Zeitschrift: Helvetica Physica Acta

Band: 22 (1949)

Heft: VI

Artikel: Higher Approximation in the external field for the Problem of Vacuum
Polarization

Autor: Kallén, G.

DOl: https://doi.org/10.5169/seals-112021

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-112021
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Higher Approximations in the external field for the Problem
of Vacuum Polarization

by G. Kéllén.
Swiss Federal Institute of Technology, Zurich, Switzerland*).

(13. VIIL. 1949.)

Summary. The convergence and gauge invariance of the integrals appearing
in the higher approximations of vacuum polarization are here discussed for the
cases of spinor and scalar fields. Only the comparatively simple case of an external
electromagnetic field is treated. The more complicated problem of a quantizated
field is not discussed.

As a direct result of the charge symmetry the vacuum expectation values of the
current commutators vanish if an odd number of current operators are commuted.
Hence the terms proportional to e27*1 are identically zero, and in this form the
statement is true for both the electrons and the bosons. Of the remaining terms
it is shown that only the e? and e* approximations diverge, but that the still
higher terms are both convergent and gauge invariant. It further appears that,
apart from a numerical factor, which is the same in both approximations (and
equal to — ;), the strongest divergences are the same for the spinor and the scalar
fields. The e* approximation has previously been treated by Jost and RAYSKT,
who have shown that the non-gauge invariant (and divergent) terms compensate
each other if one uses a suitable mixture of spinor and scalar fields. In this approxi-
mation, however, the logaritmically divergent charge renormalisation remains.
The conditions of JosT and RAYSKI are

N n
D) M =23 m; (IT)
i=1 i=1 ,

where N and n are the number of scalar and spinor fields respectively and M ; and
m; are the corresponding masses. In the e* approximation the condition (I) alone
is sufficient to secure a convergent and gauge invariante result.

*) At leave from: Department of Mechanics and Mathematical Physics, Uni-
versity of Lund, Sweden.
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Introduction.

The e? approximation of the vacuum polarization has already
been treated by several authors!) with the aid of the explicitely
relativistically invariant quantum dynamics developed by Scawix-
¢Er? and others. It has been shown by WeNTzEL?) that it is pos-
sible to obtain different results for the photon self energy (which
can be considered as a special case of the more general problem of
the vacuum polarization) if one uses different methods of computing
the integrals which appear in the formulae for the vacuum polari-
zation. This question of uniqueness has been further discussed by
Pavrr and Vinnars?). In their paper the latter authors have given
a method of invariant regularization of the different A-functions
with the help of auxiliary masses. These masses, however, are only
regarded as a mathematical aid for the computation and in the
final result they are allowed to tend to infinity. It has been observed
independently by Ravskr and Umezawa?®) that it is also possible
to regard these masses as observable if one assumes that the cor-
responding particles obey Bose-statistics. Detailed calculations by
Jost and Ravskr!) in the e? approximation have given as a result
that the necessary assumptions in these realistic theories show a
remarkable analogy with the more formalistical conditions of PAurLr
and ViLrars. We wish to extend the work of Jost and RAvsSxI to
the higher approximations in the fine-structure-constant and have
as general equations

i 52— H (2) o] (1)
H (2) = Hy(v) + H () (1a)
Hy(2) = — i, (@) 4, (2) (@)
g (®) = 19 (1) 7,9 (2) — p (2) y7 9 ()] (2a)
Hy(z) = —3t,(2) 4,(2) (3)

1) E. g. J. SCHWINGER, Phys. Rev. 75, 651 (1949); . WENTZEL, Phys. Rev. 74,
1070 (1948); W. PavLri, F. ViLnars, Rev. Mod. Phys. 21, 434 (1949); R. Josr,
J. Ravski, Helv. Phys. Acta 22, 457 (1949). For earlier work without use of
invariant formalism a summary has been given by V. Weisskorr, Det. Kgl.
Danske Vid. Selskab, XIV 6 (1936).

2) TomonaGA, Progr. Theor. Phys. I, 27 (1946); J. ScCHWINGER, Phys. Rev. 74,
1439 (1948); ibid. 75, 651 (1949); ibid. 76, 790 (1949); F. J. Dysoxn: Phys. Rev. 75,
486 (1949).

3) J. Rayski, Acta Physica Polonica 9, 129 (1948); H. Umkzawa, J. YURAWA,
E. Yamapa, Progr. Theor. Phys. 3, 317 (1948).
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t,(x) = 1es, (2) +§,,4, () e ¢*(2) p(2) (3a)
0 ¢* 0

5, (2) = 55 g () — 2 % (o) (3b)

S‘Ltv = é4y.64vﬁ6yv (80)

Here®) w(z) and v (x) = w*(x) y, are the spinor fields and ¢ (z) and
@*(z) the scalar fields5). The symbols t,(x), s,(z) and £,, are defi-
ned by equations (3a)(3b) and (8c). The current operator for the
scalar field 1s given by®)

Jug(x) =tes, (2) +2£,, 4, () e ¢* (z) (%) 4)

The total current is

= Zf,ul,(x) 7"27-#3 () (4a)

It may be observed that none of the expressions (3a), (3b) or (3¢)
are tensors and that only the current j,(z) 1s a vector. The 4, ()
are the four-dimensional vector potentials for the external electro-
magnetic field. They are here considered as given functions of space
and time and not as operators. Hence we neglect the modification
of the electromagnetic field due to polarization phenomena. The
summations in equations (2) (8) and (4a) are to be extended over
the spinor and scalar fields present.

The operators y(x) and ¢ (x) satisty the following relations?)

{va (@) w5 (2) }=—18,4(z—2) (5)
{v.(2); (")} = {9, (2); po(a)}=0 (5a)
[p* (2); @(2)] =14 (x—a) (6)

[¢* (2); ¢* ()] =g (2); ¢ (2)] =0 (62)

Different kinds of fields always commute.

) The notations are essentially the same as those used by ScHWINGER but with
natural units (b = ¢ = 1).

%) Computations by FELDMANN have shown that it is not possible to compen-
sate also the divergent charge renormalisation term by including fields with spin 1
(Unpublished letter to professor Pauri). The same result has also been gotten by
H. Umrzawa, R. Kawasg, Prog. Theor. Phys. (in press).

8) G. WeNTZEL: Quantentheorie der Wellenfelder.
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We want to study the modified current operator, the expectation
~value of which may be written as?)

G(R—l)

(2)> = é\i (e:)nu’/}z :L/d T /”dmn o
) ([H (em) [« [H(2); 7)) -] 7)

If the expressions (la)—(4a) are substituted in equation (7) one
gets a sum of commutators, some of which contains only one kind
of fields (one of the w(x) or one of the ¢(x) fields). The other terms
contain at least one commutator between two different fields and
are hence zero. This fact makes 1t possible to carry through the cal-
culation for each field separately and in the end simply add the
results together.

The Spinor fields.

We consider now only one of the spinor fields and write the cor-
responding parts of the current operator and of the hamiltonian as

(@) = 2T (@) 7, ()] ®)
H(z) = —j,(2) 4, () (9)

In this case equation (7) gives

“(n— 1)

: /"d zr A, () A,

— 00

(7] x

n

(@) :;‘;iﬁ”/‘daz’..

X fu (@) [ [y (@) G, (@] 1] (10)

and our first task 1s to evaluate the iterated current commutators
in this expression. If n 1s an even integer we have a commutator
of an odd number of current operators, that i1s an expression of the
tollowing form

(o)W @3 w0 @ (9 @) 70,0
[#@); v, 9@ 1o (11)

If we use the charge conjugate spinor v’(x) equation (8) might as
well be written as

i (@) = — 09" (2); 7,9 ()] (12)
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and equation (11) as

— (K @) vy, ¥ @97 ()5 9, 0 (@)
(9" (@) v, @] -] ] (18)

As the two vaccum expectation values in (11) and (13) are equal
we conclude that they are both zero and that equatlon (10) may
be snnphfled to

2n-

<:’ﬂ - j2n— 1/d.1: jd$2n+1A ( ) "A”2n+1(m2n+1)x

X< [mnﬂ (@) [ [y (25 7, (@) 1o (14)

If ©1s an arbitrary operator we have
[y (z); Ly (x ’)]%(w”]:@ ) Q)p{vs (@5 v, (@) ) +
v, (2); va(2) (2T v (1) ;=—2i (v (2 .QS(.ac —z"), (15)
In a similar way we get ' ,
[y (2); Ly @)y, (z)]=2i(S(="—=) Ly(2),  (16)
and hence ‘
17 (2); Qu )i, (@] =5 (¥ @); 2p @]9, @] @, v @)+
H(w (@) 7)[v (2); Lu(a)] %(CB )] [ ()5 Lo ()] (") x
')y

< (T (@), — (v (@) ), [[% (2); Ly (2)]9,(2")) =
=e([y(z); 28z —a")y,p(z")]—
—[y (2"); y,S(" —x) Ly(z")]). | (17)

From equation (17) it 1s imidiately seen that the commutator

[, (@) [+« [y (&) 7, ()] -]

consists of 27+ terms of the form

I ?:en-i-l

Ly (@); 7, S (@' —ai) - py, S (2" — %) yy, v (27)]  (18)

where 1; ;... r; s s some permutation of the numbers 0; 1;... n.
With the aid of the formula

[, ()5 pa(2)]>e = 8P (2" —2)

41
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the vaccum expectation value of (18) is given by

(QES_ IEL) vaS (wi._ wf’) .o vaS (,’L‘T——,’BS) ')/vs] (19)

Hence each term in the series (14) may be written as a sum of
22n+2 terms of the form

g2n

)/df /dwz”“SP[S‘”(w* i)y A ()8 (27— )

A(a) S (2" — %) y 4 (z7)] (20)

If we suppose that the external field does not allow any real pairs
to be created we can transform the expression (20) into

2n+2

M Ea

(—ﬁl)n(i(%)QnJﬂ) }AOO);:;T’ cod p2ntt 8(01)8(12) .

e(2m; 2m+1) Sp[SY (si)y A () -~ S(rs)y A ()], (21)

After changing the notations and rearrenging the terms in the traces
1t 18 always possible to write each term in equation (14) as

+ oo

1" (% 2"”/ fda: - a2 (Sp [y, 8V (01)p 4 (1) S (12) - -

oS 2n+ 1,0)]1«7(12"“’ +Sp[y,S(01)y A (1) SV (12) - -
S @2n+1,0)]EE" TV 4. +Sp[y,S(01)y 4(1)S(12) - -

8™ (20 41,0 EEr D (22)
where E@n+D; EZntb ;... F2riD are some functions of the & (1, 7).

It will be proven in the appendlx that the expression (22) may be
written as

(—1)n 2””/ fdm A"+ ((Sply, S (01)y 4 (1) 5 (12) - -

S(Qn—l—l 0)]+Sp[y,S(01) y A(1) SD(12) - - - 82 n+1,0)]- - - +

+Sp[y# 01)y A1 )I§’(12)~--S(1)(2n+1,0)]) (23)
and hence
<7‘u 1 ZOOY( 1 2n+2 fdx mz'"":"l(Sp[y#S(U(Ol)x
n=0

xy A(1 )o--8(2n+1,0)]+---—i—Sp[y“S(Ol)yA(l)---8(1’(21@—{—1,0)] (24)
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In momentum space this formula reads

(@) Z 2n+2( )8””/ fdpdp PLLECR

x ete (=P ) Sply, (iyp—m)y A(p'—p) (iyp'—m) - -

- J 0 (p*+m?)
- | 2n+1__ p2n 2n+1__
y A (p+t—p*) (iyp D] ey
8 (p'2+m?)

8 (p2n+1’+m2)
(p2+m?) (p"2+m?) -~ (p )

+m?)

et

2n+1° + m2) (p2+m2) -+ (p

2 n? £ mg)

(25)
Av (p) = ‘[Av (z) €?%dz (26)

where

The equations (24) and (25) give a formal expression for the expec-
tation value of the current operator, but the questions of conver-
gence and gauge invariance are still open.

We first want to give a formal proof of the gauge invariance in
momentum space. It is true that this proof is only valid if the inte-
grals converge but we will leave this question unsettled for the
moment.

For this calculation we need the following formula

Sp[2(iya—m)yq(iy (a+q)—m)]=1[(a+q)*+m*|Sp[L2(iya—m)]—
—i[a®+m?|Sp[L2 iy (a +q) —m)] (27)
In equation (27) a and g are two arbitrary fourdimensional vectors,
m a number and 2 an arbitrary operator. The formula (27) may be
proven by an explicite calculation e. g. in the following way
SplR(sya—m)yq(iy(a+q—m)]=—S8p[L-yayqylat+gl—
—im(Sp[R-yq-y(a+q]+Sp[R-ya-yq)+mSp[L]  (28)
Using the equation
| YaPetPu¥u =20,
we get from (28)
—2qaSp[R-ya]+a*Sp[L-yq]—q*Sp[L-ya]—
—mi(q*+2aq) Sp[LR]+m2Sp[LQ]=1[(a+q)*+m?] x
X Sp[L(ya—m)]—i(a®+m?) Sp[L2(iy(a+q)—m)]

which 1s the right hand side of (27).
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One typical term in (25) may be written as
[+ [apap'---apre=o Sply, (iyp—m)y A (' —p)

S (" +m?)
+m?) (P md) - (0 m)

co(aypr—m)] ==

29
(p*+m?2) - (p 29)

(In (29) » is supposed to be odd but for our present purpose we
do not need this fact.)

If we make an infinitesimal gauge transformation

Av(z) — Av(z)+ "—(;4_;5”) 50
e (p) =/e“’?’/1(:1:)d:r

the mtegral (29) will be changed by the following amount

1 i (p—p" 8 (p"+m?)

—feeildp.--dpret®v—0" _ '

“f / e (p2+m2) - (pF T m?) (pFF U m?) e (P 4 m2)
x(Sply,(iyp—m)y (@' —p) (iyp' —m)y A (p"—p’)---]x
x &(p'—p) +Sply,(lyp—m)y A(p'—p) (lyp'—m) X

Xy (@ —p) e (@ —p) + ) (31

Incerting equation (27) in formula (31) we get

~

/ v @ /"dp p—— dpneia:(p—pn) 0 (pi2+m2) y
. (p2+ mz)___(pi—12+m-z) (pi+12+m2)___(pn2+m2)

x[(p'2+m? Sply, lyp—m)y A(p"—p')---]e(p’—p) —

— (p2+m?) Sply, lyp' —m)y A (p'—p) -~ 1e(p'—p) +

+ @"*+m?)Sply,(typ—m)y A (p'—p)--] xe(p"—p')—
—(p"*+m?) Sply, (iyp—m)y A(p'—p)---Je(p"—p')+- -] (32)

With the notation
f dp'A,(p'—p)e(p'—p")= [ dqe(q) Ay (p"—p—q) =E,(p"—p) (33)
and the formula

Japep'—p)ei= = (55)" A)ei " (34)

T
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the expression (32) may be written (the terms containing p** + m?
give zero due to the factor o (p?* + m2)).

i2 2
/ ..fdp'...dpnem(p'—p"> (p,2+m2)...(piw12i$2) ?pﬁl)%rmg)___(
< [Sply, iy —m)y B —p") (iyp —m) 1= (4.,
x Sply, (iyp' —m)y A (p'—p") (iyp"—m) -] +
+ Sply,(iyp'—m)y A (p'—p") (iyp" —m) y B (p" —p") -] —
— Sply,(iyp"—m)y E(p"—p’) (iyp"—m)- - -]+ - - -

A+ (52) A Sply, (ivp'—m)y A" —p')--T]=0.  (35)

P+ m?)

)4./1 () x

From (35) we conclude that each term in (25) if convergent is also
gauge invariant.

To discuss the convergence properties of (25) we write the
bracket as

0 (p2+m?) 0 (p"2+m?) n
(p2=p2) - (P = p2)  (pP—p) (P2—p ) (PP —p?)
d (Pﬂ2+m2) 36
(p2—p") e (pn 2% — ) (86)
We now use the formula
- ! . + 1 et LR
(p2=p?)- - (p"" —p?) (p2=p'%)-- (@™ —p"?)

o+ : ~0 (87)

(p%— p")--- ("1 — p™7)
to write (36) as

3 (p"2+m?) — & (p2+m?) & (p"* +m2)— & (p2+ m?)
- deene 38
(p2— %) (p"2— p2)--- (p"* — p?) (p2—p™*) -+ (p" 12 — ") )

Following ScawINGER this can also be written

1 fd [6( (P*+p"?)+m*+ ";-’M(PZ—P'Z)) 3
—_—— %
2 ("= %) (" = )

¥ (5 @+ P w3 u(p— ) }

39
(p72=p"%) .- (p"—1% — p**) (39)
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By repeating this, process it is obviously possible to write (36) in
the following form

T mn+1) 1 1 11
(—7) 2 /dul(l-ul)”“1 /duz(l—uz)“_zv-- /duné(”) (m2+
—q i | bty |
,p‘.’. plz 30"_12 pn2 pz p'2 pﬂz
teg et 2n+zn‘“"“’1(_2+ e )
pn—l" png pfz | :pﬂz ,pn—12 pfn2
et ) = (g x (— B Bt T )
,pn—l2 pn‘l
= — (L=, - (L — ) (— T + ) (40)

It 1s now convenient to make a translation of the origins and write
(25) in the following way

<j,u (iL‘)) :_;7 20‘:)‘ 82n+2(__ 1) (31;)87&7 / i /ndq' ceedg?rtlx
n=0 v o

- 8_ix(ql+ "'+Q‘2H+I)K(2ﬂ4’1) (q/ . q2n+1) 4.41)1 (ql) ...

uryecrropy

Ay, (@) (41)
where the kernel Kﬂ(’})__m according to (40) is given by
nntl) 41 +1
KO, a g =(—5) * [dp [dum(l—u)nt [dugx
-1 -1

+n1

X (1—tg) *2e o [ du, 00 (m2+p* +2pQ + Q%+ ¢) Sp [, x
-1

X (lyp—m)yy (ty (p+q)—m)yy, x by (p+q¢ +q")—m) -
e, Gy (p+q 4o+ q7)—m)] (42)
Here

Q=(1—u) L+ (1-) (L) & ot (L) (L) L (48)

and ¢ 1s a bilinear expression in ¢'... g™
Another translation of the origin transforms (42) into

N £1 .
Kianzl....,,n(ql"’qn):(—g) ? /dm(l—ul)”*l-'-jdun/dqx
-1 1

x 60 (g2 4+ m2+ @) Sp[y, (iy (g + ay)—m) yy (17 (q+ag) —m)- - -
sy, 0y (@4 a, ) —m)] (44)
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where ;... a,., are linear combinations of ¢’... g® with coefficients
which depend on u,... u,.

We now suppose tha,t the potentlals A, (q) vanish for large mo-
menta so that the integrations over ¢q. q2”+1 in (41) converge and
are thus left with only the ¢ integra,tion in (44). The strongest
divergence in this integral is of the form

[dq 8™ (g2 + 2% q, g, - o, (45)

With the well-known representation of the d-function (45) may be
written

1 : A iz (g+a?
5o d/x“dfcque T Gy G O, (46)

The g-space integration in (46) can be performed without difficulty
n+1

and gives some constant factor 2 multiplied by |z -z  * ". The

integral (46) can therefore be written as

n—="7
o i /laz\ 2 ginte gy (47)
The expression (47) and the kernel (44) converge for n = 4 but

diverge for n = 3. As we are only interested in odd integers n, the
only divergent integrals are

(n=1) / ri_wdw (48a)
and
n RESE”
(n = 3)_ O/O T4 (48b)

The first one appears in the e? approximation and as this case has
already been treated by several authors we limit ourselves to the
e* approximation, where the integral (48b) is the only divergent
one. The kernel 1s here
+1
roon I 1
KD (€00 =54 [ dun(1—)? ﬁmszgﬂmg

-1
-+oo

3d$/dqelﬂi(q+’mz ¢)Sp[y#(%y(q+a1) ),.,

—OO

sy (07 (g ay) —m)] (49)
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and the divergent term

fdul(lwul fdu2 — Uy /du3 3dm [dqe” (g*+m*+9)

X S’p [Yu qulququswq] (50)

The trace in (50) 1s easily evaluated and is equal to
4 { 8 QuQy, Qv, Qv, — 2q* (Q,u 4y, 5:}2 vy T Qu v, avl v, T Qv Qv, 5u py T
-+ v, v, a,u vl) + q* (a,u 7 6v2 vy ‘5y vy O, pgT 5y Vg dvl vz) } . (31
The scalar fields.

In this case equation (7) reads

(@ /da: fda:” fd:z;" p(Z) -+ - Ay (27) X
X <[tvn (z™) [ Ltvl (=’ )?_u (z)] - - ]>0 (52)

As both {,(z) and j,(x) here contain two different powers of e,
formula (52) is not an expansion in powers of the charge. It is,
however, always possible to rearrenge the terms so as to get such
an expansion. For this purpose we write

oo n+l 0
ul@)> =2 Ze”“““@ =2, ¢l )" (58)
n=0 k= n=0
where
Crp -
2
L4l = £ () AR (532)
£=0
for odd n, and
(Fula) Y = Z (@) Yo (53D)
when 7 is even. From equations (52) and (53) we also get
+ o0 +o0
<um»mw=@yﬂ*f“:ﬂw“ﬂﬂdmwu@~wm—LmX
X Ay, (7 ) Ay, (2) {<L@*(z") p(am)[- - - [@*(2" ) @ (2" ) x
X [Svn e[ Isny (@) sp(@)] - 1]+ TDoé (n—k+1,m+1) - -

ﬂnn+MA (@), ORI (54)

Vot+x (
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The bracket in (54) contains one term for each way in which it is
possible to pick out n — k+1 indices »;, ... ¥i,_+; from the series
uvy ... vy, If all v;+ p the corresponding term is multiplied by a
tactor 2.

From the charge symmetry we see here too that the series in (53)
will contain only even powers of e and hence that »n in equation
(53a) 1s an odd integer.

By an argument analogous to that leading from equation (14) to
equation (23) but with differential operators instead of y-matrices
1t 1s seen that (for n odd)

+o0o
1 14
CE) fﬁ _/ﬁw ~dzne(01)---e(n—1,n) 4, (2')--- 4, (z")
e 1 \4n+3
[, @)+ [50, (2) 3, 110 = (zn) f
. fdp dp" i dpneix(php )AV1 (p .__p) T A% (pnwpnhl) X
(p'2—p?)--- (pnz_pz) (p2=p'2) - -+ (p" —~’p 2)
8 (p™ +m?) \ 55
(p2__pﬂ2) . (pﬂ——la_pnz) | ( )
where
P = ) _2 Osv, O, , (P +m? [n’in’l 17 g 2 Oy y; Oy aa
7
x (@ w7y ~J] (56)

and
2= By, + ) By + ) - B, + 03 @R (5T)

iy s (58)
oy i L= - - = —
i, 7, (p:,’a + p:;l) (pﬁzj- % p;}j 1) 55

ni”; .= 0 if two indices are equal.

We here have also used the following formula given by Jost and
Ravskr

8(5[3) 0?A(x) _ 0*(e(z) A(x)) —24(x) 6

0w, 0x,  0x,0%,

64 » (59)

du

The more general commutators in (54) can be evaluated in the same
way. Putting

Ay, s(n—k+1) Ay, 4, ;(n—k+1)=
=/ﬁm—k+@n+@A%_H4M—k+@A%Hm+®de? (60)
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we get a formula, which is similar to (56) but with & (ij) substituted
for d44, 04»,_, in some of the terms. The expression (53a) may now
be written

.

e O I Ca VP

o

. /dp dp'- - .dpznﬂeifc(pwz”“)
x P@ntl) { o BTy TS 0 (p" + m?) _ | s
prrhen ] (- p?) .- (7 - p?) (p2—p™®)--- (P12 —p%) |
XAy (p'—p)--- Ay, (pr—p"Y) (61)
where
151(;@31 e Vﬂ:n(n)mzfijilgf’r—l e %_mz 1( 2 ?’zv -1VjVj-1
) 1,7
% (p= - m?) (p1+ m?) ng?,z_l,j,j_w% e (62)
and f(l’“ ¥y - is some function of the 8,,, and 8,,,, .. As will

be shown in the appendix, f 1s actually a tensor and equal to

fvl Vi ¥ T 6v5 Viq 51}1- Vi : (63)

The formulae (62) and (63) express the lorentz invariance ot equa-
tion (61).

To prove the gauge invariance (supposing the integrals in (61) to
converge) we need an identity of the same type as equation (27).
We have

r2

P (pp ™) (py,—Dy) = (97 —D?) X
XLRQ)—“Zévw (pi_lg"i_‘”L)ﬂl(u 1T 1“*( 24 m?) x

1.5~
2

X (p;—p )[7% 2692% 1(pZ ¥t )751 0,441 T ~* }

g(pf2+m2) (p'»"’z_p'if'g 1(1712 2 , 1 z 12_i_m2)><
an(,ﬂé),-i,i—lJr' = (p"+ )P(,Z -.ln(pp vee ) —
—(@*+my) PLY (p'p"- - pm). (64)
We can now repeat the calculation from equation (29) to equation
(35) but start from (61) instead of (25) and use (64) instaed of (27).

The result is obviously that, from this formal point of view, (61) is
gauge invariant.
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Writing (61) as (n odd)
. 1 ntl 4n+3 ,
Gu@™y = 31077 () qu dgreiE

XK o (@ q") Ay, (@) -+ - Ay, (97) (65)
we have

Eﬁ’:f...vn(q’---q")=( )n(nﬂ)/dull—ul)”‘ /dun

x [dga(gr+m+g) B, (q+ag+as, ) (66)

(compare equation (44)).
Formula (66) converges or diverges as

/dq 8 (g% + a%) qu gy, - - - O, (67)

which 18 the same equation as (45). We thus get exactly the same
convergent cases as for the spinor field.

The divergent term of (66) in the case n = 3 may according to
(62) and (46) be written

+1 +o0

Al +1
‘;‘ffdul(l_”l)z / Ay (1—u,) /du3 [ z*da /dqér(q%mzw) ”
=l a1 1 g "

X {16 Qu Qv, G, v, — 4 ¢° (5,u vy @vy Qvy T Ovy 0 Oy Ty + Ovywy oy Gt

+ Oy, v, Go, ‘Lu) + g (6,u vy 61)1 v, T Opy v, 6,u ) } (68)

Let us now consider a mixture of N scalar fields with masses M,
and n spinor fields with masses m,. From equations (50), (51) and

(68) we get the divergent term in the kernel of the e* approximation
(after a Suitable symmetrization of (51))

+1

54 /dul(l‘““l) /d’wg 1—uy) /du3/$3dm [{223%”% Zewul}

-l

X / dg et {16 Qu 9v, Iy, Qo —d.q* (‘5,u vy @, Qvy + 6”1 Qv Qug +
+ (sz v, Gu Qvy T 5?13 vy Iy, Q,u) +q* (a,u Vs 61)1 vy T 5?’3 Vg a# ”"1) } +

+ (7% —1) x {2 ¢ Spyuyqvn ¥ 4V, ¥ 47574 —
i=1

N
N (w9999 — 4 X duyw, o ¥

=1

SRCTEES ENE Y (69)

iFJ

X T



652 G. Kallén.

The last term in (69) is convergent as e!?*—1 vanishes linear at
the origin. The first term can be made convergent too by the aid
of the assumption that

7 N
B % 23" g ME 3 eixMisz (70)

x—0 i=1 i=1

1s finite. This 18 the case if

D= N (71)

which 1s one of the conditions of Jost and Ravski. Their other
condition

3 N
9 3 mi— 3 M? (72)
i=1 i=1

makes (70) vanish, but this assumption is not needed to make (69)
converge.

The symmetrisation of (51) that is necessary to get (69) is certain-
ly allowed. In fact, the expressions given by (7) can always be
made symmetric in the variables and the whole calculation can be
carried through in this way. We have purpously destroyed this

symmetry (equations (22) and (55)) to get formulae, which are more
easy to handle.

All the integrals appearing in the kernel of the e* approximation
are now convergent and hence our formal proof of the gauge-
mvariance may be applied in this case too. The only remaining di-
vergent (but actually gauge invariant) expression in the phenomena
1s the charge renormalisation term in the e¢? approximation.

I want to express my respectful gratitude to professor W. Pauui,
Ziirich, who has suggested this investigation to me, and to thank
him and Dr. R. Jost and Dr. J. LurtiNncgr for many helpful discus-
“sions. I am further indepted to professor T. Gustarson, Lunp,
who has arrenged my stay at the Swiss Federal Institute of Tech-
nology, and to the Swedish Atomic Committee for financial support.
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Appendix.

Proof of equation (23).

From the formulae (17), (20) and (21) the symbols E® in (22) may
be computed. The result is (for #» an odd number)

(n+1 k)_(_'l) le(On)e(m,n—1)- - e(n—Fk,1)&(12) (23) - - -
o e(n—k—2,n—k—1) +e(0n) e(n,n—1) - -
ce(n—k+1,1)e(1,n—k)e(n—Fk, 2)e(23) - - -
cecem—k—2,n—k—1)+ . -] : (78)
Denoting

(—DFEM,_,+e(01)e(12) - - - e(n—k~1, n—k) e(n—k+1,n-k+2) -

-e(n—1,n) e(n0)]
with
S®W® O01...n—k—1; n—=k-.-n)

we get from formula (73) the following recursion formulae
(k£0) SW®O1...0—k—1; n—k-.-n)=¢e(0n) SO~V EU(n12...
con—k—1; n—k---n—1)+&(01) e(ln) S®—2E-1 (5 23 ...
cen—k—1; n—Fk--.n—1)+---+¢&(01)e(12)-- -
ce(n—k—2,n) SE+ &-1) (n-n.———k—l; n—k---n—1)+
+(—1*emn—k,n—k+1)---e(n—1,m) X

x =R OO12. .. n—k—1; n) (74)
and
SWOO1...n—1,n) = (01) S*VO12...n—1; n) +£(12) - - -
ce(n—2, n—1)S*POWOI2. .. n—k—1; n) (75)

From the identity
S@O01; 2) = £(02) £(21) + £(01) £(12) +£(01) £(20) = —1 (76)

and equation (75) it is imidiately seen, that S™ © can be expressed
as a sum of terms, each of which do not contain more than n-2 fac-
tors &. From (74) the same statement is seen to be true also for the
general expression S® ®_ Using the property that no real pairs can
be created, we now get (23) from (22).
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Proof of equation (63).

The symbol P of equation (62) can be computed from equa-
tions (54)—(60). The result 1s (for n odd)

P;f])...vn: ﬂ(n)—z 04 y; 04 w—1(pi*12 +m?) [” ¥
T

i,i—1
1 g 2 1
H?E Ogpj Ospj_y (p7~1" + m7) [”ffi)—l,j,j—l”"g‘z{“']]] *
7
+2) &3, 4—1) (p'~Y+m?) [7’7:573;)—1"‘264 v Osjy (P71 m?2) x
i i

x [z X A1) +5r X £ i—1) &G, —1) x
X (p'1* +m?) (p7~1* 4+ m?) [nif?—l,j, j—1 _Z - - ]] +
+’3]"E‘Z[' ]t (77)

We here use the definition (3c) of & (1) and write down the coeffi-

cient for a term consisting of 2 I factors o, v, Osp,_, and A factors
0y, ,. This coefficient is

(-1 -1 _
J*lf'j_(—lf:’ oo 0 R (78)
A ' ({l—s)! ~1¥
oot e 1= 0

The only non-vanishing terms in (77) thus consist only of factors
Oy; v;—1 with coefficients given by (78). This 1s formula (63).
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