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Causalité et structure de la Matrice .§
par E. C. G. Stueckelberg et D. Rivier (Genéve).

(19, X. 1949.)

La causalité en théorie des champs quantifiés définit la structure des noyaux
intégraux dans les coefficients du développement de la matrice § en fonction des
opérateurs de translation dans 'espace des quanta. Cette structure, qui fait ap-
paraitre la fonction De(z), est celle que ’on obtient en intégrant de maniére in-
variante I’équation d’évolution fonctionnelle, & une certaine indétermination prés
dans le cas de la méthode proposée. Cette indétermination remplace le probléme
de I’élimination des divergences par celui de la détermination des termes non
définis de la matrice §.

1. La causalité en physique classique et en physique quantique.

Pour fixer les 1dées, considérons le systéme classique constitué
par n particules chargées, soumises aux lois de ’électrodynamique
de MaxweLL. Une loi physique exprime, par I'intermédiaire d’équa-
tions:

" I " ’, 4 el
E(k) = ]{(k)['lf ,T 3 e e J'E(t), S(l) . s -]
T”
noo "o, s ’ "o 1 .
gy = G775 &y ] Ky = s [dAmy, (A) (1.1)
les relations fonctionnelles existant entre les quantités de mouve-
ment 7, et les lieux &,y de chaque particule (k) au temps t” et ce
fue;n.ps 7" d’une part, et les mémes grandeurs 7, &;»>7 & un mstant
mmitial v d’autre part.

Ces équations s’obtiennent par intégration d’équations différen-
tielles décrivant les processus élémentaires. Dans le cas envisagé
celles-cl s’éerivent *)

dVpdE = ® e ds® sy G A D fret) (Bt s (1.2)

La fonction D™t (x4, ) décrit ce que nous appelons «l’action cau-
sale» de (v) sur (k). Remarquons que la fonction Dt (z/y) est, comme
il est nécessaire, invariante par rapport au groupe de LORENTZ.
Notons aussi que les effets d9p® surla particule (k) dus aux diverses
particules... (¢),... s’additionnent les uns aux autres.

*) Pour les notations, vovez le numéro 3) des références.
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Considérons maintenant le systéme quantique correspondant: il
s’agit de n quanta, en nombre variable. Les lois physiques décrivant
I’évolution du systéme sont déterminées par un opérateur unitaire S,
représenté par des matrices de transition:

S["s . gy Ean/Ts &y E ] (1.3)

fonctionnelles seulement des variables lieux initiales &g et finales
& et des deux époques 7" et v’ entre lesquelles le systéme évolue.

Une matrice de transition s’obtient aussi par intégration d’un
élément différentiel :

dS[ . E?ﬂ)‘ Z(l)...ﬂ'}(m)... f’,...é-;t-)...] ~
D+(§(A)/ @) L Aoy D (2 gy [ ) Ly Aty . X (1.4)
Ly Ay DO (X [ @ y) Ly Ay D Haw/€) -

par convention, dans D (z/y) on a r*> y* L’¢lément différentiel d.S
est un produit d’amplitudes de probabilité:

D*(x/xy) =u(z) représente I'amplitude de probabilité relative au
quantum k observée au temps x*=7 (x1, 2%, 2%), émergeant de xy, s1
1* > 1y ou convergeant en xy, sl xt < xfy; en xy elle a étélocalisée
avec autant de précision qu’il est possible;

I'; est une fonction du lieu x(, caractérisant 'amplitude de pro-
bablhte du processus élémentaire en ce point;

enfin la fonction D¢(zy/x,) décrit amplitude de probabilité de
«I’action causale de (1) sur (k)»: ¢’est le correspondant quantique de
Dt (x4, / ), qu'il faut déterminer maintenant.

Qu’il soit impossible de maintenir la fonction D™ (z,,/x(,) résulte
du fait que celle-ci ne représente pas une amplitude de probabilité.
Mais nous savons que:

De(z]y) ~Dt(x]y) = D' (z/y)—iD®(x/y) pour x>y

Or, du fait que la fonction D (x/y), a I'inverse de D°(x/y), ne s’éva-
nouit pas & lextérieur du codne de lumiére, la seule fagon de
prolonger de maniére invariante D¢ (xz/y) pour z*<y* est de I’écrire:

De(z/y) ~ (D' + aDY (z/y) = (* 5% D+ + 1 D)2 /y)

mais 1l est clair que le coefficient de D+(x/y) doit ici étre nul, sans
quoi des acausalités manifestes*) contribueraient & 1’élément dif-
térentiel dS. On doit poser a = 1 et:

De(x/y) ~D-(x/y) pour x*<y
ﬁ._) En ;).?tlculler une partie de I'action de (I) sur (k) ne dépendrait pas de

la suceession temporelle des événements x Ty et g
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et la fonction causale seule possible est done, en introduisant un
facteur de normalisation égal a 1/2:

Df ~Ds -, DU ot gyt (1.5)

Dans (1.4), I'interprétation de la contribution:
e n DY (B [ @) Ty @0 4 DP () 2. 3)) Ty A8y - . pour 5, < x5 (1.6)

s’obtient en Inversant en x;, et en z; les phénoménes de cause et
’effet dans les processus décrits par la contribution:

. + (" : / &) : - 1
e DF(Eqy [ B) Ly @ 2y D (20 y) Ly d @y pOUT 25 >

Plus précisément, le processus déerit par (1.6) est I’émission si-
multanée en zy, d'un paquet observé en " et d’'un paquet partici-
pant en z; & un nouveau processus. Cela est immédiat si I'on re-

marque que:
De(y/x) = £ D*(x/y)

le signe étant positif ou négatif suivant la statistique qui régit les
ensembles de quanta.

" i

5)

systeme classique systéme quantique
Fig. 1.

Une différence essentielle entre la fonction classique D™ (x)
et la fonction quantique D¢(z) réside dans leur comportement
a lUextérieur du cone de lumiére; par exemple dans le cas scalaire:

Dmt(aﬁ) = 0
R2=g*2,>0 (1.7)

: 1 % . ]
L (LC) Y 8mi B Hg) (7’ %R) ] » masse du quantum
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2. Geénéralisation a des variables quelconques.

Le passage a des variables quelc()nques Uys Ugzyr « o - gy défi-
nissant 1’état des n quanta s’opére comme on le sait par 'intermé-
diaire d'un opérateur U représenté par une matrice de transforma-
tion:

T i 7
UGy Sty - W) (2.1)
et possédant un opéra.teur hermitien conjugué U™ représenté par la
n 1 I
]]]dtllCe [ ( (1) '.’(NH) ‘ 5(1) 5(}1”)

l.a transformée de S s’écrit:
~f ‘ I " N / 7 /, p ! —J o V-L " ; n N 1
ST gy oo Y T gy oo U] = Ut (g e Uy [Eqy oo s Egumy) X
- ot " I & 1TT ’ ’ I ’
% 8 P2 e B [T e s Epymnn ) O By « By [ Wy 2+ W) (2.2)

1l est important de remarquer que la multiplication matricielle re-
présente 1cl une intégration sur tous les points d’'une surface tempo-
relle d’¢lément do™(£). Ainsi, nous avons explicitement :
: & O my @
", " " I ’ ’ 7‘\/ { ¢ a”
SIT", gy e U [T Wy o thgn ]~ o | /f [ - o (&G x
" / N + n
(Em) Uy (’“'m e Uy [ +ee Sy ) DT Sy [ Tay) X
‘ o e, / 5 v 1 [
(@)drm DF (@) ) oo Upr (e &gy [ Wigye e By 5 (2.3)
®)
a comme dans ce qui sult /... est mis pour ALY
1 1 q t t 1 d xle)t
1.I
En utilisant alors comme il est d’usage un systéme de paquets or-
thogonal et complet wuj,, #,y, ..., satistaisant donc aux relations:

f do* (@) wt’ ()R, w'(2) = d(u" ) |
de(u) w(z") wt(x)=D+x"/z) J

ou £, est un opérateur d’orthogonalisation dépendant de la variance
des paquets %, on obtient pour S en posant:

(2.4)

T / ’ . ~
U (& [u') =R u'(&"): (2.5)
& D m) D)
T " " 1ot ’ ’ - ) "
AS LT ,?,l;(]). .. ‘u:{nn)l»' T 3 7(1“). o lé(n,)i e gy ../. - . e u(kl (.’B(k)) P(A) dx(k) X

X D (@) Ty Ay Ly A Do (2, /7)) Ly Ay i) (33 - - (2.6)
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Une nouvelle généralisation permet de considérer des transitions
% 5 s e ’ ’ e i "
ou leﬂsyst.en}e de paquets initial ug... u(,, et le systeme final v;,. ..
vy différent entre eux. On a alors:

yon J P " "
8 [T /U(].)' .. ?.'(n”)/T u(l) 76(,, = Tf+ (U(l)' 1’6”)/ E(kﬂ)- X )

/ s T T ’ D ore 3 Wi
S} “,(’C) L 5(?:)'--JI L (.--5(,{)-..:’ ’1',6(1)...%()%:)) \2.‘)

ol la matrice 7'+ (’01’1). e Vigny [ - &gy --) TEprésente ’hermitien con-
jugué de 'opérateur V de transformation des variables &;, aux va-
riables w (. On obtient donc une représentation maxte:

BO  mG)

YT " n ’ / 7 ol
ﬁS i_T s v(l)' .. ?)(nlf)/r 3 u(l). .o "uﬁ(n/)-] ™~ e / “ e / U(k) (.T(k)) X
X Ly d gy D (24 [ 35) Lgydxgy ... Ly @ D (T4, [ 2) X
x 1, dxg, U (Z() - - (2.8)

On peut voir que la forme générale de S s’obtient (aprés intégra-
tion multiple sur ...dz®...dz®...) en substituant dans (1.4) les
paquets partlcuher.sD (&m /:c(k))(emergents) et DH(x /&) (meldents)
par les paquets généraux u"*(zy) et w'(zg).

3. Passage a 'espace des quanta.

Il est maintenant indiqué de passer a l'espace des quanta, a 'aide
des opérateurs de translation dans cet espace, at (u”) et a (u"),
qui permettent 'introduction des opérateurs de champs:

o (0)= 1y [V (i) aluiy) iy @)+ 5y [ 4Vl @) wis(a) (31

Dans cet espace I'opérateur S [t”, 7], satisfaisant a la condition
d’unitarité:
St[r", 7] S|z". 7] =1 (3.2)

peut naturellement se développer en termes des opérateurs a*(u’)
et @ (u'), en posant*®):

S[r',v]=1+4 2 Y IST 0 wlt' 7] (3.3)

(n”,n’) =0

*) Le parameétre numérique ¢ que nous introduisons ici apparait lors de la cons-
truction explicite de §, basée sur une méthode de perturbation (voyez § 4).
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avec:
§8 [r T']: g f av (uly) ... f AV () [ AV (i) -
f AV () at(0)) .. @) SO[e" . w7 U W]
X - @ (ug)) . a(u(n))' (3.4)

ot nous avons ordonné les opérateurs a+(ug) et @ (ig,) dans chacun
des termes SY , . de maniére que les opérateurs a+(u,5) solent tous
a gauche des operateurb a (ug), et en fixant une fois pour toutes
I'ordre de succession de ces opérateurs. Cela est toujours posc:ible &
Paide des relations de commutations:

[a (’Ufi’k;) a(u)], =1 5( 0/ W)
[at (“(i) “(a ). - [a( a(um)] =0 (3.5)

Cela fait, 1l est clair que, de par la signification méme des opéra-
teurs a+(ug) et a(uy,) lorsqu’ils opérent sur la fonctionnelle de 1’es-
pace des quanta, les coefficients S [z", . ug, . /[v”,. u)...] qui figurent
dans le développement (3.4) ne peuvent étre que les matrices de
transition dont la structure a été définie en (2.6): alors seule-
ment 'opérateur § est causal.

Nous voyons donc apparaitre, a c¢oté de 'tnvariance, deux pro-
priétés nécessaires de U'opérateur S: 'unitarité, exprimée par (3.2)
et la causalité exprimée par la structure des coefficients S [¢".../7".. ]
donnde par (2.6).

4. Construetion de la matrice S a partir d’un processus élémentaire donné.

Nous avons trouvé la structure générale de 'opérateur S. Mais
la tache essentielle est de le construire & partir d’un processus élé-
mentaire donné.

Une premiére méthode part de I'équation d’évolution fonction-

nelle: L6
N (4.1)

dont I'intégration invariante donne un opérateur S qui a bien la
structure causale (3.4), mais ou la fonction De(x/y) est donnée par
(1.5) pour toute valeur de x—y, y compris z—1y = 0. L’intégration
«anvariante et causale» de (4.1) montre qu'en général eh(x) est

donné par:
eh (z) = eh (z) + 2 h®[x,1] (4.2)

résultat auquel méne aussi Uapplication des conditions d’intégra-
bilitée de (4.1)1).
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Cette méthode a été utilisée, sous des formes variées, par divers
auteurs dans le cas particulier de I’électrodynamique?) dun champ
scalaire?) ou de couplages plus généraux®). Elle a le désavantage
d'introduire dés ordre j=2 des termes divergents pour les coeffi-
cients S, [t",7']. Divers procédés ont été proposés pour éliminer
ces divergences. Les uns sont appuyés sur des considérations phy-
siques?), les autres sont d’allure plus mathématique® 5). Cependant,
une forme satisfaisante de la théorie devrait éviter de semblables
corrections a posteriori, qui n’assurent pas toujours de manitre
visible sa causalité, son unitarité, ou méme sa cohérence.

Une seconde méthode a I'avantage, en posant d’emblée:

S=exp(—ia) at=a o= Z’eia(i) (4.8)

d’assurer nitialement I'invariance et lumtarlte de S. Elle procede
ensuite de la maniére suivante:

1. On choisit I’ opérateur € qui correspond au processus élémen-
taire envisagé. Celul qui correspond & h® de (4.2) s’écrit:*)

cay—c [([do)hy (@)  a - ay (4.4)

2. On développe alors S selon (4.3) et I’on contrdle en comparant
avec (3.4) que chacun des coefficients SP[z"; u"/r"; w'] alt bien la
structure causale (2.6);

S =1+ (—ig) [(@o)rhy (@) + (57 - [(@a)hy (@) x
% f (d2)*hy (2) + ... (4.5)

On voit tout de suite que deés les S®[ /] ce n’est pas le cas.
Pour rendre causals ces coefficients, on modifie & en lui ajoutant
selon (4.8) un terme &2 ), hermitien naturcllement, ce qui a pour ré-
sultat d’ajouter aux coefficients S@ [/] une «correction causale», dans
la mesure ot elle leur donne la structure (2.6). Formellement le ré-
sultat est alors celui que donne la premiére méthode, a cela prés ce-
pendant que les fonections D¢(z/y) qui apparaissent dans les noyaIE
ne sont pas définies pour = 1y.

Les coefficients S®[.../... ] rendus causals, on développe S selon
(4.3) avec = ¢ g, +&? a(g) et I’on controle alors la structure causale
des termes S®[.../...]. Cela conduit de nouveau a une correction
causale donnant formellement les mémes coefficients S® [ / ] que la
methode différentielle, et obtenue en ajoutant & e un terme &, .

T”

*) Dans (4.4) et (4.5) fest mis pour f :
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Ion procede ainsi de suite pour les SW[.../...] S@[.../...]..., en
sorte que la série (4.8) est bien déterminée aux arbitraires pres sig-
nalés tout a I’heure, dus a 'indétermination de la fonction De(x/y)
pour x — ¥.

Ainsi done la premiere méthode, qui est différentielle et la se-
conde, qui est intégrale, conduisent formellement aux mémes résul-
tats (avant la suppression des expressions divergentes ou indéter-
minées); mais, tandis que dans le premier cas on se trouve en face
(’expressions divergentes en général a partir du deuxiéme ordre, dans
le second ces expressions sont indéterminées. On voit donc qu’au
probléeme de I’élimination des divergences de la matrice S la seconde
méthode substitue celul de la détermination de cette matrice & par-
tir d’'une expression partiellement non définie. Pour résoudre ce
probléme, 1l existe une méthode*) générale qui conduit pour les
termes du deuxiéme ordre & des résultats analogues a ceux de
M. SCcHWINGER, en particulier pour la polarisation du vide et pour
I'énergie propre des particules élémentaires. Ces résultats, joints a
ceux établis jusqu’ici pour le troisieme ordre semblent satisfaisants.
Un prochain travail exposera cette méthode et son application
au probleme de la polarisation du vide.

Ces recherches ont bénéficié de 'aide matérielle de la C. S.A.;
nous 'en remercions.
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