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Vacuumpolarisation und e*-Ladungsrenormalisation
fiir Elektronen
von Res Jost und J. M. Luttinger*) (Phys. Inst. ETH. Ziirich).

(18. X. 1949.)

§ 1. Einleitung.

Bei der Behandlung der Vacuumpolarisation treten 2 Arten von
Unendlichkeiten auf, ndmlich die nicht eichinvarianten Terme (wo-
von die Photonselbstenergie ein Spezialfall ist) und die Selbst-
ladung.

Wéhrenddem sich die nicht eichinvarianten Terme durch Ankopp-
lung weiterer Felder von geladenen Teilchen (wenigstens in der
e®-Naherung) kompensieren lassen?)?)?), 1st dies fiir die e2-Selbst-
ladung nicht der Fall, da diese fiir alle Teilchensorten dasselbe Vor-
zelchen hat. Dagegen lasst sich die Selbstladung renormalisieren,
d. h. man kann in konsequenter Weise an Stelle der urspriinglichen
Ladung die totale Ladung (einschliesslich der Selbstladung) in die
Theorie einfithren und so die entsprechenden Unendlichkeiten eli-
minieren?).

Falls man diese Renormalisation ernst nimmt, falls man also die
Renormalisation nicht nur als formale Elimination der Unendlich-
keiten betrachtet, hat man zu verlangen, dass fir alle Feldquellen,
unbekiimmert darum, welcher Art sie sind, die Ladungsrenormali-
sation dieselbe 1st. Die Aussage bedeutet, dass die ganze Selbst-
ladung von der Vacuumpolarisation herrihrt. Sie wurde von uns
und anderen in der e?-Approximation verifiziert, gilt aber allge-
mein*¥).

Die Eigenschaft der Renormalisierbarkeit hat die Selbstladung
gemein mit der Selbstmasse der Elektronen#). Nur dass sich die
Unendlichkeiten der Selbstmasse, #hnlich wie die Photonselbst-
energie, durch geeignete Ankoppelung von Hilfsfeldern endlich
machen ldsst (dies wenigstens in der Ordnung e?) 19).

¥) National Research Fellow (U.S.A.).
**) J. SCHWINGER, miindliche Mitteilung anlisslich eines Seminars in Ziirich.
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Die einzige Moglichkeit einer Kompensation der Unendlichkeiten
der Selbstladung, die sich noch bieten kdnnte, wire eine Kompen-
sation zwischen verschiedenen Ordnungen in e? (die dann nur fir
spezielle Werte von e stattfinden konnte).

Wir werden zeigen, dass fiir Elektronen (Spin.l,) eine solche
Kompensation zwischen e2- und e*-Selbstladung nicht bestehen kann.

§ 2. Allgemeines iiber Vacuumpolarisation und Ladungsrenormalisation.

®

Um die Vacuumpolarisation von den tibrigen strahlungstheore-
tischen Begriffen trennen zu konnen, betrachten wir neben dem
Elektronenwellenfeld (Ladung e,) ein Feld anderer Teilchen mit der
Ladung &,. Die Streuung zweier solcher Fremdteilchen aneinander
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wird durch die Ankopplung des Elektronenwellenfeldes verdndert
und diese Verdnderung bezeichnet man als Einfluss der Vacuum-
polarisation.

Insbesondere wird die Streumatrix proportional 2 fir die Streu-
ung zweler Fremdteilchen aneimmander von der Form sein

o e PO Pl 015 O

*) Beziiglich des Operators P vgl. 4).
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wo oy (x) der Strom der Fremdteilchen ist. Py, (2'—2") beschreibt
die Polarisationseffekte.

Die Wechselwirkungsenergiedichte lautet

h() = — By (2) [ju (2) + Ty (2)] — ha(2) @)

wobel 7y (x) = 1 ey p ¥, v der Elektronenstrom, @, (z) das Photonen-
feld bedeutet. h, (x) ist die Selbstenergiedichte.

Eine Ubersicht iiber die Form von Py, (z'—z") verschafft man
sich am besten an Hand der Feynman-Dyson’schen Graphen?)3).
Die einfachsten Graphen sind offenbar die folgenden (Fig. 1).

Allgemein ist der Graph zu einem Term proportional &2 ¢2*
n 1,2, ... von der Form Fig. 2.

Fig. 2.

Wir konnen die Graphen G in 2 Klassen einteilen, je nachdem sie
aus 2 Subgraphen bestehen, die nur durch eine Photonlinie verbun-
den sind (Flg 1a) oder nicht. Falls eine solche Zerlegung mocrhch
1st, nennen wir den Graphen zerlegbar, sonst unzerlegbar.

Die Zerlegung eines Graphen G in zwei Subgraphen G; und (G,
vom eben beschriebenen Typus bezeichnen wir symbolisch durch
eine Gleichung G = G, - ,. Dann ist die Menge aller Graphen offenbar

2(2 Gy 8)

wobei G’ nur iiber die unzerlegbaren Graphen liauft. Nun entspricht
jedem Graphen eindeutig ein Summand in Py (z'—2"). Wir fassen
dabei passend Py, (z'—z") als eine Matrix (uz'|Plpx”) auf und

schreiben _
P-—(1+3Q(®)D: 4)
-
Dabel ist
(@' | De|vx") = 8y y Do’ — ") = i <P[D (') Py ()] v, (5)*

*) Wegen dieser Funktion siehe D. Rivier®). D, ist im wesentlichen Dp von
FeYyNMaN-Dyson. Dasselbe gilt von S, und Sy in § 3.
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Weiter gilt fir zerlegbare Graphen

Q(Gr Gy) = Q (Gy) Q (Gy)
so dass wir nach (3) fiir P auch schreiben kénnen

P—jfZewy|p-Fen

n= n=o

WO

QI%Q(}') (6)

Schliesslich ergibt sich daher fiir

1

P = 1';*0

Um den Zusammenhang mit den gewohnten Bezeichnungen her-
zustellen, spalten wir P auf:

D, (7)

P:“DC;D(;KDC (8)
und ebenso
Q — Dc R (())
so dass
R
K = 1 “D,R (10)

Statt von der Streuung zweier ,,Fremdteilchen‘s aneinander aus-
zugehen, hiatte man ebensogut ausgehen kénnen von der Streuung
eines Fremdteilchens an einem dusseren elektromagnetischen Feld
Ay (x). Fir den in 4, () und J, () linearen Teil der S-Matrix
findet man leicht

ifdta () Aua)+

(x"—a") 4, (z")d*z d*z" dt 2"

i [ T (') Do (2" —2") K

Ebenso kann man den Vacuumerwartungswert fiir den Strom bel
gegebenem #dusserem Feld 4, (z) ausrechnen und findet fiir den in
Ay (x) linearen Teil*)

Gul®') dyae = / Kyy(@—2z") dy(z") d* " (11)%%*)
Damit ist der Anschluss an die iibliche Bezeichnungsweise erreicht.

*) Hohere Potenzen in A4, (x) siehe 7).
**) Gegeniiber !) ist das Vorzeichen von K, , umgedreht.
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Gleichzeitig erhalten wir die Bedingung der Eichinvarianz

0Ky (z)

22— 0 (12)

Fowrier-Transformation. Allgemein schreiben wir
1 1 3 gz I 1
F(z) =4 :',z)(j dige’ " F (q) (13)
Insbesondere seien so definiert: Py, (q), Ku»(q) usw.

Weiter ist De (g) — —; *). Damit wird

(Wl K@) = X () (| R @]) (14)
n=1 ‘
Aus Invarianzgriinden
(u| B(g)|v) = 4(¢®) quar + B(q®) ¢* v (15)
In (14) eingesetzt unter Verwendung von
"1 \n . 1 ”
() (B @)% = o LA+ B)"—B }quq+ Brq*éy,] (16)

o A+ B B B
(1] K(g) |v) = (1_ ;—B g )qMQ'v +_ g q* é/uv (17)

was nur eichinvariant ist, falls 4 + B = 0.
Es muss also

(| B(q)|v) = (qugv— 9% Opn) 4(q?) (15)7%)
damit wird
(6] B (@9 =12 (G ar— Sur ) (18)
und
ek A@)  Pupe=dund?
(lul I)(Q) ’V) - (]2 (\5(&1’ + | T | (92) & gz £ )

wofiir man wegen der Kontinuitétsgleichung fiir den Strom auch
schreiben kann

1 4
) ) ..__“if’_ R .
(1“'1 Il) 2 1+ A(g?) &]9)
*) Bei der Fourier-Transformation hat man iber ¢, zuerst zu integrieren
und dabei in der komplexen Ebene den Pol ¢, = — [§| unten und den Pol+ [g| oben

zu umgehen.
**) Die nicht-eichinvarianten Terme interessieren uns hier nicht, vgl. dazu Ein-
leitung und 8).
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Zur Abtrennung der Ladungsrenormalisation entwickelt man
[1 -+ A4 (g% ] nach Potenzen von g2 Der konstante Term bedeutet

s . . e\2 : ' .
die Ladungsrenormalisation ( 87) wo ¢ die wahre Ladung 1st.
’ 0/

o )
(;, )2 T 1+ A0 (20)

§ 3. Die Vacuumpolarisation ~ eg und~e_.

Unsere Aufgabe ist es nun, R resp. By (g) zu bestimmen, und
zwar beschrianken wir uns dabeir auf die zwel ersten Terme 1n der

Entwicklung nach e?: R® und R%). Man findet nach gewohnten
Methoden?)5)

R2(z—ux') = —eliSp{yuSec(x— ) yp Se(a' — @)}  (21)
und*)

R}, (03) =
— ey [dfa’ d*x" D (12)- Sp{y, Se (01) %, 5c(13) 7,5 (32) 7, 5. (20)

=7 Se(01) 7, Se(12) 7, Se(23) 7, 8a(80) - 5 [£(18) — & (23)]
= 7,80 (03) 7, 5(32) 7, Se (21) 7, S (10) 5 [£(20) — £(10)] (22)**

Dabet 15t Se (z—2) definiert durch **%)

Lly 0y 5 ()] e (01)5 vy = i Se,,, (01) (23)
3 ityqg —m Y
8 la) = e (23')

Eine Bemerkung zur Massensubtraktion: diese wurde nnit der
Sel}_)stenergiedichte

he(x) = = /d4f’1) (x—a") [y (2) 7, Se(x—2") y, »(z)
+ 9 (2) v, Se(2'— z) ¥, v ()]

durchgefiihrt, konnte aber ebensogut mit hy = 6 -y (2) ¢ (x) durch-
gefiihrt werden.

*) ()3) bedeutet (x— ") usw.
**) 8§ (x), 8 (x), 81 (x) usw. nach SCHWINGER?).
*k**) Vgl. die Anmerkungen zu D, () und D,{q) in § 2.
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Fir R® (q) findet man

4 2 [
Rﬁ)ﬂu (@ = (quar— 5,wu qz) [_ 3 '*ég;z’)% / d*le - B mi (24)

Die Ladungsrenormahsatlon 18t im ersten, logarithmisch diver-
genten Integral enthalten. Als invariantes Limitierungsverfahren
kann man die Regularisierung von PauLl- VILLARS %) verwenden,
d. h. man kann an Stelle des Integrals '

/ Atk (k2 +m?)~2
setzen )

/ AT T2 + m2)=2— (k2 + m? + M?)=2

7’ 3 2M2. ; M2 oom2+ M3
:/447};0/61% TS L A :ﬂz%[du e =ntiln ™
) , | M ] M

woraus mit (157)
m? + M*
S

2(0) 12d 2 hl (25)

Von R® interessiert uns zuerst die Eichinvarianz. Man findet fiir
1

L | 1-2
quHRlEi)ﬁv(Q) = 6 m - Q,Uf (2 )3 /d4p /d@ ’
0

[p* + m?® + ¢* v (1 —v)]

wober 6 die Selbstmasse der Elektronen ist. Dieser Ausdruck ist
unbestimmt. Das letzte Integral aber verschwindet, wenn man
beziiglich der Elektronen mit X' C; = O regularisiert®). R, ist also
eichinvariant, sofern man durch Regularisierung nur dafir sorgt,
dass es endlich 1st.

Zur Ausrechnung zerlegen wir R® wie folgt:

(U<1 ] U‘Q’ + V) e ©(26)
wobel
L;;v(os) — 5 /Dc(12 ) SP{yuSe (01) 5 S:(12) yo Se (28) v, S (80) }
1, 2
[e(13) —e(23)] - - (2T)

2, (03) - ~—§—u DL(12) Sp {74 S, (03) 75 56(32) vs S (21) 76 5: (10)}

[&(20)— & (10)] | | @77
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V3w (08) = — [ De(12) Sp{y8: (01) y5Se (1) y1 S (32) y5 5. (20)} (28)

1.2
UM und U@ enthalten beide den Ausdruck yg De (21) S, (12) v =
M, (12)

" 1 5.4 . i — 2 (p—p) Ye iy D — m)ye
Mo(12) = -5 s /-d4kd4pet(:c 2") (p—F) AR

o o — ") ty(p+ k) + 2m
= (2 = /dd:qeaq z /d4k (0 B+ m?)

Daber 1st die nttzliche Gleichung

VaVu Vo, Vg, Yo =2V VU
in einem Spezialfall verwendet.

Das auftretende k-Integral divergiert. Wir kénnen es aber durch
eine formale Regularisierung mit Hilfe einer grossen ,,Photon-
masse’’, konvergent machen. Dadurch ersetzen wir

und lassen im Schlussresultat M? gegen unendlich gehen, sofern dies
moglich 1st, ohne dass der Ausdruck unendlich wird®)®). In diesem
Fall sagen wir, die Unendlichkeiten der k-Integration heben sich
gegenseitig auf. Die Regulierung wird hier nur als Methode zur
Behandlung unendlicher Ausdriicke beniitzt.

Dadurch also
; _ 4, .00 (@ — 2" a7.  trl@+ k) +2m
M, (12) = 2 )8 /d g /d k@ TR+ md) (R + M)
unter Verwendung von Feynmans Formel?)
1 —
| gy cea,
Xy Ty -1
~ ) il 1
A ' A » . . - I N R e
n {.)/ da.l./ déLz d/d Ly [“0 of (al = aO) x4+ -+ (an_an—l) x”] n+1
ergibt sich
4 M* ¢ (2 —
Mo (12) = — =, ./d“qe” o

o s [  iy@eRr2m
< Jdafdy [ak g T e s e +
0 0
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Setzt man k' =k + q (1—=x), so ergibt sich

) > 1 T
Mc(l.z):_:‘2{’5)8/6149(3@@:%”) /dx/dy .
N 0 0

/'d,;k 77777 iyqx+2m
[k2+q x(l— :v)+m2(1 x+M2y]3

o 2?22;;”2/“614qew 7 — " /dm

. YRR
x(l—a)+m2(l—x)+ M2y

wobel verwendet wurde5)
/”' dtk At

J wear =24
Nun tritt in U0 aut - /M (12) S (28) & (13) d &

@M (-9
@)t (2n)®

1 x

§ + 2 )

xfdacj dygﬁqux—H%)éwg) LLW d(q®+ m?) e(q)
0 0

£(13) [ diqe it =" x

J'LZ’EM ( Z ig(z’ —z")

T
Py

1
dem]dyﬁﬁi‘?f%ﬂ?) d(g*+m?) e(g)

73 lem

L 2m2e M2m
i (27)4_ /dmfdymz(l x) +M‘3 8(13)

, 2%21M3m _my tyg—m
T2 /dm/dymz(l x)? +M2y/d4 A x)q 24 m?

Weiter tritt in U® auf

— [ Mo (12) S (23) ¢ (28) d*n" = /"MC (12) S (23) d* 2"

2m2i M2 x
. e 1q(x” — x™) .
T @ap fd4q6q /d‘"”/d”[ (I )+ mE(l — )+ My
. m(2—x (@yg m) ]
[*x(1—2)+m*(1—x)+ M y][g>+m?]

14
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also fiir die Summe der beiden Terme

: fd!l & M, (12) S (28) [ (13)— & (28)]

1
22 @M~

BRI / et [da /dy[ Call—af 4 mi(l— )+ My

0 0

L m(2—x)(tyg— m,),(. 1 B I B ]
‘ q* + m? (*+m*)a(l —2)+m*1—x)>+ M3y m3(1-x)*+ sz,)

1 x
o 2125‘7’{2 i 4 ll’[(lg) [ ..— [ X -
=T S (AT Y] oy me 4y
0 0
v

m(2— x)( vg—m)(l—x)

T /d [(g2+m2)z(1 —x)+m2(1 —x)>+ M2 y)* ]

Iier erschemen die Unendlichkeiten von der k-Integration ge-
trennt. FFithrt man nédmlich im zweiten Term der Klammer die
y-Integration aus, so kann man M? gegen unendlich gehen lassen.
Damit ergibt sich schhiesslich
1 & u

2% [ o o s M2
_ 4 i 113) , / ] = ,

(2m)® /d g [/dt dy G?e(l—x)+m*(1-x)+ M2y

0 0

1 @
) ] m(2 v m
+[dz [de (2)(” )
) X (G2+m2)z+m? (1 —x)
4] 0
Setzt man das in U, (x — z”) ein und geht nach (13) zur Fourler-
transformierten tber, so erhalt man:

r(1) 27%% | 44, 1
Uil @= gy | TP (e (p-grem
| 1 1 . .
sl dy " Sp{yuliyp—m) yv iy (p—g)—m) }
l mi(l—z)+pie(l-—x)+ M2y
Lo

o - Spivs iy p—m)py (i (p—q)—m)} ,
T m/ d‘I/ dz-(2—z)- m? (1 —x)+ (p*+m?) 2 } =
0 0
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Weiter findet man leicht

Un(g) = U (—9 (297)

v

Etwas heikler zu behandeln ist der Term V,, (03) von (28). Zu-
nichst findet man durch Fouriertransformation (wobei die Regula-
risierung beziiglich der Photonen schon durchgefiihrt ist)

JMZ £ ¥
V..(q) = "(2;{)‘9”/ d4P1./ d*py X

L Spuliyp—m) e iy pa—m) v (i (pa= @) —m)yo iy (0 D-m} (g
(3 +m?) (p3+m) (pa— 02+ m?) (pr— 9)°+m?) (P, — p2)* ((Pl Ppe)?+ M)

Die Abspaltung der Hauptunendlichkeiten geschieht genau nach
der Dyson’schen Vorschrift*) und kann wie folgt durchgefiihrt
werden :

V(g = (;i;s/ d4plv/ "d4p2

1 1

L 33
U d’l{,/ A2 5307
0 0

Sy P m)yo iy pa—myy (i (BT @) = m)yoliy (1= hg) = m)}
) (p12+m2)(p22+m )((pz““}QQ) ‘*“m‘)((pl“/ﬂ)o‘f'm“)(pl_pz) ((py—pp)2+ M?)

31
N Sp{m(wl—m)ya(i*/pz—m)w(iypz )ya(iw(plr—rq)—fn)}_ 81
(P2 mE) (P2 M) (P — Q)2+ m2) (py— Po)? (P — pa)?+ M?)

] Sp{yu (iypr—m) yo 1y py—m) yy (i (p z—q)”m_)ya(iypl—m)}
(P1%+m?)? (py® +m?) ((pa— @)%+ m?) (p1— 0o)* (D1 — pa)* + M ?)

S {yuliyp—m) yo iy py—m) py (iy py—m) yo iy Dy~ )}}
(p1®+m3) (pa® +m?)2 (py— Do) ((P1— P2)° +M)

Hierbei ist das letzte Integral iberhaupt von ¢ unabhingig, fir
unsere Diskussion also entbehrlich. Wir lassen es daher in Zukunft
auch weg. Weiter geben die beiden mittleren Integrale gleich viel
und zwar gibt je schon eine Integration beim Grenziibergang M? -
oo Unendlichkeiten. Im ersten Integral aber ist die Photon-Regu-
larisierung iberfliissig, da man dort eine Integration durchfiihren
kann ohne auf Unendlichkeiten zu stossen. Wir beginnen mit der

*) Dyson?), p. 1749. Wir sind Herrn Dvsow fiir eine Diskussion iiber diesen
Fall sehr zu Dank verpflichtet.




212 Res Jost und J. M. Luttinger.

Diskussion der Summe der beiden mittleren Integrale. Man findet
dafir, ahnlich wie friiher,

1 T
—4gi;dzfd4p[dwfdy-mx
0 0

y ~ Sp{yuliyp—m)ys iy (p—q) —m)} B
(p*+m?) (p—@)*+m?) [p*x (1 —x)+m* (1 - )+ M*y]

2” v /d'* /dw {t (iyp—m)yo(iypa+m)y,(iypatm)ys(iy (p-q)- )}
(p*+m?) (pPx+m?) ((p—q)*+m?)

_ i /ﬂd’*p/dm 2(p?(1—2.2) —m )Sp{y,u iyp=m)y,(iy(p—q)~ m)}r
g ¢ (p2+m?) (px+m?) (p— )2+ m?)

4 277 /d‘lp Sp{yutiyp—m)y,(iy (p-q) -m)}

ol il o 32
(p2+m?) ((p*— q)*+m?) (82)

Der erste Term hebt sich genau weg gegen die M? enthaltenden

Terme von UY), (g) und U, (g) (29). Diese Tatsache ist entscheidend
fiir die Endlichkeit der Theome

Da wir schon wissen, dass Rjy)(q), sofern nur durch geniigende
Regularisierung fiir die Endhchkelt gesorgt ist, eichinvariant ist,

geniigt es, die Spur R{)(g) zu betrachten. Nach (15’) erhilt man
Ry} (g) = —3¢* 4(g) (33)

und aus den oben stehenden Formeln (29) (31) und (32)

40(g) = 550 | [as, [asp, 2ty %
0

cfadg o AP -
SO 0R0Ty (pypo)* () (3 ) (= Ta)* ) (= By P

1
o [ 12 pra—p*(pg)e+p*m*(1+ 8262 —(pg)m*(1+22)+2m*(1 - 2x)
T (b/d p,/d“" (p* m?) (p—q)*+m?) (PPx+m?)

1
B . m? (pg) —m?) (2= ) ‘
4 72 ’b/d / d’E/dZ (p2+m2)((p g)2+m)((p +mz)z+m (I~ .11)) (33>
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wobel
S = — 15 D {7 (07 Pr—1) yo (iy Py —m) 7, (i P)—Iag) —mys X
(1y (o~ q—m)}
= 2[(P1P2)®— 24 (P1P2) (P29) — A2 (P2 P2) (P19) +21 22 (P1 @) (P2 Q)]

+ m2[4 (py pa) +P7HP5— 24 (019) + 2 (P29) — A2 (P29) + 2 (p1 Q)
+ 214247+ 2m* (34)

Zur Gewinnung der Ladungsrenormalisation*) bendtigen wir 4@ (0).
Durch Entwicklung findet man leicht

1

(4) - 166
AN(0) =55 2“;1.)8 ' / d*p, / ' P2 i ot s T 2 (P19) (P24)
2 (p1pg)?+ m? [4(py py) + P+ p3]+2m?
A+ 4(Pag) (Pa9) = ) pr g Y
A 1 2 2
—4(pyq) - 2(p1ps) (pgq();?}ng(i)ﬂ 7)+2(py q)]]
1
nigs Lo Plrtptmt(1+5)+3pPmA(1+6a—4a%)+4mb(l—2x)
—TSE fatp [ ag P2l s (% 1 )
g | ) 2t
: ' —x)m?(p*+pim*+2m s
—2atigt [dip [ da | d: '(pf? VT Tz (=) (35)
0 0

und mit den gewohnten Methoden nach ziemlich umsténdlicher
Rechnung

AD(0) = — 31‘(3;];) , / d4p x

{/d:c pPraf—ptmPe(l+a— 2332) - pPmta(4- -3a)+2m
2
(p2+m2)3 (px+ m?)?

+/d$pﬂx+p4_m (1+52)+3p*mA (1+6x—4a?)+4ms(1-22)
’ (p2+m2)4 (p2x+m3)

—x)m? (pt+ prm?+ 2md)
+4 /d a?/dz : %é VW (p2+m?) 24 m? (1 —_56)]"} -

*) Die endlichen und grundsitzlich beobachtbaren Terme von Rgfv) (9) b

trachten wir hier nicht,
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Der Ausdruck divergiert 1ogarithmiseh und zwar wie

W () — _ 87 gl
Adi\' (0) - 2 )8 /d4 (}’)2+m2)2

Regularisiert man beziiglich der Elektronen wie fiir A, (0), so
findet man

> 1 24 M2 _
Ag{?\ (0) ~ 47t 8311] mmz' (87)
Durch Vergleich von (25) und (37) erkennt man, dass 4® (0) und
A9 (0) dasselbe Vorzeichen haben. Eine Kompensation ist deshalb
unmaoglich.

Wir danken Herrn Professor PavuLt fiir das dauernde Interesse
an dieser Arbeit.
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