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Uber den Einfluss des metrischen Feldes
auf ein skalares Materiefeld
(2. Mitteilung.)
von W. Scherrer, Bern.
(31. V. 1950.)

§ 1. Einleitung. C T b

In einer fritheren Arbeit?), die ich im folgenden unterA zitieren
werde, habe ich den Versuch unternommen, die Materie im Rahmen
der Einsteinschen Gravitationstheorie durch eine skalare Wirkungs-

dichte
1=y (1.1)

zu charakterisieren. Fiir die grundsitzlichen Uberlegungen, die

mich dazu veranlasst haben, verweise ich auf § 1 der genannten
Arbeit.

Methodisch habe ich dabei das Wirkungsprinzip

: 0 0 —

o [[B—24) y*+40Ge J¥ JV]|y=Gdz-0 (12)
zugrunde gelegt, wobel Gg¢ den metrischen Fundamentaltensor,
R den zugehorigen Kriimmungsskalar, A4 die kosmologische Kon-
stante und  eine weitere universelle Konstante — aus dimen-
sionellen Griinden eine reine Zahl — bedeuten.

Fir die Feldgleichungen der Gravitation ergibt sich so das
System

1
Rga_ ‘2_ GQO’ R _i_ AGQO’

1
-+ Y(Dg Dgy — GQGDZ) (1.3)
+ *Zg(DgZDaZ 5 GQGVZ) =0

1) ,,Uber den Einfluss des metrischen Feldes auf ein skalares Materiefeld.
Helv. Phys. Acta, XXII, S. 537—551 (1949).
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und als Feldgleichung der Materie erhdlt man

B+2w)O0x —-244=0 (1.4)

Dabei bedeutet D, das Symbol der kovarianten Differentiation
nach der Koordmate 2o und V y, Oy sind die durch

0 0
V =62 Dyy Dy yp = G2° ‘a‘% e o (1.5)
1 ,
Oy=Dyyo=Ge D, Dyyp= —— -0 (]/ G Geo Ox;) (1.6)

V—G 0 2
definierten Beltramischen Operatoren.

Der Vergleich mit den klassischen Einsteinschen Gravltatlons-
gleichungen

Roo— +GooB+ AGpa=—xTee -~ (L7)

zelgt nun unmittelbar, dass man als Energietensor anzusetzen hat

TQJ:_l_[PQD"Z—GQ“DZ_i_w Doy Doy — l/ngaV,c}
-4

X L ﬁ )

Fir die Einzelheiten der Herleitung von (1.3) und (1.4) VGI‘WGle
ich auf A, § 2.

Im speziellen habe ich dann fiir den Sonderfall 4 =0, o =0
die statisch-zentralsymmetrische Losung ermittelt und die zuge-
hérige Energiedichte —G T diskutiert. Es ist klar, dass dieser
Sonderfall keinen Aufschluscs gibt iiber Krifte, die wesentlich
anders geartet sind als Gravitationskrifte.

In der vorliegenden Arbeit soll nun dasselbe Problem fiir den
umfassenderen Fall 4 =0, w +0 behandelt werden, auf dessen
Losbarkeit ich in der fritheren Arbeit schon hingewiesen habe
(A §5).

Es handelt sich jetzt also um das Wirkungsprinzip

o [(Ry*+4wGer 32 g;”a)]/?éda;=o (1.9)

Die Tatsache, dass durch den Ubergang von w = 0 zu o + 0 die
formale Struktur der Losung nicht, die Verteilung des Feldes aber
beliebig mtensiv geéindert werden kann, scheint mir Interesse zu
verdienen, zeigt sie doch, dass der zusitzliche Gradient dem
metrischen Feld vollkommen angepasst ist.
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§ 2. Das statische Zentralield.

Wir wiahlen wieder das Schwarzschildsche Linienelement
s?=f2dxs—g?dr2—r?(d9*+sm?ddeg?, (2.1)
wo also f und ¢ Funktionen des Radius » sind und erhalten

—G=fgrisind (2.2)
und

Ry=G={—[2"or+2p|+2(2 L +fg)lsin0, 23

wobel der Strich die Ableitung nach r anzeigt.
Das Wirkungsprinzip (1.9) nimmt mit (1.1) die Gestalt

a/(R4+w )V Gdz =0 2.4)

an. Lassen wir wieder die Zeit und die Winkelvariablen weg, so
folgt nach einer durch (2.3) nahegelegten partiellen Integration und
mit Ricksicht auf

w’2

y NP 25)
das Prinzip

6./ rf—FQn- (2’§+f+¢g)2]_ mimm}dr 0 (2.6)

Wlederum erhilt man durch sukzessive Variation von f, y und g,
gefolgt von respektiver Division durch y; f und xf nach leichter
Umformung drei Gleichungen

°[5 - 3l 2+w;<c>~2(g+ H-0 e
L A2 e e A )
(g i) (2.8)

[ R RLTIN RY

Ersetzt man diese (leichungen durch die Kombinationen (2.7) —
(2.8), (1 + w) (2.7) + (2.8), (2 + ®)? (2.9) und fithrt man tberdies
an Stelle von y und f die neuen Funktionen

xl—f-w

P=1f, Q= f*‘i - (210)

ein, so erhilt man nach einer an der ersten Komblnatlon unmlttel-



550 W. Scherrer.

bar ersichtlichen Integration sowie nach einigen Umformungen der
zwelten und dritten Kombination das System
rRQ A

=% | (2.11)

“lar (DY (T 2 a0

-

e (;2)"1'3 [ Tf: 4 9 (2+w)] —2@+w)r2+ }‘i) =0 (212

; {[Tlf +2(2+w)]2~2(2+w) (8+2 w)}

=
. ‘42 .
_ [2 @+ w) + rf;] ~0 (2.18)
Setzt man nun
S=rP; K='% (2.14)
so gilt L

Aus (2.12) und (2.13) ergibt sich hierauf nach einiger Rechnung
als Differentialgleichung zwischen S? und K allein

2(K+1’)dK d(8?)

K[K®+42+0) K+2(2+w)] ' A*+22+w) 8% 0 (2.16)
Ihr Integral lautet |
K2[2(2+w) 82+ 4?2]
K2+4(2+w)K+2(2-|:5)__—Bz (2.17)
Weiter finden wir aus (2.11), (2.14) und (2.15)
iQ Ad S
0 T9EID S (2.18)
Aus (2.13), (2.14) und (2.17) aber folgt
KS
g= B (2‘19)
womit (2.18) iibergeht in
de AK as
Q T B(K+1) S (2.20)

Um nun die endgiiltige Integration einzuleiten, miissen wir die
nach (2.14) und (2.15) in (2.17) enthaltene Differentialgleichung
auflgsen. Setzt man

S=Lgr (2.21)
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und bezeichnet man die Ableitung nach s mit einem Punkt, so
erhélt man

S . 824+ a2—af /S +a?

S S21g2_q? ﬁz (2'22)
Dabeir wurden die Abkiirzungen
. A%+ (3+2 w) R? |
am'V diLl (2.23)
B
f=— (2.24)
eingefithrt. Setzt man schliesslich noch
S=a)x2—1, (2.25)
so ergibt die Integration von (2.22) mit Riicksicht auf (2.21)
B
—— | z-117
=yt 2 226

=
Aus (2.15), (2.21), 2.22), (2.23), (2.24) und (2.25) folgt weiter

E=—F (2.27)

Fihrt man nun (2.25) und (2.27) in (2.20) ein und integriert, so
folgt

Q-C| =1 % (2.28)
wobel die Abkiirzung '
A
= '?; (2.29)

eingefiihrt wurde.
Aus (2.14), (2.25) und (2.26) ergibt sich nun

_8 :
P:%ij%? (2.80)
Wegen (2.10) erhalten wir also
o j—2tf
2+ w | i 2
o=l 2.31)
und
3 ) 1 J“_(} +OLP
24w a W xr— 2
pro— (3=t (2.32)
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Aus (2.19), (2.25) und (2.26) folgt schliesslich
. (2.89)

Nun nehmen wir noch die Normierung im Unendlichen vor. Fir
x-> oo, das heisst r > oco muss das pseudoeuklidische Linien-
element herauskommen, also f = 1 sein. Dies ergibt nach (2.32)

w (7)) =1 2.34)

Schliesslich normieren wir noch die 1m Unendlichen konstante
relative Intensitdat y auf 1, was auf

¢ " p
,,bi =1 (2.35)

fihrt. Es ergibt sich somit b = ¢ und C = 1.
Die Ergebnisse stellen wir in folgender Tabelle zusammen:

B
_ g | F-1 18
g a,]/gc 1 ! z+1 %
a—(1+ w)p
P N -t
|z | (2.36)
2 (x2-1)
"= w+p
‘ g = a+pB
2 _ r— *‘\ 24+ w
x Cx+1 :

Wegen (2.23), (2.24) und (2.29) gilt ausserdem zwischen « und B
die Relation

02+ (3 +2w)B2=2(2+ ) (2.87)

Beim Vergleich mit der fritheren Tabelle (A § 3 (37)) 1st zu
beachten, dass die jetzigen «, § das Doppelte der fritheren sind.
Wie man sieht, konnte die Rechnung vollstdndig parallel zum Fall
w = 0 gefiihrt werden. Der Finfluss von @ zeigt sich nur in den
Exponenten von f2 und x%2 Im Intervall

3
—g LWL

liefert die Exponentenrelation (2.37) in der («, 8)-Ebene eine Ellipse,
die fir o = — 3/, in das Geradenpaar « = + 1 und fir v = + oo
in das Geradenpaar f = + 1 ausartet.
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§ 3. Der Energietensor.

"~ Wie in der fritheren Arbeit (A § 4) fihren wir jetzt an Stelle
von r den Parameter z ein:

1+8 1-5
r=a(x—1) % (z+1) ® (3.1)
und erhalten als Linienelement -
ds? =f2d$c§—h2dx2—fr2 (d 92+ sin ¢ d ¢?), (3.2)
mit
1 i
x— 2
h=a 5 (3.8)

Die Tafel der I'}, ist also dieselbe wie in 4 und fiir die nicht ver-
schwindenden Komponenten des Energietensors erhélt man

1 ()  ox\7
o_ _ L (£  wx\Xx
#ly = h? (f 2x) %
1 it h oy w 2
1 Xy LAL.
iy = hz[:/ hy 2(9:)] (3.4)
1 r wy A
2 L (T X\ X
7T2 h? (r 2y ) X
T33= T22

wobei der Strich die Ableitung nach x anzeigt.
Nach (2.36) und (3.3) ergibt sich

f a—(1+w)p 1

f 2+w z2-1
x . e¥f 1
1 2+ x2—1
v e (3.5)
) 21
o x4+ f
ro x2-1
Wir erhalten daher schliesslich
TO_ [32 [ xr 1 1
U m \’E%—Tl T (x2—1)2
1 oa+f g1 =8 dx+o+3p
Ay =~ 2(2+ ) xa? [ z+1 | (x2-1)2 (3.6)
T2 a+f | ax—1 | f 2zt+twat(2+w)p
27 2@+w)xa* | @+l | (z—1)?
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Mit
R aaly .
V%Gzﬂw%mﬁ=a3z;h 2@+ (g2 Q)sind  (3.7)
ergibt sich also die Energiedichte
2 g 1 s T P
0 -7 ol- z—1 | 2@2+w) sm :
Ty V_G 224+ w)xa® | x+1 x2—1 (3.8)

Die Berechnung der Totalenergie verlauft nun genau gleich wie
mn A und liefert

*?

g 2na(x-§ ‘ (3.9)

wobel die Konvergenz der Integration an die Bedingung

,,,,,, B < ¢ (3.10)

gekniipft 1st.

Fir w > — 3/, sind also die zulissigen Exponenten «, 8 be-
schriankt auf diejenige Halfte der Ellipse (2.37), welche im Gebiet
a + B > 0 liegt. Die Grenzpunkte dieses Bereichs sind

a=1; p=—1 (8.11)
a=—-1; p=1 (3.12)

Fir sie und nur fiir sie konzentriert sich die Energie auf einen
Punkt — den Ursprung. Thnen entsprechen genau die schon in
(A, a), b)) aufgestellten Grenzlosungen, von denen die erste positive,
die zweite negative Totalenergie aufweist.

Fir gentigend grosse positive o erstreckt sich tbrigens die
genannte Ellipse beliebig weit in Richtung der positiven «-Achse.
Das Modell enthilt also die Moglichkeit beliebig stark abweichender
Kraftfelder, ohne dass die den punktférmigen Energieverteilungen
entsprechenden Felder abgeéindert werden.

§ 4. Schlusshemerkungen.

Wir haben festgestellt, dass die Losungen des Wirkungsprinzips
o [(Ry*+40Rer S0 20) y—Gda—0

05&1 0xg

qualitativ dieselbe Struktur besitzen wie die Liosungen des in der
fritheren Arbeit (A) behandelten Spezialfalles w = 0.
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Der Energietensor ist in allen Féllen o + g > 0 kontinuierlich
vertellt und konzentriert sich nur in den Grenzfillen « + =0
nach der Art einer Diracfunktion auf eine Weltlinie. In allen Fillen
aber sorgt der metrische Tensor dafiir, dass die Totalenergie
endlich bleibt.

Eine exakte Formel fiir die ponderomotorische Kraft in Aussicht
zu nehmen, hat nur fiir die Grenzfille & + 8 = 0 einen Sinn. Sach:
gemiss sollte sie sich aus einer kontinuierlichen dynamischen
Losung durch Grenziibergang ergeben. Einem solchen Verfahren
steht aber folgende Schwierigkeit gegeniiber: Die Stellen, in denen
sich das Materiefeld singulidr verdichtet, miissen schon in der An-
fangslage als Singularitdten vorgegeben sein. Wird es moglich sein,
dieselben von der Anfangslage aus gesetzmassig fortzusetzen ?

Der tiefgehende Gegensatz, welcher in der Einsteinschen Gravi-
tationstheorie zwischen der Materie als Feldquelle und der Materie
als Probekorper besteht, ist also in diesem Modell wohl etwas ge-
mildert, aber noch keineswegs iiberwunden. Bei der klassischen
Losung léauft ja der Probekorper vollkommen passiv durch ein
reguléres metrisches Feld. Sobald man aber seinen Einfluss auf das
Feld beriicksichtigen will, tritt eine vollstindige Entartung der
Metrik im Quellpunkt ein.

Die Vermutung ist nicht von der Hand zu weisen, dass wir
heute an der Grenze der Leistungsfahigkeit des Feldbegriffs an-
gelangt sind. Wir stinden dann vor der grundsétzlichen Alter-
native: Kontinuum oder Diskontinuum ? Im speziellen wiirde sich
dann die Frage stellen, ob es méglich sei, die Metrik als statistisches
Phénomen aufzufassen. :

Zum Schluss sei noch darauf hingewiesen, dass die Formeln
(2.80) im Grenzfall @ - oo dasjenige metrische Feld liefern, welches
dem inhomogenen \Virkungsprinzip

08
0x, Oxa

o [(R+220e0 ) y=Gdz=0

entspricht. Dieses Prinzip behandelt Herr K. FINK in seiner
Dissertation: ,,Metrisches Feld und skalares Materiefeld'‘. Die
Totalenergie wird logarithmisch unendlich.
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