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Theorie der Photospaltung und Bildung" von H3 und He3

von Mario Verde, Physikalisches Institut der ETH. Zürich.

(2. V. 1950.)

Summary: The photodisintegration and the formation by radiative capture of
the two nuclei H3 and He3 are well suited to give information on the configuration
of these nuclei and on the nature of nuclear forces. Therefore experiments on these
reactions are highly desirable. In this paper we have treated the problem
theoretically. We have systematically taken into account the symmetry properties in
ordinary space and in the spin and isotopie spin spaces. In the first section we
give the formalism which we have used. In the second we discuss the spacial
configuration of the ground states of H3 and He3, which appears to be predominantly

totally symmetric in the space coordinates. In the third section we discuss
the magnetic transition into a final state which consists of a 3S deuteron and a free
nucléon. This transition is forbidden for configurations totally symmetrical in
space. This accounts for the observed low capture cross section for thermal
neutrons on deuterons. In the fourth section we calculate the electric transition into
a final state consisting of a 3S deuteron and a nucléon. Fig. 1 gives the numerical
results for the total cross section. In section five we have considered the case of
the direct transition into three free nucléons. In the last section we present the
formulae for the cross section of the capture of a nucléon by a 3S deuteron.
Possible comparison with experiment is discussed in the concluding remarks.

Einleitung.

Die Kenntnis der Konfigurationen, die drei Nukleonen unter den
gegenseitigen Wechselwirkungen annehmen können, kann uns für
das Verständnis der Kernkräfte einen bedeutenden Beitrag liefern.
Selbst wenn wir imstande wären, auf Grund von Daten, die sich
auf Zweikörperprobleme beziehen, das Kernpotential in endgültiger
Weise zu ermitteln, so wäre es dennoch sehr wichtig, die Gültigkeit
eines solchen Potentials für Dreikörperprobleme zu prüfen. Letztere
sind im allgemeinen, was die Abhängigkeit von Spin und Isotopenspin

betrifft, bei niedrigen Energien empfindlicher als die
Zweikörperprobleme. Ferner wäre es von Bedeutung, festzustellen, ob
das Gesamtkernfeld einfach aus der Summe der einzelnen
Wechselwirkungen besteht oder die sogenannten Mehrkörperkräfte eine
Rolle spielen. Die theoretische Behandlung von kernphysikalischen
Dreikörperproblemen bietet also ein grosses Interesse. In der Tat
schaffen die Existenz zweier gebundener Zustände von drei
Nukleonen, nämlich der Kerne H3 und He3, wie auch die Neutron-



454 Mario Verde.

Deuteron- und Proton-Deuteron-Streuversuche eine günstige
Grundlage für eine theoretische Bearbeitung.

In der vorliegenden Arbeit soll eine Theorie der Spaltung von
H3 und He3 durch ein elektromagnetisches Feld entwickelt werden.
Diese Erscheinungen sind vielleicht am meisten dazu angetan, im
Sinne der obigen Betrachtungen Aufschlüsse zu liefern. Da bei der
Bildung der betreffenden Kerne die zugehörigen umgekehrten
Prozesse auftreten, können die der Bildung entsprechenden
Wirkungsquerschnitte leicht abgeleitet werden. Es wäre nützlich, auch solche
Reaktionen experimentell eingehend zu untersuchen.

Die einzigen Versuche in dieser Richtung sind, so weit uns
bekannt, erst kürzlich von Laubitsen1) und Mitarbeitern durchgeführt

worden und betreffen die Bildung von He3. Diese Autoren
haben insbesondere die Winkelverteilung der ausgesandten y-
Quanten untersucht und erhalten praktisch eine reine sin2

©-Verteilung. Es wäre von Interesse, auch beim analogen Einfang von
Neutronen durch das Experiment festzustellen, ob diese
Winkelverteilung die gleiche ist.

Um das theoretische Problem nicht unnötigerweise zu komplizieren,

muss man von vornherein alle Konstanten der Bewegung
berücksichtigen. Man hat nämlich im Koordinatenraum und Raum
des Spins und Isotopenspins die Bezugssysteme so zu wählen, dass

diejenigen Gruppen, die vom Hamiltonoperator des Systems
gestattet sind, ausreduziert auftreten. Wir haben den hierfür
verwendeten Formalismus in § 1 dieser Arbeit zusammengestellt.

Besteht die Wellenfunktion des Grundzustandes der beiden
Kerne H3 und He3, was den Raumanteil anbetrifft, überwiegend
aus einer vollkommenen symmetrischen Komponente — und die
Plausibilität dieser Annahme soll in § 2 nachgewiesen werden —
so muss der photomagnetische Übergang verboten (§ 3) sein. Als
einzige Möglichkeit bleibt nur der elektrische Übergang, der zu
einer Winkelverteilung von der Form sin2 & führt. (Vgl. § 4.) Dieser
Umstand liefert auch eine Erklärung der bekannten Tatsache, dass
der Einfangquerschnitt von Deuteronen für thermische Neutronen
sehr klein ist. Bei den in den §§3 und 4 behandelten Übergängen
wird jeweils ein Nukleon ausgesandt, und es bleibt ein Deuteron im
Grundzustand zurück. Der Übergang in ein Kontinuum von drei
freien Nukleonen bildet den Gegenstand des § 5. Die
Wirkungsquerschnitte für die den Photospaltungen entgegengesetzen
Einfangsreaktionen werden im letzten Paragraphen abgeleitet.

Für eine Diskussion der Möglichkeit eines Vergleiches der hier
gefundenen Ergebnisse mit dem Experiment sei auf die
Schlussbemerkung verwiesen.
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1. Der Formalismus.

Wir wollen kurz einen Formalismus beschreiben, von dem wir
zum Teil schon für die Theorie2) der elastischen Neutron-Deuteron-
Streuung Gebrauch gemacht haben.

Es seien die folgenden drei Symmetrieoperatoren

r {(23) + (12) + (13)}

T'-=-Ç-{(18)-(12)}

T" -(23)+l{(13) + (12)}

(1)

definiert. Hierbei stellen (12), (13), (23) die Permutationen der
Variablen der Nukleonen 1, 2, 3 dar. Die soeben angegebenen
Operatoren erzeugen z. B. bei Anwendung auf rx die Koordinaten

3 qs (fi + h + %)

r =JL_(f3—f2) m

Im Bezugssystem dieser Vektoren, das wir in der Folge benutzen
werden, lautet der Operator der kinetischen Energie

£ •

h2

2m (Ar + Ag)

wobei mit m 2/3 M die reduzierte Masse eines Nukleons in bezug
auf die beiden anderen bezeichnet ist. Ferner ergibt sich für den
Operator des Gesamtdrehimpulses

M- h ,r~PL • Pj T{[? • fy] + [r • RÖ + [q ¦ %]}

Im Schwerpunktsystem, auf das wir uns beschränken wollen, werden
die kinetische Energie und der Drehimpuls

£ 2m (Ar + AQ) M l{[r-Vr] + [q-Vg}}

Die Operatoren (1) erzeugen in Anwendung auf symmetrische
Funktionen zweier Variablen die Basis für die zwei unitären
Darstellungen 1 und D. Diese sind Darstellungen der symmetrischen
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Gruppe von drei Elementen, nämlich die identische eindimensionale
und die zweidimensionale Darstellung D.

1/2 l/3/2\ / 1/2 _/8/2\ ,_ /-1 0
(12)

\]ßß -1/2/
(18)

V-l/3/2 -1/2/
(23)

\ » +1

Im von D bestimmten Unterraum wirken die Operatoren Ts, T',
T" folgendermassen :

r=o r-'(J J) r= + |Ç_J) ,3)

Der Produktoperator ï" T"' antikommutiert

î1' T" + T" r 0

Ferner gilt
T'2 Ï1"2 9/4

Es ist leicht zu beweisen, dass für drei beliebige Funktionen cps, cp',

cp" der Koordinaten, die sich gegenüber Permutationen nach der
Darstellung I bzw. D transformieren, die folgenden Beziehungen

f cps cp'dv f cps cp" dv fcp'cp" dv Q fcp'2dv fcp"2dv (4)

gelten. Von diesen Formeln werden wir oft Gebrauch machen. Die
Integrale sind über den ganzen Raum von rx, r2> ^a zu erstrecken;
dessen Volumelement ist dv d3rxd3r2d3r3 und wird im
Schwerpunktsystem d3rd3q.

Die Symmetrieoperatoren, die durch (1) definiert wurden, dienen
auch zur Festlegung des Bezugssystems im Spin- und Isotopenspin-
raum. Bei drei Nukleonen kann der Gesamtspin S 3/2 oder 1/2
betragen. Auch der Gesamtisotopenspin kann nur diese Werte
annehmen.

Betrachtungen, die sich auf den Spin beziehen, lassen sich stets
unverändert auf den Isotopenspin übertragen. Deshalb dürfen wir
uns in der Folge auf die eine dieser Variablen, nämlich auf den
Isotopenspin, beschränken.

Wir bezeichnen mit ax und bx die beiden Eigenfunktionen der
^-Komponente des Isotopenspin des Nukleons 1. Man hat

r«1» ax + ax rf bx -bx



<= .{T(1) + T(2) + T«3)}

f
*z

fö ./T<3)-
~2~ 1 z -42)}

II
Tz — T(1) + — {rf + rf}.
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Mit Hilfe von (I) werden die folgenden Operatoren im Raum des

Isotopenspin eingeführt

(5)

Die Gesamtladung kann durch den symmetrischen Operator t|
allein ausgedrückt werden

3+r*

wobei e die Elektronenladung bedeutet. Es ist

fürH3 tj —1

für He3 xsz +1

Man kann die drei Isotopenspin-Eigenfunktionen von H3 erzeugen,
indem man mit den üblichen Symmetrieoperatoren auf die
Eigenfunktion ax b2 b3 ]/2ß wirkt. Man bekommt

c-=?frkÒ2òs) y? c-=r{aikba) y2

3
£'_ T"(axb2b3)-\/-.

Diese Eigenfunktionen sind orthogonal und normiert. Um die
entsprechenden Eigenfunktionen des He3 zu erhalten, muss man in der
gleichen Weise auf die Eigenfunktion bx a2 a3 j/ 2/3 wirken. Wir
bezeichnen diese drei Funktionen mit f+, Ç'+, f+.

Im Raum von fs, £', t," werden die Operatoren, die durch (5)
definiert sind, durch die folgenden Matrizen dargestellt:

(0
]ß 0\ /00 |/ 2\

l/2 0 ll <=± 0 1 Ol (6)

0 1 0/ \/2 0-1/
Wie aus der ersten Gleichung hervorgeht, gilt das Pluszeichen für
He3 und das Minuszeichen für H3.

Da der symmetrische Operator t*x) • xf> ¦ x(3) unsere Basis invariant
lässt, können wir auch schreiben

T(1)T(2) + T(1)T(B) + T(2)T(3) T, (7)
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Diese Betrachtungen genügen nur für Spinzustände, die
symmetrisch sind gegenüber Permutationen der drei Teilchen, d. h.
für Spin 3/2. Da wir wissen, dass die Grundzustände von H3 und
He3 zum Gesamtspin 1/2 gehören, ist es nötig, die Spineigenfunktionen

x un<i x"> die sich nach der Darstellung D transformieren,
einzuführen. Infolgedessen muss man die Produktdarstellung Da-Dr
ausreduzieren. Die Basis im Produktraum lautet bekanntlich3)4)

(8)

Diese Eigenfunktionen sind orthogonal und normiert. Çs ist
vollkommen symmetrisch, f ist vollkommen antisymmetrisch und £',
|" transformieren sich nach der Darstellung D, unter gleichzeitigen
Permutationen der Spin- und Isotopenspinvariablen. Es ist klar,
wie sich die neue Basis aus denjenigen der einzelnen Räume
zusammensetzt. Es ist zu beachten, dass eine solche Zusammensetzung
mit irgendwelchen Variablenpaaren, die sich nach D transformieren,
vorgenommen werden kann, und zwar unter Erzeugung derselben
Symmetrieklassen. So kann man z. B. aus den zwei Vektoren r und
q, deren Komponenten sich nach D transformieren, das invariante
Polynom r2 + q2 bilden; ferner transformieren sich die beiden
Ausdrücke 2 (r -q), (r2 — q2) nach D.

Natürlich hat man zwei Sätze von ^-Funktionen, die den zwei
Werten der z- Spinkomponente entsprechen. Dieses wird durch ein
tiefgestelltes Plus- bzw. Minuszeichen gekennzeichnet.

Es ist wichtig, zu wissen, wie die Operatoren xj und x"z im Raum
der | wirken. Mit Hilfe von (6) können die folgenden Beziehungen

(9)

leicht abgeleitet werden. Das Plus- bzw. Minusvorzeichen entspricht,
wie üblich, der Ladung, d. h. He3 bzw. H3. Das Auftreten von fs
in (9) bedeutet, dass die Operatoren xs' und x"z den Isotopenspin nicht
invariant lassen. Wir werden mit S den folgenden ganz symmetrischen

Operator

S-^ioX + oW (10)

bezeichnen. az und a"z sind für die Spinvariablen analog definiert

7 Z r-z"?
+x"c +r z'C± ±fs-*"C + Sa arc

x'C + x"C
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wie x'z und x"z für den Isotopenspin. Da a'z und a"z in gleicher Weise
wie x'z, x"z operieren, kann man leicht zeigen, dass

/ls\ / fs+V2xsCs\

8(ï)-4~Se+e* (u)

Das positive Vorzeichen bezieht sich auf den Fall, in dem die z-Kom-
ponenten des Spins und Isotopenspins gleichzeitig positiv oder
negativ sind. Das negative Vorzeichen hingegen gilt für den Fall, dass
diese beiden Komponenten ein entgegengesetztes Vorzeichen haben.
S lässt also weder den Gesamtspin noch den Isotopenspin
unverändert. Es sei hervorgehoben, dass S im Zustand £a dennoch diagonal

ist. Hiervon werden wir später Gebrauch machen. Aus (11) geht
hervor, dass mit a\ + 1

gilt. Das obere Vorzeichen entspricht Ile3, das untere H3. Nach
diesen formalen Betrachtungen gehen wir zur Erörterung der
Grundzustände dieser beiden Kerne über.

§ 2. Die Grundzuständc.

Die experimentellen Daten, die sich auf die Grundzustände von
II3 und He3 beziehen, sind die Bindungsenergie, der Gesamtspin und
das magnetische Moment. Die besten Werte der Bindungsenergien
leiten sich aus den Kernreaktionen5)

D + D -> II3 + p + Qx

D + D -> He3 + n + Q2

Qx 4,036 ± 0,022 MeV
Q2 3,265 ± 0,018 MeV

ab und betragen:

BH 2Boc-Q1
BHe 2Ba-Q2

- 8,510 ± 0,091 MeV
-7,739 ±0,1 MeV

Hierbei wurde für die Bindungsenergie des Deuterons der Wert
Ba — 2237 ± 5 KeV aus der Bestimmung von Bell und Elliot6)
eingesetzt. Für die Differenz der Bindungsenergien erhält man5)

BH-BHe &-& 771 ±6keV
*) Eine andere Quelle zur Bestimmung dieser zwei Bindungsenergien ist die

Maximalenergie des /3-Zerfalls des Tritons (vgl. Hanna und Pontecorvo, Phys.
Rev. 75, 983(1949)). Mit der massenspektroskopischen Differenz 2HX-H2
1,432 ± 0,002 MeV bekommt man BD - 2,221 ± 0,006 MeV und infolgedessen

BH= - 8,478 ± 0,07 MeV, £He - 7,707 ± 0,06 MeV.
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Die Messung der magnetischen Momente ergab für das Triton7)9)

pir + 2,9786 KM
und für He3 2)10)

fiMe (-) 2,1274 KM

Ferner ist experimentell auch sichergestellt8)9)10), dass die
Grundzustände von II3 und He3 einen Gesamtspin 8 1/2 haben.

Schon aus diesen Daten lassen sich einige Schlüsse ziehen. So

kann man u. a. aussagen, dass auch der Isotopenspin der beiden
Grundzustände 1/2 beträgt. In der Tat kann eine Konfiguration,
die im Koordinatenraum vollkommen symmetrisch ist, nur im Fall
von S 1/2 und T 1/2 auftreten. Eine solche Konfiguration
wäre dagegen im Fall von S 1/2 und T 3/2 ausgeschlossen.
Überdies müssen die Grundzustände zu den ersteren Quantenzahlen

gehören, denn bei gleicher potentieller Energie besitzen
bekanntlich die symmetrischen Konfigurationen eine kleinere
kinetische Energie. Auf Grund der gleichen Tatsache ist ohne weiteres
einzusehen, dass ein Niveau mit S 3/2 und T 1/2 sicher höher
liegt. Dessen ungeachtet sprechen die gemessenen magnetischen
Momente dafür, dass die in Frage stehenden Grundzustände zum
Isotopenspin T — 1/2 gehören.

Das gesamte magnetische Moment unseres Systems lautet

i

1 + TM i_TW
/* =E* a^ 9Z Vp + —V~ Vn2 r~r •

2 t-N/ 2

ßP + ßN
Ol

+ —:r-(-1r-H ^
wo wie üblich cfz= T*tr^>; S ist durch (10) definiert, z ist die
Richtung bei der a*x — +1, wie es nach der Definition des magnetischen

Moments sein muss.
Man kann sich leicht davon überzeugen, dass S in einem Zustand

mit .5 1/2 und T 3/2 verschwindet. In diesem Fall gilt
nämlich*)

2 1
u y ixp + y fiy für He3

2 1
(14)

pi y fly + y ftp für H3

Diese Werte stehen in Widerspruch zu den experimentellen Ergeb-

*) Um die magnetischen Momente der Zustände von H3 aus denen von He3 zu
bekommen, braucht man nur fiy mit /t _ zu vertauschen. In der Tat wechseln t* und
S das Vorzeichen, wenn man von einem zum andern dieser Kerne übergeht.
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nissen. Im Zustand *S 1/2, T 1/2 gilt dagegen, und zwar für den
vollkommen symmetrischen Raumanteil, der mit der Spineigenfunktion

f ° gekoppelt ist

u u„ für He3

fi fip tur HJ

Die Tatsache, dass im Zustand Is für die magnetischen Momente
die folgenden Werte erhält

fi y pip — y ^v für He3

fi ~-fiN — y ^p für H3

beweist, dass der vollkommen antisymmetrische Raumanteil der
Eigenfunktion des Grundzustandes praktisch kaum vorhanden sein
kann. Der Umstand, dass die kinetische Energie bei den antisym-
metrischen Konfigurationen immer sehr gross ist, kann als eine
weitere Bekräftigung dieser Behauptung angesehen werden. Da
sich für den Zustand f, |' die gleichen magnetischen Momente
ergeben wie für S 1/2, T =-- 3/2 (vgl. (14)), kann man eine starke
Beimischung eines solchen Zustandes ausschliessen. Der Zustand
(£', I ') liefert in der Tat einen Beitrag zu den magnetischen
Momenten, der gerade im entgegengesetzten Sinn zu den Zusätzen
geht, die man braucht, um ausgehend von (15) die experimentell
gefundenen Werte zu erklären. Andererseits legt man sich von
dieser Tatsache auch dann Rechenschaft ab, wenn man durch ein
Variationsverfahren die Beimischung numerisch ermittelt. Für
Einzelheiten sei auf eine andere Arbeit11) verwiesen.

Für den Grundzustand machen wir folgenden vollkommen
symmetrischen Ansatz

Diese Funktion ist im Raum von r und \ normiert:

/ \cps\2dv =1

Mit einem Potential 7723 zwischen den Nukleonen 2 und 3 vom
Typus der symmetrischen Mesontheorie

2to
~h2 ' U23=y(r<2>.T<3>). j(l-i g) +^(^.^))V-2

bekommt man für den Variationsparameter den Wert fi 1,40.
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Wir haben die Werte, 2j(x |/3) 1,18 10~13 cm für die Reichweite
und s =- 2,285 angenommen. Diese numerischen Werte sind den
Zweikörperproblemen entnommen. Für die Bindungsenergie des

Tritons ergibt sich Bn — 2,45 MeV.

Wenn für die Reichweite ein grösserer Wert angenommen oder
die Tensorkraft berücksichtigt wird, so erhält man für die Bindungsenergie

grössere Werte. Dass die Bindungsenergie immer zu klein
herauskommt, dürfte zum Teil dem für den Grundzustand
gemachten Ansatz zuzuschreiben und zum Teil eine Folge der benützten

Wechselwirkung sein. WTir wollen den Parameter fi aus der
Coulomb'sehen Abstossung der zwei Protonen in He3 wieder
bestimmen. Dabei wird die Annahme gemacht, dass die Differenz der
Bindungsenergien von H3 und Ile3 als reine Coulombsche Energie
angesehen werden kann. Der dieser Energie entsprechende Operator
ist:

1.2.3! (*) j (k)

E e2 Y - - -' .-4, 2 2 \f,-Ui <k

Aus (7) folgt:

üc=el (l+t^.P .—s

Für He3 gilt also

4

E __
e

r£$. I ±
2 Vl^-K-I

»¦.I.

und für den in (16) angegebenen Zustand wird

p _3e* x\'J 1
C

\'n
'

2
-

fi

Daraus folgt mit Ec 771 keV und mit dem schon benützten
Wert von x; fi 2,68. Für die numerische Berechnung der
Wirkungsquerschnitte werden wir von diesem zweiten Werte Gebrauch
machen. Will man andererseits auch die Beimischung (cp', cp") mit
einbeziehen, so hat man für den Grundzustand eine Eigenfunktion
folgender Art

cp cp- |° + cp' £" —- cp" |'

zu wählen. Um dem PAULiprinzip Genüge zu leisten, müssen sich
cp' und cp" nach der Darstellung D transformieren (vgl. die zweite
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Gleichung von (11)). Man kann für die drei Funktionen cps, cp', cp"
z. B. den folgenden Ansatz12) machen

^'HT(:)V^"~'" <i7>

j-j (r* + 'f)

(17)'

Diese Funktionen gehören den richtigen Symmetrieklassen an,
wie aus den Bemerkungen, die wir hinsichtlich der Beziehung (11)
gemacht haben, hervorgeht. Für die Normierung muss Ns + 2 AT'= 1

gelten. Das Variationsverfahren liefert für N', mit den gleichen
Konstanten wie oben, einen ausserordentlich kleinen Wert11). Die
Bindungdenergie nimmt den grösseren Wert BH —3,1 Mev an.
Für v erhält man v 1,0. Obzwar man diesen Wert von v nicht
allzuviel Vertrauen schenken darf, bleibt jedoch die Tatsache
erwiesen, dass die Beimischung der Raumanteile (cp', cp") im
Grundzustand nur sehr klein sein kann. Wir gehen nun zur Berechnung
der Wirkungsquerschnitte für die Photospaltung über.

§ 3. Magnetische Übergänge.

Wir wollen, wie üblich, unterscheiden zwischen Übergängen,
die vom magnetischen Feld und Übergängen, die vom elektrischen
Feld der einfallenden Strahlung herrühren. Wir beginnen mit den
ersteren.

Wir beschränken uns auf den Fall, dass das magnetische Feld
innerhalb des Kernes als konstant angesehen werden darf, d. h.
wir betrachten nur die Dipolübergänge.

Die Wechselwirkung ist

t*-m ft'z H-z

fiz ist die Komponente des magnetischen Momentes des Kernes
in der Feldrichtung, die zum Wellen- und zum Polarisationsvektor

der einfallenden Strahlung senkrecht steht. Wir verwenden
für piz den Ausdruck (13)

3 \ 2 / 2 Me



464 Mario Verde.

Wird mit h co die Energie der y- Quanten bezeichnet, so muss man
bekanntlich für die normierte Feldstärke

Hz y 2 n h co

einsetzen.

Die Tatsache, dass £", wie schon bemerkt, eine Eigenfunktion
von S ist, bringt mit sich, dass ein magnetischer Dipolübergang
von einem im Raumanteil symmetrischen Zustand cp" aus
verboten ist. In der Tat ist der symmetrische Zustand des Konti-
nuums, der zu den gleichen Quantenzahlen S % und T %
gehört, auf dem Grundzustand orthogonal. Dieser Umstand kann
als Erklärung für die bekannte experimentelle Tatsache
herangezogen werden, dass der Einfangquerschnitt des Deuterons für
thermische Neutronen sehr klein ist.

Will man den Übergang vom Raumanteil cp', cp" des
Grundzustandes ins Kontinuum berechnen, so wirkt man mit dem
Operator (13) auf die Funktion

<pa=y= •{(?>' c - <p" s ;)+(v $"- - ?" o}
Der diagonale Teil des genannten Operators liefert natürlich
keinen Beitrag zum Übergang und man darf sich auf den Operator

e h Vp ^n
~Wc~ 3

S

beschränken. Aus (11) folgt für He3

s cpa= y= { <p'(z"+ cs+c r+ - <p"{%+cs+c %\) - <p'(x"- cs+r xs-)

+ cp"(x'_!:s + ,'xi)}
Für II3 genügt es, das Vorzeichen zu wechseln. Die Quantenzahlen

des Endzustandes müssen entweder S % und T 3/2

oder S 3/2 und T % sein. Von diesen Möglichkeiten ist die
zweite weitaus wichtiger, denn in diesem Fall kann der Endzustand
aus einem Deuteron im Grundzustand 3S und einem freien Nukleon
bestehen. Der andere Fall würde einem Deuteron im ^-Zustand,
der symmetrisch in den Ladungskoordinaten ist, und einem freien
Nukleon entsprechen. Die Berechnung der diesem letzten Fall
entsprechenden Übergangswahrscheinlichkeit soll weiter unten in
Zusammenhang mit dem direkten Übergang in drei freie Nukleonen
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durchgeführt werden (vgl. § 5). Das Matrixelement, das wir
berechnen wollen, lautet also

I«?;H'mcpadv ^. l/nhlo ^N-f (cp'e<P' + cplcp") dv Mea (19)

wobei über den Spin bereits aufsummiert wurde.
Für die Berechnung des Wirkungsquerschnitts benutzt man die

übliche Formel der Störungstheorie

ä TT i ti t lo

Für den Endzustand machen wir den Ansatz

(20)i-T'cpA
v':=t"<p,\

Wir verweisen auf die Arbeit2) für weitere Erklärungen. Der
asymptotische Ausdruck für cpc ist für grosse Werte von q

1 sin (kq + ô.)
^e-ya(r)-—-r-

Für He3 ist die S-Welle im Coulombfeld des Deuterons einzusetzen.
Mit g(r) bezeichnen wir die im r-Raum normierte Eigenfunktion
des Deuterons im 3S-Zustand. ôà ist die Phase im Quartettzustand
der S-Streuung eines Neutrons am Deuteron. Wie üblich

k2dkQdco r i y h2k2

2— ist die kinetische Energie der Relativbewegung des

auslaufenden Nukleons in bezug auf das Deuteron. Die Schwellenwerte
der betreffenden Reaktion betragen :

BH - 8,50 + 2,23 - 6,27 MeV für H3

BHe _ 7,73 + 2,23 - 5,50 MeV für He3

Mit Hilfe von (20) und (3), (4) wird das Matrixelement

Mea ^- y71 h CO (ptj, — Up) J%<P"dv

Wir wollen uns mit einer Abschätzung der Grössenordnung
begnügen, indem wir für cpe das Produkt einer GAUSs'schen Funktion
mit einer freien S-Welle ansetzen:

n ] kqq
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Für den Wirkungsquerschnitt bekommt man

a N'±(2 „r£ [i,)\,N~,pffe (e+eb) (-£ - * )«(«)V-
(21)

Wir haben (17)' benutzt und folgende Abkürzung eingeführt

2m fr,., IRIN „2, _ 2m ibi /£\2 /'*\2 172 z m \-rtw 9 2m ITU /P\z /<*\
2x

§ 4. Elektrische Übergänge.

Die Wechselwirkung mit dem elektrischen Feld der einfallenden

Strahlung, die durch ein Vektorpotential A beschrieben wird,
lautet bekanntlich

3

Héi. ÌÉkekU(fk)^k)

Dabei bedeutet ek die Ladung des fc-ten Nukleons und vk seine
Geschwindigkeit. Für elektrische Dipolübergänge, auf die wir uns
beschränken dürfen, ist A im Kerninnern konstant. Es gilt mit der
üblichen Normierung

A -^ ^2nhm n

n bezeichnet einen Einheitsvektor in der Polarisationsrichtung, die
wir als «-Achse wählen wollen. Es ist also

H'el l fÏTVh ^oEk —2— • *f (22)

Es ist vorteilhaft diese Formel in folgender Weise umzuschreiben :

K - e- f^Tihm {v\ + rsz vsz + r'zr'z + x"z v"s}

Dabei
vi T t/? vt T v[l) vi T" vf

Im Schwerpunktsystem erhält man mit der Definition (2)

Hel Tco~^ h°J K ** + ** tà
Die Operatoren r z und qz können auch folgendermassen geschrieben
werden

rz=-—icorz qz —icoqz
Man hat also

Ki - » Y YZtVìTco «rz+ x"zqz)
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Der WTirkungsquerschnitt lautet wie üblich

_ "^ I HA 12
Ct -= • \ AI .„ \- • Qe

h c ' ea< Ke

Wir wrollen zunächst für die Berechnung des Matrixelementes
Mea mit der überwiegenden Komponente anfangen, d. h. also
annehmen, dass der Grundzustand in den Raumkoordinaten
vollkommen symmetrisch ist. Mit Hilfe von (3) und (4) wird

H'- <^«=- t ;y/2V/^{(rgz~rr; + £s(*v-x'?;}^

Das Minus- und Pluszeichen gelten für H3 bzw. He3.

Der Spin wird natürlich erhalten, was dagegen für dsn Isotopenspin

nicht der Fall ist. Der Übergang in dsn Endzustand mit
T 3/2 soll bei der Spaltung in drei freie Nukleonen (vgl. § 5)

berücksichtigt werden. Wenn für dsn Endzustand T x/2 ist,
so kann ein 3S-Deuteron und ein freies Nukleon entstehen, welches

wegen der Erhaltung des Drehimpulses als P-Welle ausläuft. Wir
können den Ansatz

fe — ¥e^a+ <P'J" — fi f '

verwenden, bei dem wir, wie schon bemerkt (vgl. (20)),

cpl T' cpe

<P>T"cpe

wählen. Dabei setzen wir für cpe an

cp =-¦ g(r).ei{^-Tj)

Mit Hilfe von (3) und (4) bekommt man für das Matrixelement

jW:R:icpJv ±il-fnhœJg*(r)^i(h'q)%<Psdv

Hierbei ist über die Spins schon aufsummiert. Wir erinnern, dass
die Spineigenfunktion des 3S-Deuteron^" f (l/|/2) (f— 1°) lautet.
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Wir verweisen auf den Anhang für die Berechnung des Integrals.
Man erhält, mit einer cp3 gemäss (17)

__
]/2o_„ -, y An e-x* da -'-TT—=—

9 Tic
eh) e ^sin2 Odco (23)

0 ist der Winkel zwischen dem Impuls des ausgesandten Nukleon
und dem Wellenvektor der einfallenden Strahlung. Der totale
Wirkungsquerschnitt wird

27 (2n ,3/2
_

Tic
e3/2(e + eb) e (24)

5,5 MtV
629 - 20 3°

Fig. 1.

Totaler Wirkungsquerschnitt für die Photospaltung von H3 und He3 in ein
3S-Deuteron und ein freies Nukleon als Funktion der Energie der einfallenden

y- Quanten. Die obere Kurve bezieht sich auf H3, die untere auf He3.

Die exponentielle Energieabhängigkeit bei grossen Energien ist
als Folge des für die Wellenfunktion des Grundzustandes gemachten
Gauss'sehen Ansatzes anzusehen. Bei asymptotisch exponentiellem
Verlauf dieser Wellenfunktion würde man eine hyperbolische
Energieabhängigkeit bekommen. Im Fall von He3 ist zur
Berücksichtigung des Coulomb-Feldes der bekannte Faktor

2 71 Ï]

e2""-!

anzubringen. Hierbei bedeutet

hv
me2 1

fe

Für die numerische Auswertung der Formel (24) für H3 und He3
verweisen wir auf die Figur.



Theorie der Photospaltung und Bildung von H3 und He3. 469

Man kann auch hier den Anteil cp', cp" der Eigenfunktion des
Grundzustandes berücksichtigen. Mit den üblichen Bezeichnungen
erhält man für den differentiellen Wirkungsquerschnitt

x2 da ^.- -f- (a x)3 £3/2 (e + eb) [^N*-£ e~î

wobei

u~

2-a2 + ^72- ^ «2
AI 2/i2 K" ' 2v2

Für die Berechnung der betreffenden Integrale verweisen wir auf
den Anhang.

§ 5. Photospaltung in drei freie Nukleonen.

Für die Ermittlung des Wirkungsquerschnittes muss man in die
störungstheoretische Formel

A 71 I TT/ I Ç,

a -=- urohc ' ' e«

für die Dichte der Endzustände oe, in denen die Energie

E=hco-\B\=-^(p2 + pl) (26)

ist und die den Koordinaten entsprechenden Impulse pr und pQ sind,
den folgenden Ausdruck

kt äki dco5
Qe= dE (alt)5"

einsetzen. Dabei ist dcob das Raumwinkelelement im sechsdimen-
sionalen Raum der Impulse pr hkr und p Q hkg. hkt ist der
Gesamtimpuls.

hkt h(kr + kg)
Aus (26) folgt

m i 4 d co5
Pe "p" «j (2ji)8

Das Matrixelement für den magnetischen Übergang lautet, analog
zu (19)

Mea j yi'e H'm y>a dv -Me f3 |/ji fe co

/ (%' 9>' + 9s« 9>") dv
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Hierbei ist über die Spins im Endzustand - die S Yi, T — 3,2

oder S 3/2, T % sein können - inkohärent aufzusummieren.
In der üblichen Weise erhält man mit (3) und (4)

M eh l*-p~ ßy ,/— f * i, -,

ea -Mc —3 — \>2n h co I We 9 dv

Für cpe muss man
cp,, ßi (k,- -r+kq-q)

ansetzen. Das Integral in (27) ist also die Transformierte von cp" —

für die, wie immer, der Ansatz (17) verwendet wird — im Impulsraum

von pr und pQ. Der différentielle Wirkungsquerschnitt lautet
sodann

da=w U iL)2 ^>-^)2 ^ e2 (£+e») -^— e-"^
Durch Integration über alle Winkel folgt der totale
Wirkungsquerschnitt

ff= 15
•

27 ^'^ £-(^)2(^-^)'vl0e4(e + e»)e"'"

Das Matrixelement für den elektrischen Übergang ist mit dem
üblichen Ansatz leicht zu ermitteln. Es genügt mit dem Operator
(x'z rz + x"zqz) auf yi cps£" + cp'%" — cp"% zu wirken. Man erhält:

« rz + x"z qz) ip cps (x qz - y" rz) Cs +

+ (<p'q*~<p"rz)Çs+(cp'rz + ep"qz) |« + (rj"-qj')cp°
Weiter muss man die Fouriertransformierten der Dipolmomente

f / n -Hk-r + k -q) /" -i(kr-r+ ka-q)
J cs4 ¦(»;, gj • e r ^9jd», / <P • {rz,qz) ¦ e Vr 9*;dr,

cp< • (rz,qz) ¦ e r " dv

berechnen. Wir verweisen diesbezüglich auf den Anhang. Der
différentielle Wirkungsquerschnitt lautet, im Fall N' 0

^«*<« +e.)^V-«-"
Hier können wir uns nach der Winkelverteilung des Impulses pq
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fragen. Dazu ist über die Winkel von kr zu integrieren. Man vgl.
den Anhang. Das Ergebnis der Integration [mit N' 0] ist:

^^^-lî-fc^^ +^ll + if8-2^106^2^-
Unabhängig von der Energie des ausgesandten Nukleons erhält
man für den differentiellen Wirkungsquerschnitt

x2da ~ ~- e3 (e + £¦) (y+^ sin2 »)/*10 «"'* "dm,

und für den totalen Wirkungsquerschnitt :

§ 6. Wirkungsquerschnitt für den Einfang eines Xukleons durch ein

Deuteron.

Für das Verhältnis der zwei Wirkungsquerschnitte der
Photospaltung und des entgegengesetzten Prozesses gilt offenbar

a= _ JL ß» ÎL

Vy ist die Relativgeschwindigkeit des einfallenden Nukleons, gb

und qs sind die Dichten der Endzustände für die Bildung bzw. die
Spaltung, gb und gs sind statistische Gewichte, die durch den Spin
bestimmt sind. Da

ii ¦=
2

9.
' 3

wird das Verhältnis der Winkelquerschnitte

2 1%,a0 2 1h w y
CTS 3 \CPgJ

Es ist

hco=^- + \B\=EN+\B\

wobei EN p%/2m, die kinetische Energie der Relativbewegung
des einfallenden Nukleons ist. Man erhält

a„ _
3 {e + eby- I Ti % \2/AM2

\Mc)
Wenn man den magnetischen Übergang vernachlässigt und
folgerichtig beim elektrischen Übergang nur den vollkommen sym-
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metrischen Raumanteil berücksichtigt, so erhält man für den dif-
ferentiellen Wirkungsquerschnitt

und für den totalen Wirkungsquerschnitt

"¦—:¦V(2")"K(iaV'(f)^(e + e»)I«"'"'

Schiussbemerkungcn.

Im Hinblick auf einen detaillierten Vergleich der hier gewonnenen
Formeln für die Wirkungsquerschnitte mit zukünftigen
experimentellen Ergebnissen wollen wir die Aufmerksamkeit auf zwei
Tatsachen lenken. Erstens ist der allgemeine Verlauf der
Wirkungsquerschnitte in Abhängigkeit von der Energie, wie schon bemerkt,
auf das asymptotische Verhalten der Eigenfunktionen der gebundenen

Zustände besonders empfindlich. Zweitens sind für die
kleineren Energien Korrekturen anzubringen, um im Fall von He3
die Coulombsche Abstossung genauer und auch sonst die Verzerrung

der freien Wellen durch das Kernfeld zu berücksichtigen.
Wir haben vorderhand von einer exakteren Berechnung der
Matrixelemente in diesem Sinne abgesehen und ziehen es vor, sichere
experimentelle Ergebnisse über die in Frage stehenden Reaktionen
abzuwarten, die für eine solche Bemühung eine Rechtfertigung
und eine wertvolle Hilfe bedeuten werden. Insbesondere sollen die
Experimente entscheiden, ob die hier vertretene Ansicht, dass bei
den Eigenfunktionen der Grundzustände der symmetrische Raumanteil

überwiegt, gerechtfertigt ist.

Anhang.

Um die Integrale (25) zu ermitteln, genügt es, die Fourier-
transformierten der Funktionen cp", cp', cp"

"TS (r2 + ?2>

cp" e Zß

• or -, -t>2+?2>
cp =2(r-q)e

-ilj^ + q2)
cp' (r2 — q2) e
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die

4'=(^),A^-''Ä''+r,,^=-(^)M2(^.fc,)rw+iö^

4"= - Y lcp". e'1 (?'"'+î«"»)J_ / " \10 ^ i.«\ .- (fcr+^)j~:
**=-£ Œ-*o

sind, nach (kr)z und (fe9), abzuleiten.
Man erhält so

2ji,
r _ ,w.. .\ _ _ /» T „r '

4/ 2i \» /" -'(->, i i,\*„ „ir r\ -W+'f "'

(t^V fz9?"e dü ~ T (i)12 (fer)z (fc'~ fc«) e

usw.
Um die Formel (29) zu erhalten, muss man über die Winkel von

kr integrieren. Es ist für diesen Zweck von Vorteil, die zonalen
Kugelkoordinaten eines sechsdimensionalen Raumes, nämlich

Ä fe tx (k^ fe t2 r-^-t- ]/êt3
X ' * X ' * X ' °

{M- y^Ti cos cp &k Ys'Tl sin cp
JM* ]ß f.

einzuführen. Dabei bezeichnen wir mit

e-^fi- T^i-ti-q-tt-tt
wo

— 1 <*i<+l 0<cp<27i

Für das Raumwinkelelement dco& gilt
7l2

dco5 -^.- dt1dt2dtadtidcp
Â

Es sind jetzt die folgenden Mittelwerte zu bilden:

i f-(K)!+(K)l jt /i ,2\ f(kr + kl\\ 31 s
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Bezeichnet man mit # den Winkel zwischen kq und der Einfalls-
richtung der Quanten und mit a das zugehörige Azimut, so erhält
man

k
t3 —-'— sin & cos oc

xy e

Hieraus folgt bei Mitteilung in bezug auf die Polarisationsrichtung

tl=l-l sin2,?
0 2 x' e

Es ist uns eine angenehme Pflicht, Herrn Prof. Dr. P. Scherrer
für sein förderndes Interesse an dieser Arbeit den herzlichsten
Dank auszusprechen. Herrn V. L. Telegdi bin ich für seine
Mithilfe bei der Durchsicht des Manuskriptes verpflichtet.
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