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Causalitö et structure de la Matrice S
par E. C. G. Stueekelberg et D. Rivier (Geneve).

(19. X. 1949.)

La causalite en theorie des champs quantifies definit la structure des noyaux
integraux dans les coefficients du developpement de la matrice S en fonction des

Operateurs de translation dans l'espace des quanta. Cette structure, qui fait ap-
paraitre la fonction De (x), est celle que l'on obtient en integrant de maniere
invariante l'equation d'evolution fonctionnelle, ä une certaine indetermination pres
dans le cas de la methode proposee. Cette indetermination remplace le probleme
de l'elimmation des divergences par celui de la determination des termes non
definis de la matrice S.

1. La causalite en physique classique et en physique quantique.

Pour fixer les idees, considerons le Systeme classique constituc
par n particules chargees, soumises aux lois de l'electrodynamique
de Maxwell. Urne loi physique exprime, par l'intermediaire d'equa-
tions:

n'a-) G(/-)[T"-T'; • • • n{>)< £'(0 ¦ ¦ ¦] ^(t) m(lr} Idl7l(k) W (!•!)

les relations fonctionnelles existant entre les quantites de mouve-
ment n"^ et les lieux t-'{k) de chaque particule (k) au temps t" et ce

temps t" d'une part, et les memes grandeurs 7i'{i), |(i), x' a un instant
initial x' d'autre part.

Ces equations s'obtiennent par integration d'equations differen-
tielles decrivant les Processus elementaires. Dans le cas envisage
celles-ci s'ecriv^ent*):

dd)p(k) ^ e^e^dsfds^d^D^ (*(B/*(fl) (1.2)

La fonction Dret(a;(A.)/a:(i)) decrit ce que nous appelons«l'actioncau-
sale» de (i) sur (k). Remarquons que la fonction Dret (x/y) est, commc
il est necessaire, invariante par rapport au groupe de Lorentz.
Notons aussi que les effets d(i)p^ sur la particule (k) dus aux diverses
particules... (i),... s'additionnent les uns aux autres.

*) Pour les notations, voyez le numero 3) des references.
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Considerons maintenant le Systeme quantique correspondant: il
s'agit de n quanta, en nombre variable. Les lois physiques decrivant
l'evolution du Systeme sont determinees par un Operateur unitaire S,
represente par des matrices de transition:

8[r";...tai)...rmlr';...S[t)...S[nf)] (1.8)

fonctionnellcs seulement des variables lieux initiales l"^ et finales
ff'jj et des deux epoques x" et r' entre lesquelles le Systeme evolue.

Une matrice de transition s'obtiont aussi par integration d'un
element differentiel:

ab [... £(i) x{l)... x{m)... j... fK)...J ~
• • • D + (4) I x(k)) F(vdxwI)c(xmIxu))Fd)dxd) ¦ • • x (1 -4)

x I(m)dx(m)Dc (x(m)jx{i}) r(i) dx{i)D+(x{i)ji{i))...

par Convention, dans D+(x/y) on a .x4> yi. L'element differentiel dS
est un produit d'amplitudes de probabilite:

D+(x/X(k))=u(x) represente l'amplitudc de probabilite relative au
quantum k observee au temps .x4 t (x1, x2, x3), emergeant de x^si
j4 > .£'4, ou convergeant en x{]i) si x4 < xfo; en x^ eile a ete localisee
avec atitant de precision qu'il est possible;

F(ij est une fonction du lieu x{i) caracterisant l'amplitude de
probabilite du processus elementaire en ce point;

enfin la fonction Dc(x^/x^) decrit l'amplitude de probabilite de

«l'action causale de (l) sur (fc)»: c'est le correspondant quantique de

DTet(X(k)/x(l)), qu'il faut determiner maintenant.
Qu'il soit impossible de maintenir la fonctionZ)rot(x^/x^) resulte

du fait que celle-ci ne represente pas une amplitude de probabilite.
Mais nous savons que:

Dc(xly) ~D+(xly) D1(xly) — iD°(x/y) pour xi>yi.
Or, du fait que la fonction D1(x/y),k l'inverse de D°(xjy), ne s'öva-
nouit pas ä l'exterieur du cone de lumiere, la seule facon de

prolonger de maniere invariante Dc(xjy) pour xi<yi est de l'ecrire:

T*(xjy) ~ (D1 + aD») (xly) (±\ai D+ + ±ZJ±D-)(xfy)
mais il est clair que le coefficient de D+(x/y) doit ici etre nul, sans
quoi des acausalites manifestes*) contribueraient ä l'element
differentiel dS. On doit poser a i et:

Dc(xIy) ~ D~ (xIy) pour xi<y*.
*) En particulier, une partie de l'action de (l) sur (k) ne dependrait pas de

la sueeession temporelle des evenements x,n et x
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et la fonction causale seule possible est donc, en introduisant un
facteur de normalisation égal à i/2:

D° ~ Z> + 2
D1 x^y* (1.5)

Dans (1.4), l'interprétation de la contribution:

¦¦¦D+(^)lxm)r(k)dxmDe(x(k)lx(i))r(i)dxu)--- Pour xîk)<xt» (L6)

s'obtient en inversant en x{]c) et en x([) les phénomènes de cause et
d'effet dans les processus décrits par la contribution:

• • • ^+ (*<*)/ X(A-)) ¦* («¦) * ^(i) ^C \x(k) i x(iy * m d x(i) ¦ ¦ ¦ pour x{!c) > x(l)

Plus précisément, le processus décrit par (1.6) est l'émission
simultanée en »m d'un paquet observé en r" et d'un paquet participant

en Xq) à un nouveau processus. Cela est immédiat si l'on
remarque que :

Dc(y/x) ±Dc(xly)

le signe étant positif ou négatif suivant la statistique qui régit les
ensembles de quanta.

S' "-5

%;

h)

^'¦\
dxk)

foOi

système classique système quantique

Fig. 1.

Une différence essentielle entre la fonction classique DTet(x)
et la fonction quantique Dc(x) réside dans leur comportement
à l'extérieur du cône de lumière; par exemple dans le cas scalaire:

)ret(

Dc{x)

DKt(x) 0
1 ?fl««*B)

«2 *>>° (1.7)
S ni R l \"r.j.v) x masse du quantum
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2. Généralisation à des variables quelconques.

Le passage à des variables quelconques w'('T), u'&, u^
définissant l'état des n quanta s'opère comme on le sait par l'intermédiaire

d'un opérateur U représenté par une matrice de transformation:

u (4r--4')/%> -<v>) (2-1)

et possédant un opérateur hermitien conjugué U+ représenté par la
matrice F ' (a"1}...'. ¦<„,,, / Ç"(1).. ^„„}).

La transformée de S s'écrit:

S [r", u"u)... u"n„}'Y.«J,,... u'(>n] U+(u'a)...«"„„)/fô)¦ • • £("„„,) x

xs[r"...*;;,... T'...<n„.]ü(fa)...fM «;„...<o) (2.2)

il est important de remarquer que la multiplication matricielle
représente ici une intégration sur tous les points d'une surface temporelle

d'élément daa(^). Ainsi, nous avons explicitement:
(*) (/) (m) (i)

S[t*,«„,...ul„)lr',uil)...u(n,)]~...l J...J /.../dcra"(Q... x

x... yW' (i;,)... u+ («;;,... «;„, /... f;;,... d+ $hi / %)) x

x i (j.)a.'/;(,.) iJ (a;^.), x{l)) F{1)dx(l)... 1 {m)dx(m)IJC(x(m)jx{i)) x

x r(i)dx(i)D+ (x(i)i i'{i))... Ua, (...i;,v.. «Ó,... '.V)) ; (2.3)

(*)

là comme dans ce qui suit /... est mis pour (dx<-k>)i.

En utilisant alors comme il est d'usage un système de paquets
orthogonal et complet u'{i), u'L satisfaisant donc aux relations:

f d a" {x) u +" (x) iia u'(x) à (u " /u') I

fdV(u) u (x") u + (as') D + {x" j x') j
(2.4)

où $2a est un opérateur d'orthogonalisation dépendant de la variance
des paquets u, on obtient pour S en posant :

Ü„(l7u')=fia«'(0: (2-5)

(*)(«) (m) H)

S [r ", u*,... u"(nll) r',u'a)... u'(n,;< ~...JJ ...jf... u+ (x{k)) rw d x(k) x

xD°(x(k)/x(») rwdx(l)¦¦¦r{m)dx(m)2>(x(m)• x(0)r(i)dx(i)u(i)(x{i))...(2.6)



Causalité et structure de la Matrice S. 219

Une nouvelle généralisation permet de considérer des transitions
où le système de paquets initial u[iy.. u'(n/) et le système final v"iy..

v"nr>) diffèrent entre eux. On a alors :

S [r" v'a)... r"wl)ir' u(1)... u{n/)] V+ (va)...<„„,/... £(V,...

S[... f" >.../... i'(i)...]V(...tm¦.. %,.• • »(„/,) [2.7)

où la matrice V+^'^... v'L»)/... lïj.,...) représente l'hermitien
conjugué de l'opérateur V de transformation des variables f^ aux
variables u'(iy On obtient donc une représentation mixte:

(k){l) (m)(i)

S [r", v'w... »"„,/*'> u{1)... n(n,}] ~ J /.. .fJ... »"„+ (x(k)) x

x 1 (k)dxik)üe(;%)/xw) 1 (l)dx(l)... 1 (m)dX(m)U° (x^jx^) x

x r(i)dx{i)u(i)(x{î;)... (2.8)

On peut voir que la forme générale de S s'obtient (après intégration

multiple sur dx^ dx®...) en substituant dans (1.4) les

paquets particuliersD+(i"k)jx^k)) (émergents) etD+(x(i)/|(';)) (incidents)
par les paquets généraux u"+(x^) et u'(x^).

3. Passage à l'espace des quanta.

Il est maintenant indiqué de passer à l'espace des quanta, à l'aide
des opérateurs de translation dans cet espace, a+ (u") et a (u"),
qui permettent l'introduction des opérateurs de champs :

«(>•)(*)= ^fdV(u'{i))a(u'^ u(t) (x)+~ JdV(u(i)) a+(u'(i)) u+(x) (3.1)

Dans cet espace l'opérateur S [t", t'], satisfaisant à la condition
d'unitarité:

S+[t",t]S[t",t] î (3.2)

peut naturellement se développer en termes des opérateurs a+(u')
et a (u'), en posant*) :

oo

s [r", t'] i + £ E ^ s {i)..»»... »' K <l (3-3)
(n",n') / 0

*) Le paramètre numérique £ que nous introduisons ici apparaît lors de la
construction explicite de S, basée sur une méthode de perturbation (voyez § 4).
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avec :

e-
S S{........ [r", t'] éj dV («',)... j dU«,,,) j dU («;,)... x

x... fdV{u(nl)) o+(«ï). •. a+(w" ,0) SWfT",«^,... u^jx',u'(1)... u'M] x

où nous avons ordonné les opérateurs a+ (wjy et a (u\k)) dans chacun
des termes S(j,n„ de manière que les opérateurs tx+(u'k) soient tous
à gauche des opérateurs a (u^), et en fixant une fois pour toutes
l'ordre de succession de ces opérateurs. Cela est toujours possible à

l'aide des relations de commutations:

[«Kfc))»«+(«'(i))L =1{5 (««/"(il)
[a+ (u",), a+ • «.,)] - [ a («",,), a («^] ± 0 (3.5)

Cela fait, il est clair que, de par la signification même des opérateurs

a+(u"k^} et o.(u'{i)) lorsqu'ils opèrent sur la fonctionnelle de

l'espace des quanta, les coefficients S^[r",. %"{k). /t", u'(i)...] qui figurent
dans le développement (3.4) ne peuvent être que les matrices de

transition dont la structure a été définie en (2.6): alors seulement

l'opérateur S est causal.
Nous voyons donc apparaître, à côté de Y invariance, deux

propriétés nécessaires de l'opérateur S: ïunitarité, exprimée par (3.2)
et la causalité exprimée par la structure des coefficients S [r".. ./t'. .J

donnée par (2.6).

4. Construction de la matrice S à partir d'un processus élémentaire donné.

Nous avons trouvé la structure générale de l'opérateur S. Mais
la tâche essentielle est de le construire à partir d'un processus
élémentaire donné.

Une première méthode part de l'équation d'évolution fonctionnelle

:

~ i 1&> £ h <*> ^1)
dont l'intégration invariante donne un opérateur S qui a bien la
structure causale (3.4), mais où la fonction Dc(xjy) est donnée par
(1.5) pour toute valeur de ;r — y, y compris x—y 0. L'intégration
«invariante et causale» de (4.1) montre qu'en général eh(x) est
donné par:

eh (x) ehw (x) + e2 hm[x,r] (4.2)

résultat auquel mène aussi l'application des conditions d'intégra-
bilité de (4.1) i).
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Cette méthode a été utilisée, sous des formes variées, par divers
auteurs dans le cas particulier de l'électrodynamique1) d'un champ
scalaire2) ou de couplages plus généraux3). Elle a le désavantage
d'introduire dès l'ordre j 2 des termes divergents pour les coefficients

S® [t", t']. Divers procédés ont été proposés pour éliminer
ces divergences. Les uns sont appuyés sur des considérations
physiques4), les autres sont d'allure plus mathématique3,5). Cependant,
une forme satisfaisante de la théorie devrait éviter de semblables
corrections a posteriori, qui n'assurent pas toujours de manière
visible sa causalité, son unitarité, ou même sa cohérence.

Une seconde méthode a l'avantage, en posant d'emblée:
oo

S exp (— ia) a+= a a 2Jsiaa) (4-3)
i

d'assurer initialement l'invariance et l'unitarité de S. Elle procède
ensuite de la manière suivante :

1. On choisit l'opérateur cc(1) qui correspond au processus élémentaire

envisagé. Celui qui correspond à /i(1) de (4.2) s'écrit:*)

eaa) e J{dx)* h(1) (x) a+} am (4.4)

2. On développe alors S selon (4.3) et l'on contrôle en comparant
avec (3.4) que chacun des coefficients S^Pr"; u"jx' ; u'] ait bien la
structure causale (2.6) ;

S 1 + {-ie)j\dxfh(1){x) + ±~Îf- ¦ f{dx'fhm{x') x

xf(dx)*h{1)(x) + (4.5)

On voit tout de suite que dès les <S(2) [ / ] ce n'est pas le cas.
Pour rendre causals ces coefficients, on modifie a en lui ajoutant
selon (4.3) un terme s2 a(2), hermitien naturellement, ce qui a pour
résultat d'ajouter aux coefficients <S(2) [/] une «correction causale», dans
la mesure où elle leur donne la structure (2.6). Formellement le
résultat est alors celui que donne la première méthode, à cela près
cependant que les fonctions Dc(x/y) qui apparaissent dans les noyaux
ne sont pas définies pour x y.

Les coefficients S(2'[.../...] rendus causals, on développe S selon

(4.3) avec a e a(1) + e2 a(2) et l'on contrôle alors la structure causale
des termes S(3)[.../...]. Cela conduit de nouveau à une correction
causale donnant formellement les mêmes coefficients S(3) [ / ] que la
méthode différentielle, et obtenue en ajoutant à a un terme s3a^.

*) Dans (4.4) et (4.5) / est mis pour /
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L'on procède ainsi de suite pour les S^[.../...] S*5'[.../...]..., en
sorte que la série (4.3) est bien déterminée aux arbitraires près
signalés tout à l'heure, dus à l'indétermination de la fonction Dc(xjy)
pour x ----- y.

Ainsi donc la première méthode, qui est différentielle et la
seconde, qui est intégrale, conduisent formellement aux mêmes résultats

(avant la suppression des expressions divergentes ou
indéterminées); mais, tandis que dans le premier cas on se trouve en face
d'expressions divergentes en général à partir du deuxième ordre, dans
le second ces expressions sont indéterminées. On voit donc qu'au
problème de l'élimination des divergences de la matrice S la seconde
méthode substitue celui de la détermination de cette matrice à partir

d'une expression partiellement non définie. Pour résoudre ce

problème, il existe une méthode*) générale qui conduit pour les

termes du deuxième ordre à des résultats analogues à ceux de
M. Schwingek, en particulier pour la polarisation du vide et pour
l'énergie propre des particules élémentaires. Ces résultats, joints à

ceux établis jusqu'ici pour le troisième ordre semblent satisfaisants.
Un prochain travail exposera cette méthode et son application
au problème de la polarisation du vide.

Ces recherches ont bénéficié de l'aide matérielle de la C. S.A.;
nous l'en remercions.
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