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Vacuumpolarisation und e4-Ladungsrenormalisation
für Elektronen

von Res Jost und J. M. Luttinger*) (Phys. Inst. ETH. Zürich).

(18. X. 1949.)

§ 1. Einleitung.

Bei der Behandlung der Vacuumpolarisation treten 2 Arten von
Unendlichkeiten auf, nämlich die nicht eichinvarianten Terme (wovon

die Photonselbstenergie ein Spezialfall ist) und die
Selbstladung.

Währenddem sich die nicht eichinvarianten Terme durch Ankopp-
lung weiterer Felder von geladenen Teilchen (wenigstens in der
e2-Näherung) kompensieren lassen1)2)3), ist dies für die e2-Selbstladung

nicht der Fall, da diese für alle Teilchensorten dasselbe
Vorzeichen hat. Dagegen lässt sich die Selbstladung renormalisieren,
d. h. man kann in konsequenter Weise an Stelle der ursprünglichen
Ladung die totale Ladung (einschliesslich der Selbstladung) in die
Theorie einführen und so die entsprechenden Unendlichkeiten
eliminieren4).

Falls man diese Renormalisation ernst nimmt, falls man also die
Renormalisation nicht nur als formale Elimination der Unendlichkeiten

betrachtet, hat man zu verlangen, dass für alle Feldquellen,
unbekümmert darum, welcher Art sie sind, die Ladungsrenormali-
sation dieselbe ist. Die Aussage bedeutet, dass die ganze
Selbstladung von der Vacuumpolarisation herrührt. Sie wurde von uns
und anderen in der e2-Approximation verifiziert, gilt aber
allgemein**).

Die Eigenschaft der Renormalisierbarkeit hat die Selbstladung
gemein mit der Selbstmasse der Elektronen4). Nur dass sich die
Unendlichkeiten der Selbstmasse, ähnlich wie die Photonselbstenergie,

durch geeignete Ankoppelung von Hilfsfeldern endlich
machen lässt (dies wenigstens in der Ordnung e2) 10).

*) National Research Fellow (U.S.A.).
**) J. Schwinger, mündliche Mitteilung anlässlich eines Seminars in Zürich.
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Die einzige Möglichkeit einer Kompensation der Unendlichkeiten
der Selbstladung, die sich noch bieten könnte, wäre eine Kompensation

zwischen verschiedenen Ordnungen in e2 (die dann nur für
spezielle Werte von e stattfinden könnte).

Wir werden zeigen, dass für Elektronen (Spin.1/^) eine solche

Kompensation zwischen e2- und e4-Selbstladung nicht bestehen kann.

§ 2. Allgemeines über Vaeuumpolarisation und Ladungsrenormalisation.

Um die Vacuumpolarisation von den übrigen strahlungstheore-
tischen Begriffen trennen zu können, betrachten wir neben dem
Elektronenwellenfeld (Ladung e0) ein Feld anderer Teilchen mit der
Ladung e0. Die Streuung zweier solcher Fremdteilchen aneinander
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wird durch die Ankopplung des Elektronenwellenfeldes verändert
und diese Veränderung bezeichnet man als Einfluss der
Vacuumpolarisation.

Insbesondere wird die Streumatrix proportional e2 für die Streuung

zweier Fremdteilchen aneinander von der Form sein

S —| ld*x,]d*x"P{JIJ.(x')Pllv(x'-x")Jv(x")) (1)*

*) Bezüglich des Operators P vgl. 4).
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wo Jß(x) der Strom der Fremdteilchen ist. P/iV (x'—x") beschreibt
die Polarisationseffekte.

Die Wechselwirkungsenergiedichte lautet

h (x) -0v(x) [jv (x) + Jv (x)] - h, (x) (2)

wobei jv (x) =¦¦ i e0f yv ip der Elektronenstrom, @v (x) das Photonenfeld

bedeutet. hs (x) ist die Selbstenergiedichte.
Eine Übersicht über die Form von P^ „ (x'—x") verschafft man

sich am besten an Hand der Feynman-Dyson'schen Graphen4)5).
Die einfachsten Graphen sind offenbar die folgenden (Fig. 1).

Allgemein ist der Graph zu einem Term proportional e2 e2n

n 1,2, von der Form Fig. 2.

v© /
Fig. 2.

Wir können die Graphen 67 in 2 Klassen einteilen, je nachdem sie

aus 2 Subgraphen bestehen, die nur durch eine Photonlinie verbunden

sind (Fig. 1 a) oder nicht. Falls eine solche Zerlegung möglich
ist, nennen wir den Graphen zerlegbar, sonst unzerlegbar.

Die Zerlegung eines Graphen G in zwei Subgraphen Gx und G%

vom eben beschriebenen Typus bezeichnen wir symbolisch durch
eine GleichungG GX- 672. Dann ist die Menge aller Graphen offenbar

oo

ZiXG'Y (3)
«=i

wobei G' nur über die unzerlegbaren Graphen läuft. Nun entspricht
jedem Graphen eindeutig ein Summand in PßV(x'—x"). Wir fassen
dabei passend Pflv(x'—x") als eine Matrix (px'\P\px") auf und
schreiben

P -(i+27Q(G))A, (4)
o

Dabei ist

(px'\Dc\vx") d,lvDc(x'-x") i <P[0p(x') <Mz")]>Vac (5)*

*) Wegen dieser Funktion siehe D. Rivier6). Dc ist im wesentlichen DF von
Feynman-Dyson. Dasselbe gilt von Sc und SF in § 3.
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Weiter gilt für zerlegbare Graphen

Q(GX-G2) Q(GX)Q(G2)

so dass wir nach (3) für P auch schreiben können

«=1 \ G' I
Dc=ZQnDc

wo

Q ZQ(G')

Schliesslich ergibt sich daher für

l-Q Dc

(6)

(6')

(<)

Um den Zusammenhang mit den gewohnten Bezeichnungen
herzustellen, spalten wir P auf:

Dc-DcKDc
und ebenso

so dass
Q DCR

K R
l-DrR

(8)

(9)

(10)

Statt von der Streuung zweier „Fremdteilchen" aneinander
auszugehen, hätte man ebensogut ausgehen können von der Streuung
eines Fremdteilchens an einem äusseren elektromagnetischen Feld
A/n (x). Für den in A^ (x) und Jv (x) linearen Teil der S-Matrix
findet man leicht

ifd*x'Jlx(x')A„(x') +

i fjß(x') De (x' — x") Kß v (./•"- x'") Av (x'") d4x' d* x" d4./•'"

Ebenso kann man den Vacuumerwartungswert für den Strom bei
gegebenem äusserem Feld AiU(x) ausrechnen und findet für den in
Afi (x) linearen Teil*)

<jß(x')\&a=fKßV(x'-x")Av(x")d*x" (11)**)

Damit ist der Anschluss an die übliche Bezeichnungsweise erreicht.

*) Höhere Potenzen in Aß (x) siehe ').
**) Gegenüber x) ist das Vorzeichen von Kß v umgedreht.
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Gleichzeitig erhalten wir die Bedingung der Eichinvarianz

(' K-IXV \X) _ Q (12)
dxv ^ '

Fourier- Transformation. Allgemein schreiben wir

*1(x)=-{21n)i/d*qei**F(q) (13)

Insbesondere seien so definiert: P/iV(q), K/lv(q) usw.

Weiter ist Dc (q) =- —., *). Damit wird

(p\K(q)\v)=q2Z(±)n(p\B«(q)\v) (14)
n=l'" '

Aus Invarianzgründen

(p\ B(q) | v) A (q2) qßqv + B(q2) q2 dßv (15)

In (14) eingesetzt unter Verwendung von

(± )\p j B-(q) | v) *. [{ (A + B)«-B"}qßqv+B» q2 d„ v) (16)

(p \ K (q) | v) - (-ttI- B - i !^B)aß1v + j
_ßß q2 öM v (17)

was nur eichinvariant ist, falls A + B 0.

Es muss also

(p\ B(q) | v) (qßqv~q2 ößv) A(q2) (15)'**)
damit wird

(p | K (q) | v) r^lgij- (<fc ?r- «a, v 92) (18)

und

wofür man wegen der Kontinuitätsgleichung für den Strom auch
schreiben kann

(HWO'-^irztei) (19)

*) Bei der Fourier-Transformation hat man über qa zuerst zu integrieren
und dabei in der komplexen Ebene den Pol q0 — — \q j unten und den Pol+ [J | oben
zu umgehen.

**) Die nicht-eichinvarianten Terme interessieren uns hier nicht, vgl. dazu
Einleitung und 8).
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Zur Abtrennung der Ladungsrenormalisation entwickelt man
[1 — A (q2)]"1 nach Potenzen von q2. Der konstante Term bedeutet

die Ladungsrenormalisation I -) wo e die wahre Ladung ist.

(:0)2-i^(0) (2°)

§ 3. Die Vacuumpolarisation ~ e2 und-^e4,.

Unsere Aufgabe ist es nun, R resp. Bfn,(q) zu bestimmen, und
zwar beschränken wir uns dabei auf die zwei ersten Terme in der
Entwicklung nach e*: P(2) und P'4)). Man findet nach gewohnten
Methoden4)8)

Bfv (x - x') ¦= - e\ i Sp{yfl Sc (x - x') yv Sc (x' - x)} (21)

und*)

44)v(03)

- et fd* x' d*x" Dc (12) • Sp {y„ Sc (01) y„Sc (13) y„ Sc (32) yaSc (20)

- yM01)ya Sc(12)ya Sc(23) y,Se(80) ¦ \ [e(13) - ,(23)1

- y,Sc(0d) yvSc(S2)yaSc(21)yaSc(10) \ [e(20)-e(10)] (22)**

2

2

Dabei ist Sc (x—x') definiert durch***)

P LV, (0) Wß (1)] £ (01) > vac i >%ß (01) (23)

Eine Bemerkung zur Massensubtraktion: diese wurde mit der
Selbstenergiedichte

K(x) ^ X I d*x' Dc(x — x') [f (x) ya Sc(x — x') yß y>(x')

+ f (x') ya Sc (x'~ x) ya f (x)]

durchgeführt, könnte aber ebensogut mit hs d ¦ y> (x) f(x)
durchgeführt werden.

*) (03) bedeutet (x—x'") usw.
**) S (x), S (x), Sü) (x) usw. nach Schwinger9).

***) Vgl. die Anmerkungen zu Dc (x) und Dc(q) in § 2.
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Für P(2) (q) findet man

H%(q) (q^v-öflvq2)[^--^rfd*k. k^-mi (24)

e- V u*(l- 5 u2)
— ---a2 du

' :i—'-
8(2n)2<iJM' m2 + y.(1_tt2)j

Die Ladungsrenormalisation ist im ersten, logarithmisch
divergenten Integral enthalten. Als invariantes Limitierungsverfahren
kann man die Regularisierung von Patjli-Villaks8) verwenden,
d. h. man kann an Stelle des Integrals

/>/;(/f2+w2)-2
setzen

Ad4 k [(fe2 + m2) ~2- (k2 + m2 - M2) ^2]

i 1

/',,, /"-, 2Jf2 „ f, M2 „., m2+M2
/d4K0 M -¦ =n2%fdu 2| nrimJ u/ f«2 + m2 + Jf2 u]3 f m2 + M2u mz

*
0 o

woraus mit (15')

i.ro-.TÄr'«-^ <2°>

Von P(4) interessiert uns zuerst die Eichinvarianz. Man findet für
1

i gw R®, (q) <5 • m • qu¦ ,_. / d4 * / d ü-^-s-—s-—«-^j ^^ [lVy±> 1/* (2 Jl)3 _/ r / [p2 + TO2 + ^2« (1 — »)J2
0

wobei ö die Selbstmasse der Elektronen ist. Dieser Ausdruck ist
unbestimmt. Das letzte Integral aber verschwindet, wenn man
bezüglich der Elektronen mit ZCt 0 regularisiert8). B2 ist also

eichinvariant, sofern man durch Regularisierung nur dafür sorgt,
dass es endlich ist.

Zur Ausrechnung zerlegen wir P(4) wie folgt:

wobei

U%(°3) - 2 fD° (12) SP{rß& (0!) YoSc (12) YaSc (23) yv Sc (30)}

],2.[e(13)-e(23)] (27')

U% (°3) -T /^ (12) S?(^ So (°3) ^ s'< (32) *r Sc (21) ya Sc (10)}

1,2-[£(20)-e(10)] (27")
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V„ v (03) - /'dc (12) Sp{yß Sc (01) yaSc (13) yv Sc (32) ya Sc (20)} (28)
1,2

FW und Cl2> enthalten beide den Ausdruck yaDc (21) Sc (12) ya
Ale (12)

Mc(12)=
* fd*kd*petV-^to-»-vzg&-r-™\pv ' (2n)% J r k2 (p- + ra2)

2 fd*a e '" u' ~ *"> fd* k *¦ y {p + k) + 2m
I a 2 e a K k*((a+ k)2 + m2>(2 jr)8 / " * " J k2 ((q + k)2 + ra2)

Dabei ist die nützliche Gleichung

Ya Yvx Yv2-'- Yv2 „Tl Ya —% Yv2 „, x Yv27) • • • Yn

in einem Spezialfall verwendet.

Das auftretende fe-Integral divergiert. Wir können es aber durch
eine formale Regularisierung mit Hilfe einer grossen „Photonmasse",

konvergent machen. Dadurch ersetzen wir

-HL1 1
—

M'
k2 durcn k2 ~ k2 + M2 ~ k2TM2

und lassen im Schlussresultat M2 gegen unendlich gehen, sofern dies

möglich ist, ohne dass der Ausdruck unendlich wird5)8). In diesem
Fall sagen wir, die Unendlichkeiten der k- Integration heben sich
gegenseitig auf. Die Regulierung wird hier nur als Methode zur
Behandlung unendlicher Ausdrücke benützt.

Dadurch also

MJ12)= — - — fd^-ae1" <*' - *"> /*d4 k — ilSl±3 ± 2 m
Mc W (2 Ti)" J a « e J a K

((q + k)2 + m2) k2 (k2 + M2)

unter Verwendung von Feynmans Formel5)

a0 ax ¦ • • an

./ J K + («i-«o)*i+ ••• + K-
0 0

ergibt sich

Mc(12) -
4Jf*2
(2n~)*

i X

«rc-lK,]"-1

f)"8 /diqei"{x'-x"> x

\(k + q(l-x))2 + q2x(\-x) + m2(l-x) + M2 y]3xfdxfdyfdHr iy(q+k) +2m
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Setzt man k' — k + q (1—x), so ergibt sich

4Jf2Me(12)=- ^J dV^<*'-*"> / dx j dy x

X / d4fe

o ü

iy q x + 2 m
[k2 + q2 x(l - x) + m2 (1 - x + M2yf

1 x

__ ijriM^ i ig{x,_x,t) i i ____iyi^±fm _(2ji)8 J a I6 J aXJ ayq2x(l-x) + m2(l-x) + M2y

wobei verwendet wurde5)

o o

¦ dik _7i2i
[F + Af ~ Ja

Nun tritt in U« auf -- / Mc(12) S (23) e (13) d4 rc"

ji2ilf2 (-»)
(2ji)4 (2 7t)''

e(18) \d*qeii(x'~x'"^x

fj fj (iyqx + 2m)(iyq-m) „ «,x dx dy-———,— ;; '* ' o%2 + m2) e(q)j J q2x(l- x) + m2(l — x)+M2y v* ' vi'

0 0

7i2iM2m r, f-, 2-x
Unj* "J dXJ dy m2(l^x)2 + M2y

o o

2ji2iJIf2TO /", /", 2-xt "T2^*_ ¦ y y ^ ^(r=^+ jf2 j/
0 0

2n2iM2m f
(2n\ dx dy 2-x

0 0

Weiter tritt in F/(1) auf

TO2(l-z)2+Jf2!/

-£ (13)3(13)

7.S(1S)

^ + m'

y[Mc(12) 8 (23) e (23) d4a;" /"m« (12) S (23) d*ic"

1 X

2tiHM
~(2~7l

+

0 0

m(2— x) (iyq — m)

q2x(l-x) + m2(l-x) + M2 y

[q2 x (1 - x) + m2 (1 - x) + M'ä y] [q2 + m2'\

L4
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also für die Summe der beiden Terme

1 '"d4 x" Me (12) S (23) [e (13) - e (23)]

2nW\l'diaei^[fdxJdyl~^-^:^(2.t)8 J a y»-y«'»|_ j2a;(l_a;) + m2(l_x) +Jf*j/

m(2—x)(iyq—m) i 1 1 \1
q2 + m2 \(q2+m2)x(\ —x) + m2(l —x)2 +M2y m2(l - x)2 + M2yl\

1 2

2™t*Jf-1' /'d4fl e'"ll3) /"da; /"dwf
(2,-t)8 J" *e / ./ a!'[q2x(l-x) + m2(\-x) + M2y

ü i)

x

j_ ffi m(2-x)(iyq-m)(\-x) ]
/ \(q2 + m2)z(l-x) + m2(l-x)2 + ~M2 y]2 J

Ö

liier erscheinen die Unendlichkeiten von der k-Integration
getrennt. Führt man nämlich im zweiten Term der Klammer die

//-Integration aus, so kann man A42 gegen unendlich gehen lassen.
Damit ergibt sich schliesslich

1 X

2fl fdiqei"n:i)\ fax fdy „ -*| ,„(2,-t)8/ * [_/ _/ •' q2x(\ ~x) + m2(l-x) + M2y
0 0

1 x

I dx I dz m (2— x) (iyq — m)
(q2 + m2) z+ m2 (1 — x)

Setzt man das in Uftv(x — x'") ein und geht nach (13) zur Fourier-
transformierten über, so erhält man:

27l2i I ,„ 1Tj0)(n) ^ j ifi'n XßvVi) (2tt)\I ' (p2+m2)((p-q)2 + m2)

x\M2 fdx fdy-X 8P_{Y^yV-ra)yv(iy(9-q)-m)}
.' m2(l-x) + p2x(l -x) + M2y

f /\ ,0 s
Sp{yv(irP^m.)2yß(iy(p-q)-m)}\

+ m / dx / dz- (2 — x • .,„ ,•-. --,. -} (29
J J v 7 m2 (1 - x) +(p2 + m2)z I

0 o
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Weiter findet man leicht

^t(g) TJ<«(-g) (29")

Etwas heikler zu behandeln ist der Term FiUV(03) von (28).
Zunächst findet man durch Fouriertransformation (wobei die
Regularisierung bezüglich der Photonen schon durchgeführt ist)

v„M=^fdiPifdiV2x
Sp{yf,(iyPi-m)ya(iyp2-m)yv(iy(p2-q)-m)ya(iy(p1-q)-m)^

N

(p\ + ma) (p2 + m2) ((v^W + m^HlPi -q)2 + ™?)\(Vx -P'iV' ((Pi- P2)2 + M*)
(30)

Die Abspaltung der Hauptunendlichkeiten geschieht genau nach
der Dyson'schen Vorschrift*) und kann wie folgt durchgeführt
werden:

vßM) {^fdiPifdip*
dXx dX2

d2

dXxdI2

\m

Sp{yix(iyPi-m)y<,(iyp2-m)yr(iy(p2-X2q)-m)ya(iy(p1-A1q)-m)}
X (p1i + m2)(p22 + m2)((p2-/2g)2 + m*)((p~-?^qj2 + m2)(p,-p2)2((p1-p2)2 + W)

8 p{Vii(iyPi- m)ya(iyp2- m)yv(iyp2- m)y„(iy (px- q) - m)]
(px2 + m2) (p22 + ra2)2 ((pt- q)2 + m2) (px- p2)2 ((px - p2)2 + M2)

Sp{yij. (iypx-m) ya (iyp2- m) y, (iy (p2-q)-m) y„ (iypr- m)}
(p12 + m2)2(p22+m2)((p2-q)2 + m2)(p1-p2)2((p1-p2)2 + M2)

Sp{yß(iVPi-m) Ya(iyp2-m) yr(iyp2-m)ya(iyp1-m)'j \

(p12 + ra2Hp72 + ra2)2(p1-p2)2((p1-p2)2 + Jf2) I

Hierbei ist das letzte Integral überhaupt von q unabhängig, für
unsere Diskussion also entbehrlich. Wir lassen cs daher in Zukunft
auch weg. Weiter geben die beiden mittleren Integrale gleich viel
und zwar gibt je schon eine Integration beim Grenzübergang M2 ->•

00 Unendlichkeiten. Im ersten Integral aber ist die Photon-Regu-
larisierung überflüssig, da man dort eine Integration durchführen
kann ohne auf Unendlichkeiten zu stossen. Wir beginnen mit der

*) Dyson4), p. 1749. Wir sind Herrn Dyson für eine Diskussion über diesen
Fall sehr zu Dank verpflichtet.
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Diskussion der Summe der beiden mittleren Integrale. Man findet
dafür, ähnlich wie früher,

4:M27i2i f f" (2^J dipJ dxJdyxx
0 0

Sp {yß (iyp- m) yv (iy(p -q)- ra)}
(p2 + m2) ((p — q)2 + m2) [p2x (1- x) + m2 (1 - a;) + ilf2»/]

d4« f(ixsv{!\y^iyp-m)y°(iypx+m)y'(iypx+'m)y°(iY(p-(i)~m)}
i inrfi- -L nm%\ (vfi-nr A- vn^\ (im — /y\2_i_ *m2\

2jt2

\^n) J J (p2 + m2) (p2x + m2) ((p — q)2+m2)
0

1

:*% fd*p fdx x(p2(l-2x)-m2)Sp^iiyp-m)yAiv{p:qhn3
jJT) J J (p2 + m2) (p2x+m2) (lp-q)2 + m2)

]

27lH fdiv Sp{yf^yp~m^y^iY{-'p~^~m^} taa\
(2ti)sJ "

(p2Tm2) ((p2-q)2 + m2Y
~" ^ '

Der erste Term hebt sich genau weg gegen die M2 enthaltenden
Terme von Upyv (q) und Uffiv (q) (29). Diese Tatsache ist entscheidend
für die Endlichkeit der Theorie.

Da wir schon wissen, dass B$v(q), sofern nur durch genügende
Regularisierung für die Endlichkeit gesorgt ist, eichinvariant ist,
genügt es, die Spur Bv\(q) zu betrachten. Nach (15') erhält man

B(v%(q) -3q2A(q) (33)

und aus den oben stehenden Formeln (29) (31) und (32)

i
^(4V) s^Äp fd'Vxfd^\dK x

o

X fdX,
d2 Sp

X

l

dX1dK2 (p1-p2)2(p12 + m2)(p2+m2)((p2-X2q)2 + m2)((p1-Ä1q)2+ m2

2 ' / /74 lA P4;r~P2(P9')x+?,2m2(I + 8a;-6x2)-(pg)ra2(l + 2a;)+2TO4(l -2x)
J "J (p2 ra2) ((p — q)2 + m2)(p2x + m2)

o

l
m2 ((pq) — m2) (2— x)

I r! / (v2 + m2) ((v-a)2 + m2)((v2 + m2)z+m2(l-x)) v '(p2 + ra2) ((p-q)2 + m2) ((p2 + m2) z + m2 (1 - x))
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wobei

Sp —
16 Sp{yfl(iyp1—m)ya(iyp2 — m)yfl(iyp2) — X2q)—m)ya x

(iy(px—lxq—m)}

2 [(pxpa)2 -Xx (px p2) (p2q) -X2 (px p2) (px q) +XX X2 (px q) (p2 q)]

+ m2[4 (pxp2)+p\+p\-Xx (pxq) + 2 (p2q)) -X2 ((p2q) + 2 (pxq))

+ XxX2q2] + 2mi (34)

Zur Gewinnung der Ladungsrenormalisation*) benötigen wir A® (0).
Durch Entwicklung findet man leicht

+ m2q2 + 4 (pxq) (p2q)
2 (Pl^!+™!I4%^£i+£Ü±2™*i \rLii\rzij (p';+ra2)(p| + m2)

A (m n\ 2 (PiPz)(Pz<l) + ™2 KPi«) + 2 (p2q)]
^ypii) (Pi+m2Y

i
r2»«27i2iq2 f,i /' p6x + p4m2(l + 5a;)-l-3p2ra4(l + 6a;-4a;2) + 4ra6(l-2x)

-—2~ / Ü p I dx - ~(y2+^ri2)*J?>2xTm2T~
0

1

o 2 ¦ 2 / J4 j Ii 2-<t m^ p*+pz™- + 2ra" ,oc.2nHq2 / d4p dx dz ;— ' ,— ;— -,;.- ,T (351 / ^/ / (»2 + m2 4f(»2 + ra2)z + m2l-x ] v(p2 + m2)4[(p2 + ra2)z + m2(l - x)]
o o

und mit den gewohnten Methoden nach ziemlich umständlicher
Rechnung

4<4,(°> - s^-f/^x
1

p«xä-pim2 x(l + x~2x2)-p2mix(4: — 3x) + 2mls

(p2 + ra2)3 (j)äi + ms)!
u
1

f p6a; + p4TO2(l + 5a;)-l-3p2ra4(l + 6x-4x2) + 4ra6(l-2a;)
/ (p2 + m2j*(p2x+m2)

Ö

+ 4fdxfdz (2^^)^!(P4 + P2™2 + 2ra41_| (36)+ / aJ7 ^ (p2 + ra2)4[(p2 + m2)Z + ra2(l-x)] j l °J
Ö 0

*) Die endlichen und grundsätzlich beobachtbaren Terme von R-*'v (q)
betrachten wir hier nicht.
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Der Ausdruck divergiert logarithmisch, und zwar wie

8 7l2i _4 l'ji__ f j _ x+1
(p2 + m2)2

A$v(0) -±£±t-e*jd*pjdx

Regularisiert man bezüglich der Elektronen wie für Af}v (0), so
findet, man

^uoH^-nr w
Durch Vergleich von (25) und (37) erkennt man, dass A®> (0) und
A{i) (0) dasselbe A'orzeichen haben. Eine Kompensation ist deshalb
unmöglich.

Wir danken Herrn Professor Pauli für das dauernde Interesse
an dieser Arbeit.
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