnant lieu à deux spots, ont été reproduits.

pas de structure en mosaïque. Il est donc indispensable de réduire
au minimum le diamètre du faisceau à la hauteur du cristal. La
méthode expérimentale de Kossel et Möllbnstedt (1939) permet
de le réaliser: au moyen du condenseur, on image le premier
diaphragme dans le cristal, abaissant ainsi à 1 /Jt le diamètre du
faisceau. A la sortie du cristal, les divers faisceaux diffractés divergent.
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Ils forment des cônes et leurs intersections avec l'écran sont des
cercles dont le diamètre dépend de celui du second diaphragme, et
à l'intérieur desquels on observe les variations d'intensité prévues
par (19) (figure 4). L'onde convergente incidente peut en effet être
décomposée en une somme d'ondes planes d'orientations différentes
qui tombent simultanément sur le cristal*).

Certains électrons subissent un choc non élastique dans le cristal ;

leur perte d'énergie est négligeable, mais ils donnent lieu à un fond
continu sur lequel se détachent les paires de lignes de Kikuchi
dues à la diffraction ultérieure de ces électrons (figure 5). Ces

lignes sont utiles pour déterminer l'orientation du cristal (mesure
de y) et peuvent servir à l'analyse de structures (Wilman 1948).

Le nombre des chocs non élastiques augmente avec l'épaisseur
du cristal et finit (à partir de 2000 Â environ dans le cas du
graphite) par masquer la diffraction sans perte d'énergie (les cercles).

Nous avons utilisé des graphites de diverses provenances (Cey-
lan, Madagascar, Canada), qui se sont révélés structurellement
indiscernables ; aussi ne nous sommes-nous plus occupé de leur origine.
Le clivage, effectué au moyen de bandes collantes Durex, permet
d'obtenir facilement des échantillons de l'épaisseur désirée —appréciable

à leur teinte grise plus ou moins claire par transparence.
Lorsque le cristal chevauche sur le bord de la bande collante, il n'est
pas même nécessaire de l'en détacher et le tout est fixé au porte-
cristal de l'appareil.

Le graphite résulte de la superposition de couches hexagonales
d'atomes de carbone (figure 6), ordinairement selon le schéma
ABAB..., les dimensions de la maille élémentaire étant ax a2
2,4562 A et % 6,6943 Â (Nelson et Rilby 1945). La variété de
Lipson et Stokes (1942) présente une superposition du type
ABCABC..., la distance entre chaque couche n'étant pas modifiée.
Le réseau réciproque du graphite ABC est ainsi contracté des 2/3

selon la direction normale aux couches, mais il est formellement
possible d'adopter le même réseau réciproque pour les deux variétés,
en convenant, dans le cas du graphite ABC, de donner à l'indice
de Miller m3 des valeurs multiples de 2/3. Dans la suite, et sauf
mention du contraire, nos exemples et nos photographies se

rapporteront à la variété ordinaire AB.
Faisons maintenant tomber le faisceau convergent sur le cristal

et orientons celui-ci de façon à ce que l'intensité soit appréciable

*) Cette décomposition est légitime du fait que le front de ces ondes planes
mesure au moins 1 fi ; cette distance est encore grande par rapport à la longueur
d'onde, ce qui rend négligeable la diffraction due à la section limitée de l'onde
plane.
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dans deux cercles seulement. L'un, généralement surexposé sur les

photographies, est dû aux ondes (7J0, Kv) qui se propagent dans
la direction des ondes incidentes; l'autre provient de la «réflexion»*)
sur le plan m. Les franges d'interférences observées dans les spots 0
et m obéissent à (19) (figure 4). Elles sont pratiquement rectilignes
et parallèles, vu que la surface de dispersion est de révolution et
que la variation de y est lente. Ces franges sont disposées
symétriquement relativement à une droite (fi 0) qui correspond à la
position de Bragg des vecteurs d'onde. La droite ju 0 qui
traverse ainsi le spot m est la ligne de Kikucht, mx m2 m3, celle qui

* >T

*T

*-k

**-

couche B

Fig. 6.
Les couches du graphite vues selon la direction de n (axe c).

Chaque sommet des hexagones est occupé par un atome de carbone. Le graphite
ordinaire résulte de la superposition des couches selon le schéma ABAB..., tandis
que la variété de Lipson et Stokes adopte le schéma ABCABC... La base indiquée
de la maille élémentaire est la même dans les deux cas. Les coordonnées relatives
txik des atomes du graphite AB sont:

(000); (i |0); (00 i); (J 3- 1),
et celles du graphite ABC sont:

(000); (3- | 0); (00 Cl i); /21 2l

Ces deux droites seprotraverse le spot 0 la ligne — (mx m2 m3
longent à l'extérieur des spots à cause de l'existence des électrons
diffusés non élastiquement. En effet, les lignes de Kikuchi ± m
sont définies comme le lieu des points où parviennent des électrons
réfléchis en position de Bragg sur le plan m.

Considérons avec plus d'attention les franges du spot m. En vertu
de (20), la relation graphique entre /li% et w2 est une droite. Con-

*) Ce terme facilite le langage, mais il faut remarquer que l'angle de réflexion
n'est égal à l'angle d'incidence que pour la position de Bragg, leur somme égalant
toujours 2 ©.
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struite sur les données expérimentales ptn, cette droite permet de
déterminer D et |em| :

ljD pente -ò2/y2,
I p I — l/ ^ h Ile

pi* étant l'ordonnée (négative) à l'origine.
Il est pourtant préférable de déterminer 0m qui ne dépend pas

de la tension P. Désignons par A 2 6>L la distance sur l'écran
entre deux points correspondants des spots 0 et m, et par pin /unL
la distance dans le spot m entre la position de Bragg et le nième

minimum En se rappelant que 0m emP et que k /P/150 Â-1,
on trouve pour jCPmj l'expression où L n'intervient plus:

\0m\ 150 bl ]/^l I A volts (bm en A-*). (22)

D'autre part, et d'après la loi électrostatique qui relie les charges
électriques au potentiel, on peut montrer que:

^» 1-4 —Â.— Fm > (23)m 4 n2 x0 v b2m m v '

où e 1,60-IO-19 As,
x0 8,86-10-12As/Vm,
v 3,5-10~29 m3 (volume de la maille élémentaire),
Z 6 (nombre atomique du carbone),

bm se mesure en m-1,
4

Fm — 27exP [— 2 ni (aix mx + cr.i2 m2 + ai3 m3)] (aifc : coordonnées

relatives de l'atome i dans la maille élémentaire; cf. fig. 6),
et s(b) est la transformée de Fourier (ou facteur d'atome) de

la densité électronique g(r) d'un atome de carbone:

s(b) fdv (?(r) e-2"ibr.
oo

Dans le cas d'un atome présentant une symétrie sphérique, q (r)
g(r) se calcule par la méthode de Hartreb et permet de dresser
des tables pour s(b). Nous pourrons comparer ces valeurs théoriques
avec les valeurs expérimentales déduites des 0m observés au moyen
de (23).

D'après (22) et (23), l'ordonnée à l'origine Jt^ de la droite ni
/(w2) est inversement proportionnelle à b^: l'erreur relative faite
sur cette quantité augmente donc rapidement avec des indices mi
croissants, et, outre d'autres raisons qui nous occuperont plus loin,
ne nous a permis d'obtenir des valeurs significatives que pour les
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<P10mi et les 0XX ma (m3 0, 1, 2, Il semblerait, toujours d'après
(22) et (23), que le choix d'un cristal à petit réseau réciproque (bm
petits) et composé d'atomes de nombre atomique élevé, eût
augmenté avantageusement ja2 ; nous verrons au contraire que ces
propriétés, en créant d'autres spots intenses inévitables et un plus
fort couplage entre les ondes à l'intérieur du cristal, s'opposent à

l'emploi de la formule (22). ~ßi0 augmente quelque peu avec A lorsque

l'on abaisse la tension P; on ne peut guère cependant descendre
au-dessous de 25000 volts sans que la photographie devienne
floue.

Table I.
Valeurs expérimentales des 0m et des s(bm).

m 0 0 2)m > HbJ1) <bm)2)

100 1,53 1,47 3,42 3,52
102/a 2,62 2,94 3,70 3,42
101 2,58 2,67 3,23 3,13
102 1,27 1,23 2,90 2,99
103 1,73 1,76 2,79 2,74
110 3,29 — 1,84 —
112 2,81 — 1,95 —
114 2,13 — 1,87 —

1) Valeurs obtenues au moyen des formules (22) et (23) du paragraphe 4.
2) Valeurs corrigées au moyen de la théorie du paragraphe 6.

Nous avons mesuré les distances tin à 0,02 mm. près. La
deuxième colonne de la table I donne les résultats pour les 0m examinés,
les erreurs moyennes dues aux mesures étant d'environ 2,5%;
chaque 0m a fait l'objet d'une dizaine de mesures, à partir de
cristaux différents, d'épaisseur D variant entre 400 et 1500 Â et
pour des tensions P de 25000 à 50000 volts. Le fait de n'avoir pas
effectué les mesures d'un 0m pour des mêmes valeurs de P et de D,
constitue déjà une bonne vérification de la formule (20), puisque,
malgré la variation de ja2 due à ces paramètres, la valeur de 0m
en est effectivement indépendante.

En comparant, comme nous l'indiquions plus haut, les valeurs
calculées et observées des s(bm), nous constatons dans certains cas
des différences excédant nettement les incertitudes expérimentales
(figure 7). Trois raisons possibles se présentent: a) L'hypothèse de
deux spots intenses n'est pas rigoureusement réalisée; mais les
corrections que les calculs du paragraphe 6 apportent aux 0m et s(bm)
(troisième et cinquième colonne de la table I) sont trop faibles —
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et parfois de signe opposé — pour expliquer cette divergence,
b) Les atomes de carbone d'une couche de graphite ne sont pas
situés dans un même plan, mais sont alternativement décalés d'une
petite quantité ± u, perpendiculairement à la couche; il en résulterait

une modification du facteur Fm dans (23). Le calcul des \Fm\
montre cependant que ces quantités ne varient pas pour les indices
m3 0 et 1, laissant donc entières les divergences relatives à s(6100)
et s(bxox). c) Le facteur d'atome s(bm) est modifié par la dissymétrie
des atomes de carbone qui s'«étalent» dans les plans des couches,

stài

0,40,2 0,6 0,8 1,0 b en (h1)
Fig. 7.

Le facteur d'atome *(&).
Les petits cercles donnent les valeurs s(bm) déduites des distances entre les franges
d'interférences, au moyen de (22) et (23). Les croix se rapportent à certaines des
valeurs précédentes corrigées selon la théorie du paragraphe 6. Les valeurs
théoriques de s (6), calculées pour un atome de symétrie sphérique, sont données par

la courbe.

cette déformation affectant principalement les électrons périphériques.

Si nous comparons (figure 7) les résultats expérimentaux
pour les s(bm), avec les valeurs établies pour un atome de
symétrique sphérique, nous ne constatons une différence que pour de
petites valeurs de bm. La vraisemblance de notre troisième hypothèse

trouve ainsi une confirmation, puisque, d'après les propriétés
des transformées de Fourier, les modifications périphériques de
la fonction ç>(r) se répercutent sur la portion centrale de la
transformée s(b).

Nous reprendrons au paragraphe 6 la discussion des résultats
expérimentaux pour les 0m, à propos des valeurs obtenues par
l'emploi direct de la formule (22) et des corrections apportées par
la suite de la théorie, que nous développerons dans le cas de plus
de deux spots intenses.
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La mesure systématique de l'épaisseur d'un cristal donné, au
moyen de (21), et à partir de diverses réflexions, dont chacune est
rendue successivement intense par des rotations du cristal, constitue

une autre vérification de la théorie du paragraphe 2. La table II
en donne un exemple et montre que cette épaisseur peut être évaluée

à deux couches d'atomes près. Dans ce cas encore, et bien que
l'aspect de certaines franges semble à première vue justifier la
détermination de D au moyen de (21), nous verrons que le domaine
d'application de cette formule doit être soumis à une investigation
précise. En particulier, les spots situés à l'intérieur d'une bande
de Kikuchi (zone comprise entre une paire de lignes de Kikucsi)

Table II.
Mesures de l'épaisseur D d'un cristal.

m D/y Y D

100 731 0,990 723
100 1002 0,735 736
101 752 0,950 713

101 816 0,881 718
102 857 0,842 721

103 1030 0,717 738
110 732 0,985 720

110 813 0,891 725

112 848 0,862 730

114 903 0,795 718

Valeur moyenne: 724 4- 6 Â, soit 108 -h 1 mailles élémentaires ou 216 -f: 2 couches

d'atomes.

d'indices m,- peu élevés, ne permettent pas la détermination de

0m et D au moyen de (22) et (21).
En conclusion, la théorie de trois ou quatre spots intenses fixera

le domaine de validité de ces dernières formules, en évitant d'aboutir
à des résultats incorrects*).

§ 5. La figure de diffraction montre trois spots intenses.

Il n'est pas toujours facile d'orienter le cristal de façon à «isoler»
les deux spots intenses 0 et m dont nous avons donné la théorie au
paragraphe 3. En particulier, l'on ne peut guère éviter la présence
sur la figure de diffraction de spots périphériques p (bv grands) de

*) Cf. un travail de J. Ackermann (1948) d'où il résulte que l'emploi de la
formule (20) n'est pas justifié dans le cas du mica et du iodure de plomb.
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forte intensité (les vecteurs K0 de ces ondes étant donc en position
de Bragg). Cependant, en vertu de (19), leur intensité décroît
rapidement dès qu'on s'écarte de la position de Bragg, et nous
verrons que leur influence sur le spot m est négligeable. D'autres spots
peuvent se présenter de façon inévitable : ainsi, lorsque le spot
étudié m est intense, les spots — m et 2 m le sont déjà suffisamment
pour que, vu leur proximité immédiate du spot m, leur présence
perturbe les franges d'interférences de ce dernier. En d'autres
termes, il existe entre les réflexions du premier ordre et du second
ordre sur le plan m, un couplage qui entrave l'étude séparée des

spots m et 2 m. Cet effet reste cependant relativement faible et ne
se remarque pas à première vue dans la disposition des franges. Si

nous voulons étudier au contraire un cas typique de trois ondes
intenses, il nous est facile d'orienter le cristal de telle manière qu'un
spot p intense, non aligné sur les spots 0 et m, perturbe notablement

le spot m; l'effet étant d'autant plus marqué que les indices
m et p sont moins élevés.

a) Données théoriques.

La mise en équation des trois cas possibles que nous venons d'examiner est
évidemment identique. Désignons par (u0, k0), (um, km) et (up, kp) les ondes
intenses à l'intérieur du cristal, la première, comme précédemment, se propageant
approximativement dans la direction de l'onde incidente (A, k). Le système
d'équations (4) se réduit à:

k2-k2
0,

kl-k*
u£mu0 + —i,2 «m - em-v UP ° >

<24)

£j, u0 £j,_m Um + 2 up 0

Si l'on pose de nouveau
xQ k-k0, etc.

l'annulation du déterminant des coefficients en (24) donne l'expression suivante
pour la surface de dispersion:

k2
xoxmxj,= -^r Ü£s\2 xo+\ej,\2 xm+\sm\2 x^-kR (em e_p es)] (25)

(es £j,_m; B partie réelle).

La surface de dispersion possède trois nappes s'appuyant sur trois sphères de

rayon k, centrées aux points 0, bm et bv, et que l'on peut considérer comme des

plans à l'échelle des x*). Il existe ainsi une relation linéaire entre les x, qui permet

*) Par la suite, nous désignerons simplement par sphère 0 celle de rayon k
centrée au point 0, etc.
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d'en éliminer un dans (25) et de calculer au moyen d'équations numériques du
second degré les points de la surface. Plusieurs coupes sont nécessaires pour la
représenter, puisqu'elle n'est plus de révolution (à moins que les points 0, bm et bv
ne soient alignés). Il existe donc en général un point commun aux trois sphères,
et lorsque les origines des différents vecteurs d'onde sont situées sur la normale
au cristal passant par ce point, nous dirons que la position de Bragg est simultanément

réalisée pour les réflexions sur les plans m et p. L'interaction des ondes

(«î,, kl), (ulm, fe^j) et (ut, kv) est alors maximum*), tandis qu'elle diminue lorsque

les intersections deux à deux des sphères s'éloignent.
Les amplitudes relatives pi et <f des ondes d'un même champ se déduisent

des équations (24). Si l'on se propose d'étudier plus particulièrement le spot m,
il est avantageux d'exprimer u\ et «* en fonction de u1 et de poser:

(26)

Les amplitudes relatives des trois champs d'onde dépendent, ici encore, des
conditions aux limites sur la face d'entrée :

«Ô - v xm ~ -m E- s

m
% E-sXr,-keme_p

wv evxm~ m Es

«m % em xp — * Ep e- s

*, fe1 -ifc2 - ksK0( "0| *«jl
A u0 + u0 + ul,
0 um + um + um>

(27)

0 K+K+K
Ces conditions permettent de déterminer les orientations des vecteurs d'onde

à l'intérieur du cristal d'une part, les amplitudes ulm d'autre part, les w* et u%

s'exprimant en fonction de u% grâce à (26); on obtient:

«5 p1 T -q
A A,

m
1 3_

A
1*

A
•

«X
P 2l

Is -q2 A.

A
P1 p2 p3

1 i i
q1 <? q»

(28)

et, pour i 2 et 3, des expressions semblables obtenues par permutation circulaire
des indices 1, 2, 3.

Les conditions aux limites sur la face de sortie (où les y* sont de nouveau définis
par (16)):

k)t kl k% Kjt <*¦, *+*,),
ul eimiy'J)+ tta Jniy'D + „3 g2 niy'D jj (;- 0; m> p) ;

*) L'indice supérieur i distingue ici les trois champs d'ondes qui sont chacun
une solution indépendante des équations (24).
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déterminent finalement les intensités des trois ondes quittant le cristal

A
LTu*e9"*^r. (30)

Ainsi, cette dernière formule permet de calculer, à partir de mesures graphiques
effectuées sur la surface de dispersion (25), et pour diverses orientations de l'onde
incidente, les intensités des trois spots diffractés intenses, puisque les u1. dérivent
des x par l'intermédiaire de (28) et (26) et que D, em, ep et es sont supposés connus.
En désignant, comme précédemment, par y le cosinus de l'angle moyen que font
tous les vecteurs d'ondes avec la normale au cristal (approximation cos 2 0 1),
nous obtenons, pour ces intensités, les sommes du type:

-j- ' E f) (x), x), x-) oos 2 n (x)-x)- ßf) Dly (31)

(i, 1 1,2, 3 j 0,m,p.)

Les phases ß\l dépendent de celles des e, et l'on peut facilement se rendre compte
qu'elles sont nulles pour em, ep et e8 réels. La généralisation des formules (18)
relatives à deux spots diffractés intenses est évidente, mais la complication de la
surface de dispersion empêche ici d'éliminer les x et d'obtenir une relation formelle
analogue à (20) entre les randeurs expérimentales (positions des minimums d'intensité)

et les constantes du problème (D et les £) : il n'existe plus d'équivalent de la
formule de MacGillavry. Tel n'est d'ailleurs pas notre but dans ce paragraphe,
mais bien la comparaison avec l'expérience des intensités calculées au moyen de

(31), à partir des valeurs trouvées préalablement pour D et les £ par la méthode
du paragraphe 4*).

Le calcul numérique direct des intensités des spots et de la position

des franges d'interférences au moyen de (30) est fastidieux et
ne donne pas une idée nette de la perturbation subie par les franges
du spot m, par exemple, quand le spot p est intense. L'allure de ces

franges suggère pourtant que deux seulement sur trois des amplitudes

u], uf et uf sont grandes dans (30) et que les sommes (31)
ne contiennent qu'un seul terme périodique prépondérant. Les

franges, en effet, bien que décalées ou localement déformées, ne
présentent pas de maximums secondaires irrégulièrement disposés,
tels qu'on en observe lorsque plusieurs ondes f amplitudes du même
ordre interfèrent, c'est-à-dire lorsque les ..ouïmes (31) contiennent
plusieurs termes périodiques importants. Ce dernier cas se rencontre
avec le graphite lors de la transition, dans l'empilement des couches,
du schéma ABAB au schéma BCBC; les franges (figure 16)
présentent alors une complication qu'on ne trouve pas dans le cas dé
trois spots intenses, et que nous étudierons à la fin de ce travail.

Ces considérations nous conduisent à „...oncer la règle suivante:
Dans le cas où le système de franges d'un spot m est perturbé

par la présence d'un troisième spot i -„ense p, les origines des vec-

*) Nous tirerons la phase des e de la formule théorique (23).



Fig. 4.

Deux spots intenses.
A droite le spot m 110, à gauche le spot central 000. Les variations d'intensité

dans les spots obéissent aux formules (19).

Diffraction duo
Fig. 5.

un cristal épais (D 2240 Â).

Fig. 10.

Décalement <* première espèce d'un système de franges.
Le décalement d'une um. long de AB dans le spot m 212 est dû à la présence
simultanée du spot p 114. Le décalement associé de seconde espèce (cf. fig. 9a)
est nul à cause de la petites?^ 'elative de s30^". Le spot 330 (non visible sur la
photographie) cause la perturbata., elon CD. L'effet du spot 102 ne serait décelable

qu'à l'ext'ême droite du spot 212.



L'équidistance des frange

Fig. 8a
Trois spots intenses.

du spot m 101 (à droite) est perturbée par le spot
V luì (à gauche).

110

122

212
122

212

Fig. 11 a.
Décalements de seconde espèce d'un système de franges.

Le cristal est assez épais pour que les décalements atteignent deux unités dans les

spots m 110 et v 2Ï2. Les droites perturbatrices qui ne sont pas des lignes
de Kikuchi sont tracées en pointillé.

9£. ..wjJflSIr

101 101

fc'ig. 13a.
Quatre spots intenses.

m 120, p 101 et q 221. On remarquera la diminution de /imi,,, entraînant
un accroissement apparent de #m, lorsque les franges du spot m pénètrent à l'in¬

térieur de la bande de Kikuchi ± (101).



' »fa:

Fig. 14.

Figure de diffraction à centre de symétrie obtenue avec une orientation du"faisceau
normale au cristal (7 1).

On remarquera les bandes de Kikuchi des types fa (100) et ± (110), et les décalements

de seconde espèce que subissent les franges à la frontière de ces bandes.

01-5

W000

Fig. 15.

Répartition de l'intensité dans quatre spots intenses.
La réflexion simultanée sur trois plans de facteur de structure élevé rend inhomogenes

les franges de chaque spot. Cette photographie constitue également une con¬

firmation de l'empilement des couches selon le schéma ABC.



301302

*1

120

304000

Fig. 16.

Aspect des franges dans le cas d'une transition ABCABC, BCABCA.
Le spot 120, dont les indices satisfont à (38) n'est pas affecté par la transition,
contrairement aux autres spots. Il en est de même pour les lignes de Kikuchi ± (120)

et ± (302).

Si

Fig. 17.

Plusieurs spots intenses dans le cas d'un cristal à plusieurs transitions.
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teurs des deux ondes de grande amplitude parmi les trois ondes
(ulm, klm), sont situées sur les portions de la surface de dispersion
s'écartant le moins de la surface — à deux nappes — qui existerait
en l'absence de perturbation.

Les portions ainsi déterminées forment ce que nous appellerons
la surface de dispersion efficace relative au spot m; une normale au
cristal la coupe en deux points seulement, distants de

y1 —y1 s (xl~xlm)ly A xjy.
Le comportement des franges du spot p est soumis à la même

règle, à condition de permuter dans l'énoncé les indices m et p,
et de remarquer que la surface de dispersion efficace relative au
spot p est différente de celle relative au spot m. A vrai dire, si la
position de Bbagg est simultanément réalisée pour les réflexions
sur les plans m et p, ou que, lors de l'étude du spot m, le spot p
soit en position de Bragg-*), cette règle est inapplicable, puisqu'il
y a alors ambiguïté dans le choix de la surface de dispersion efficace
et qu'en fait les trois amplitudes u^, u^, u„\ sont du même ordre
de grandeur pour ces orientations particulières de l'onde incidente.
Là encore, néanmoins, une description semi-quantitative du
phénomène reste possible en utilisant deux ondes et en extrapolant le
choix de la surface de dispersion efficace fait pour les orientations
voisines.

La règle mentionnée peut se justifier dans chacun des cas
particuliers que nous traiterons; nous en donnons un exemple dans
l'Appendice IL

La détermination des minimums d'intensité d'un spot diffracté
j m ou p devient très simple puisque, dans cette approximation
où ut, l'une des trois amplitudes, est négligeable par rapport aux
deux autres (uj et m'.), nous avons, d'après les deux dernières équations

(27)

u} — ~w.,

et que (30) se réduit alors à:

u3-

A
lu4- e2niyl:D + u1- e2 nivli>i2 4 | u) |2 sin2 tc (Xj --x] D/y. (32)

Il suffit donc de tracer la surface de dispersion (25), de choisir,
pour chaque domaine angulaire du vecteur d'onde incident k, les
deux nappes particulières de la manière que nous avons dite, et

Plus exactement, que le vecteur de l'onde (Up, Kp) soit en position de Brago.
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de déterminer graphiquement les positions pour lesquelles les
distances Axî x1. — x1. satisfont à:j } j

AXj= X- n (n entier). (33)

Nous allons, sur quelques exemples, étudier principalement la
perturbation qu'apporte un spot intense p aux franges du spot m
qui sont éloignées de la position de Bragg. En l'absence du spot p,
les minimums d'intensité seraient équidistants et donnés par
l'expression asymptotique de la formule (20) :

t*n h "TT n (n>\em\k Djy), (34)

autrement dit, la surface de dispersion efficace relative au spot m
se confondrait pratiquement avec les deux sphères 0 et m.

h) Résultats expérimentaux.

Considérons, comme premier exemple, les franges du spot m
101 de la figure 8a: leur équidustance est précisément rompue
lorsque k est en position de Bragg pour le spot p 101, c'est-à-dire
lorsque l'intensité de ce dernier spot est la plus forte. La figure 8b
donne en traits continus une coupe, calculée d'après (25), de la
surface de dispersion (qui est de révolution puisque les points 0,
bm et bp sont alignés). La surface de dispersion efficace relative au
spot m est tracée en traits renforcés, on voit qu'elle est composée
des portions des nappes qui s'écartent le moins possible des deux
sphères 0 et m — pointillées. Successivement Axm vaut, quand on
s'éloigne de la position de Bragg pour le spot m (point L) : x^ — x^
pour des normales au cristal situées entre L et L"; x^ — x^ (entre
L" et L') et x]n—x^ (à partir de L'). Les flèches verticales et
continues qui joignent les nappes de la surface de dispersion efficace
mesurent nyjD (n 1, 2, 3, et déterminent donc les origines de
hlm et klm pour lesquelles l'intensité du spot m s'annule. Ce calcul
graphique nécessite la connaissance de D et de y, 780 Â et cos 18°
dans le cas particulier. Si l'on désigne comme précédemment par
/un /Lt„ L la distance sur l'écran entre la position de Bragg du spot m
et le minimum du nième ordre, la distance correspondante ln sur la
figure 8b vaut /r\ —

et permet de retrouver expérimentalement (dans la direction des

petites flèches pointillées) les origines de klm et klm associées aux
minimums d'intensité. La figure 8 b montre une concordance satis-
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faisante entre les positions des flèches pointillées (expérience) et
continues (théorie).

Le resserrement des franges qui se produit quand l'origine des

vecteurs d'onde est voisine de L' est dû au fait qu'il existe deux
orientations correspondant à Axm lOyjD: le minimum du
dixième ordre, donné par (33), s'est dédoublé, et l'on peut dire que
le spot perturbateur a fait apparaître une frange supplémentaire.

Sphère p

Iff /t'

Fig. 8b.
Surface de dispersion relative à la figure 8 a.

En traits pointillés, les sphères 0, m et p. En traits continus, les trois nappes de la
surface de dispersion. En traits renforcés, la surface de dispersion efficace relative
au spot m. Les flèches verticales et continues mesurent ny/D et déterminent les

origines de k^ et klm pour lesquelles l'intensité du spot m s'annule. Les flèches

pointillées donnent la direction trouvée expérimentalement pour ces mêmes ori¬

gines.
Valeurs numériques utilisées: £ 18,5 A-1, em ep e101 -5,15-10"

1,15-10- 7 0,951, £> 780x\.

Selon l'épaisseur D, c'est-à-dire selon le rapport de y/D à la discontinuité

de la surface de dispersion efficace près de L', il serait
possible de n'observer aucun dédoublement (cristal mince), ou au
contraire celui das minimums de deux ordres consécutifs (cristal épais).
Ce dernier cas, impliquant D > 2000 Â, n'a pas été observé. Pour
des cristaux très minces, les franges restent à peu près équidistantes :

l'effet perturbateur devient négligeable, comme en théorie
cinématique (voir Appendice I).

Quant à la discontinuité au voisinage de L", elle est, d'après la
figure 8 b, trop petite pour perturber notablement les franges du
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spot m. Dans le cas contraire, cette dernière discontinuité produirait

un espacement des franges; en effet, le minimum d'un certain
ordre, donné par (33), n'existerait plus, et une frange disparaîtrait.
Nous donnerons le nom de première et de seconde espèce aux
discontinuités de la surface de dispersion efficace, dont l'effet est de

resserrer, respectivement d'espacer, les franges du spot m.

Le cas où les points 0, bm et b^ no sont pas alignés nécessitent,
nous l'avons vu, plusieurs coupes de la surface de dispersion; nous
les prendrons, lors de l'étude des franges du spot m, selon les divers
plans d'un faisceau ayant tous le vecteur bm commun. Alors que
les traces des sphères 0 et m restent invariables, celle de la sphère
perturbatrice p se déplace d'une coupe à l'autre, parallèlement à
elle-même en pratique, à cause de la petitesse des variations angulaires

mises en jeu (ordre du degré). Pour une coupe particulière,
les traces des trois sphères se coupent au même point, la position
de Bragg est alors simultanément réalisée pour les spots m et p
quand les origines des vecteurs d'onde sont situées sur la normale
au cristal par ce point. Un seul angle /n, celui dont on s'écarte de
la position de Bragg pour le spot m dans un plan contenant le
vecteur bm — c'est-à-dire dans une des coupes que nous venons
de définir — suffisait précédemment à repérer un point de la
surface de dispersion; un second angle s'introduit ici, celui dont on
s'écarte de la position simultanée de Bragg pour les spots m et p,
dans une direction perpendiculaire à ces coupes. A ces angles in et
v correspondent sur le spot m les distances /u et v (figure 9 a).

Pour des angles v croissants, la trace de la sphère p coupe celles
des sphères 0 et m en des points L' et L" toujours plus éloignés de

l'intersection L des sphères 0 et m. Comme les distances LU et
LL" augmentent linéairement avec v, les lieux des points
correspondant dans le spot m à ces discontinuités sont deux droites. Nous
allons montrer qu'une de ces droites seulement s'identifie à une
ligne de Kikuchi (d'indices m—p), qu'en les traversant les franges
sont décalées, d'une unité en général, et qu'il existe deux espèces
de décalement, selon l'espèce de discontinuité qui leur donne
naissance.

Les figures 9 donnent une coupe de la surface de dispersion pour
les trois positions relatives essentiellement différentes des spots 0,

m et p. Lorsque v varie et change de signe — que L' et L" traversent

L —, on voit facilement que l'espèce de la discontinuité au
voisinage de I/ (ou de L") ne change pas. La discontinuité de
première espèce dédouble un ordre en général et resserre les minimums ;

les franges qui se resserrent pour un angle /u variable, lequel aug-
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mente linéairement avec LL' (LL"), c'est-à-dire avec v, subissent
un décalement (de première espèce) d'une unité en général, le long
d'une droite, et en épousant la direction de cette droite. Une discontinuité

de deuxième espèce, par contre, qui espace les minimums,
décale également les franges le long d'une droite, mais dans une
direction perpendiculaire à cette droite. Dans les deux cas, le
rapport de y/D à ke} (ordre des discontinuités de la surface efficace)
détermine le nombre d'unités du décalement; nous n'avons pas
observé de cas où il fût supérieur à deux. On voit sur les figures 9

p-m

':> p

v i-
E

Eig. 9a. Fig. 9b. Fig. 9c.

Les trois arrangements possibles de trois spots intenses.
En haut, la surface de dispersion efficace relative au spot m. Au milieu l'arrangement

des spots et les lignes de Kikuchi qui les traversent. En bas, l'aspect des

franges du spot m. Les trois coefficients em, ep, ss ont été choisis du même ordre
de grandeur. I et II dénombrent l'espèce des décalements qui se produisent au
niveau des droites perturbatrices. L'une de ces droites est la ligne de Kikuchi m-p,
l'autre n'est que l'image dans le spot m de la ligne de Kikuchi -p traversant le spot 0.

qu'une des droites est la ligne de Kikuchi d'indice m — p: elle
correspond aux directions des ondes pour lesquelles le couplage entre
les spots m et p est maximum. L'autre droite, qui est en quelque
sorte l'image dans le spot m de la ligne de Kikuchi d'indices — p
traversant le spot 0, correspond aux directions des ondes dans
lesquelles le couplage entre les spots 0 et p est maximum. La 3e droite
{fi 0) tracée dans le spot m correspond à la position de Bragg
pour ce spot; elle s'identifie évidemment avec la ligne de Kikuchi
d'indice m.

Dans les cas des figures 9 a et 9 b, et à cause de la grande séparation

de deux spots (m et p, ou 0 et m respectivement), l'un des trois
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coefficients e (e, ou e„) est généralement inférieur aux deux autres,
diminuant ainsi la discontinuité de seconde espèce de la surface
de dispersion efficace et annulant le décalement correspondant des

franges; seul celui de première espèce est alors observé (figure 10).
Dans le cas extrême où le spot p est à la périphérie de la figure de

diffraction, à la fois ep et e3 sont petits vis-à-vis de emet l'influence
de ce spot devient négligeable, comme nous l'annoncions au début
de ce paragraphe. Le cas de la figure 9 c est plus intéressant puisque,
les trois spots étant sensiblement à même distance les uns des

autres, des décalements (de seconde espèce) se produisent au niveau
des deux droites perturbatrices. Nous avons étudié ce dernier cas

pour 0 000, m 110, p 212, et pour un cristal d'épaisseur
donnant lieu à des décalements de deux unités (figure lia). L'allure
du spot p est fondamentalement analogue à celle du spot m; ce que
nous venons d'écrire au sujet de ce dernier s'appliquant en effet,
mutatis mutandis, au spot p.

De toute évidence cependant, les décalements observés sont
inférieurs aux nombres entiers (un ou deux) théoriquement escomptés :

la surface de dispersion efficace relative au spot m ne revient ainsi
pas se confondre, malgré l'éloignement de la sphère perturbatrice p,
avec la surface de dispersion qui existerait en l'absence de
perturbation; plus précisément, ce comportement asymptotique est si
lent à se réaliser que le décalement des franges paraît rester
constamment inférieur à 1 ou 2 dans le domaine étudié et que, une
nouvelle perturbation survenant, il ne peut plus être atteint. Comme
il est malaisé de représenter sur un seul schéma ce décalement
incomplet des franges, nous insisterons plutôt sur un autre aspect du
même phénomène. Considérons les deux minimums situés
immédiatement de part et d'autre de la position de Bragg et repérés par
l'angle fimin (/lix et plus rarement /n2 dans le cas du graphite). Il
est clair, d'après la figure 2 par exemple, que pour deux spots
intenses dans la figure de diffraction, /j,min diminue lorsque l'axe
transverse ô |em|fc de l'hyperbole (9) qu'est alors la surface de

dispersion, augmente, toutes choses égales d'ailleurs. De même
façon, pour trois spots intenses, /Ltmin dépend de l'axe <5 de la pseudo-
hyperbole que forme la surface de dispersion efficace au voisinage
de la position de Bragg du spot étudié. La variation de ò avec
l'angle v précédemment défini s'étudie le plus simplement sur une
coupe de la surface de dispersion, prise cette fois selon un plan
contenant le point bm et l'intersection des sphères 0 et m, c'est-à-
dire perpendiculairement aux coupes précédentes. La figure 11b
donne cette nouvelle coupe, calculée toujours d'après (25), et qui
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concerne le spot m de notre dernier exemple (figure lia); la position

simultanée de Bragg pour les spots m et p est réalisée quand
les origines des vecteurs d'onde sont situées sur la normale passant
par le point L. Alors qu'en l'absence de la sphère perturbatrice p,
la surface de dispersion donnerait deux droites parallèles et
distantes de | sm\ k, nous voyons sur la figure 11b que les deux nappes
appartenant à la surface de dispersion efficace se resserrent en
s'approchant de L par la gauche et s'écartent en s'en approchant
par la droite. L'effet perturbateur de la sphère p s'étend si loin
de part et d'autre de L et la variation de ô est par conséquent si

oel

L
W'2A''

Fig. 11b.
Surface de dispersion relative à la figure 11 a.

En traits renforcés, la surface de dispersion efficace relative au spot m.

lente que, dans le domaine délimité par l'angle de convergence du
spot, à semble garder à droite et à gauche de L deux valeurs presque
constantes, mais systématiquement différentes. La même conclusion

s'applique à /nmia (ou Jtmin), puisque cet angle varie inversement

à ô. L'effet, bien visible sur la figure lia, donne à /umla des

valeurs plus petites à l'intérieur de la bande de Kikuchi (122, 122)
qu'à l'extérieur. Ce comportement de franges qui chevauchent sur
le bord d'une bande de Kìkuchi d'indices peu élevés est général;
nous en donnerons un autre exemple au paragraphe suivant.

§ 6. La figure de diffraction montre quatre spots intenses ou davantage.

La généralisation formelle des formules du dernier paragraphe
dans le cas de quatre spots intenses est évidente, mais les calculs
numériques deviennent très longs et pratiquement impossibles en
toute généralité. De toute façon, la surface de dispersion s'obtient
par annulation d'un déterminant du quatrième ordre, et le calcul
complet de l'intensité diffractée nécessiterait la connaissance de

quatre champs d'ondes. Nous considérerons deux cas particuliers
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dans lesquels les spots seront soit alignés et à même distance, soit
formant un rectangle. La symétrie introduite rend, dans les coupes
de la surface de dispersion, les traces des sphères 0, m, p et q parallèles

deux à deux, et permet de nouveau de calculer la surface au

moyen d'équations numériques du second degré. La surface de

dispersion efficace se détermine d'après la même règle que précédemment

et permet, sauf quand plusieurs spots sont simultanément en
position de Bragg, de situer les minimums de l'intensité diffractée
au moyen de (33). Les franges d'un spot m subissent également des

décalements de première et de seconde espèce, mais le nombre de

droites le long desquelles ces décalements ont lieu est plus élevé
puisque plusieurs lignes de Kikuchi traversent les spots 0 et m
(cf. la figure 10 où il y a effectivement cinq spots intenses, dont un
en dehors de la photographie).

Considérons, comme premier exemple, les spots 0 000, m
10 m3, p 20 (2 m3) et q 10 m3. La figure 8 a peut illustrer ce

cas, à condition d'y numéroter autrement les spots. Le spot m
étant en position de Bragg, nous désirons savoir si les spots p et q
— non en position de Bragg et donc peu intenses — ne vont pas
influer sur la position des franges du spot m. Un calcul élémentaire
donne pour la surface de dispersion l'expression suivante où nous
avons posé em ex, e2m e2 et e3m e3:

¦\e2\*k2l4 + x0xm\e3\2k2l4:

~(x0 + xm)R(E1e2sl)k3/4 — (xp+xQ)R(e2xe*2)ksl4~-Ckill6 (35)

avecC= (jei|2-]e2|2)2~2E(e*£2e*)_2E(e3e*)-f-|ei[2|e3|2
La figure 12 donne la trace schématique, selon un plan contenant

bm, bP et bQ, de la surface (35). Afin de mieux illustrer le phénomène,

nous avons exagéré les axes des pseudo-hyperboles, que nous
désignerons par les indices des deux sphères sur lesquelles elles
s'appuient. Nous avons calculé (35) pour m3 0, 1, 2, 3 et 2/3

(graphite ABC) et tracé dans chaque cas la pseudo-hyperbole (0, m), qui
n'est autre que la surface de dispersion efficace relative au spot m,
au voisinage de la position de Bragg. La comparaison avec l'hyperbole

(9) qu'on obtiendrait en négligeant l'effet des spots p et q
montre que cette hyperbole est d'abord décalée vers le bas, puis
que ses branches s'écartent ou se resserrent, suivant les phases
relatives de e,, e2 e* e3: il y a écartement lorsque ces coefficients
sont tous réels et positifs (lorsque m3 0 et 2), et resserrement dans
les autres cas (m3 1, 3, 2/3). Quoi qu'il en soit, cette déformation
reste faible et si l'on détermine graphiquement, comme dans l'ex-
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empie de la figure 8 b, les positions théoriques des minima d'intensité,

on trouve que la dépendance entre fi'l et n2 est encore linéaire,
aux erreurs de mesures près; la pseudo-hyperbole (0, m) reste ainsi
une hyperbole, mais d'axe ô'+-\em\k. Ce fait est important: il
permet de déterminer d'après les quantités expérimentales /nn et
la formule (22) une première valeur approximative 0'm (deuxième
colonne de la table I), et de calculer ensuite, à partir de ce 0'm,
les surfaces de dispersion efficaces, exacte (35) et simplifiée (9).
Le rapport des axes des deux hyperboles est alors égal à celui des

valeurs réelle et observée (0'm) de 0m; d'où:

0

sphère o

sphere

Fig. 12.

Coupe schématique de la surface de dispersion pour les quatre spots 0 000,

m 10 m3, p 20 (2 ms) et q 10 m3.
Les axes des pseudo-hyperboles voisines des intersections des sphères sont exagérés,

afin de rendre le schéma plus clair.

Ces valeurs corrigées sont données dans la troisième colonne de
la table I. On constatera que la différence entre &m et 0'm, maximum

(10%) pour m3 2/3, reste faible. Si elle était plus forte, c'est-
à-dire si les pseudo-hyperboles de la figure 12 «empiétaient» les

unes sur les autres, la fonction /i* /(n2) ne serait plus une droite
et le procédé que nous avons employé deviendrait inapplicable. Ce

cas se produit pour des cristaux de poids atomique élevé (0m grand)
ou de grande maille élémentaire (bm petit), tels que la molybdenite,
l'iodure de plomb, le mica. Il n'est donc pas étonnant que l'emploi
de la formule de MacGillavry (20) ne se soit pas toujours révélé
correct pour ces cristaux.

Même pour le graphite d'ailleurs, la détermination de <52o(2m3) ou
^30(3m3) n'est pas possible. En effet, les pseudo-hyperboles de (35)
relatives à ces spots, celles que nous désignons d'après la figure 12

par (0, p) et (p, q) respectivement, diffèrent considérablement des
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hyperboles (9)*), et les fonctions /i2 / (n2) ne sont plus des droites.
Nous ne pouvons pas, en d'autres termes, déterminer directement
d'après les franges observées les coefficients 0m relatifs au deuxième
ou au troisième ordre d'une réflexion du type 10 m3. Tout au plus,
si l'on approximait à des droites les fonctions /li2 — f (n2), la formule
(22) donnerait-elle l'ordre de grandeur de ces coefficients.

Nous pourrions appliquer également aux spots 11 m3 le procédé
d'investigation dont il vient d'être question, mais les différences

pour 0m auxquelles il conduit sont si petites qu'elles ne dépassent
pas les erreurs expérimentales. D'autre part, et comme nous l'avions
déjà remarqué au paragraphe 4, la petitesse relative — en vertu
de (23) — de 022(2m3) et 0*33(3»»,)) ne nous a pas permis de vérifier
la théorie en nous appuyant sur des données expérimentales
suffisamment précises; il en a été de même pour les spots excentriques
(\mx bx + ra2 b2\ > | bx + 62|).

En résumé, nous constatons que la détermination des coefficients
0m du potentiel cristallin au moyen de la formule (22), dont
l'intérêt est de ne mettre en jeu que des mesures de longueurs, est
malheureusement inapplicable pour un grand nombre de spots,
même pour un cristal léger tel que le graphite, et que le nombre
de cas favorables diminue avec l'augmentation du nombre
atomique des atomes du cristal étudié.

Dans un second exemple, nous considérerons les quatre spots 0

000, ra 120, p 101 et q 221 (figure 13a). L'intérêt est den ou-
veau dans le comportement différent des deux parties du spot ra:
«tout se passe comme si le coefficient 0m, mesuré d'après (22),
était plus grand pour les électrons se propageant à l'intérieur de la
bande de Kikuchi (101, 101) que pour ceux de l'extérieur».
L'explication en est donnée une fois de plus par la surface de dispersion,
dont l'équation, du même genre que (35) et mettant en jeu les trois
coefficients em, ep et sQ, permet le tracé exact d'une coupe (figure 13b),
prise selon un plan contenant le point bm et l'intersection des

sphères 0 et m. Comme dans le cas de la figure 11b, la distance
moyenne ô' entre les deux nappes de la surface de dispersion
efficace relative au spot m, n'est pas la même de part et d'autre de la
perturbation, c'est-à-dire de la frontière de la bande (ligne de

Kikuchi 101). Cette différence est assez faible pour que, comme
dans l'exemple précédent, les valeurs apparentes 0'm calculées au

*) En particulier, ô' 4= 0, même si le 0m correspondant est nul (par exemple
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moyen de (22) de part et d'autre de la frontière soient dans le
rapport

0m (mt)l0m (ext) ô' (int)/ <5'(ext)

La mesure d'après (22) du membre de gauche, et le calcul d'après
l'équation pour la surface de dispersion de celui de droite, donnent
pour ce rapport la même valeur de 1,10 ± 0,02.

spneres
oetmSterin

S ml
-— ^ sphères

¦?x-r10'flcentre de
/a bande

Fig. 13 b.

Surface de dispersion relative à la figure 13 a.

En traits renforcés, la surface de dispersion efficace relative au spot m.

Notons encore que le comportement asymptotique de la surface
de dispersion efficace (ô' -> ô — \0m\kjP) ne se réalise pas à
l'intérieur de la bande, à cause de son étroitesse; car il est impossible
de s'éloigner suffisammant de la ligne de Kikuchi 101 sans

rencontrer la ligne 10Ï dont l'effet perturbateur est identique. L'effet
sur un système de franges diminue lorsque les indices de la bande

augmentent, puisque les deux lignes de Kikuchi qui la délimitent
s'écartent et que les coefficients e entrant en jeu diminuent; pour
le graphite, seules les bandes du type ± (10 m3) et ± (11 m3) ont
une action appréciable. Il faut donc éviter, lors de la détermination
d'un 0m, que les spots 0 ou ra ne se trouvent à l'intérieur d'une
de ces bandes.

Lorsqu'une bande est située symétriquement par rapport au spot
000, on sait que l'intensité du fond continu, provenant des électrons
diffusés non élastiquement, est généralement différente à l'intérieur

et à l'extérieur de cette bande; pour le graphite, l'intensité est

toujours plus forte à l'intérieur (figure 14). Divers auteurs, parmi
lesquels Shinohara (1932a), Emslie (1933) et, récemment,
Artmann (1948, 1949), ont étudié ce problème. Artmann a démontré
notamment que le phénomène ne peut être décrit en théorie
dynamique que par la considération de plusieurs ondes intenses (Vielstrahl-
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problem). Ainsi, dans les deux cas des électrons diffusés élastique-
ment — ceux que nous avons étudiés — et inélastiquement, leur
comportement particulier à l'intérieur des bandes de Kikuchi de
bas indices procède d'une cause identique.

Les effets associés aux bandes augmentent également avec le
nombre atomique. Kossel et Möllenstedt (1942) ont publié pour
le mica des photographies analogues à nos figures lia et 13a, et qu'on
peut expliquer de la même façon.

Une discussion quantitative devient pratiquement impossible
lorsque le nombre des spots intenses dépasse quatre, à moins que
leur disposition ne présente une haute symétrie. Le cas se produit
quand la normale au cristal n coïncide avec l'axe du faisceau
convergent (figure 14). Eues (1943 et 1949) en a donné la théorie, pour
le mica, en considérant le spot central et les six spots immédiatement
voisins; il trouve également que le nombre d'unités du décalement
des franges augmente avec l'épaisseur, et que la structure fine des

franges dépend des phases relatives des e.

Nous donnerons la raison, pour terminer, de l'aspect ponctué de
certains spots étudiés aux paragraphes 5 et 6. Nous avons montré
que les minimums d'intensité d'un spot m s'obtenaient de façon
simple en considérant ce que nous avons appelé la surface de
dispersion efficace relative au spot ra, et nous ne nous sommes plus
par la suite intéressé qu'à la position de ces minimums. En effet,
sur la grandeur des maximums d'intensité, la règle que nous avons
énoncée à la page 602 ne peut rien dire. Elle détermine, d'après
l'Appendice II, celle des trois amplitudes u„\, u„\ et u^ qui est
négligeable relativement aux deux autres, mais non le rapport de

ces dernières à l'amplitude A de l'onde incidente, rapport qui
s'abaisse lorsque l'amplitude Up d'un spot diffracté perturbateur
est grande. Sans recourir aux formules exactes — (30) pour trois
spots —, l'on s'attendra, pour les maximums d'intensité des franges
du spot m, à une sensible diminution quand les franges du spot p
sont intenses. Le lieu des points où s'exerce cette diminution est
donc l'image dans le spot m des franges du spot p. L'effet
réciproque du spot m sur le spot p existe aussi, d'ailleurs, mais un spot
sera d'autant plus influencé que son intensité moyenne est plus
faible et celle de l'autre plus forte. Le phénomène est visible dans
les spots des figures 11 et 13. La figure 15 en donne un exemple
remarquable, dû à un cristal de graphite ABC: les franges des trois
spots diffractés se «hachent» littéralement les unes les autres.
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§ 7. Les structures particulières du graphite.

Nous avons vu jusqu'à présent les complications successives que
présente un spot sous l'effet d'autres spots intenses, et avons
constaté que les franges observées dépendaient de la surface de dispersion

efficace, c'est-à-dire essentiellement de l'interférence de deux
ondes intenses seulement. Il nous reste à étudier brièvement
l'aspect de certaines franges, qu'on ne rencontre pas avec tous les
cristaux examinés et dont la figure 16 donne un exemple typique:
elles laissent supposer qu'un plus grand nombre d'ondes intenses
contribuent à leur formation. Elles n'appartiennent pas cependant
à des spots «supplémentaires», en ce sens qu'on peut assigner à

ceux-ci des indices mx, m2 et m3 entiers (ou m3 multiple de 2/3 dans
le cas du graphite ABC). La complexité des franges révèle par contre
un défaut du cristal, plus précisément une transition dans le schéma
d'empilement des couches. Dans les cristaux de graphite AB, par
exemple, il peut se produire une transition ABAB, ACAC (la
virgule marquant la transition) : les deux cristaux partiels ainsi superposés

ont la même maille élémentaire, le même réseau réciproque
par conséquent, mais leurs facteurs de structure*) Fm, semblables
en grandeur, peuvent différer en phase, et cette différence de phase
est responsable des franges observées. La même conclusion
s'appliquerait à une transition ABCABC, BCABCA.

Table III.
Facteurs de structure Fm relatifs à un empilement ABAB...

(premier nombre de chaque case) et ACAC... (second nombre).

m2 m1 -+ 3 n m2 mi +1 =t 3 n m2 m1 +1 -\- 3 n

TO3 ±2 n' 4 ; 4 1 e2.ii/3 j e-2jrï/3

ro3 1 ±2n' 0 ; 0 J/3»; l/~3<fa/6 -/3_i; |/3e-"i/6
n et n' 0, 1, 2,

Table IV.
Facteurs de structure relatifs à un empilement ABCABC...

(premier nombre de chaque case) et BCABCA... (second nombre).

m2 — mx -\- 3 n m2 mx +1 -h 3 n m2 m1 — 1 -\z 3 n

mz ±3»' 6 ; 6 0 ; 0 0 ; 0

m3 V. ± 3 »' 0 ; 0 0 ; 0 3 e-"'3; 3 e"'3
m3 - 7s±3m' 0 ; 0 3 e"'3; 3e-*i/3 0 ; 0

n =0,1,2, 0, «/.. Va

*) Nous désignons ainsi la quantité Fm de la formule (23), bien qu'en toute
rigueur (Z — s (bm)) Fm soit le facteur de structure.
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Le calcul par la théorie dynamique de la diffraction due à ces

cristaux n'est pratiquement réalisable que dans le cas d'une seule

transition, et lorsque la figure de diffraction présente deux spots
intenses seulement. Nous appliquerons donc la théorie du
paragraphe 3 à deux cristaux superposés, à faces parallèles, de même
réseau réciproque, et se juxtaposant à la hauteur du plan où se

produit la transition*). Les trois plans sur lesquels s'appliquent
les conditions aux limites sont définis par

nr —D (face d'entrée Zx),

nr 0 (plan de la transition 272),

nr — D (face de sortie S3).

Dans chaque cristal partiel existent deux champs d'ondes et les

rapports p* oupides amplitudes des ondes d'un même champ sont
données par (11). Quant aux amplitudes relatives des divers champs,
elles dépendent des conditions aux limites sur Zx et 27

2 :

Sur Zx :

Sur 27,

A p1v}me-2niviD+p2ulle-2:zi^D,
0 ule~2*i«1I)+u2me-2»i»*I>,

pluln + p2v?m =p1^ + p2i2,,
**-, + um um + u,„

Ces quatre équations déterminent u^, wj,; u^ et u^ en fonction
des p* et p{. Il reste à déterminer l'intensité \Um\2 dans le spot m
en appliquant la condition aux limites sur 27

3 :

7,1 ->2 n i y' T) ,2 JZniy'D _ TT
ttm C | um V — um.

La substitution des valeurs précédemment obtenues pour û^ et
mJj donne:

'fa (v1-v2) (p1-p2) (v1 e2lziv'-D-v2 e2lliv':D) te2:ziy'-L>-.e2niv*JJ\

J- (px e2 n i v~D - v2 e2 n 'v'D) (e2 "i v'D - e2 *i y'D). (36)

A moins que les vecteurs d'onde ne soient très proches de la
position de Bragg (dans un domaine angulaire inférieur à 0,05°),
l'un des p* (ou des p') est d'après (11) négligeable par rapport à

l'autre, et l'on a, par exemple, p2 fa; p1 et p2 ^p1. Les termes de

(36) contenant p2 et p2 seront alors négligeables. En outre, les
facteurs de structure no différant que d'une phase 2 ncp, on a

*) Nous distinguerons par une barre les quantités relatives au second cristal
partiel.
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Fm Fme2"i(p et aussi, d'après (6) et (23) ïm eme2ni'p. Les
surfaces de dispersion relatives aux deux cristaux sont donc identiques :

il s'ensuit que y1 y{, et p* pi e~2ni<p. (36) devient alors:

^f- ^{exp7ri[2 Ç9 + 2 yiD + (y* + y*) U] sin Tc(iß-y2)D

+ exp Tti[2 y2D + (y1 + y2) D] sin tc (y1 — y2) D)
On obtient pour l'intensité observée, après quelques transformations

trigonométriques :

Um 2 -r^^^T-^=[sin2Tc A y (D+D)~4:sixiTccp sin tc A y D-
4jU2 ®2+|£œ|a L " ' ru¦ sin TcAyD sh\ n[Ay(D + D) + cp\\, (Ay yx — y2). (37)

A

D'après (18) ou (19), le premier terme de cette formule représente
la diffraction due à un cristal de même épaisseur totale D + D,
mais sans transition. Le second terme décrit les perturbations
subies par les franges sous l'effet de la transition; il s'annule
évidemment pour cp 0, c'est-à-dire quand les facteurs de structure
Fm et Fm sont aussi égaux en phase. Tout se passe alors dans le

spot m comme s'il n'y avait pas de transition. Il existe ainsi un
moyen très simple de justifier l'hypothèse de ces transitions. On
observe les divers spots de la figure de diffraction et vérifie que les

franges de ceux pour lesquels Fm Fm (cp 0) conservent l'aspect
qu'elles ont en l'absence de transition. D'après les tables III et IV,
qui donnent les valeurs de Fm et Fm pour une transition ABAB,
ACAC, respectivement ABCABC, BCABCA, les indices de tels spots
satisfont à: n ,OON

mx — m2 on. (38)

Le résultat est d'ailleurs plus général: quels que soient le nombre
et l'espèce des transitions, ces spots conservent l'aspect qu'ils ont
en l'absence de transition*); ils permettront donc de déterminer,
sous les conditions que nous avons vues, l'épaisseur totale du cristal.
La figure 16 illustre clairement ce phénomène, que nous avons
retrouvé avec tous les cristaux à transition observés.

On pourrait ensuite déterminer les épaisseurs des cristaux partiels

grâce aux spots où mx — ra2 3 n, en donnant aux paramètres
D et D dans (37) les valeurs convenables pour rendre identiques
les intensités calculée et observée.

*) En toute rigueur quand deux spots seulement sont intenses. Dans le cas
d'un troisième spot p, les facteurs de structure Fp et Fv_m mis en jeu peuvent
varier en phase d'un cristal partiel à l'autre et modifier éventuellement la surface
de dispersion efficace relative au spot m. La figure 16 montre que cet effet n'est
pas décelable à première vue.
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L'effet des transitions est de «disperser» l'intensité maximum de

part et d'autre de la position de Bragg, comme on peut le constater
sur la figure 16. Il s'ensuit que les lignes de Kikuchi associées à ces
réflexions perdent leur netteté, contrairement aux lignes dont les
indices satisfont à (38) ; c'est ainsi que sur la figure 15 les lignes
de Kikuchi ± (120) et ± (302) restent nettes.

Lorsque les nombres des spots intenses et des transitions
augmentent, la figure de diffraction (figure 17) atteint une complication

beaucoup plus grande qu'en l'absence de transitions (figure 15).
Dans le cas d'une poudre cristalline et d'un grand nombre de transitions,

le phénomène peut être étudié statistiquement et l'on trouve
que les anneaux de diffraction dont les indices satisfont à (38) ne
sont pas élargis (Wilson 1942). Warren (1941) a étudié le cas
extrême de graphite semi-amorphe où les couches d'atomes restent
parallèles et équidistantes, mais sont déplacées de façon arbitraire
les unes par rapport aux autres.

Il nous reste à citer les transitions mixtes, ABAB, CABCAB par
exemple, entre les deux variétés de graphite. Tous les spots
communs aux deux cristaux partiels ont le même facteur de structure;
leurs franges permettent donc de déterminer l'épaisseur totale. Pour
les autres spots, la théorie de ce paragraphe n'est pas applicable
puisque l'un des deux facteurs de structure Fm et Fm est nul. En
première approximation, ces spots sont identiques à ceux que
fournirait indépendamment chaque cristal partiel. L'absence d'un
accord quantitatif entre la somme des épaisseurs partielles ainsi
déterminées et l'épaisseur totale, nécessiterait une extension de la
théorie au cas de trois ondes intenses traversant le cristal à transition.

D'après les observations faites sur un grand nombre de cristaux
uniques, nous estimons à 5% la proportion de graphite ABC
relativement à la variété ordinaire AB. Cette valeur ne dépend pas de

l'origine du cristal et est en accord avec celle qu'a trouvée Bacon
(1950) d'après des diagrammes de poudre. Les transitions sont
relativement plus fréquentes dans la variété ABC, mais il est de toute
façon peu fréquent de rencontrer un cristal d'épaisseur supérieure
à 2000 Â qui ne présente une transition. Nous n'avons observé
qu'une seule fois un empilement ABC sans transition (figure 15).
Nous avons pu vérifier sur ce cristal que les spots associés à un
facteur de structure nul étaient absents — ou très faibles*) — et
justifier avec certitude l'existence de la variété ABC du graphite.

*) A cause de la présence d'autres spots intenses.
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Conclusions.

Nous avons montré dans ce travail que la théorie dynamique
rend correctement compte des diagrammes de diffraction dus au
passage des électrons à travers le graphite. Nous avons utilisé la
technique expérimentale de Kossel et Möllenstedt, qui permet
d'observer de la façon la plus favorable les variations d'intensité
prévues par la théorie.

Les résultats suivants ont été obtenus:

1° Dans le cas où la figure de diffraction ne présente que deux
spots intenses, nous avons vérifié que la formule (20) permet une
détermination satisfaisante de l'épaisseur du cristal et de certains
facteurs de structure.

2° L'emploi de la formule en question reste malheureusement
très restreint, car la présence d'autres spots intenses est souvent
inévitable.

3° Dans les cas de trois ou quatre spots intenses sur la figure de

diffraction, nous avons introduit la notion de surface de dispersion
efficace qui facilite l'interprétation des phénomènes observés
(décalements des franges d'interférences, leur comportement particulier

à l'intérieur des bandes de Kikuchi de bas indices).

4° Nous avons rencontré diverses particularités dans la manière
dont s'empilent les couches du graphite; en particulier, nous avons
mis en évidence sur des cristaux uniques l'existence de la variété
rhombohédrique de ce cristal.

Le présent travail a été effectué à l'Institut de Physique de
l'Université de Genève sous la direction du professeur J. Weigle; je
tiens à le remercier pour l'intérêt constant qu'il a porté à mes
recherches, dont il m'avait proposé le sujet.

Ma gratitude va également au professeur R.-C. Extermann pour
ses précieux conseils.

Je remercie enfin Messieurs Andersen, de la maison Caran
d'Ache, Lukesh, de la General Electric, et Bacon, de Harwell, qui
ont obligeamment mis à ma disposition des échantillons de graphite.
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Appendice I.

Le passage à la théorie cinématique*).

On sait que cette théorie adopte le procédé de calcul suivant: on détermine
d'abord la diffraction due à un seul atome, en considérant la déviation des électrons
incidents dans le champ de potentiel créé par les charges de cet atome. Puis on
additionne les amplitudes des ondes diffractées par tous les atomes du cristal,
compte tenu de leurs phases, pour obtenir l'effet total. Ce procédé relativement
simple n'est évidemment justifié que si l'on peut négliger la rediffraction par les
atomes suivants des électrons déjà diffractés une première fois, l'intensité diffrac-
tée restant par conséquent toujours petite par rapport à l'intensité incidente. Dans
le cas d'une lame cristalline à faces parallèles, d'épaisseur D Na3, on sait que
l'intensité I d'un spot diffracté m vaut

I C
sin2 n N (a3, b)

sin2 n (a3, b)

où le vecteur b (tracé dans l'espace réciproque) est égal à la différence entre les
vecteurs des ondes diffractée et incidente. Pour la position de Bkagg (6 bm),
I CN2; de part et d'autre de cette position, I décroît en s'annulant périodiquement

lorsque
(a3, b) n/N (n entier)

En transcrivant cette relation dans la notation de la théorie dynamique, nous
trouvons pour les distances angulaires /nn séparant les minimums d'intensité de la
position de Bkagg :

y

Si nous comparons ces valeurs avec celles que donne la formule (20) du
paragraphe 3, nous constatons que les deux théories donnent des résultats identiques
pour \£m\kD/yn <^ 1. Il est donc inexact de restreindre l'application de la théorie
cinématique à des cristaux extrêmement minces seulement. On peut toujours,
quelle que soit l'épaisseur (finie) du cristal, trouver un ordre w à partir duquel
cette théorie est applicable, l'angle jxn' correspondant restant d'ailleurs invariable,
puis que les minimums se resserrent quand D augmente ; jxn' ne dépend que de [£TO|&,

c'est-à-dire de la distance minimum séparant les deux nappes de la surface de

dispersion. Pour/* > pin', les résultats dynamiques confirment la théorie cinématique;
l'hypothèse de base de cette dernière doit donc se trouver vérifiée. Les formules
(19) le prouvent sans autre, puisque \U0/A\2 -> 1, tt \Um/A\2 -> 0, pour tout angle

fl > /Mi'.
En résumé, ce n'est pas l'épaisseur du cristal qui est déterminante pour savoir

si la théorie cinématique est applicable, mais bien la distance séparant la région
du spot étudié de la position de Bbagg (et des droites perturbatrices dans le cas
de trois spots intenses ou davantage). Comme l'angle critique /j,n' augmente avec
em, les «effets dynamiques» s'observeront surtout dans les spots d'indices peu
élevés.

*) Cf. Fues (1948).
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Appendice II.

Justification dans un cas particulier des propriétés de la surface de dis¬

persion efficace.

Considérons la surface de dispersion de la figure 8 b et une orientation des
vecteurs d'onde telle que leurs origines soient, par exemple, alignées sur une
normale au cristal rencontrant la surface de dispersion à mi-chemin des points L' et
L". En vertu de (8), les équations (24) valables pour chaque champ d'ondes i,
peuvent être mises sous la forme:

(» 1,2,3) (24')

Désignant par ô la moyenne des axes des pseudo-hyperboles situées près de L'
et de L" (ô ~|e[fc en vertu de (9)), l'on voit que les 2 x1, (j 0, m, p) sont beaucoup

plus grands que â sauf 2xim, 2 x2 et 2 x\ qui sont beaucoup plus petits. On

trouve les ordres de grandeur relatifs des amplitudes du premier champ d'ondes,

par exemple, en mettant (24') sous la forme :

o m p= > (2V: nombre relativement grand
i 1 i 1 ^, n dépendant de la surface de disper-
0 ' N m P— ' sion et de l'orientation choisie des

i i ,r i „ vecteurs d'onde.)
uo + Um + Nup==° >

2x\u\ + e^mkulm + e_vkulp 0

emku\ + 2x%mu,m +s^sku%v 0

Epku\ + eskulm +2xlpulv 0

d'où l'on déduit que

On trouverait de même :

,:«J l:-y:l.

:ul l:l:N,
<¦¦<¦'% N:1'A-

Considérons maintenant les deux dernières équations des conditions aux limites
(27) ; eu égard aux rapports que nous venons d'écrire elles peuvent se mettre sous
la forme:

um + um + um ° '

d'où:

u}:ut:ui N:l:N.m m m

Ainsi, pour l'orientation choisie des vecteurs d'onde, i^m est négligeable par
rapport à v}m et usm, et il s'ensuit la règle énoncée à la page 602. Le même raisonnement

s'appliquera à d'autres orientations: pour les origines des vecteurs d'onde
situées entre L et L", u serait négligeable, etc. Il y a évidemment ambiguïté
aux discontinuités de la surface de dispersion efficace (en TJ et L"), où certains
des x%. sont de l'ordre de ô.
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