Zeitschrift: Helvetica Physica Acta

Band: 23 (1950)

Heft: IV

Artikel: Zusammenhang der nicht-lokalen Felder H. Yukawa's mit solchen, die

Teilchen mit dem Spin f beschreiben

Autor: Fierz, M.

DOI: https://doi.org/10.5169/seals-112115

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zusammenhang der nicht-lokalen Felder H. Yukawa's mit solchen, die Teilchen mit dem Spin f beschreiben

von M. Fierz.

(22. III. 1950.)

Zusammenfassung: Es wird gezeigt, dass den von H. Yukawa diskutierten "nicht-lokalen Feldern" eine Superposition von Feldern entspricht, die Teilchen mit dem Spin f zugeordnet werden können. Weiter wird ein Fehler in einer früheren Arbeit des Verfassers berichtigt.

H. Yukawa¹) hat ein Feld $U(x_i, r_k)$ betrachtet, das folgenden Gleichungen genügt:

$$\Box_x U = \varkappa^2 U; \quad (r_i^2 - \lambda^2) U = 0; \quad r_i \frac{\partial}{\partial x_i} U = 0.$$
 (1)

Die Variable r_k ist somit ein raumartiger Vektor fester Länge und charakterisiert eine raumartige Richtung.

Die allgemeinste Lösung dieser Gleichungen kann wie folgt gewonnen werden. Man gebe eine beliebige Schar $\overline{U}(x_i, r_k)$ von Lösungen der Wellengleichung vor, wobei die r_k als Parameter gelten. Dann ist

$$U\left(x_{i}, r_{k}\right) = \frac{1}{2\pi} \int d\alpha \, \overline{U}\left(x_{i} + \alpha r_{i}; r_{k}\right). \tag{2}$$

Yukawa hat gezeigt, dass die Lösungen U folgendermassen nach Fourier zerlegt werden können:

$$U(x_i, r_k) = \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} (dk)^4 e^{ikx} \delta(k^2 + \varkappa^2) \delta(k_i r^i) c(k_i, r_k).$$
 (3)

Dies entspricht unserer Darstellung (2), denn es gilt

$$\delta\left(k_{i}\,r^{i}
ight)=rac{1}{2\,\pi}\int d\,lpha\,e^{i\,lpha\,k_{i}\,r^{i}}$$

Wegen der Gestalt von (3) ist der Koeffizient $c(k_i, r_k)$ im Ruhesystem von k in bezug auf r_i eine Funktion auf der Kugel mit dem

Radius λ , kann somit nach Kugelfunktionen entwickelt werden. Die Kugelfunktionen definieren und normieren wir wie folgt:

$$egin{align} Y_{i_1 \ldots i_f}(artheta, arphi) &= a \, r^{f+1} \, rac{d^f}{\sigma \, x_{i_1} \cdots \sigma \, x_{i_f}} \left(rac{1}{r}
ight) \, ; \ \int \! d \, \omega \, Y_{i_1 \ldots i_f}(artheta, arphi) \, Y_{i_1 \ldots i_f}(artheta, arphi) &= 2 \, f + 1^*) \ (i_1 \cdots i_f &= 1, 2, 3). \end{align}$$

Im Ruhesystem eines Wellenzahlvektors k_i gilt demnach

$$c\left(\varkappa,r_{i}\right)=\sum_{i}A_{i_{1}\cdots i_{f}}^{(f)}\left(\varkappa\right)Y_{i_{1}\cdots i_{f}}\left(\vartheta,\varphi\right). \tag{5}$$

Die Koeffizienten $A_{i_1 cdots i_f}^{(f)}(z)$ sind symmetrische Tensoren mit verschwindender Spur, deren Indices im Ruhesystem von k nur von 1 bis 3 laufen. Falls man einem Teilchen mit dem Spin f einen Feldtensor $A_{i_1 cdots i_f}(x)$ zuordnet²), der symmetrisch ist und dessen Spuren verschwinden, und der weiter den Gleichungen

$$\Box A_{i_1 \cdots i_f} = \varkappa^2 A_{i_1 \cdots i_f}; \quad \frac{\partial}{\partial x_i} A_{i_1 i_2 \cdots i_f} = 0$$

genügt, so kann man seine Fourierkoeffizienten mit demjenigen in (5) identifizieren. Deshalb kann man das Feld $U(x_i, r_i)$ als eine Superposition von derartigen Feldern auffassen³).

An Stelle eines Feldes U kann man darum eine Schar von Feldern

$$A_{i_1 \cdots i_f}^{(f)}(\tilde{x}); \quad f = 0, 1, 2 \dots$$

vorgeben.

Die Frage ist nun, wie man diese zu einem Felde U zusammensetzen kann, ohne von der Fourieranalyse Gebrauch zu machen.

Zu diesem Zwecke betrachte ich die symmetrischen Funktionen

$$P_{i_1\cdots i_f} = \frac{a}{\lambda^f} r_{i_1}\cdots r_{i_f}; \quad r_i^2 = \lambda^2$$

wo r_i raumartig sein soll:

$$r_1 = \lambda \cosh \chi \sin \vartheta \cos \varphi$$
, ..., $r_4 = \lambda \sinh \chi$.

Die Konstante a normiere man wie folgt:

$$\int Y_{i_1 \cdots i_f} P_{i_1 \cdots i_f}(\vartheta, \varphi, \chi) \, \delta \left(\sinh \chi \right) d \sinh \chi \, d\omega = 2 f + 1.$$

*) Man findet
$$a^2 = 2^f \frac{2f+1}{4\pi(2f)!}$$
.

414 M. Fierz.

Sie ist gleich der Konstanten a in (4). Diese Normierungsbedingung ist Lorentzinvariant; denn sie ist in jedem Bezugssystem erfüllt, falls sie in einem gültig ist. Jetzt gilt einfach

$$U(x_i, r_l) = \frac{1}{2\pi} \sum_{f} \int d\alpha A_{i_1 \cdots i_f}^{(f)}(x_i + \alpha r_i) P_{i_1 \cdots i_f}(r_l).$$
 (6)

Dass diese Formel zutrifft, erkennt man sofort, wenn man sich (6) in bezug auf x nach Fourier zerlegt denkt. Die Fourierkoeffizienten von (6) haben die Form

$$rac{1}{(2\ \pi)^2} \sum_{m{f}} A_{i_1\cdots i_f}^{(m{f})}(k)\ \delta\left(k^2 + m{arkappa}^2
ight)\ P_{i_1\cdots i_f}(r_l) \cdot \delta\left(k_i\ r^i
ight)$$

Im Ruhesystem von k laufen die Indices von A(k) nur von 1 bis 3, A hat die Spur 0 und r_4 muss verschwinden. Also ist von $P_{i_1...i_f}$ nur der Anteil massgebend, der diese Eigenschaften besitzt: man kann also $P_{i_1...i_f}$ durch $Y_{i_1...i_f}$ ersetzen, was den Formeln (3) und (5) entspricht.

Die Umkehrung der Formel (6) liefert die Zerlegung von U in bezüglich Lorentztransformationen irreduzible Bestandteile.

Falls man lediglich

$$\int U(x_i, r_i) P_i \dots_{i_f} d\Omega = B_{i_i \dots i_f}^{(f)}(x)$$
(7)

bildet, wobei über alle Richtungen von r_l integriert wird, so genügt B wohl den Differentialgleichungen von A. Seine Spuren verschwinden jedoch nicht. B ist also nicht irreduzibel und wir benötigen noch einen Operator, der aus $B^{(f)}$ den irreduziblen Anteil $A^{(f)}$ herauslöst. Diesen bestimmen wir wie folgt:

Wir gehen von den Orthogonalitätsrelationen der dreidimensionalen Kugelfunktionen aus,

$$\int d\omega Y_{i_1 \cdots i_f} Y_{k_1 \cdots k_f} = D_{i_1 \cdots i_f, k_1 \cdots k_f}$$
(8)

und berechnen zuerst den Operator D. Seine Spuren bezüglich eines Indexpaares i oder k müssen verschwinden, er muss symmetrisch sein in den Indices i und in den Indices k und man kann ihn durch δ_{ik} -Operatoren ausdrücken.

Wir machen darum folgenden Ansatz:

$$D_{i_{1}...i_{f}, k_{1}...k_{f}} = \sum_{l=0}^{[f/2]} c_{l} D_{i_{1}}^{(l)}...i_{f}, k_{1}...k_{f}$$

$$D_{i_{1}, k}^{(l)} = \sum_{(i, k)} \delta_{i_{1}} i_{2}...\delta_{i_{2l-1}, i_{2l}} \cdot \delta_{k_{1}} k_{2} \cdot ... \delta_{k_{2l-1}} k_{2l} \cdot \delta_{i_{2l+1}} k_{2l+1} \cdot ... \delta_{i_{f}} k_{f}$$

$$(9)$$

Die $\sum_{(i,k)}$ bedeutet die Summe über alle Permutationen der Indices i und der Indices k. [f/2] ist die grösste ganze Zahl $n \leq f/2$. Die Koeffizienten c_i sind so zu bestimmen, dass die Spuren von D verschwinden. Das führt zu der folgenden Rekursionsformel

$$(f-2l)(f-2l-1)c_l+c_{l+1}(2f-2l-1)(2l+2)=0$$
. (10)

Setzt man $c_0 = 1/f!^2$ — dann ist D, auf eine Kugelfunktion angewendet, die Einheitsmatrix —, so findet man

$$c_l = (-1)^l \frac{1}{2f!} \frac{(2f-2l)!}{l!(f-l)!(f-2l)!}. \tag{11}$$

(Die c_i sind somit im wesentlichen die Koeffizienten von z^{i-2l} im Legendre'schen Polynom $P_f(z)$).

Wir betrachten jetzt den 4-dimensionalen Operator

$$R_{ik} = \delta_{ik} - \frac{1}{\varkappa^2} \frac{\partial^2}{\partial x_i \partial x_k} \qquad (i, k = 1 \cdots 4)$$
 (12)

Dieser wird nur auf Funktionen, welche der Wellengleichung $\Box f = \varkappa^2 f$ genügen, angewendet und hat dann folgende Eigenschaften:

$$R_{ik} R_{kl} = R_{il} \; ; \; R_{kk} = 3 \; ; \; \frac{\partial R_{ik}}{\partial x_i} = 0 \; .$$
 (13)

Mit Hilfe des Operators R_{ik} bilden wir den Operator $\mathcal{D}_{i_1 \cdots i_f, k_1 \cdots k_f}$ der aus dem Operator $D_{i,k}$ entsteht, indem man die Grössen δ_{ik} durch R_{ik} ersetzt. $\mathcal{D}_{i,k}$ ist der gesuchte reduzierende Operator:

$$A_{i_1 \cdots i_f} = \mathcal{D}_{i_1 \cdots i_f, k_1 \cdots k_f} \cdot B_{k_1 \cdots k_f}. \tag{14}$$

Falls $B_{i_1 ldots i_f}$ schon irreduzibel ist, reproduziert die Operation (14) den Tensor.

Damit ist der Zusammenhang des Feldes U mit den Tensoren A hergestellt. Es ergibt sich hieraus, dass man die Variable x_i als "lokale Variable" auffassen darf. r_i ist eine "Spinvariable". Irgend einen Hinweis darauf, dass das Feld U Teilchen mit einer endlichen Ausdehnung beschreibt, wie dies Yukawa annimmt, haben wir nicht gewonnen.

Bei dieser Gelegenheit muss ich noch einen Fehler in meiner Arbeit von 1939 richtigstellen²). Die dort aufgestellten allgemeinen Vertauschungsrelationen $(4\cdot 2)$ der Tensoren $A_i \ldots_{i_f}$ sind un-

416 M. Fierz.

richtig, wie man aus der hier durchgeführten Bestimmung des Operators \mathcal{D} erkennt. Sie lauten richtig

$$[A_{i_1 \cdots i_f}(x), A_{k_1 \cdots k_f}^*(x')] = \frac{1}{i} \mathcal{D}_{i_1 \cdots i_f, k_1 \cdots k_f} \cdot D_{\varkappa}(x - x'). \quad (4.2)$$

Dabei ist $D_{\varkappa}(x)$ die zur Wellengleichung $\Box f = \varkappa^2 f$ gehörige invariante Funktion.

Basel, Seminar für theoretische Physik der Universität.

Literatur.

- ¹) H. Yukawa, Phys. Rev. **77**, 219 (1950).
- ²) M. Fierz, Helv. Phys. Acta 12, 3 (1939).
- ³) M. Fierz, Phys. Rev. **78**, 184 (1950).