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A propos des divergences en theorie des champs quantifies

par E. C. G. Stueckelberg et D. Rivier, Gerleve.

Comme nous le montrons ailleurs1), la causalite impose ä la ma-
trice S qui decrit l'evolution d'un Systeme une structure bien deter-
minee: lorsqu'on developpe celle-ci snivant les Operateurs de trans-
lation dans Tespace des quanta, les coefficients u"- - fr'; u'- •]
sont des integrales multiples oii n'apparaissent, a cöte des champs
lies ä un seid point de l'espace temps, que les fonctions*):

D' (xry) I)> (x/y + '2 I)1 (x/y) x y y (1)

Formellement, cette structure est aussi celle que l'on obtient par
Integration invariante de l'equation differentielle2) cl'evolution du

Systeme ä la difference suivante pres: tandis que l'integration con-
duit ä une expression ä premiere vue determinee pour la matrice
S, la construction causale de S laisse une certaine indetermina-
tion pour le noyau integral forme des fonctions Dc{x/y): en effet,
de la maniere dont ces fonctions sont introduites, il n'est pas
possible de leur fixer a priori une valeur au point x y. Cela
est essentiel: en effet, si l'on defini aussi en x y la fonction
Dc(x/y) par (1) comme do-it le faire l'integration de l'equation
differentielle, on est alors conduit ä des coefficients Su) qui divergent

en general. Par contre, l'indetermination de la fonction
Dc(x/y) au point x y permet une determination a posteriori des

noyaux integraux qui conduisaient dans la theorie differentielle a

des divergences; cette definition est univoque et donne une valeur
finie aux coefficients S \ Comme nous allons le montrer, il
subsiste apres cela dans ces coefficients un certain arbitraire; mais
celui-ci peut etre partiellement elimine par des considerations
physiques.

Le procede de definition des noyaux integraux Ac(x;y) est appuye
sur le fait que les divergences proviennent essentiellement des sin-
gularites non integrables des produits de fonctions Dc(xjy), situees
aux points x y. II est alors indique de definir les noyaux «vrais"
ä part.ir de ceux que donne l'integration en leur ötant leurs singu-
larites non integrables. On y parvient d'abord par l'utilisation

*) Pour les uotations, voyez le second travail cite sous 2).
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d'un Operateur# tel qae-9- Ac(x/y) soit integrable. 11 suffit de prendre
pour # la multiplication par la fonction:

Oa,...«» (*«*')• •(»«"") (2)

hü -= a*i — !/*••. avec sommation de 1 ä 4 nur las indices vecto-
riels aq... a„, et oü n dopend de 1'acuite de la singularite. Puis. pour
oon,server au resultat sa signification, il est necessaire de multiplier
la valeur de l'integrale par un Operateur #s qui doit se reduire, dans
le domaine oü As(x/y) est integrable, ä l'invorse de #.

La realisation de ces Operations est simple dans l'espace de

Fourier; si nous ecrivons (en prenant pour fixer los idees un tonne
du deuxieme ordre):

<p') I (c/.r")4(/ " (.;•") Acq' (.r") (•>)

oü:

l /'d,-d (/)' •.

il suffit d'etudier*):

As(f (x) I (dy)iA*(.r y) y(y) (4)

oü:
A '(x/y) /)'/)" />"/>! ./ y)

qui s'corit dans l'espace de Fourier:

A *
<1 (x) (2 rr) "" I dV(k) A * (Ii) e'k * y (k) (">) * *)

avoc:

i(s«i /"vL'.- ""'sLr'"'! w.

ou eneore, en utilisant un algorithme du ä M. Schwinger3) et en
effectuant la translation4) p'A —> p% h «fc®

zP (/,') ~ / (dp)4zls (/.,2. p2) (da)

avec:
i

Zls [Ii2. /)-) (d.7)-3 /'du d'[p'~ - (X* - 0,f 7/ ~ | (7)
I)

*) Nous nous limitons au cas oü r" et r' dans ,S2 [t" rp" r' </'] sunt des surfaces
ä l'infini: r" - t' - z4" oo.

**) xp (/,) est la composante de Fourier du paquet d'ondes </ (.<



238 E. C. Stueckelberg et D. Rivicr.

En lieu et place de 1'integrale (6a) qui diverge en general, comme
(•'est le eas ici, nous ecrivons alors:

(ks) lr
A «(F) fd (F) fd (F) {(dp)< • ()" I (F. p2) (8)

o o

(«>

ou n > 0 est le plus petit entier tel que:

Adp^{öd{k*)YAS{k'2'p2) (9)

ait im sens.

La vraie valeur du noyau J"(/,-2) est donc:

A* (F) l),-.r/,„ • /,.F (10)

oü A*di{ (F) est une fonction parfaitement definie de F. 11 s'introduit
donc n ciinstantes arbitraires bt et dans l'espace .r. A'(xjy) n'est
definie qu'ä la seric:

b0 b (x—y) + bx d (x—y) + bn_ j ("~'M (./•- //) (11)

pres, faisant apparaitre des singularites integrables a l'origine
x — y 0. Dans l'exemple choisi (6), on a n 1 et:

Nous avons etudie avec cette methode les terines de seconde
approximation et en partie ceux de la troisieme. (>n peut brievernent
resumer les resultats de la maniere suivante:

Toutes les divergences dues ä la limite superieure infinie de k
(catastrophe ultraviolette) disparaissent. Gra.ee aux constantes
arbitraires bh dans 1 'approximation du deuxieme ordre le terme appele
cnergie propre ou masse propre du photon (ou du meson) peut etre
annule (dans le eas du photon, il suffit pour cela de poser nulle une
des constantes). Dans la meine approximation, il est possible d'evi-
ter une renormalisation de la charge: la cliarge induite \e peut
etre annullee. Notons encore ä propos de la deuxieme approximation

que le eourant induit satisfait a l'equation de continuite, ä

nioins que le potentiel inducteur soit lui-memo induit par im
eourant ne satisfaisant pas a l'equation de continuite, eas offrant,
semble-t-il, peu d'interet.

En troisieme approximation et dans le eas de l'electrodyna-
mique, l'etude du rapport des coefficients des Operateurs de mo-
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ment intrinseque S%lt et de moment orbital Laß dans la matriee S

muntre que ee rapport, qui vaut g0 2 eil premiere approximation,
s'ecrit*):

Cl /'
</ «/„+ 2 x„ T

oü:
e £ (1 4 ffle2) cliarge de l'clectron « renormalisce»

*tt=masse de 1'electron
1

» O '2 .7

a est arbitraire; on obtient donc:

(/ 2 f ; [i_f2 („+...)] (13)

e'1 (i I est neeessaire pour conservcr un sens ä im developpe-
ment en s. Donc, limite ä e2, notre resultat, qui comcide avec
celui de M. Schwinger5), est independant d'une renormalisation
de 1a, charge.
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