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Zusammenhang der nicht-lokalen Felder H. Yukawa’s mit
solchen, die Teilchen mit dem Spin f beschreiben
von M. Fierz.
(22. TI1. 1950.)

Zusammenfassung: Es wird gezeigt, dass den von H. Yukawa diskutierten
,,nicht-lokalen Feldern¢ eine Superposition von Feldern entspricht, die Teilchen
mit dem Spin f zugeordnet werden kénnen. Weiter wird ein Fehler in einer frii-
Leren Arbeit des Verfassers berichtigt.

. Yurawa?l) hat ein Feld U(x,,r;) betrachtet, das folgenden
G]eichungen genfiigt:

U=22U; (R—2)U=0; r, -2 U=0. (1)

Die Variable r;, 13t somit ein raumartiger Vektor fester Lénge und
charakterisiert eine raumartige Richtung.

Die allgemeinste Losung dieser (leichungen kann wie folgt ge-
wonnen werden. Man gebe eine beliebige Schar U (x;,r;) von
Losungen der Wellengleichung vor, wobei die 7, als Parameter
gelten. Dann 1st

15 (,}j ¥ ) o

is Iy

! T9 4900 .
2771;/ daU(x;+ar; r,). (2)

Yukawa hat gezeigt, dass die Losungen U folgendermassen nach
Fourier zerlegt werden konnen:

[H%JQ(Z /um e 5 (12 + 52) 8 (k1) e (ko). (3)

Dies entspricht unserer Darst-e]lung (2), denn es gilt
6 (Fe; %) /dae”’“"’

Wegen der Gestalt von (3) 1st der Koetfizient ¢ (k;,r,) 1m Ruhe-
system von k in bezug auf r; eine Funktion auf der Kugel mit dem
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Radius 4, kann somit nach Kugelfunktionen entwickelt werden.
Die Kugelfunktionen definieren und normieren wir wie folgt:

Yior, @) =ar V(1)

Oa; - 0x \ 7

[doYi..i (9, 9) Yi...i, (9 9) = 2] + 1% (4)
(iye iy =1,2,3).

Im Ruhesystem eines Wellenzahlvektors k; gilt demnach
e (3, 1) = 2; Ag). eeig (%)Y, ... i (9, @) - ()

Die Koeffizienten 4Y _; (x) sind symmetrische Tensoren mit ver-

: Lo ‘
schwindender Spur, deren Indices im Ruhesystem von k nur von
1 bis 3 laufen. Falls man einem Teilchen mit dem Spin f einen Feld-
tensor 4; ...; (x) zuordnet?), der symmetrisch ist und dessen Spuren

Y | . :
verschwinden, und der weiter den Gleichungen

O 4. . —0

g g, i

EAM :%2145.

.if

geniigt, so kann man seine Fourierkoeffizienten mit demjenigen
in (5) identifizieren. Deshalb kann man das Feld U (x,, r;) als eine
Superposition von derartigen Feldern auffassen?).

An Stelle eines Feldes U kann man darum eine Schar von Feldern

AP (x); =0,1,2....
vorgeben. g

Die Frage 1st nun, wie man diese zu einem Felde U zusammen-
setzen kann, ohne von der Fourieranalyse Gebrauch zu machen.

Zu diesem Zwecke betrachte ich die symmetrischen Funktionen

R A A Y
wo r; raumartig sein soll:
r, = Acosh ysimn dcos @, ---, r,=Asinh x.
Die Konstante @ normiere man wie folgt:
-/Yil‘_,ifli;.‘“_if(ﬁ, @, 7) O (sinh z) dsinh g dw =2 f + 1.

2f+1

*) Man findet a®=27 FETLI I
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Sie 1st gleich der Konstanten a in (4). Diese Normierungsbe-
dingung i1st Lorentzinvariant; denn sie ist in jedem Bezugssystem
erfiillt, falls sie in einem giiltig ist. Jetzt gilt einfach

1 " ; .
U(x;, 7)) = —2—1-;’/ dOCA,g)_,_if(ngTOC’f'zv) B, (). (6)
Dass diese Formel zutrifft, erkennt man sofort, wenn man sich (6)

in bezug auf x nach Fourier zerlegt denkt. Die Fourierkoeffi-
zlenten von (6) haben die Form

2::)2 ZA”) (k) 0 (k2 +=?) B, (1)) - o (k")

Im Ruhesystem von k laufen die Indices von 4 (k) nur von 1 bis 3,
A hat die Spur 0 und r4 muss verschwinden. Also ist von P,,...;,
nur der Anteil massgebend, der diese Eigenschaften besitzt: man
kann also Py ..., durch Y, ..., . ersetzen, was den Formeln (3)
und (5) entspricht.

Die Umkehrung der Formel (6) liefert die Zerlegung von U in
beziiglich Lorentztransformationen irreduzible Bestandteile.

Falls man lediglich

o~

°/ Ui,y Pi-~-ifdQ:Bg)-~if(m) (7)
bildet, wobe1 iiber alle Richtungen von r; integriert wird, so gentigt
B wohl den Differentialgleichungen von A. Seine Spuren ver-
schwinden jedoch nicht. B ist also nicht irreduzibel und wir be-
notigen noch einen Operator, der aus B? den irreduziblen Anteil A?
herauslost. Diesen bestimmen wir wie folgt:

Wir gehen von den Orthogonalitdtsrelationen der dreidimen-
sionalen Kugelfunktionen aus,

/dinl-- : Yk,---kszi,-v ik kg (8)

“ig “ip,

und berechnen zuerst den Operator D. Seine Spuren beziiglich
eines Indexpaares 7 oder k miissen verschwinden, er muss sym-
metrisch sein in den Indices ¢+ und in den Indices k£ und man kann
ihn durch 9,,-Operatoren ausdriicken.

Wir machen darum folgenden Ansatz:

[7/2] ®
Itf! .- ZCID lf’ 1° kf (9)

26"1“2 E *21 1, 2z'ak1k2"'6k21~1k21' 6“'21+1]’21+1'”a’-fkf

D;,.
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Die Y’ bedeutet die Summe iiber alle Permutationen der In-
(4, k)
dices + und der Indices k. [f/2] ist die grosste ganze Zahl n <f/2.

Die Koeffizienten ¢, sind 20 zu bestimmen, dass die Spuren von D
verschwinden. Das fiithrt zu der folgenden Rekursionsformel

f—20 (f—21—1)e, 4, @F—21—1)(21+2)=0.  (10)

Setzt man ¢, = 1/f!2 — dann ist D, auf eine Kugelfunktion
angewendet, die Einheitsmatrix —, so findet man
1 2f-210)

(11)

o= (—1) 2/ =D (f-20)!

(Die ¢; sind somit im wesentlichen die Koeffizienten von 2z/~2! im
Legendre’schen Polynom P;(z)).

Wir betrachten jetzt den 4-dimensionalen Operator

1 0?

%2 dx;0x,

Rik:aik—_ (5,15:1"'4) (12)

Dieser wird nur auf Funktionen, welche der Wellengleichung
O f = »%f gentigen, angewendet und hat dann folgende Eigen-
schaften:

0R;;

RikRkl:Ril; Ryp=3; e

~0. (1)

T

Mit Hilfe des Operators R,;, bilden wir den Operator &, .. iy kpe s ok
der aus dem Operator D, , entsteht, indem man die Grossen 0
durch R, ersetzt. 29, ; ist der gesuchte reduzierende Operator:

‘Bkl"'k -

!

Ailﬂ-if:‘@i‘---if,ki-uk (14)

7

Falls B, ...; schon irreduzibel ist, reproduziert die Operation
(14) den Tensor.

Damit 1st der Zusammenhang des Feldes U mit den Tensoren 4
hergestellt. Es ergibt sich hieraus, dass man die Variable z; als
,,lokale Variable'* auffassen darf. r; ist eine ,,Spinvariable. Irgend
einen Hinweis darauf, dass das Feld U Teilchen mit einer endlichen
Ausdehnung beschreibt, wie dies YUukAwA annimmt, haben wir
nicht gewonnen.

Bei dieser Gelegenheit muss ich noch einen Fehler in meiner
Arbeit von 1939 richtigstellen2). Die dort aufgestellten allgemeinen
Vertauschungsrelationen (4-2) der Tensoren A, ..., sind un-
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richtig, wie man aus der hier durchgefiihrten Bestimmung des
Operators £ erkennt. Sie lauten richtig

1

[, (@), AF 4 (@)] =5 D, o D (z—7). (42)

o0 7 l‘l"'ifykl"'

Daber 1st Dy (xz) die zur Wellengleichung [0 f = %%f gehérige
invariante Funktion.

Basel, Seminar fiir theoretische Physik der Universitit.
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