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Eine neue Methode zur Behandlung der longitudinalen
und skalaren Photonen

von K. Bleuler.
(10. VI. 1950.)

Summary: Gupta has introduced an alternative method of quantization for the
Maxwell field which differs from the usual one in that the scalar part of the
field is quantized by means of the indefinite metric of Dirac. It is shown that this
method can be extended into a general and consistent theory, including the case
of interaction with electrons. Some of the advantages of the new method are the
following : The well known difficulty of normalizing a state vector satisfying the
Lorentz-condition no longer occurs. For processes taking place within long time
intervals the photon-vacuum can consistently be stated in the form A^ (x) y>0 0,

a condition which could not be fulfilled in the ordinary theory. Gauge invariance
is exhibited in a peculiar direct way. It is shown, by a canonical transformation,
that the theory is equivalent with the reduced theory where the longitudinal field
is eliminated, and replaced by the static Coulomb-interaction. All physical results
are therefore identical with those of the ordinary theory. Lorentz invariance is
exhibited in a simple way.

I. Einleitung.

In der Quantenelektrodynamik hat es sich als sehr zweckmässig
erwiesen mit allen vier Komponenten des Vektorpotentials Afi(x)
in symmetrischer Weise zu rechnen; d. h. man vermeidet die
Elimination des longitudinalen und skalaren Teils mit der
entsprechenden Ersetzung durch das Coulombpotential („reduzierte
Theorie"). Dann hat man aber eine Nebenbedingung (Lorentz-
bedingung) zu verwenden; nach Fermi1) schreibt man im Falle
ohne Wechselwirkung:

UW^f-0
(x steht für den allgemeinen Raumzeitpunkt (xx, x4) ; über
gleiche Indizes /li 1, 4 soll stets summiert werden ; xp bedeutet
den zeitunabhängigen Zustandsvektor). Damit stösst man aber auf
eine erste Schwierigkeit : Mit der üblichen Definition der Operatoren
A/j, enthält der Zustand y, der (1.1) erfüllt, eine unendliche Anzahl
von skalaren und longitudinalen Photonen2). Abgesehen von der
unphysikalischen Tatsache, dass diese Photonen auch im Vakuum
vorhanden sein müssen, führt dies auch zu mathematischen
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Schwierigkeiten: y> ist nicht normierbar, d.h. (1.1) ist streng
genommen gar nicht erfüllbar. Belinfante hat auch gezeigt, dass
dieser Umstand zu Mehrdeutigkeiten im Resultat führt2).

Weiter wirkt es sehr störend, dass, trotz der symmetrischen Form
der Theorie, das Vakuum nur durch Abspaltung des transversalen
Teils definiert werden kann. Zwar hat Schwinger3) den Vorschlag
gemacht, die folgende Vakuumdefinition einzuführen:

A;(x)fo 0. (1.2)

(A+ bedeutet den Anteil positiver Frequenz.)

Formal wäre diese Bedingung lorentzinvariant und stellte in
einfachster W'eise denjenigen Zustand dar, für welchen der Erwartungswert

der Energie zu einem Minimum wird (ohne die Nebenbedingung
zu benützen). In der bisherigen Theorie ist aber (1.2) unerfüllbar:

Wenn A^ nach der gewöhnlichen Methode quantisiert wird, ist A\
der Emissionsoperator und es gibt offenbar keinen Zustand, bei
dem die Emission eines skalaren Photons verhindert werden kann.
Ausserdem widerspricht (1.2) der Lorentzbedingung. Trotz dieser
Widersprüche hat es sich gezeigt, dass die formale Benützung von
(1.2) zur Berechnung von Vakuum-Erwartungswerten (jedenfalls
für Prozesse in langen Zeitintervallen) in einfachster Weise zu
richtigen Resultaten führt*). Die „Richtigkeit" der Resultate
beweist man eben entweder dadurch, dass sie identisch mit den
Resultaten der reduzierten Theorie (longitudinales und skalares
Feld eliminiert) sind4), oder durch die Feststellung, dass die so
erhaltenen Vakuum-Erwartungswerte dieselben sind, wie wenn das
Vakuum durch die Abwesenheit der transversalen Photonen allein
definiert ist5). Beidemal muss man sich im wesentlichen auf die
reduzierte, nicht invariant formulierte Theorie als Kriterium für
„Richtigkeit" beziehen.

Diese höchst merkwürdige Situation legt es nahe, zu vermuten,
dass es eine widerspruchsfreie Theorie geben muss, die von vorne-'
herein die 4 Photonenarten symmetrisch behandelt und bei der
das Vakuum durch (1.2) definiert ist.

Ein Vorschlag in dieser Richtung wurde kürzlich von Gupta6)
für den Fall ohne Wechselwirkung gemacht, und es soll im
folgenden gezeigt werden, dass dieser Vorschlag in eine allgemeine
und widerspruchsfreie Theorie ausgebaut werden kann. Das wesentliche

der Guptaschen Idee ist folgendes: Zunächst kommt der
imaginäre Charakter von At im entsprechenden Operator in anderer
Weise zum Ausdruck: an Stelle des Faktors i (imaginäre Einheit)

Vgl. dazu auch Abschnitt 2.



Neue Methode zur Behandlung longitudinaler und skalarer Photonen. 569

tritt der von Dirac und Pauli7) in der sog. indefiniten Metrik
eingeführte Operator n; dadurch wird erreicht, dass auch Ai durch
einen Absorptionsoperator dargestellt wird, d. h. (1.2) wird erfüllbar

und bestimmt einen Zustand in welchem gar keine Photonen
vorhanden sind. Anderseits wird die neue Lorentzbedingung so

formuliert, dass sie mit der Vakuumdefinition (1.2) verträglich
wird. Dadurch werden zugleich die Normierungsschwierigkeiten
von ip behoben. Da nun der Operator rj in der Normierung und
allgemein im skalaren Produkt zweier Zustandsvektoren auftritt,
wird ein bestimmter physikalischer Sachverhalt nicht mehr durch
eine eindeutige Funktion %p dargestellt: es sind vielmehr immer
gewisse Zusätze möglich, welche im skalaren Produkt keinen Beitrag
liefern. Dies hat zur Folge, dass z. B. die Erwartungswerte des

Vektorpotentials bis zu einem gewissen Grade unbestimmt sind,
und zwar gerade innerhalb des Rahmens einer Eichtransformation.
Eichinvariante Grössen wie z. B. die Feldstärken sind eindeutig.
Interpretationsschwierigkeiten bestehen nicht, da das Auftreten von
negativen Wahrscheinlichkeiten durch die neue Lorentzbedingung
verhindert wird.

In der vorliegenden Arbeit soll nun gezeigt werden, dass man in
dieser Weise eine einheitliche Theorie des Maxwellschen Feldes in
Wechselwirkung mit Elektronen formulieren kann: In Abschnitt 2

wird zunächst die Guptasche Theorie des elektromagnetischen
Feldes allein in etwas anderer Form dargestellt; die Lorentz-
invarianz kann dadurch leicht eingesehen werden. Abschnitt 3

bringt die Formulierung der Wechselwirkung mit der dazugehörigen

Erweiterung der neuen Lorentzbedingung. Der Anschluss
an die klassische Theorie wird durch das entsprechende Verhalten
der Erwartungswerte sichergestellt. In Ziffer 4 wird mit Hilfe der
Elimination des longitudinalen und skalaren Teils gezeigt, dass

man die bekannte reduzierte Theorie erhält; d. h. in physikalischer
Hinsicht ist die neue Methode mit der üblichen Theorie völlig
äquivalent. Im letzten Abschnitt wird das Vakuum zunächst in
der alten Form definiert (keine transversalen Photonen) : Es zeigt
sich dann, dass man damit bei geeigneter Eichung automatisch
auf eine Bedingung der Form (1.2) geführt wird. Im Falle des
Vorhandenseins von Ladungen erhält man allerdings einen Zusatzterm,
der im Rahmen der üblichen Theorie bereits von Jauch und
Coester8) angegeben worden ist. Man erhält damit das
elektrostatische Feld, welches in diesem Falle auch im Photonenvakuum
vorhanden sein muss. Ebenso ergibt sich für Prozesse, die sich in
einem endlichen Zeitintervall abspielen, ein Beitrag, der in ein-
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fachen Fällen die momentane Wirkung des Coulombpotentials
darstellt. Er ergibt sich auch aus dem Vergleich mit der
„reduzierten" Theorie. Für unendliche Zeitintervalle dagegen
verschwindet dieser Beitrag, so dass die Vakuumbedingung die Form
(1.2) erhält.

II. Die Quantisierung des Maxwellschen Feldes.

A. Die Definition der Operatoren und der Erwartungsiverte.

Die Feldoperatoren A^ sollen die bekannten Relationen erfüllen
(mit % c 1) :

G^(*) 0, (2.1)

i[^(x), Av(y)] oßvD(x-y);*) (2.2)

dagegen sollen alle vier Komponenten hermitisch sein:

Afl=A*ll, (t l,.A;**) (2.3)

d. h. in der gewohnten expliziten Darstellung:

Mx) r-TlAr^M (VT eikx + ah- e~ikx) (2-4)
r. V 2v\k\

mit

und

A+ (x) +- A- (x)

(k bedeutet den räumlichen Teil des Vierervektors k ; k^ k^ 0.

A+ (resp. A~) stellt den Anteil positiver (negativer) Frequenz dar,
d. h. die Terme ~eikx (~ ë~ihx).) Damit wird auch A\ ein
Absorptionsoperator, d. h. (1.2) ist erfüllbar. In der üblichen Theorie wird
aber Ai durch Multiplikation mit % antihermitisch gemacht; um
(2.2) zu erfüllen müssen dann noch a4 und a* vertauscht werden.
Aus diesem Grunde wird dort A+ ein Emissionsoperator. An Stelle
dieser Methode verwendet man nun das folgende Verfahren: Der
Operator w sei durch die folgenden Beziehungen definiert:

n Ar(x) Ar(x) n, r l,2,3,
r]Ai(x) -Ai(x)n,

*) Im Gegensatz zu der Arbeit von Schwinger (1. c.) verwenden wir hier das
übliche Vorzeichen der invarianten /J-Funktion.

**) Der Stern soll hier stets hermitisch konjugiert bedeuten.
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d. h. Ai wird erst durch den Vorzeichenwechsel in diesen Relationen
ausgezeichnet. Es folgt zunächst, dass r\2 mit allen Komponenten
konimutiert; man kann deshalb mit zweckmässiger Normierung
schreiben

n2 1, ebenso n n*, (2.6)

d. h. r\ wird hermitisch gewählt. Die explizite Darstellung lautet
in vereinfachter Bezeichnungsweise:

Damit wird r\Ar hermitisch, während nA^ antihermitisch wird;
man schreibt nun die Erwartungswerte A in der neuen Form:

If, (u>*, nAßf) (w\ Aßy>), (2.8)

wobei der adjungierte Zustand ff durch

y+ f* rj (2.9)

definiert wurde. Ap erhält dadurch die richtigen Realitätseigenschaften,

insbesondere wird iAA reell. Dementsprechend heisst jetzt
die Norm N des Zustandes ip:

N=(y,\f). (2.10)

Diese Grösse ist zunächst nicht positiv définit; es zeigt sich aber,
dass alle Zustände, welche die Lorentzbedingung erfüllen N 3:0
ergeben.

B. Die Lorentzbedingung und die Normierung.

Nach dem Vorschlage von Gupta schreibe man für die
Lorentzbedingung an Stelle von (1.1):

dA+
ß-^ ^^ 0.*) (2.11)

Diese Bedingung ist bei der angegebenen Wahl der Operatoren A^
schwächer als (1.1); dennoch folgt daraus, dass der Erwartungs-

*) In der üblichen Form der Quantisierung ist diese Bedingung mit (1.1)
äquivalent; mit einer Darstellung analog (2.13) verifiziert man z. B. leicht, dass
in diesem Falle (1.2) und (2.11) dieselben (nicht normierbaren) Zustandsfunktionen
bestimmen. Ich verdanke diese Bemerkung Herrn Dr. R. Jost in Princeton.
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wert der Viererdivergenz verschwindet: Die hermitisch konjugierte
Gleichung lautet wegen A^* A]7 (vgl. 2.4)

Ox. d x,\ r r - '

bei Multiplikation mit n von rechts

d. h. zusammen mit (2.11) (Ü Q+ + Q-)

L\-^-W)=0. (2.12)
^n

Damit wird zusammen mit (2.1) der Anschluss an die klassische
Theorie hergestellt.

Um nun einzusehen, dass (2.11) erfüllbar und mit der
Vakuumbedingung (1.2) verträglich ist, verwenden wir für den räumlichen
Teil A des Feldes die bekannte Darstellung:

m \ %

mit
ÄW^Zg'eXk) y^Jïy(o,,î «"* + <.!«""*) (2-13)

\em> en) vmn,

Çëx,k) (e2,k)=0, (ê3, k) \k\,

wobei die am wie bei (2.4) definiert sind und At unverändert bleibt.
Ns und Ni stellen dann die Anzahlen der longitudinalen und der
skalaren Photonen dar. (2.11) ergibt nun für jeden Vektor k:

(<*8,î+*«a)V 0.*) (2-14)

Schreiben wir zur Abkürzung (unter Weglassung des Indexes k)
für eine Zustandsfunktion tp(N3,Ni), die genau JV3 longitudinale
und JV4 skalare Photonen enthält <p{Na,Nt), d. b.

<p(N3Ni) ôl3NJ-iNi, (2.15)

*) An dieser Stelle ist leicht einzusehen, dass (1.1) und (2.11) nun nicht mehr
äquivalent sind: Aus (1.1) würde neben (2.14) noch eine zweite Bedingung mit
Emissionsoperatoren folgen, die unerfüllbar ist.
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so wird (2.14) durch die folgenden Zustände ipn erfüllt:

y>0=fo(NxN2)cp (0 0) (2.16)

y>1=f1{tp(l0)+icp(01)}
y>2 f2{cp (2 0)+i]/2 cp (11) ~cp(02)}

yn fnlcp(nO) h (iyVh)<p(n-r,r) • ¦ ¦ + (i)ncp(0n)\

Dabei bedeuten alle /" willkürliche Funktionen von Nx und Nz.
Den allgemeinen Zustand ip, welcher (2.14) befriedigt, erhält man
durch die lineare Verbindung:

f=ZCnfn- (2.17)
n

Für die Normierung ist nun zu beachten (vgl. (2.7 und (2.10)),
dass ip° eine positive Norm besitzt:

(rot,V°)=I7/ü*/0>0, (2.18)
A\N2

während alle anderen Normen und skalaren Produkte verschwinden:

(y™] f™) 0 für n + 0 oder m+0 (2.19)

(Man beachte eine einfache Eigenschaft der Binomialkoëffizienten

(,.))• Daraus folgt zunächst, dass auch der allgemeine Zustand (2.17)
eine nicht negative Norm besitz^ ; sie verschwindet für c0 0. Man
verlangt nun :

(yj\ W)=l. (2.20)

Dies liefert c0 41 0 und wird erfüllt durch

2VV=1. mit</0 Co/°. (2.21)

Die cn für n > 0 bleiben dabei willkürlich.
Die Funktionen g°(NxN2) werden deshalb im üblichen Sinne als

Wahrscheinlichkeitsamplituden von Nx resp. N2 transversalen
Photonen interpretiert, während für die physikalisch nicht
beobachtbaren longitudinalen und skalaren Photonen keine Vorschrift
besteht. Die allgemeine Wahrscheinlichkeitsaussage ist durch

w £g0x*g°2
NXN2

gegeben, wenn g\ und gr° die entsprechenden Anteile zweier Zu-
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stände tpx und y>2 bedeuten. Diese Grösse kann nun wegen (2.18,19)
in der einfachen Form

w (xp\,xp2) (2.22)
geschrieben werden.

Es ist für diese Theorie charakteristisch, dass nur Zustands-
funktionen xp, welche die Lorentzbedingung (2.11) erfüllen, in der
angegebenen Weise physikalisch interpretiert werden. Weiter folgt
aus dieser Definition, dass eine vorgelegte Zustandsfunktion (sie
muss die Form (2.17) besitzen) ihre physikalische Bedeutung
nicht ändert, wenn die Funktionen cn fn (n > 0) verschieden
gewählt werden. Anderseits kann man diese „Beimischungen" nicht
weglassen, da sie im Falle der Wechselwirkung mit Elektronen von
selbst in der Lösung der zeitabhängigen Schrödingergleichung
auftreten werden, wenn der Anfangszustand mit c„ 0 (für n > 0)
gewählt wurde. Die Bedeutung dieser willkürlichen Zusätze liegt
in der Möglichkeit, die Potentiale in beliebiger Weise zu eichen.
Dies soll an zwei einfachen Beispielen illustriert werden:

Man berechne die Erwartungswerte Aß im Zustande

xp xp° + cx xp1

als Funktion von c1. (xp1 soll sich auf einen einzigen Wellenzahl-
vektor k beziehen.) Mit Hilfe von (2.13) ergibt sich dann

mit
A!1 (xp^,Alxxf>)-^A

A c1gQXeik* + cxg*xe-i>'x,

wobei die Konstante gox von k, c0 /° und f1 abhängt. Auf diese
Weise lässt sich jede beliebige Umeichung erreichen, welche

nA o

erfüllt. Man sieht daraus, dass die Feldstärken eindeutig bleiben.
Im allgemeinen werden nur eichinvariante Grössen B (Energie,
Impuls usw.) eindeutige Erwartungswerte haben:

B=(ipi,Bxp) (f°i,Bxp°).

Ein typisches Beispiel einer nicht eichinvarianten und deshalb
nicht eindeutigen Grösse ist auch der Operator P{Afl(x), Av(y)}.
(P bedeutet die zeitliche Ordnung des Produktes.) Der Vakuum-
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erwartungswert kommt z. B. bei der Berechnung von Stössen
zwischen zwei Elektronen vor:

too
U -1// P fc(x) j,(y)} <P{A^(x) Av(y)}}0d*x d*y. (2.23)

— oo

Verwendet man dabei für den Vakuumzustand xp xp0 + cx xp1

(vgl. 2.24), so werden die von cx abhängigen Zusätze durch die
Bedingung für den Viererstrom

dxß

gerade fortgehoben; d. h. das Resultat bleibt eindeutig.
Aus (2.16) sieht man ohne weiteres die Verträglichkeit der

Lorentzbedingung (2.11) und der Normierung (2.20) mit der
Vakuumdefinition (1.1). Man erhält jetzt den Zustand, in welchem gar
keine Photonen vorhanden sind:

^o i7(5-v„,o> (2.24)
M

à. h. c„ 0 für n > 0, g° — <5X]0óx>0. Verwendet man aber die
übliche Vakuumbedingung

d+(x)xp0=0, (2.25)

wobei el den transversalen Teil von A darstellt (d. h. die beiden
Terme m 1 und m 2 in (2.13)), so erhält man einen Zustand,
der sich von (2.24) nur um bestimmte „Beimischungen" der Form
(2.17) unterscheidet; d. h. die beiden Vakuumdefinitionen sind
physikalisch äquivalent.

C. Die Lorentzinvarianz.

Die Lorentzinvarianz des angegebenen Quantisierungsverfahrens
kann mit den üblichen Methoden eingesehen werden; es ergeben
sich lediglich einige Unterschiede in den Realitätseigenschaften.
Die vorgelegte Transformation sei

x'fl(x) allvxv. (2.26)

Bildet man aus den Operatoren A^ die neuen Grössen

Äti(x')=alxvAv(x(x')) (2.27)

(x(x') bedeutet die zu (2.26) inverse Transformation), so erfüllen
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diese wieder dieselben Relationen (2.1,2.2); sie können durch eine
Ähnlichkeitstransformation aus den alten Grössen gewonnen werden :

A'fl(x)=S~lAfl(x)S. (2.28)

Für infinitesimale Transformationen

lässt sich S explizit angeben:

S-I + e^e^.*) (2.30)

Dabei bedeutet i(0pV—0v/i) den Drehimpulsoperator;

0 ix^=-f\---JLAv + xJ^^-l-Ml.ìAl d ))d-x,<"vv *' JXoxi " //\dxi öxv 2 dxi öx;. Xv j)
x, const (2.31)

Die Integration erstreckt sich über die Fläche xt — const.;
wegen der Drehimpulserhaltung wird aber 0ßV — 0Vfl von xt
unabhängig. Aus (2.2) erhält man die V.-R. :

'

ôA^xJ ; AAg ^j ò (j _5) ôftv {2M)

Damit verifiziert man leicht, dass nun aus (2.28) mit (2.30) und
(2.31) folgt

A,u(x) Afx (x) + Sfiv Av (x) + £a} xa —^——

Dies stimmt mit (2.27) für infinitesimale Transformationen überein.
Es ist jetzt aber zu beachten, dass S wegen (2.3) und dem imaginären

Charakter von ek 4 — £4 k nicht mehr unitär ist. Dafür
folgt nun aus (2.30, 31) wegen (2.5) und (2.8) :

S*ri riS-1; (2.33)

d. h. bei der Transformation

xp'=Sxp (2.34)

bleibt die Norm, oder allgemein das skalare Produkt invariant:

(xp\ xp) (xp'\ xp'). (2.35)

Dies ist im Rahmen dieser Theorie notwendig und gilt für alle
Transformationen, welche in Betracht kommen. (Vgl. 2.20, 22.)

*) Summation über alle Indices.
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Durch die Transformation (2.34) des Zustandes werden nun die

Erwartungswerte Ap in der richtigen Weise transformiert: Mit
(2.27, 28) und (2.33) folgt nämlich

I'fl(x') (xp'\ A/lxp')^aßVÄv(x(x')). (2.36)

Die Umkehr der Zeitachse x'r xr, x4 — x± kann hier durch die
Transformation

V'(^,ï)-V*(^,-Î) (2-37)

dargestellt werden.*)
Zum Schlüsse dieses Abschnittes sei erwähnt, dass man den von

Gupta6) eingeführten Operator für A0 aus den hier angegebenen
Grössen durch die Beziehung

A0 riAi (2.38)

erhält. Es gilt dann wegen (2.5) und (2.6)

A2 — — 42

Mit (2.38) ergeben sich für A0 auch die richtigen V.-R. und der
Erwartungswert wird reell :

I0 (ip\ A0 xp) (xp*, At xp).

III. Die Wechselwirkung mit Elektronen.

Um die Wechselwirkung zu beschreiben, verwenden wir die
„Interaction Representation" mit ebener Fläche t const. Die
zeitliche Änderung des Zustandes xp(t) ist dann gegeben durch

i 4-f H xp { -JA» (x) ]il (x) d'x\ xp (t). (3.1)
%i it

Dabei sind die im vorigen Abschnitt definierten Operatoren Ap zu
verwenden, während jp den Viererstfom des Diracschen Feldes
ohne Wechselwirkung darstellt:

Ì. ÌQ, 7^=°' [^^] °- (3-2)

Die Normierung des Zustandes sei wieder durch

N (xp\ xp) 1 (3.3)

*) Für reelle Darstellung der Operatoren a, a* in (2.4).
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gegeben. Wegen (2.3) und dem antihermitischen Charakter von ji
ist H nicht hermitisch, dafür gilt jetzt:

H*r] r]H. (3.4)

Dies ist aber für die zeitliche Erhaltung der Normierung (3.3)
gerade notwendig. Dementsprechend sind die Erwartungswerte
durch

Äfl(x,t)=(xp"(t),A/x(x,t)xp(t)) (3.5)
gegeben.

Für die Lorentzbedingung hat man jetzt in Verallgemeinerung
von (2.11) im Sinne einer Anfangsbedingung für xp(t0) zu schreiben:

dA%(x'

{Xi i t0)

abgekürzt :

Q+(x';t0)f(t0)=0.
Dabei ist

D+ ^(D + iD1), D- ^-(D-iD1) D+*. *) (3.7)

Man hat also in der üblichen Nebenbedingung wieder A durch A+
und zugleich D durch D+ ersetzt. (3.6) ist für alle Raum-Zeitpunkte

x' zu erfüllen: wegen

nü+(x'; y =0
genügt es auch

(ß+W it, f (h) 0 und (^ Q+)x,
iu

xp (t0) 0

zu verlangen. Mit Hilfe der Bewegungsgleichung (3.1) folgt wie
üblich, dass die Anfangsbedingung (3.6) für alle Zeiten t gilt :

ü+(x';t)xp(t)=0. (3.8)

Dies ergibt sich aus der Identität

dß+dt';t) +i[H(f),Q+(x';t)]=0,
wofür die V.-R.

i[A+(x), Av(y)]=öflvD+(x-y) (3.9)

zu beachten ist.

*) Das Vorzeichen von D+ entspricht demjenigen von D; es ist also gegenüber
der Arbeit von Schwinger 1. c. geändert. Für Dl vgl. W. Pauli, Rev. Mod.
Phys. 13, 203 (1941).
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Für die durch (3.5) definierten Erwartungswerte gelten nun
wieder die klassischen Gleichungen:

Definiert man die Operatoren Q resp. Q^ entsprechend (3.6)
indem man Aß und D resp. Aj; und D~ einsetzt, so folgt aus (3.8)
mit (3.7) und (2.5) zunächst:

xpi(t)Q-(x';t)=0. (3.10)

Damit ergibt sich wegen ü ü+ + Q~

(xp*(t),Q(x';t)xp(t)) 0.

Setzt man hierin x'± it, so erhält man wegen dem Verschwinden
der D-Funktion ausserhalb des Lichtkegels

dA
dx,J-r-fi(t)(^Mà*L\ Xp(t)=0. (3.11)

p \ u xn I Xx 11

Aus (3.1) und (3.4) in Verbindung mit den V.-R. (2.32) ergibt sich
weiter für x, — it

ò -T—r\ dA» j ö2 T d2Aß-z—Au(x)=-t-jl und =—-Au / -u ;
dx4 ^v ' d xt dx\ /* dx\ 'r-'

zusammen mit den entsprechenden evidenten Beziehungen für
die räumlichen Ableitungen folgt dann mit (2.1)

Äp 0 und Di> -Jp. (3.12)dx.

Um den richtigen Energietensor zu erhalten, ist es wesentlich, dass
auch

(xp\ Q*xp)=0

erfüllt ist*). Diese Gleichung folgt sogleich aus (3.8), (3.10) und
der V.-R.

[Q+(x';t), Q-(x" ; t)] 0.

(Man beachte hierzu

D+ 0 und [o(x,t),e(y,t)] Q.)

Damit ist der Anschluss an die klassische Theorie sichergestellt.
Die Lorentzinvarianz ergibt sich in der herkömmlichen Weise
(man beachte das in Abschnitt 2, C Gesagte) ; überdies ist die
Verallgemeinerung von (3.1) und (3.6) auf sog. „gekrümmte
Flächen" evident.

*) Wir verdanken diese Bemerkung Herrn Prof. Belinfante in Princeton.
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IV. Die Elimination des longitudinalen Teiles.

Die hier gegebene Theorie unterscheidet sich von der üblichen
Form durch die Behandlung der skalaren Photonen und in der
Formulierung der Lorentzbedingung. Für viele praktische
Probleme, wie auch zunächst zur Definition des Vakuums, ist es
üblich eine Form zu verwenden, in welcher die longitudinalen und
skalaren Photonen durch die Coulombwechselwirkung ersetzt
sind („Reduzierte Theorie"). Es soll nun gezeigt werden, dass auch
in der neuen Form diese Elimination möglich ist; dabei wird sich
ergeben, dass man dadurch gerade zu der alten, reduzierten Theorie
kommt; d.h. in physikalischer Hinsicht (Verhalten der
transversalen Photonen) liefert die neue Methode dieselben Resultate.
Zur Durchführung wird eine geeignete Transformation verwendet:

(4.1)

(4.2)

(4.3)

(4.4)
oder

Die Bewegungsgleichung (3.1) ergibt nun für xp'(t):

i-^Ç-=S-1HSxp'-i(S-1 ~ S) xp'. (4.6)

Zur Berechnung der einzelnen Terme entwickeln wir nach der
Ladung:

S~1HS H + i[GH] + --- (4.7)

S-^S ^ff+\\G^} + (4.8)

xp(t) *S(t)xp'(t)

mit

wobei
S(t)._ e-iG(t)

G(t)
¦r.,

A(x) n(x)d3x.

Das longitudinale Potential" A ist gegeben durch

AA (x,t) div A (x, t),

dt dt ' 2 [ dt

Hier ergibt der zweite Term die Coulombwechselwirkung: Zunächst
erhält man aus den V.-R. (2.32) durch Ausüben der Operation (4.5)
auf beiden Seiten :
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Ferner berücksichtige man

[j/l(x't),jv(x,t)} 0; (4.10)

daraus folgt wegen (3.2) insbesondere auch

Q(x',t),^-U0. (4.12)dt

Damit erhält man mit (4.3) :

Weiter ergibt sich auch, dass die Reihe (4.8) bei diesem Term
abbricht; der erste lässt sich mit (3.2) umformen:

In (4.7) verschwindet bereits der erste Kommutator (vgl. (4.10)
und (2.2)). Nun lassen sich in (4.6) durch Einführung des

transversalen Feldes CT zwei Terme zusammenfassen:

Si=A- gradai (4-15)

(div Ct 0 wegen (4.4)).

Damit lautet die Bewegungsgleichung (^44 iV)

iu*-=H'xpdtp'
dt

-/(Cl ]) d*x +Hcoui + f{V+d£-)Qd*x\xp' (4.16)

C^trans. + #Coii1.+ ^long.) V¦

Hierin stellen die beiden ersten Terme den bekannten Hamilton-
operator der „reduzierten" Theorie dar; der letzte Term wird jetzt
mit Hilfe der Lorentzbedingung eliminiert (erst an dieser Stelle
wird die Rechnung wesentlich anders als in der üblichen Theorie).
Diese lautet nun :

ü+'(x;t)xp'(t) 0 (4.17)
mit

Q+' S-1Q+S Q++i[GQ+] + --- (4.18)

Mit Hilfe der V.-R. (3.9) erhält man zunächst:

i[A(x), div Ä+(x')]=D+(x'-x); (4.19)
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damit ergibt der Kommutator

i[G(t),Q+(x';t)] - [d+(x' -x)e(x)dsx, (4.20)
xt it

d. h. in (4.18) wird gerade der zweite Teil von Û+ (vgl. (3.6))
weggehoben; die Reihe (4.18) bricht beim zweiten Term ab. Die
Lorentzbedingung lautet also nach der Transformation:

dAt{-X) i r, / dV
dxß

xp 0 oder (-£- +divA+\ xp' 0. (4.21)

Man hat also jetzt die Nebenbedingung der Theorie ohne
Wechselwirkung; damit ist auch die Erfüllbarkeit von (3.6) bewiesen. Man
kann nun die in Abschnitt II gegebene Interpretation anwenden;
dabei ist zu berücksichtigen, dass durch die Transformation (4.1)
die Normierung erhalten bleibt:

(xp'\xp') l. (4.22)

Um nun einzusehen, dass der letzte Term in (4.16) weggelassen
werden kann, beachten wir zunächst, dass die Relationen (2.1),
(4.4), (4.15) auch für die entsprechenden Anteile positiver Frequenz
allein gelten:

div Ä+ A A+, D A~ 0 ; (4.23)
d.h.

divl+ |1 A-. (4.24)

Damit lässt sich (4.21) schreiben:

Eine explizite Darstellung zeigt aber sogleich, dass dies äquivalent
ist mit

(V+ + -H-A+)V' 0. (4.26)

Hier tritt also gerade der Anteil positiver Frequenz des
entsprechenden Ausdrucks in Hlong auf. Man berechne nun den Beitrag
von Hlong in (4.16) zur zeitlichen Änderung der Amplitude w(t):

w(t)=(cp'\xp'(t)) (4.27)
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(vgl. (2.22)), wobei cp' einen willkürlich vorgelegten Zustand
bedeutet, der aber (4.26) zu erfüllen hat, d. h. auch

,\l-rr- dA~

Nun ist

r-- (cp'\H'xp'(t)) (vgl. (4.16)).
tw
dt

Hier gibt aber Hlong keinen Beitrag, wie man sofort aus der Spaltung

in die Anteile positiver und negativer Frequenz entnimmt:

?*(F + -irW) 0 (4.29)

(vgl. (4.28) und (4.26)). Dasselbe gilt auch für alle höheren
Ableitungen, wenn man noch beachtet, dass Hlong mit allen anderen
Termen von H' kommutiert. Es ist nach (2,1, 4.4 und 4.15)

[a,A] 0. (4.30)

Man sieht daraus, dass Hlong lediglich die „Beimischungen" des
Zustandes xp' ändert. (4.16) ist also äquivalent mit

^ 4f ^tran, + #Coul.) ¥¦ (4-31)

Man kann nun die Quantenzahlen ^ und Ni in xp' weglassen (das
System bleibt jetzt dauernd im Zustand der Form xp° (vgl. (2.16)).
Die Normierung (4.22) heisst dann

(f'*,xp') l. (4.32)

Damit ist die „reduzierte" Theorie gewonnen. Diese lässt sich auch
direkt durch die Quantisierung einer entsprechenden klassischen
Theorie in widerspruchsfreier Weise gewinnen.

V. Die Definition des Vakuums.

Es soll nun von der üblichen Definition des Vakuums in der
reduzierten Theorie (keine transversalen Photonen) ausgegangen
werden. Mit Hilfe der inversen Transformation (4.1) wird dann
untersucht, welche Bedingung sich daraus für die symmetrische
Theorie ergibt.

Man hat also für xp' die Vakuumbedingung

a+vo 0. (5.1)

Werden die Quantenzahlen N3 und N, beibehalten, so hat man
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auch noch die Lorentzbedingung (4.25) zu verwenden. Nach dem
im zweiten Abschnitt Gesagten, kann man aber dafür auch die
verschärfte Form anwenden:

V+ xpó 0 A+ xp'0 0. (5.2,3)

Da V+ nur Absorptionsoperatoren für die skalaren Photonen
enthält, während A+ nur solche für longitudinale Photonen besitzt,
bedeutet dies nur, dass man sich auf einen Zustand der Form
9^(00) (vgl. (2.16)) beschränkt. Jetzt geht man mit der
Transformation (4.1) zu der symmetrischen Darstellung zurück:

n S"1 Wo ¦ (5-4)
Aus (5.3) wird dann :

(S A+ S'1) xp0 0 (5.5)
oder

{A+-i[GA+]}xpo 0.

Dies ergibt mit denselben Methoden wie in Abschnitt IV:

[A* (x') + JF+(x'- x)g(x)d3x vo(*o)=0 (5-6)
Xi i t„

mit dem Kern:
F+ (x' -x) - f -D+}x",~~^rT d3x". (5.7)V ' J 4:71 | X — X I

V '
Xi" Xi

Weiter bleiben die Bedingungen (5.1) und (5.2) ungeändert wegen

[AV+] [A~a+] 0.

Man hat also zu (5.6) noch
cl+ xp0 0 (5.8)

und
Af xp0 0 (5.9)

hinzuzufügen. Aus (4.15) erhält man auch

1+ =Cl+ +grad/l+.
Damit ergibt sich aus (5.6), (5.8) und (5.9)

| Ät •*') + odx\. I F+ (x'~x< <?(*)d3x]n(t0) 0 (5.10)
Xi i to

A+(x')xp0(to)=0 (5.11)

für alle x' und fe=l,2,3, wobei F durch (5.7) definiert ist. Dadurch
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ist die strenge Vakuumdefinition der symmetrischen Theorie
gewonnen. Im Gegensatz zu (1.2) hat man einen ladungsabhängigen
Zusatz; dieser ist in anderem Zusammenhang bereits von Jauch
und Coester8) angegeben worden. Man sieht sogleich, dass er aus
Gründen der Verträglichkeit mit der Lorentzbedingung (3.6)
vorhanden sein muss: Differenziert man nämlich (5.10, 11) nach der
entsprechenden Koordinate x'ß und addiert die vier Gleichungen,
so erhält man gerade (3.6). In dieser Theorie ist also die
Vakuumdefinition nichts anderes als eine Verschärfung der Lorentzbedingung.

Die physikalische Bedeutung des Zusatzes ist die folgende:
Berechnet man in dem durch (5.10, 11) definierten Photonvakuum
die Erwartungswerte der Feldstärken, so erhält man gerade das
elektrostatische Feld der Ladungsverteilung <ß> (Erwartungswert
der Ladung) :

<ì(5,g)0^grad| ^'!f,{ d*x. (5.12)

Anschaulich gesprochen bedeutet der Zusatzterm folgendes: Er
stellt in der symmetrischen Theorie die instantané Wirkung des
Coulombfeldes dar, welche in der verkürzten Theorie explicite
auftritt. Für Prozesse, die sich in einem endlichen Zeitintervall
abspielen, ist der Term tatsächlich wesentlich; dies sieht man z. B.
leicht mit Hilfe der Rechenmethode von Dyson. Im Beispiel (2.23)
hat man dann für die Zeit endliche Integrationsgrenzen ± T
einzusetzen: Wird nun (5.10,11) anstelle von (1.2) angewendet, so
liefert bereits die erste Näherung

+ T

m i [Afl(x)jß(x)dix

den Beitrag zweiter Ordnung:

TJT=-iJdix J d3yjk(x)^F+(x~y)o(y) (5.13)

-T (Vi -iT)
+ T

-i I d*x I d3yjk(x)-=d-F-(x-y)g(y)
-T (Vi + iT)

(F- ist entsprechend (5.7) definiert).

Man verifiziert übrigens auch leicht, dass die reduzierte Theorie
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dasselbe Resultat liefert: Verwendet man das Verfahren von
Kroll und Karplus, so hat man den Ausdruck

+ T

U -1 jy'j1e(x)jl(y){P{t\k(x)tXl(y)}\d*xdiy (5.14)

-T
mit Hilfe von (5.1) auszuwerten; dies ergibt nach partieller
Integration gerade den Zusatzterm (5.13).

Jauch und Coester haben nun gezeigt, dass UT für T oo
verschwindet; tatsächlich sieht man auch anschaulich aus (5.10),
dass der Zusatzterm, der ja nur das Coulombfeld beschreibt, für
t0 ± oo keinen Beitrag liefert : Er verschwindet dann für alle
endlichen x'. In diesem Falle kann man also mit der
Vakuumbedingung (1.2) für den ladungsfreien Fall rechnen. Man sieht nun
den Vorteil unserer Methode: (1.2) ist erfüllbar. Als Anfangs- und
Endzustände können nach den Methoden des zweiten Abschnittes
die Zustände des Feldes ohne Wechselwirkung und ohne
longitudinale und skalare Photonen benutzt werden. Da die
Lorentzbedingung in der Vakuumbedingung enthalten ist, so folgt ferner,
dass für virtuelle Zustände die Lorentzbedingung nicht explicit
verwendet werden muss, wie das auch Gupta in Beispielen getan
hat. Dass alles Gesagte in trivialer Weise verallgemeinert werden
kann, wenn reelle transversale Photonen vorkommen, bedarf wohl
keiner weiteren Erläuterung.

Herrn Professor W. Heitler möchte ich für die vielen
Ratschläge und die wertvollen Diskussionen herzlich danken. Herrn
Dr. S. N. Gupta und Herrn Prof. F. Coester danke ich bestens
für die Überlassung ihrer Manuskripte vor der Publikation.

Zürich, Theoretisches Seminar der Universität.
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