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Eine neue Methode zur Behandlung der longitudinalen
und skalaren Photonen
von K, Bleuler.
(10. VI. 1950.)

Summary: Gupta has introduced an alternative method of quantization for the
Maxwell field which differs from the usual one in that the scalar part of the
field is quantized by means of the indefinite metric of Dirac. It is shown that this
method can be extended into a general and consistent theory, including the case
of interaction with electrons. Some of the advantages of the new method are the
following: The well known difficulty of normalizing a state vector satisfying the
Lorentz-condition no longer occurs. For processes taking place within long time
intervals the photon-vacuum can consistently be stated in the form A'_,'; (%) o = 0,

a condition which could not be fulfilled in the ordinary theory. Gauge invariance
is exhibited in a peculiar direct way. It is shown, by a canonical transformation,
that the theory is equivalent with the reduced theory where the longitudinal field
is eliminated, and replaced by the static Coulomb-interaction. All physical results
are therefore identical with those of the ordinary theory. Lorentz invariance is
exhibited in a simple way.

I. Einleitung.

In der Quantenelektrodynamik hat es sich als sehr zweckméssig
erwiesen mit allen vier Komponenten des Vektorpotentials 4 (x)
in symmetrischer Weise zu rechnen; d. h. man vermeidet die Eli-
mination des longitudinalen und skalaren Teils mit der entspre-
chenden Ersetzung durch das Coulombpotential (,,reduzierte
Theorie*). Dann hat man aber eine Nebenbedingung (Lorentz-
bedingung) zu verwenden; nach Ferm1!) schreibt man im Falle
ohne Wechselwirkung:

04
Q(w)wETf;ff—)w:O (1.1)

(z steht fiir den allgemeinen Raumzeitpunkt (z;, ... x,); iber
gleiche Indizes p=1, .. 4 soll stets summiert werden; y bedeutet
den zeitunabhingigen Zustandsvektor). Damit stosst man aber auf
eine erste Schwierigkeit: Mit der iiblichen Definition der Operatoren
Ay enthilt der Zustand v, der (1.1) erfiillt, eine unendliche Anzahl
von skalaren und longitudinalen Photonen?). Abgesehen von der un-
physikalischen Tatsache, dass diese Photonen auch im Vakuum
vorhanden sein miissen, fithrt dies auch zu mathematischen
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Schwierigkeiten: y ist nicht normierbar, d. h. (1.1) ist streng ge-
nommen gar nicht erfallbar. BELiINFANTE hat auch gezeigt, dass
dieser Umstand zu Mehrdeutigkeiten im Resultat fithrt?).

Weiter wirkt es sehr storend, dass, trotz der symmetrischen Form
der Theorie, das Vakuum nur durch Abspaltung des transversalen
Teils definiert werden kann. Zwar hat Scawincer?®) den Vorschlag
gemacht, die folgende Vakuumdefinition einzufithren:

Ay (x) yo=0. (1.2)
(A" bedeutet den Anteil positiver Frequenz.)

Formal wire diese Bedingung lorentzinvariant und stellte in ein-
fachster Weise denjenigen Zustand dar, fiir welchen der Erwartungs-
wert der Energie zu einem Minimum wird (ohne die Nebenbedingung
zu beniitzen). In der bisherigen Theorie ist aber (1.2) unerfallbar:

Wenn A4, nach der gewshnlichen Methode quantisiert wird, ist 47
der Emissionsoperator und es gibt offenbar keinen Zustand, bei
dem die Emission eines skalaren Photons verhindert werden kann.
Ausserdem widerspricht (1.2) der Lorentzbedingung. Trotz dieser
Widerspriiche hat es sich gezeigt, dass die formale Beniitzung von
(1.2) zur Berechnung von Vakuum-Erwartungswerten (jedenfalls
fiir Prozesse in langen Zeitintervallen) in einfachster Weise zu
richtigen Resultaten fithrt*). Die ,,Richtigkeit’ der Resultate be-
weist man eben entweder dadurch, dass sie identisch mit den
Resultaten der reduzierten Theorie (longitudinales und skalares
Feld eliminiert) sind*%), oder durch die Feststellung, dass die so er-
haltenen Vakuum-Erwartungswerte dieselben sind, wie wenn das
Vakuum durch die Abwesenheit der transversalen Photonen allein
definiert 1st?). Beidemal muss man sich im wesentlichen auf die
reduzierte, nicht invariant formulierte Theorie als Kriterium fiir
,»Richtigkeit** beziehen.

Diese hiochst merkwiirdige Situation legt es nahe, zu vermuten,
dass es eine widerspruchsfreie Theorie geben muss, die von vorne-
herein die 4 Photonenarten symmetrisch behandelt und bei der
das Vakuum durch (1.2) definiert ist.

Emn Vorschlag in dieser Richtung wurde kirzlich von Gupra®)
fiir den Fall ohne Wechselwirkung gemacht, und es soll im fol-
genden gezeigt werden, dass dieser Vorschlag in eine allgemeine
und widerspruchsfreie Theorie ausgebaut werden kann. Das wesent-
liche der Guptaschen Idee ist folgendes: Zunéchst kommt der
imaginédre Charakter von 4, im entsprechenden Operator in anderer
Weise zum Ausdruck: an Stelle des Faktors ¢ (imaginére Einheit)

*) Vgl. dazu auch Abschnitt 2.
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tritt der von Dirac und Pauri?) in der sog. indefiniten Metrik
eingefithrte Operator #; dadurch wird erreicht, dass auch 4, durch
einen Absorptionsoperator dargestellt wird, d. h. (1.2) wird erfill-
bar und bestimmt einen Zustand in welchem gar keine Photonen
vorhanden sind. Anderseits wird die neue Lorentzbedingung so
formuliert, dass sie mit der Vakuumdefinition (1.2) vertraglich
wird. Dadurch werden zugleich die Normierungsschwierigkeiten
von 9 behoben. Da nun der Operator # in der Normierung und
allgemein im skalaren Produkt zweiler Zustandsvektoren auftritt,
wird ein bestimmter physikalischer Sachverhalt nicht mehr durch
eine eindeutige Funktion y dargestellt: es sind vielmehr immer
gewisse Zusatze moglich, welche im skalaren Produkt keinen Beitrag
liefern. Dies hat zur Folge, dass z. B. die Erwartungswerte des
Vektorpotentials bis zu einem gewissen Grade unbestimmt sind,
und zwar gerade innerhalb des Rahmens einer Eichtransformation.
Eichinvariante Grossen wie z. B. die Feldstédrken sind eindeutig.
Interpretationsschwierigkeiten bestehen nicht, da das Auftreten von
negativen Wahrscheinlichkeiten durch die neue Lorentzbedingung
verhindert wird.

In der vorliegenden Arbeit soll nun gezeigt werden, dass man in
dieser Weise eine einheitliche Theorie des Maxwellschen Feldes in
Wechselwirkung mit Elektronen formulieren kann: In Abschnitt 2
wird zundchst die Guptasche Theorie des elektromagnetischen
Feldes allein in etwas anderer Form dargestellt; die Lorentz-
invarianz kann dadurch leicht eingesehen werden. Abschnitt 3
bringt die Formulierung der Wechselwirkung mit der dazuge-
horigen Erweiterung der neuen Lorentzbedingung. Der Anschluss
an die klassische Theorie wird durch das entsprechende Verhalten
der Erwartungswerte sichergestellt. In Ziffer 4 wird mit Hilfe der
Elimination des longitudinalen und skalaren Teils gezeigt, dass
man die bekannte reduzierte Theorie erhélt; d. h. in physikalischer
Hinsicht ist die neue Methode mit der tblichen Theorie vollig
aquivalent. Im letzten Abschnitt wird das Vakuum zunéchst in
der alten Form definiert (keine transversalen Photonen): Es zeigt
sich dann, dass man damit bei geeigneter Eichung automatisch
auf eine Bedingung der Form (1.2) gefithrt wird. Im Falle des Vor-
handenseins von Ladungen erhélt man allerdings einen Zusatzterm,
der im Rahmen der iblichen Theorie bereits von Jaucm und
CorsTER®) angegeben worden ist. Man erhélt damit das elektro-
statische Feld, welches in diesem Falle auch im Photonenvakuum
vorhanden sein muss. Ebenso ergibt sich fiir Prozesse, die sich in
einem endlichen Zeitintervall abspielen, ein Beitrag, der in ein-
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fachen Féllen die momentane Wirkung des Coulombpotentials
darstellt. Er ergibt sich auch aus dem Vergleich mit der ,,redu-
zierten Theorie. Fir unendliche Zeitintervalle dagegen ver-
schwindet dieser Beitrag, so dass die Vakuumbedingung die Form
(1.2) erhalt. '

II. Die Quantisierung des Maxwellschen Feldes.

A. Die Definition der Operatoren und der Erwartungswerte.

Die Feldoperatoren 4, sollen die bekannten Relationen erfiillen
(mith =¢=1):

04y (x) =0, (2.1)
1[4, (x), 4,(y)]=0,,D(@-y);% (2.2)
dagegen sollen alle vier Komponenten hermitisch sein:
Ay=A4,, p=1,..4;*% (2.8)
d. h. in der gewohnten expliziten Darstellung:
1 thx | o* —ikz .
Ay (2) = Z]/ (a7 €1+ a5 e (2.4)
= 2v|k|
=4y (z) + A, (2),
mit
[ 5s O3] = O0ur 037
und

* i
Gu 50y 5 =Ny5 fir p=1,..4.

(k bedeutet den riumlichen Teil des Vierervektors k; kulky=0.
A7, (resp. Ay) stellt den Anteil positiver (negativer) Frequenz dar,
d. h. die Terme ~e**# (~ ¢~ =)} Damit wird auch 4% ein Absorp-
tionsoperator, d. h. (1.2) ist erfiillbar. In der tiblichen Theorie wird
aber 4, durch Multiplikation mit ¢+ antihermitisch gemacht; um
(2.2) zu erfiillen miissen dann noch a, und aj vertauscht werden.
Aus diesem Grunde wird dort A} ein Emissionsoperator. An Stelle
dieser Methode verwendet man nun das folgende Verfahren: Der
Operator 5 sei durch die folgenden Beziehungen definiert:

nAr(x)=A,(x)y, r=1,2,8,
ndy(x) =—A4(2) n,

*) Im Gegensatz zu der Arbeit von SCHWINGER (l. ¢.) verwenden wir hier das
iibliche Vorzeichen der invarianten D-Funktion.
**) Der Stern soll hier stets hermitisch konjugiert bedeuten.

2.5)
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d. h. 4, wird erst durch den Vorzeichenwechsel in diesen Relationen
ausgezeichnet. Es folgt zunichst, dass #2 mit allen Komponenten
kommutiert; man kann deshalb mit zweckméssiger Normierung
schreiben

n?=1,  ebenso 7 = (2.6)

d. h. n wird hermitisch gewahlt. Die explizite Darstellung lautet
in vereinfachter Bezeichnungsweise:

o0, = 0 [ O, @.7)

Damit wird %4, hermitisch, wéhrend n A4, antihermitisch wird;
man schreibt nun die Erwartungswerte 4 in der neuen Form:

Ap=* nduy) =y Auy), (2.8)
wobei der adjungierte Zustand y' durch
ph=y* 7 (2.9)

definiert wurde. A_M erhidlt dadurch die richtigen Realitdtseigen-

schaften, inshesondere wird i 4, reell. Dementsprechend heisst jetzt
die Norm N des Zustandes y:

N =@, y). 2.10)

Diese Grosse ist zunéchst nicht positiv definit; es zeigt sich aber,
dass alle Zustédnde, welche die Lorentzbedingung erfiillen N =0
ergeben.

B. Die Lorentzbedingung und die Normierung.

Nach dem Vorschlage von Gupra schreibe man fir die Lorentz-
bedingung an Stelle von (1.1):

0AT
u

0

Q+y= p=0.%) (2.11)

Diese Bedingung ist bei der angegebenen Wahl der Operatoren 4,
schwécher als (1.1); dennoch folgt daraus, dass der Erwartungs-

*) In der iiblichen Form der Quantisierung ist diese Bedingung mit (1.1)
dquivalent; mit einer Darstellung analog (2.13) verifiziert man z. B. leicht, dass
in diesem Falle (1.2) und (2.11) dieselben (nicht normierbaren) Zustandsfunktionen
bestimmen. Ich verdanke diese Bemerkung Herrn Dr. R. JosT in Princeton.

*
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wert der Viererdivergenz verschwindet: Die hermitisch konjugierte
Gleichung lautet wegen Aj* = 45 (vgl. 2.4)

o ( 04r OA:) ~0;

oz, 0y

bel Multiplikation mit # von rechts

zp*(aA’T):-stp*Q—:O;

0 xy

d. h. zusammen mit (2.11) (2 = @+ + Q-)

(z,u‘f, %ijf ’q)) ~0. 2.12)

Damit wird zusammen mit (2.1) der Anschluss an die klassische
Theorie hergestellt.

Um nun einzusehen, dass (2.11) erfillbar und mit der Vakuum-
bedingung (1.2) vertraglich i1st, verwenden wir fiir den rdumlichen

Teil A des Feldes die bekannte Darstellung:

* 1 ikx * —ikx
2e® Vg @ anze™  @13)
k

. 3
iw-%
mit

(Em’ zn) = amn’

219 R) = (62975) :05 (23’7‘5) = |7{;l’

wobel die a,, wie bei (2.4) definiert sind und 4, unveridndert bleibt.
N; und N, stellen dann die Anzahlen der longitudinalen und der

skalaren Photonen dar. (2.11) ergibt nun fiir jeden Vektor k:
(ay7 +ia,7)p=0. % 2.14)

Schreiben wir zur Abkiirzung (unter Weglassung des Indexes E)
fir eine Zustandsfunktion (N, N,), die genau N, longitudinale
und N, skalare Photonen enthilt ¢ (N5, N,), d. h.

' (N3 ﬁat) = ‘51\”*3 N3 6E4 Ny’ (2-15)

*) An dieser Stelle ist leicht einzusehen, dass (1.1) und (2.11) nun nicht mehr
dquivalent sind: Aus (1.1) wiirde neben (2.14) noch eine zweite Bedingung mit
Emissionsoperatoren folgen, die unerfiillbar ist.
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so wird (2.14) durch die folgenden Zustinde ” erfiillt:
p? =f0 (N1 Np) 9 (00) (2.16)
pr=f{e(L0)+ig(01)}
v ={e@0) +iy2¢(11) - ¢ (02)}

-----

v =f"{o @0)- -+ @)/ ple-r1) - + (i) p On)

.....

Dabel bedeuten alle f* willkiirliche Funktionen von N; und N,.
Den allgemeinen Zustand v, welcher (2.14) befriedigt, erhilt man
durch die lineare Verbindung:

= De,pn. (2.17)

Fir die Normierung ist nun zu beachten (vgl. (2.7 und (2.10)),
dass y° eine positive Norm besitzt:

(¥°", 9% = 3 f7f* >0, (2.18)
‘NIN2

wiahrend alle anderen Normen und skalaren Produkte verschwin-
den:
(ynTy™) =0  fir n+0 oder m=0 (2.19)

(Man beachte eine einfache Eigenschaft der Binomialkoéffizienten

(f)) . Daraus folgt zun#chst, dass auch der allgemeine Zustand (2.17)

eine nicht negative Norm besitzf; sie verschwindet fiir ¢, = 0. Man
verlangt nun:

| (¥' ) =1. (2:20)
Dies lefert ¢, £ 0 und wird erfiillt durch
D9 " = mit g% = ¢, " (2.21)

‘Nl NZ
Die ¢, fiir n > 0 bleiben dabei willkiirlich.

Die Funktionen ¢°(N;N,) werden deshalb im tiblichen Sinne als
Wahrscheinlichkeitsamplituden von N, resp. N, transversalen
Photonen interpretiert, wihrend fiir die physikalisch nicht beob-
achtbaren longitudinalen und skalaren Photonen keine Vorschrift
besteht. Die allgemeine Wahrscheinlichkeitsaussage ist durch

w=2 0% g

Ny Ny

gegeben, wenn ¢¢ und g9 die entsprechenden Anteile zweier Zu-
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stinde y; und y, bedeuten. Diese Grosse kann nun wegen (2.18,19)
in der einfachen Form

w= (v, ) (2.22)
geschrieben werden.

Es 1st fiir diese Theorie charakteristisch, dass nur Zustands-
funktionen y, welche die Lorentzbedingung (2.11) erfillen, in der
angegebenen Weise physikalisch interpretiert werden. Weiter folgt
aus dieser Definition, dass eine vorgelegte Zustandsfunktion (sie
muss die Form (2.17) besitzen) ihre physikalische Bedeutung
nicht @ndert, wenn die Funktionen ¢, f*(n > 0) verschieden ge-
wahlt werden. Anderseits kann man diese ,,Beimischungen‘‘ nicht
weglassen, da sie im Falle der Wechselwirkung mit Elektronen von
selbst 1n der Losung der zeitabhidngigen Schrodingergleichung auf-
treten werden, wenn der Anfangszustand mit ¢, = 0 (fir n > 0)
gewidhlt wurde. Die Bedeutung dieser willkiirlichen Zusatze liegt
in der Moglichkeit, die Potentiale in beliebiger Weise zu eichen.
Dies soll an zwei einfachen Beispielen illustriert werden:

Man berechne die Erwartungswerte A4, im Zustande
p=y+ayt

als Funktion von ¢!. (9! soll sich auf emnen einzigen Wellenzahl-
vektor k beziehen.) Mit Hilfe von (2.13) ergibt sich dann

0

Zu

= () Ay — 2 A
mit
A= & 901 eikx 1 C: g(’;‘l e—ikx’

wobel die Konstante g, von k, co f® und j' abhingt. Auf diese
Weise lasst sich jede beliebige Umeichung erreichen, welche

0A=0

erfiillt. Man sieht daraus, dass die Feldstdrken eindeutig bleiben.
Im allgemeinen werden nur eichinvariante Griossen R (Energie,
Impuls usw.) eindeutige Erwartungswerte haben:

R=(y", Ry) = (y*T Ry?).

Ein typisches Beispiel einer nicht eichinvarianten und deshalb
nicht eindeutigen Grosse ist auch der Operator P {4, (z), 4,(y)}.
(P bedeutet die zeitliche Ordnung des Produktes.) Der Vakuum-
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erwartungswert kommt z. B. ber der Berechnung von Stossen
zwischen zwei Elektronen vor:

U % [ [ PLu@) i)} PLu(@) 4, )Py dtedty. (2.29)

Verwendet man dabei fiir den Vakuumzustand p = yw, + ¢; ol
(vgl. 2.24), so werden die von ¢; abhéngigen Zusatze durch die Be-
dingung fiir den Viererstrom

0j
0 a:‘: =0
gerade fortgehoben; d. h. das Resultat bleibt eindeutig.

Aus (2.16) sieht man ohne weiteres die Vertriaglichkeit der Lo-
rentzbedingung (2.11) und der Normierung (2.20) mit der Vakuum-
defiition (1.1). Man erhalt jetzt den Zustand, in welchem gar
keine Photonen vorhanden sind:

vo=[[0y, 0: (2.24)
u

d.h. ¢, =0 fiir n > 0, g} = 0x,00x,0. Verwendet man aber die
iibliche Vakuumbedingung

A () y, =0, (2.25)

wobei QU den transversalen Teil von 4 darstellt (d. h. die beiden
Terme m = 1 und m = 2 in (2.18)), so erhélt man einen Zustand,
der sich von (2.24) nur um bestimmte ,,Beimischungen‘ der Form
(2.17) unterscheidet; d.h. die beiden Vakuumdefinitionen sind
physikalisch dquivalent.

C. Die Lorentzinvarianz.

Die Lorentzinvarianz des angegebenen Quantisierungsverfahrens
kann mit den tblichen Methoden eingesehen werden; es ergeben
sich lediglich einige Unterschiede in den Realitdtseigenschaften.
Die vorgelegte Transformation sei

Xy () = Gy 2, (2.26)
Bildet man aus den Operatoren 4, die neuen Gréssen
Ay =y Ay (@ (2))- - (2.27)

(x(z") bedeutet die zu (2.26) inverse Transformation), so erfiillen
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diese wieder dieselben Relationen (2.1,2.2); sie konnen durch eine
Ahnlichkeitstransformation aus den alten Grossen gewonnen werden:

Ay (x)=8"14,(x)S. (2.28)
Fir infinitesimale Transformationen
Quy = Ouy+Eup, Eup=—Eyy (2.29)
lasst sich S explizit angeben:
| S=1I+ey,Opyy. ™) (2.30)
Dabei bedeutet 1 (@yy— 05,) den Drehimpulsoperator;
_[104s 0ds 04y _ 1 04y 04,

Opv(Te) =— [\ A+ 2u (]m vz T om 0w O )}d%'
xy, = const (231)

Die Integration erstreckt sich iiber die Flache x, = const.; we-
gen der Drehimpulserhaltung wird aber @,,—6,, von x, unab-
héngig. Aus (2.2) erhilt man die V.-R.:

0 Az, - b

54, 8)] =6 (F =) dur- 2.52)
Damit verifiziert man leicht, dass nun aus (2.28) mit (2.30) und
(2.31) folgt

Af,” () = A# (z) + Epy A, (x) + e6s %o 3" -

Dies stimmt mit (2.27) fiir infinitesimale Transformationen tberein.
Es ist jetzt aber zu beachten, dass S wegen (2.3) und dem 1magi-

niren Charakter von ¢, = — & ; nicht mehr unitir ist. Dafiir
folgt nun aus (2.30, 31) wegen (2.5) und (2.5):
S*p =98 (2.38)

d. h. bei der Transformation
p' =Sy (2.34)

bleibt die Norm, oder allgemein das skalare Produkt invariant:

(v", ) =" v). (2.35)

Dies ist im Rahmen dieser Theorie notwendig und gilt fiir alle
Transformationen, welche in Betracht kommen. (Vgl. 2.20, 22.)

*) Summation iiber alle Indices.
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Durch die Transformation (2.34) des Zustandes werden nun die

Erwartungswerte A, in der richtigen Weise transformiert: Mit
(2.27, 28) und (2.33) folgt ndmlich

Z’; (x") = (yj'f\, A‘u Y) =auy L(.ﬁc (a:’)) . (2.36)

Die Umkehr der Zeitachse z, = z,, ©; = — x, kann hier durch die
Transformation

¥ (Nu3) = v (Ny, 3) (2.87)

dargestellt werden.*)

Zum Schlusse dieses Abschnittes sel erwdhnt, dass man den von
Gurra$) eingefithrten Operator fiir 4, aus den hier angegebenen
Grossen durch die Beziehung

Ag=n4, (2.38)
erhilt. Es gilt dann wegen (2.5) und (2.6)
A2 = — 42.

Mit (2.88) ergeben sich fiir 4, auch die richtigen V.-R. und der Er-
wartungswert wird reell :

Zo = (‘P+: 4, p) = (QP*: 4, ’P) .

III. Die Wechselwirkung mit Elektronen.

Um die Wechselwirkung zu beschreiben, verwenden wir die
,,Interact_i_on Representation mit ebener Fliche t = const. Die
zeitliche Anderung des Zustandes y(t) ist dann gegeben durch

.0 .
@%:Hipz{—fAM(a’;)]M(m)d%e}zp(t). (3.1)
xy =it
Dabei sind die im vorigen Abschnitt definierten Operatoren 4, zu

verwenden, wahrend j, den Viererstrom des Diracschen Feldes
ohne Wechselwirkung darstellt:

; : 01 . ¢
J4=10, M =0, [u,n=0. (3-2)

0 xy
Die Normierung des Zustandes sei wieder durch
N=(y' y) =1 (3.3)

*) Fir reelle Darstellung der Operatoren a, a* in (2.4).
37
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gegeben. Wegen (2.3) und dem antihermitischen Charakter von j,
1st H nicht hermitisch, dafir gilt jetzt:

H*y=nH. (3.4)

Dies ist aber fiir die zeitliche Erhaltung der Normierung (3.8)
gerade notwendig. Dementsprechend sind die Erwartungswerte
durch

. Au@ ) = (1), 4u(. ) () (3.5)
gegeben.

Fir die Lorentzbedingung hat man jetzt in Verallgemeinerung
von (2.11) im Sinne einer Anfangsbedingung fiir y(f,) zu schreiben:

0 A% (' p ,
!__ 0!5(;_) +./ D* (2’ — ) Q({E)dSm}qp(to) 1, (8.6)
(xy=1t)
abgekiirzt:
Q7 (2" 5 4) p (to) = 0.
Dabei ist
1 @ _ 1 . ‘

D* =5 (D+iDY), D~ =5 (D—1DY)=D"*. %)  (3.7)

Man hat also in der Giblichen Nebenbedingung wieder 4 durch 4+
und zugleich D durch D+ ersetzt. (3.6) ist fir alle Raum-Zeit-
punkte z’ zu erfiillen; wegen

D8R (@ d5) =10
gentigt es auch

)
(@i ¥l =0 wnd (55 2F) (i) =0

zu verlangen. Mit IMilfe der Bewegungsgleichung (3.1) folgt wie
tiblich, dass die Anfangsbedingung (3.6) fir alle Zeiten t gilt:

1?;' = itn

QF(z'; ) p(t) =0. (3.8)
Dies ergibt sich aus der Identitit
) QT (x5t & i B
‘(———0(;’7) ik [H (t) , Q7 (x ;t)] =0,
woflir die V.-R.
i[45 @), 4,(9)] = 6,y D* (2 —1) (3.9)

zu beachten 1st.

*) Das Vorzeichen von DF entspricht demjenigen von D; es ist also gegeniiber
der Arbeit von ScHWINGER I. c. geindert. Fir D' vgl. W. PauLi, Rev. Mod.
Phys. 13, 203 (1941).
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Fir die durch (8.5) definierten Erwartungswerte gelten nun
wieder die klassischen Gleichungen:

Definiert man die Operatoren £ resp. £~ entsprechend (3.6)
indem man 4, und D resp. 4; und D~ einsetzt, so folgt aus (3.8)
mit (3.7) und (2.5) zunéchst:

' (t) @ (¢';8) =0. (3.10)
Damit ergibt sich wegen £ = Q7 + Q-
(v, 2t w() =0.

Setzt man hierin x; = 4¢, so erhilt man wegen dem Verschwinden
der D-Funktion ausserhalb des Lichtkegels

04, A
= 0 (T f;f’ )n= L) =0. (8.11)

Aus (8.1) und (3.4) in Verbindung mit den V.-R. (2.32) ergibt sich
weiter fir z, == it

02 — 024 .
- M — - .
—~—A4,(z) = P und i A4, = dar —lus

zusammen mit den entsprechenden evidenten Beziehungen fiir
die rdumlichen Ableitungen folgt dann mit (2.1)

0 = o

Um den richtigen Energietensor zu erhalten, ist es wesentlich, dass
auch

(', 229) =0

erfiillt 1st*). Diese Gleichung folgt sogleich aus (3.8), (3.10) und
der V.-R.

[2F(z';8), @~ (&";D]=0.
(Man beachte hierzu
OD*=0 und [o(x,t),0(y,?)]=0.)

Damit ist der Anschluss an die klassische Theorie sichergestellt.
Die Lorentzinvarianz ergibt sich in der herkémmlichen Weise
(man beachte das in Abschnitt 2,C Gesagte); iiberdies ist die
Verallgemeinerung von (3.1) und (3.6) auf sog. ,,gekriimmte
Flachen* evident.

*) Wir verdanken diese Bemerkung Herrn Prof. BELINFANTE in Princeton.
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IV. Die Elimination des longitudinalen Teiles.

Die hier gegebene Theorie unterscheidet sich von der tblichen
Form durch die Behandlung der skalaren Photonen und in der
Formulierung der Lorentzbedingung. Fir viele praktische Pro-
bleme, wie auch zunichst zur Definition des Vakuums, 1st es tib-
lich eine Form zu verwenden, in welcher die longitudinalen und
skalaren Photonen durch die Coulombwechselwirkung ersetzt
sind (,,Reduzierte Theorie**). Es soll nun gezeigt werden, dass auch
in der neuen Form diese Elimination moglich ist; dabei wird sich
ergeben, dass man dadurch gerade zu der alten, reduzierten Theorie
kommt; d.h. in physikalischer Hinsicht (Verhalten der trans-
versalen Photonen) liefert die neue Methode dieselben Resultate.
Zur Durchfithrung wird eine geeignete Transformation verwendet:

p(t) =Sy (1) (4.1)
mit
S(t) =e 0%, (4.2)
wobel
G(t) =— [ A(x) o(z) d2x. (4.8)
2 =it
Das ,,longitudinale Potential** A 1st gegeben durch
AA(E, ) =div A(Z,1), (4.4)
oder
" div A (2, t ;
A, 1) = — f -f;'T(_%)I Az, (4.5)
Die Bewegungsgleichung (3.1) ergibt nun fir ¢’ (t):
.0y e ¥ 5 Ty @ "
i = STIHSy —i (S L2 S) Y (4.6)

Zur Berechnung der einzelnen Terme entwickeln wir nach der
Ladung:

. d . da@ 1 @
S IWS:_@EE_—F?[G‘E?]—!*"' (4:'8)

Hier ergibt der zweite Term die Coulombwechselwirkung: Zunéchst

erhilt man aus den V.-R. (2.32) durch Ausiiben der Operation (4.5)

auf beiden Seiten:
[0A(E, 1)
k [ ot

S (4.9)

in|%-% |

, AGELY] -
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Ferner beriicksichtige man
[u@ ), 4,(%, )] = 0 (4.10)

daraus folgt wegen (3.2) insbesondere auch

-, 0o(Z,t
[Q(m A, 22 ).]:0. (4.12)

-

Damit erhalt man mit (4.8):

ff Ei,— a2’ d*z=H,, (4.13)
- .

Weiter ergibt sich auch, dass die Reihe (4.8) bei diesem Term ab-
bricht; der erste lasst sich mit (3.2) umformen:

daG oA(ZE, 1) . 04
W/{ 0‘;‘k Lt o Q}dax. (4.14)

In (4.7) verschwindet bereits der erste Kommutator (vgl. (4.10)
und (2.2)). Nun lassen sich in (4.6) durch Einfiihrung des trans-

versalen Feldes @ zwel Terme zusammenfassen:

A =A-—grad 4 (4.15)
(div A =0 wegen (4.4)).

Damit lautet die Bewegungsgleichung (A4, = 1 V)

5y 2y P
at‘“ =y ‘
{ f((l ?) dz +Hcoul +f )Qd3 } (4.16)
= (Htrans. + HCoul & Hlong)

Hierin stellen die beiden ersten Terme den bekannten Hamilton-
operator der ,,reduzierten’ Theorie dar; der letzte Term wird jetzt
mit Hilfe der Lorentzbedingung eliminiert (erst an dieser Stelle
wird die Rechnung wesentlich anders als in der iiblichen Theorie).
Diese lautet nun:
R (z;0) ' () =0 (4.17)
mit
QY =871 S =2t +1[GRT] +- - (4.18)

Mit Hilfe der V.-R. (3.9) erhélt man zunichst:
i[A(x), div AT (z)] =D+ (2’ — x); (4.19)
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damit ergibt der Kommutator

i[G (), QF (23 1)] = — fD+ (@' —z)o(x)dz,  (4.20)

$4=it

d. h. in (4.18) wird gerade der zweite Teil von £+ (vgl. (3.6)) weg-
gehoben; die Reihe (4.18) bricht beim zweiten Term ab. Die
Lorentzbedingung lautet also nach der Transformation:

04, (x)

0y

7+

, 1 oV
p' =0 oder (Ot

FdivAT)y =0, (4.21)

Man hat also jetzt die Nebenbedingung der Theorie ohne Wechsel-
wirkung; damit ist auch die Erfiillbarkeit von (3.6) bewiesen. Man
kann nun die in Abschnitt II gegebene Interpretation anwenden;
dabei 1st zu berticksichtigen, dass durch die Transformation (4.1)
die Normierung erhalten bleibt:

(p'* ) =1 (4.22)

Um nun einzusehen, dass der letzte Term in (4.16) weggelassen
werden kann, beachten wir zundchst, dass die Relationen (2.1),
(4.4), (4.15) auch fir die entsprechenden Anteile positiver Frequenz
allein gelten: N

divAT=4A4", OAT =0; (4.23)
d. h.

= 02 7
(_11\,* A+ = *atl‘ A T (4.24)

Damit lasst sich (4.21) schreiben:

0T’7+ ()2 r
(G + 0 4%) v =0 (4-25)

Eine explizite Darstellung zeigt aber sogleich, dass dies dquivalent
1st mit

(V7 + 5 4%) 9’ =0. (4.26)

Hier tritt also gerade der Anteil positiver Frequenz des entspre-
chenden Ausdrucks in H,,, auf. Man berechne nun den Beitrag
von H,,, in (4.16) zur zeitlichen Anderung der Amplitude w(t):

w(t) = (9%, v’ () 4.27)
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(vgl. (2.22)), wobel ¢’ einen willkiirlich vorgelegten Zustand be-
deutet, der aber (4.26) zu erfullen hat, d. h. auch

(Pr'l' (V_ + %) =), (428)

Nun ist
- d r r o
i == (¢ H' p'(t))  (vgl. (4.16)).

Hier gibt aber H,,,, keinen Beitrag, wie man sofort aus der Spal-
tung in die Anteile positiver und negativer Frequenz entnimmt:

((p"f’ (V 4 (fi—/tl) 0 1,0’) = {) (4.29)

(vgl. (4.28) und (4.26)). Dasselbe gilt auch fiir alle hoheren Ab-
leitungen, wenn man noch beachtet, dass H,,,, mit allen anderen
Termen von H' kommutiert. Es ist nach (2,1, 4.4 und 4.15)

[@, A]=0. (4.80)

Man sieht daraus, dass H,,,, lediglich die ,,Beimischungen® des
Zustandes p” dndert. (4.16) ist also dquivalent mit

.0y’ ,
v Of = (Htrans. T HCoul.) v. (4.31)

Man kann nun die Quantenzahlen N und N, in ¢’ weglassen (das
System bleibt jetzt dauernd im Zustand der Form %° (vgl. (2.16)).
Die Normierung (4.22) heisst dann

(p'*, »)=1. (4.32)

Damit ist die ,,reduzierte’ Theorie gewonnen. Diese lisst sich auch
direkt durch die Quantisierung einer entsprechenden klassischen
Theorie in widerspruchsfreier Weise gewinnen.

V. Die Definition des Vakuums.

Es soll nun von der iiblichen Definition des Vakuums in der
reduzierten Theorie (keine transversalen Photonen) ausgegangen
werden. Mit Hilfe der inversen Transformation (4.1) wird dann
untersucht, welche Bedingung sich daraus fiir die symmetrische
Theorie ergibt.

Man hat also fiir 4" die Vakuumbedingung

At y,=0. (5.1)
Werden die Quantenzahlen N; und N, beibehalten, so hat man
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auch noch die Lorentzbedingung (4.25) zu verwenden. Nach dem
im zweiten Abschnitt Gesagten, kann man aber dafiir auch die
verschirfte Form anwenden:

Vig,=0, AT yp,=0. (5.2,38)

Da ¥+ nur Absorptionsoperatoren fiir die skalaren Photonen ent-
halt, wihrend A* nur solche fir longitudinale Photonen besitzt,
bedeutet dies nur, dass man sich auf einen Zustand der Form
@ (00) (vgl. (2.16)) beschrinkt. Jetzt geht man mit der Trans-
formation (4.1) zu der symmetrischen Darstellung zurtick:

Po=S""yp. (5.4)
Aus (5.3) wird dann:
(SAT S Hy,=0 (5.5)
oder
{AT =1 [GA* [}y, = 0.

Dies ergibt mit denselben Methoden wie in Abschnitt IV:
{47 @) + [F* (2’ - 7) o(x) d*x vy (ty) =0 (5.6)

. SL'.;——-'itu
mit dem Kern:
f Dt (2" -
Pt . i,
B (2~ x) /4n|"x’—~?&"|

(%
LE;” =@

d* 5" (5.7)
Weiter bleiben die Bedingungen (5.1) und (5.2) ungeéndert wegen

[AVH] =[A4Q*+] =0,
Man hat also zu (5.6) noch
At y,=0 (9.8)
und

A] =0 (9.9)

hinzuzufiigen. Aus (4.15) erhilt man auch

-~

45 =A* +grad 4™,
Damit ergibt sich aus (5.6), (5.8) und (5.9)
, o 7 /
|45 @) + 55 [ Fr @ —2) e(@) @) polts) =0 (5.10)
=1t
A7 () yolty) =0 (5.11)
fir alle " und k=1,2,3, wobei F' durch (5.7) definiert ist. Dadurch



Neue Methode zur Behandlung longitudinaler und skalarer Photonen. 585

1st die strenge Vakuumdefinition der symmetrischen Theorie ge-
wonnen. Im Gegensatz zu (1.2) hat man einen ladungsabhéngigen
Zusatz; dieser 1st in anderem Zusammenhang bereits von Javcu
und CorsTER®) angegeben worden. Man sieht sogleich, dass er aus
Griinden der Vertriaglichkeit mit der Lorentzbedingung (3.6) vor-
handen sein muss: Differenziert man némlich (5.10, 11) nach der
entsprechenden Koordinate x, und addiert die vier Gleichungen,
so erhélt man gerade (3.6). In dieser Theorie 1st also die Vakuum-
definition nichts anderes als eine Verscharfung der Lorentzbedin-
gung. Die physikalische Bedeutung des Zusatzes 1st die folgende:
Berechnet man in dem durch (5.10, 11) definierten Photonvakuum
die Erwartungswerte der Feldstarken, so erhilt man gerade das
elektrostatische Feld der Ladungsverteilung <{e> (Erwartungswert
der Ladung):

B, t))GMgradf “?‘, ‘“P,I & (5.12)

Anschaulich gesprochen bedeutet der Zusatzterm folgendes: Er
stellt in der symmetrischen Theorie die instantane Wirkung des
Coulombfeldes dar, welche in der verkiirzten Theorie explicite
auftritt. Fir Prozesse, die sich in einem endlichen Zeitintervall ab-
spielen, ist der Term tatsichlich wesentlich; dies sieht man z. B.
leicht mit Hilfe der Rechenmethode von Dyson. Im Beispiel (2.23)
hat man dann fiir die Zeit endliche Integrationsgrenzen 4+ T ein-
zusetzen: Wird nun (5.10, 11) anstelle von (1.2) angewendet, so
liefert bereits die erste Naherung

Ut=i [ A,(2)ju () diz

Z
den Beitrag zweiter Ordnung:

+T
. . 0
Up=—i [ d'z [ doyi(n) i F*@—y)ely) (519
= (na=—1T)
+T

i fie [ i g e o)

=T (=i

(£~ ist entsprechend (5.7) definiert).

Man verifiziert iibrigens auch leicht, dass die reduzierte Theorie
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dasselbe Resultat liefert: Verwendet man das Verfahren von
Krorn und KarprrLus, so hat man den Ausdruck
+T
1 /7., . .
U=—3 [ [ is(@7u(y) <P{(x) (y) podizdty  (5.14)

[y

—!

mit Hilfe von (5.1) auszuwerten; dies ergibt nach partieller Inte-
gration gerade den Zusatzterm (5.13).

Javcn und CorsteEr haben nun gezeigt, dass U, fir T = oo
verschwindet; tatséchlich sieht man auch anschaulich aus (5.10),
dass der Zusatzterm, der ja nur das Coulombfeld beschreibt, fiir
ty = =+ oo keinen Beitrag liefert: Er verschwindet dann fiir alle
endlichen 2’. In diesem Falle kann man also mit der Vakuum-
bedingung (1.2) fiir den ladungsfreien Fall rechnen. Man sieht nun
den Vorteil unserer Methode: (1.2) ist erfiillbar. Als Anfangs- und
Endzustédnde kénnen nach den Methoden des zweiten Abschnittes
die Zustande des Feldes ohne Wechselwirkung und ohne longi-
tudinale und skalare Photonen benutzt werden. Da die Lorentz-
bedingung in der Vakuumbedingung enthalten ist, so folgt ferner,
dass fiir virtuelle Zusténde die Lorentzbedingung nicht explicit
verwendet werden muss, wie das auch Gupra in Beispielen getan
hat. Dass alles Gesagte in trivialer Weise verallgemeinert werden
kann, wenn reelle transversale Photonen vorkommen, bedarf wohl
keiner weiteren Erlauterung.

Herrn Professor W. HerrLer mochte ich fiir die vielen Rat-
schlage und die wertvollen Diskussionen herzlich danken. Herrn
Dr. S. N. Guera und Herrn Prof. F. Corster danke ich bestens
fir die Uberlassung ihrer Manuskripte vor der Publikation.

Ziirich, Theoretisches Seminar der Universitit.
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