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Über den Einfluss des metrischen Feldes
auf ein skalares Materiefeld

(2. Mitteilung.)
von W. Seherrer, Bern.

(31. V. 1950.)

§ 1. Einleitung. rurtiSi. •

In einer früheren Arbeit1), die ich im folgenden unter A zitieren
werde, habe ich den Versuch unternommen, die Materie im Rahmen
der Einsteinschen Gravitationstheorie durch eine skalare Wirkungsdichte

X f2 (1-1)

zu charakterisieren. Für die grundsätzlichen Überlegungen, die
mich dazu veranlasst haben, verweise ich auf § 1 der genannten
Arbeit.

Methodisch habe ich dabei das Wirkungsprinzip

Ò / (E —2/1) t/>2 + 4

zugrunde gelegt, wobei Gga den metrischen Fundamentaltensor,
B den zugehörigen Krümmungsskalar, A die kosmologische
Konstante und co eine weitere universelle Konstante — aus dimen-
sionellen Gründen eine reine Zahl — bedeuten.

Für die Feldgleichungen der Gravitation ergibt sich so das

System

-"0(T
1 r2 t"7B T AGqq

+>, DaX--Gl aUx)

+ ?(DqXDo x- yßjffV *)¦ 0

(1.8)

x) „Über den Einfluss des metrischen Feldes auf ein skalares Materiefeld.'
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und als Feldgleichung der Materie erhält man

(3 + 2fti)nz-2/lz 0 (1.4)

Dabei bedeutet Dg das Symbol der kovarianten Differentiation
nach der Koordinate Xq und V y>, D f sind die durch

Vy, G-°DeVDay>^G-°^4l (1.5)

Df-fl,^ff'D,D,?s ^£(yZGG*«£-) (1.6)

definierten Beltramischen Operatoren.
Der Vergleich mit den klassischen Einsteinschen Gravitationsgleichungen

BQa- -^GqcB + AGga — xTçg (1.7)

zeigt nun unmittelbar, dass man als Energietensor anzusetzen hat

lQa--\- — +CO --* —*r) (1.8)

Für die Einzelheiten der Herleitung von (1.8) und (1.4) verweise
ich auf A, § 2.

Im speziellen habe ich dann für den Sonderfall /1 0, co 0
die statisch-zentralsymmetrische Lösung ermittelt und die
zugehörige Energiedichte |/— G T° diskutiert. Es ist klar, dass dieser
Sonderfall keinen Aufschluss gibt über Kräfte, die wesentlich
anders geartet sind als Gravitationskräfte.

In der vorliegenden Arbeit soll nun dasselbe Problem für den
umfassenderen Fall /1 0, co +. 0 behandelt werden, auf dessen
Lösbarkeit ich in der früheren Arbeit schon hingewiesen habe
(A § 5).

Es handelt sich jetzt also um das Wirkungsprinzip

/K 4a>G-a P^P^)i/-Gdx 0 (1.9)dxn dx„l y v '

Die Tatsache, dass durch den Übergang von co 0 zu co + 0 die
formale Struktur der Lösung nicht, die Verteilung des Feldes aber
beliebig intensiv geändert werden kann, scheint mir Interesse zu
verdienen, zeigt sie doch, dass der zusätzliche Gradient dem
metrischen Feld vollkommen angepasst ist.
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§ 2. Das statische Zentralfeld.

Wir wählen wieder das Schwarzschildsche Linienelement

ds2 f2dx2-g2dr2-r2(dd2 + sin2 ddcp2), (2.1)

wo also / und g Funktionen des Radius r sind und erhalten

yZ7Q fgr2sin& (2.2)
und

E)/rG {-[^(r/'+2/)j'+2(^+-/ + fg)}sm&, (2.3)

wobei der Strich die Ableitung nach r anzeigt.
Das Wirkungsprinzip (1.9) nimmt mit (1.1) die Gestalt

ô f (Bx + co -¥-*-) j/ZÖ dx 0 (2.4)

an. Lassen wir wieder die Zeit und die Winkelvariablen weg, so

folgt nach einer durch (2.3) nahegelegten partiellen Integration und
mit Rücksicht auf

rv*=--£ (2-5)
das Prinzip

àf{z{j-(rf' + 2f)x' + (2^+fg)z}-<»rf-Xpïdr 0 (2.6)

Wiederum erhält man durch sukzessive Variation von /, % und 9,
gefolgt von respektiver Division durch y> f und xf nach leichter
Umformung drei Gleichungen

»[tM' + P + ->4(*M» + 7)-° (2-7)

-2(9 + |)-0 (2.8)

'£(*+4)(W)-'-f(#-»(1+*H (2-9)

Ersetzt man diese Gleichungen durch die Kombinationen (2.7) —
(2.8), (1 + co) (2.7) + (2.8), (2 + co)2 (2.9) und führt man überdies
an Stelle von x una / die neuen Funktionen

P Xf, Q ^L •: :
:

(2.10)

ein, so erhält man nach einer an der ersten Kombination unmittel-
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bar ersichtlichen Integration sowie nach einigen Umformungen der
zweiten und dritten Kombination das System

i[2r(^+(^f+^ + 2(2 + m))

+ (y)'t3 \^p- + 2 (2 + co)] - 2 (2 + co) r2 + ft 0 (2.12)

i-jpf +2(2 + co)]2- 2 (2 + ci) (3+2 co

Setzt man nun

so gilt

2 (2 +co)+ -^1=0 (2.13)

S rP; K -f (2.14)

rS' S(X + l)
'

(2.15)

Aus (2.12) und (2.13) ergibt sich hierauf nach einiger Rechnung
als Differentialgleichung zwischen S2 und K allein

2(K + l)dK _d(S2) n 21ß.
K[K2 + 4(2+o>)K+2(2+w)] + A2 + 2(2 + co)82 \*-lu)

Ihr Integral lautet
#2 [2(2+«)) s2+^2] =ß2 (2_17^

X2 + 4(2 + o)) JT+2(2 + (o)

Weiter finden wir aus (2.11), (2.14) und (2.15)

dQ Ad S (9 1fy.

Aus (2.13), (2.14) und (2.17) aber folgt

B

womit (2.18) übergeht in

ÉQ. AK dS
Q ~ ~B\K + l) T

9=^, (2-19)

(2.20)

Um nun die endgültige Integration einzuleiten, müssen wir die
nach (2.14) und (2.15) in (2.17) enthaltene Differentialgleichung
auflösen. Setzt man

S Lgr (2.21)
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und bezeichnet man die Ableitung nach s mit einem Punkt, so
erhält man

S
_

S* + ai-aßyrS*+ä*
S S2 + a2-a2ß2

Dabei wurden die Abkürzungen

a
Y 2(2 +

2co)B*
co)

ß
B

(2.22)

(2.23)

(2.24)

eingeführt. Setzt man schliesslich noch

S a]/x2 — 1, (2.25)

so ergibt die Integration von (2.22) mit Rücksicht auf (2.21)

r b]/x2 — 1
X — 1 1 2

lc+1" (2.26)

Aus (2.15), (2.21), 2.22), (2.23), (2.24) und (2.25) folgt weiter

K - x + ß
(2.27)

Führt man nun (2.25) und (2.27) in (2.20) ein und integriert, so

folgt

Q C x-l
x+1

wobei die Abkürzung

eingeführt wurde.

Aus (2.14), (2.25) und (2.26) ergibt sich nun

P _b
Wegen (2.10) erhalten wir also

v2 + "' ^ a
x b

und

X-l I 2

x+1

x-l
x+1

f2 +m 1 / o\l + eo j x— 1

X+1(f)

q+ ß

2

<x-(l + <

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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Aus (2.19), (2.25) und (2.26) folgt schliesslich

22 - x^ßY C2-33)

Nun nehmen wir noch die Xormierung im Unendlichen vor. Für
x->oo, das heisst r->oo muss das pseudoeuklidische Linien-
element herauskommen, also / 1 sein. Dies ergibt nach (2.32)

^(yp=l (2.34)

Schliesslich normieren wir noch die im Unendlichen konstante
relative Intensität x auf L was auf

CaL- 1

6 ~

führt. Es ergibt sich somit b a und C 1.

Die Ergebnisse stellen wir in folgender Tabelle zusammen:

(2.35)

ß
~2~

r a]/x* l|x+1
a - (1 + a>) ß

,2 | X-l 2+<o
'

; x+1

2 (^2-l)
3 (x + 0)2

„ X—1 | 2+co
1

| x+1

(2.36)

Wegen (2.23), (2.24) und (2.29) gilt ausserdem zwischen a und ß
die Relation

a2 + (3 + 2 co) ß2 2 (2 + co) (2.37)

Beim Vergleich mit der früheren Tabelle (A § 3 (37)) ist zu
beachten, dass die jetzigen a, ß das Doppelte der früheren sind.
Wie man sieht, konnte die Rechnung vollständig parallel zum Fall
co 0 geführt werden. Der Einfluss von co zeigt sich nur in den
Exponenten von /2 und %2. Im Intervall

3

—2 < °> <°°
liefert die Exponentenrelation (2.37) in der (a, /?)-Ebene eine Ellipse,
die für co — 3/2 in das Geradenpaar a ± 1 und für co + oo
in das Geradenpaar ß ± 1 ausartet.
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§ 3. Der Energietensor.
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Wie in der früheren Arbeit (A § 4) führen wir jetzt an Stelle
von r den Parameter x ein:

1) 2r a (x — 1) 2

und erhalten als Linienelement

ds2 f2dx2-h2dx*-r2 (d#2 + sin &dcp2),
mit

h a x-l
x+1

(3.1)

(3.2)

(3.3)

Die Tafel der r^a ist also dieselbe wie in A und für die nicht
verschwindenden Komponenten des Energietensors erhält man

0 h2 \f 2X) x

"t—rfc
XT2 — -pr \-~~

2 -

h'x'
hx

<»X'\ X'
2% X

m (3.4)

773
¦'s

rrt-2
-L2

wobei der Strich die Ableitung nach x anzeigt.
Nach (2.36) und (3.3) ergibt sich

/' 0L-(1 + C0)ß 1

f
~" ~2 + w~ ' x2-l

jC _ a+ß _ 1_
X 2 + co

' x2-l
V__ ß
h

(3.5)

Wir erhalten daher schliesslich

710

n
rp2

Ti

2 (2+cu) % a2

OL + ß

X-l
x + 1

x-l
2(2 + M)xa2 \ x+1

g + jä

2(2+co)xa2
rp2An

X-l
X+1

x2-l
x + ß

1
'
Tx^Tfj2"

-18 4x+a+3ft
(x2-l)2

2x + coa+(2 + q)) g
"

(x2-!)2

(3.6)
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i/— G =fhr2sin # a

ergibt sich also die Energiedichte

_Œ+ (5 + 2 eo)

X-l I' "
2 (2 + eo)

X+1
1) sin & (3.7)

T0° ]/-G 2 (2+tu) xa2
x-l
x+1

2(2+eo) sin #
(3.8)

Die Berechnung der Totalenergie verläuft nun genau gleich wie
in A und liefert

E 2 ti a (y.-I

wobei die Konvergenz der Integration an die Bedingung

<x +
2+co >o

(3.9)

(3.10)

geknüpft ist.
Für co > — 3/2 sind also die zulässigen Exponenten a, ß

beschränkt auf diejenige Hälfte der Ellipse (2.37), welche im Gebiet
a + ß > 0 liegt. Die Grenzpunkte dieses Bereichs sind

a l; ß —l (3.11)

a=-l; /3 1 (3.12)

Für sie und nur für sie konzentriert sich die Energie auf einen
Punkt — den Ursprung. Ihnen entsprechen genau die schon in
(A, a), b)) aufgestellten Grenzlösungen, von denen die erste positive,
die zweite negative Totalenergie aufweist.

Für genügend grosse positive co erstreckt sich übrigens die
genannte Ellipse beliebig weit in Richtung der positiven a-Achse.
Das Modell enthält also die Möglichkeit beliebig stark abweichender
Kraftfelder, ohne dass die den punktförmigen Energieverteilungen
entsprechenden Felder abgeändert werden.

§ 4. Schlussbemerkungen.

Wir haben festgestellt, dass die Lösungen des Wirkungsprinzips

t/(Bf. + 4..W.jt^)^Ba x 0

qualitativ dieselbe Struktur besitzen wie die Lösungen des in der
früheren Arbeit (A) behandelten Spezialfalles co 0.
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Der Energietensor ist in allen Fällen a + ß > 0 kontinuierlich
verteilt und konzentriert sich nur in den Grenzfällen a + ß 0
nach der Art einer Diracfunktion auf eine Weltlinie. In allen Fällen
aber sorgt der metrische Tensor dafür, dass die Totalenergie
endlich bleibt.

Eine exakte Formel für die ponderomotorische Kraft in Aussicht
zu nehmen, hat nur für die Grenzfälle a + ß 0 einen Sinn. Sach-

gemäss sollte sie sich aus einer kontinuierlichen dynamischen
Lösung durch Grenzübergang ergeben. Einem solchen Verfahren
steht aber folgende Schwierigkeit gegenüber: Die Stellen, in denen
sich das Materiefeld singular verdichtet, müssen schon in der
Anfangslage als Singularitäten vorgegeben sein. Wird es möglich sein,
dieselben von der Anfangslage aus gesetzmässig fortzusetzen?

Der tiefgehende Gegensatz, welcher in der Einsteinschen
Gravitationstheorie zwischen der Materie als Feldquelle und der Materie
als Probekörper besteht, ist also in diesem Modell wohl etwas
gemildert, aber noch keineswegs überwunden. Bei der klassischen
Lösung läuft ja der Probekörper vollkommen passiv durch ein
reguläres metrisches Feld. Sobald man aber seinen Einfluss auf das
Feld berücksichtigen will, tritt eine vollständige Entartung der
Metrik im Quellpunkt ein.

Die Vermutung ist nicht von der Hand zu weisen, dass wir
heute an der Grenze der Leistungsfähigkeit des Feldbegriffs
angelangt sind. Wir ständen dann vor der grundsätzlichen
Alternative: Kontinuum oder Diskontinuum Im speziellen würde sich
dann die Frage stellen, ob es möglich sei, die Metrik als statistisches
Phänomen aufzufassen.

Zum Schluss sei noch darauf hingewiesen, dass die Formeln
(2.30) im Grenzfall co -> oo dasjenige metrische Feld liefern, welches
dem inhomogenen Wirkungsprinzip

(B + 21 G-a 4^- -P-) l/^G dx 0
\ O xe 0 Xa I '

entspricht. Dieses Prinzip behandelt Herr K. Fink in seiner
Dissertation: „Metrisches Feld und skalares Materiefeld". Die
Totalenergie wird logarithmisch unendlich.

IC
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