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über den Einfluss
des metrischen Feldes auf ein skalares Materiefeld

von W. Seherrer, Bern.

(27. VI. 1949.)

§ 1. Einleitung.

Der umfassende Charakter der klassischen Einstein'schen
Gravitationsgleichungen

Rq(7 -TtGöqR — xTgff (1.1)

kommt unter anderem darin zum Ausdruck, dass die identisch
verschwindende Divergenz der linken Seite den sog. Erhaltungssatz

i à (]/77q t°)[ ''' -re°yyo (1.2)
\/-G dxa

erzwingt, gleichgültig wie auch im einzelnen der Energietensor Tea

gestaltet sein mag.
Obwohl schon seit langem Versuche unternommen werden, die

Theorie nicht nur durch passende Wahl von Tea, sondern auch
durch gleichzeitige Bereicherung der Metrik zu fördern, habe ich
den Eindruck, dass die bei Festhaltung der Riemann-Metrik sich
bietenden Möglichkeiten noch nicht ausreichend analysiert worden
sind. Im folgenden präsentiere ich daher eine Variante der Theorie,
welche sich in diesem engeren Rahmen hält. Dabei stütze ich mich
vor allem auf zwei Argumente:

1. Physikalisch ist es paradox, dass die Gleichungen (1.1) auch
dann noch Lösungen liefern, wenn keine Materie vorhanden ist.
Von einer Theorie, die die Materie nicht nur für die Abweichungen
von der Trägheitsbahn, sondern für die totale metrische Struktur
verantwortlich macht, sollte man eigentlich erwarten, dass sie im
Falle verschwindender Materie entartet.
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Anders ausgedrückt ist es paradox, wenn man einem
Linienelement ds gemäss

ds2 GQadxgdxa (1.3)

eine reale Existenz zusprechen will, auch wenn den beiden infinitesimal

benachbarten Weltpunkten x„ und xe 7- dxQ kein materielles
Substrat entspricht.

So gelange ich zu der heuristischen Forderung, jeder Weltstelle
xg eine Intensität y>2 zuzuordnen, etwa in dem Sinne, dass der
Ausdruck

f2yGdx0dxxdx2dx3 ip2Y-Gdx (IA)

die relative Anzahl der im Volumelement ]/— G dx vorhandenen
materiellen Elemente darstellen soll. Es liegt im Wesen der Konti-
nuumstheorie, dass die entsprechende absolute Anzahl als
mathematisch unendlich aufgefasst werden muss. Eine diskrete — und
damit erkenntnistheoretisch befriedigendere — Theorie mit
endlicher Elementzahl liegt wohl noch in weiter Ferne.

2. Mathematisch ist es verfänglich, in der Einstein'schen Theorie
die so weit über den uns vertrauten Anschauungsbereich hinaus
reicht, an den expliciten Gleichungen Zusatzglieder anzubringen.
Methodisch viel günstiger ist es, von einem Wirkungsprinzip
auszugehen. Ein solches liefert immer ein vollständiges System von
Gravitations- und Materiegleichungen. Ausserdem gestattet es —

ganz abgesehen von den rechnerischen Vorteilen — von Anfang an
eine klare Scheidung zwischen Annahmen und Folgerungen.

Wohl das einfachste Wirkungsprinzip, das dem unter 1. entwickelten

Gesichtspunkt Rechnung trägt, hat die Gestalt

ofBxp2]/ydx 0 (1.5)

Dabei könnte angesichts des relativen Charakters der Intensität ip2

die normierende Nebenbedingung

eff2\/^Gdx 0 (1.6)

von Interesse sein.

Eine naheliegende Bereicherung von (1.5) stellt das Prinzip

ôf(Bw2 + 4oiG^4l^l)fydx 0 (1.7)
dar.
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Auf diese Ansätze habe ich schon vor längerer Zeit hingewiesen1).
Jetzt konstatiere ich, dass Feldgleichungen, wie sie aus dem Prinzip
(1.7) folgen, in der Literatur zur Behandlung kommen sollen2). Ich
hoffe daher, dass eine einlässlichere Darstellung meiner
Untersuchungen Interesse finden werde.

Selbstverständlich hat man mit der Möglichkeit zu rechnen, dass
Ansätze mit einer skalaren Intensität zu primitiv sind und man
kann als nächste Stufe auch Invarianten in Betracht ziehen, die aus
dem Vektorpotential 0e aufgebaut sind3). Trotzdem beschränke
ich mich auf den einfachsten Fall in der Hoffnung zu erfahren, was
für Struktureffekte das metrische Feld allein schon ausübt.

Gegen die primäre Einführung eines Vektorfeldes 0e lässt sich
nämlich folgendes sagen. Ein Vektor ist nach seinem ursprünglichen
Sinne schon eine Relation zwischen zwei infinitesimal benachbarten
Punkten. Dasselbe gilt aber auch von dem Linienelement ds2. Es
ist daher eine Frage von grundsätzlicher Bedeutung, was aus der
Verbindung von ds2 und ip2 allein schon folgt.

In dieser Arbeit will ich nun zeigen, dass das zum einfachsten
Wirkungsprinzip (1.5) gehörige statische und räumlich
zentralsymmetrische Problem exakt und vollständig lösbar ist. Die
Lösungen bilden eine zweiparametrige Schar. Zu jeder dieser Lösungen
gehört eine endliche Totalenergie. Wir haben hier ein Beispiel
für ein Feld, das bei grosser Entfernung r vom Zentrum eine Energiedichte

vom Typus

^kons^ (L8)

aufweist, dessen Totalenergie aber unter dem Einfluss des metrischen

Feldes allein endlich bleibt.

§ 2. Die Feldgleichungen.

Wir legen uns vorderhand keine Beschränkung auf und leiten
die Feldgleichungen ab für das Prinzip (1.7) mit der Nebenbedingung

(1.6). Nach den Methoden der Variationsrechnung haben
wir zu dem Zweck einfach das Prinzip

ôJ[(B-2A)w2 + ^coG^^-^\^^Gdx 0 (2.1)

zu behandeln, wo A eine Konstante ist.

Verhandlungen der S.N.G., Basel, 1941, S. 86—87.
2) G.Ludwig uud C.Müller, Archiv der Mathematik I, 1948, S. 80—82.
3) Mitteilungen der Berner Naturforschenden Gesellschaft, Neue Folge, Bd. 6

1949.
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Zur leichteren Übersicht verwenden wir folgende Bezeichnungen

B„ _ dy dr,
dxa

iA

dx, V*3°

r> p* p « p * r*'Vgo — -* ,w J Aju J 8/1 J oA

pa ^cyr/;ß-G^re\
B=GsaBea; 3i^B \/~-~G

Q=G*°Qea; £i=QyG
çpA s PA j/rg

(2.2)

Dann gilt bekanntlich die Identität

M _ <*)<pj

dau ¦a.

(2.3)

(2.4)

WTeiter charakterisieren wir die kovariante Differentiation nach
der Koordinate xe durch das Symbol Be und führen hierauf die
Beltrami'schen Operatoren

rV=Ge°4Z—jg-^G<!<>DeVDaV,
dx„ O x

(2.5)

vs y= -y (V-GGe° 41) s 69° De Da y> D„ < (2.6)

em.
Benützen wir schliesslich noch die Abkürzung

X f (2.7)

so verwandelt sich (2.1) nach der durch (2.4) angezeigten partiellen
Integration in

'/[-*¦& (&-2A)/-G)x7-co-^)/-G dx 0. (2.8)

Die weitere Rechnung wird etwas verkürzt, wenn man als

unabhängig zu variierende Funktionen die Grössen % und [/— G GQa

wählt. Die Variationen der BQ % lassen sich in der üblichen Weise
durch partielle Integration entfernen und man erhält nach einer
ersten Berechnungsphase an Stelle von (2.8) :

/
B-2A+m(^y-2^y\yGôxÜÄ.

X

-BkXà^7xô£i -2AxôyG+coIyyy^Ô(f-GGQ°)
dx=0 (2.9)
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Zur Umformung der zweiten Zeile in (2.9) — Wegschaffung
der Variationen der Ableitungen ¦/—G Gea — benötigt man die
zum Rüstzeug der allgemeinen Relativitätstheorie gehörigen
Formeln

ô]/y=±Geaô(\/yGe<r) (2.10)

nk-G\,yV-<* ;
a(/-gg")

d x,,
'

d x,.
(2.11)

à

dxx
ô& y-[re\ô()/-GGn]

+ Beaô(]/yGn. (2.12)

Nach einer zweiten Berechnungsphase erhält man dann das

Teilintegral von (2.9)

f(-Bxx.ôyyXoG)dx
=f(BsBaX + ±Gganx + ReaX)ô(V^GGe«)dx. (2.13)

Als Endresultat ergibt sich schliesslich die Formel

ôJ[(R-2A)x + co-^](\/-Gdx

[B-2A + m(^-2^f)\yZGÔ%
DsDaX + ±Geanx

7(BQa-AGQa)X+co
Do/.DoX Ô(]/-GGS°)

•dx
(2.14)

Die Feldgleichungen der Gravitation lauten daher vorerst

(Bea-AGQa)X7DoBaX7-^GQaU%7-co^yy 0, (2.15)
2 * x

und als Feldgleichung der Materie ergibt sich

B — 2A7 ro ££._2-S*_'\ o.
x

(2.16)

Durch Multiplikation von (2.15) mit Ge" erhalten wir die
zugehörige skalare Gleichung

77. _n (2.17)

Bildet man nun die Kombination X~x (2.15) — hX~1Ggo (2.17), so

(B-44)Z + 8Dz + «>-y--0-
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erhält man schliesslich die Feldgleichungen der Gravitation in der
Gestalt

(2.18)

die zum Vergleich mit den klassischen Gleichungen (1.1)
geeignet ist.

Analog bilden wir die Kombination (2.17) —x ¦ (2.16) und
erhalten als Feldgleichung der Materie

Bqo ~TGeaB-7AGQa

+ i(f,DaX- GQoU%)

+ y» XDaX -ÌGeaVx) -0

(3+2co)nx-2Ax 0 (2.19)

Aus dem Vergleich unserer Gleichungen (2.18) mit den
klassischen Gleichungen (1.1) entnehmen wir nun, dass wir als Energietensor

anzusetzen haben

T 1 yyaX-Geanx DQX-DaX-lGeaVX
}. (2.20)

Schon Einstein hat das kosmologische Glied als einen
Schönheitsfehler der Theorie bezeichnet. Gerade an dieser Stelle kommt
einem das zum Bewusstsein, da es für sich allein schon dem
Erhaltungssatz (1.2) genügt, könnte man es ungestraft zum Energietensor

schlagen. Dies aber hat wiederum nicht viel Zweck, da kein
Austausch mit Tga stattfindet.

§ 3. Das statische Zentralfeld.

Wir wählen das Schwarzschild'sche Linienelement

ds2 f2dx\ — g2dr2 — r2 (d&2 + sin2 d-drp2), (3.1)

wo nun also / und g Funktionen des Radius r sind. Es folgt

yG fgr2sm&, (3.2)
und man erhält

^ {-[2f(rf' + 2f)]'+2{yfg^y + fg)}sm&, (3.3)

wobei der Strich die Ableitung nach r anzeigt.
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Das Wirkungsprinzip (2.1) nimmt für A co 0 und mit (2.7)
die Gestalt

oJBX]f^Gdx 0 (3.4)

an. Lassen wir hier die Zeit und die Winkelvariabein weg, so ergibt
sich nach Ausübung der durch (3.3) nahegelegten partiellen
Integration das Prinzip

ôf{^(rf' + 2f)xy[yyy + fg)X)dr 0. (3.5)

Durch sukzessive Variation von /, % und g, gefolgt von respektiver
Division durch x, f und Xf erhält man nach leichter Umformung
die Gleichungen

my+yf-(?y=»- ^
yyyy-yy ^
^ (xy 2\ //' 2\ _ /, 3

t2 £ + i)(f + i)-(1 + £)-0. (8,,

Ersetzt man hier die beiden ersten Gleichungen durch ihre
Differenz und ihre Summe und führt man überdies an Stelle von x
und / die neuen Funktionen

P xf, Q^f (3-9)

ein, so erhält man durch Auswertung einer an der Differenz
unmittelbar ersichtlichen Integration, das System

^-y. (8.10)

2i\yy]yyyyyy>' <•¦»)

Hier empfiehlt es sich, (3.11) noch umzuformen in

-(-éW+4)=0. (3.12)

[2,(-)'+(^)M^ + 4]

i_yrs(^+4) + ^._4r2 0. (3.11')
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Setzt man jetzt
S^rP ; K^y-, (3.13)

so gilt offenbar
rS' S(K + l). (3.14)

Nun findet man aus (3.12) und (3.11') nach einiger Rechnung
als Differentialgleichung zwischen S2 und K allein

2(K+l)dK d/S2)

K(K2+8K+4) ' A2+éS2

Ihr Integral lautet

0. (3.15)

*üe!±i*!UB2. (3.16)

Weiter finden wir aus (3.10), (3.13) und (3.14)

dQ _ AdS ,q 17,

Aus (3.12), (3.13) und (3.16) aber folgt

KS

womit (3.17) übergeht in

dQ AK dS
Q B(K+1) 8

(3.18)

(3.19)

Um nun die endgültige Integration einzuleiten, müssen wir die
nach (3.13) und (3.14) in (3.16) enthaltene Differentialgleichung
auflösen. Setzt man

s Lgr (3.20)

und bezeichnet die Ableitung nach s mit einem Punkt, so erhält
man

S 4S2+A2 + 3B2-2B /4 S2+ A2_+ 3 B2 ,„ oi\
S 4cs2+A2-B2

Führt man nun die Abkürzungen

2a 1M2+3B2, ß -£- (3.22)
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ein, so verwandelt sich (3.21) vermittels der Substitution

S ayx2-1
in

x+2ß
x2-l dx ds.

Die Integration ergibt mit Rücksicht auf (3.20)

x-1
x + 1r bYx2—l

Aus (3.14), (3.20), (3.21), (3.22) und (3.23) folgt weiter

K- 2ß
x + 2.

545

(3.23)

(3.24)

(3.25)

(3.26)

Führt man nun (3.23) und (3.26) in (3.19) ein und integriert, so

folgt
X—l I—ce

Q C\ x+l
mit

a -2T'

Aus (3.13), (3.23) und (3.25) ergibt sich dazu

t-. a I x— 1 — fi

b
'

x+ 1

Wegen (3.9) erhalten wir also

z2

und

/2

Ca

Cb

X-l -(ce+ffl

X+ 1

x— 1 [et—

x+ 1

Aus (3.18), (3.23), (3.26) und (3.22) folgt schliesslich

x2-l
9' (x+2ß)2

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

Jetzt nehmen wir die Normierung im Unendlichen vor. Aus x -> oo

folgt nach (3.25) r -> oo. Damit also das pseudoeuklidische
Linienelement herauskommt, muss in (3.31) gesetzt werden

a
~Cb (3.33)

35



546 W. Scherrer.

Weiter aber normieren wir die relative Intensität % so, dass im
Unendlichen herauskommt x 1. Nach (3.30) bedingt dies

1 (3.34)

Wir haben also zu setzen

b a ; C=l. (3.35)

Schliesslich ist noch zu beachten, dass wegen (3.22) und (3.28) gilt
a2 + 3£2 l (3.36)

Die gewonnenen Resultate stellen wir nun zusammen in folgender
Tabelle

r — ¦ïj/iE2--1

/2 x-1 oc—

x+1

g*
x2-l

(x+2ß)2

%2
x-1
x+ 1

-(¦>

x-1
x+ 1

-(ex+ffl

(3.37)

Nach (3.23) muss auf jeden Fall | x | > 1 sein. Doch genügt es,
sich auf

x > 1 (3.38)

zu beschränken, denn die den negativen x-Werten entsprechenden
Lösungen erhält man auch bei positiven x-Werten, wenn man in
der Tabelle das Exponentenpaar (a, ß) durch (—a, —ß) ersetzt.

§ 4. Der Energietensor.

Um den Energietensor zu berechnen, führen wir auch im
Linienelement (3.1) an Stelle von r den Parameter x ein. Nach
(3.37) haben wir also einzusetzen

r a (x — l)i+ß (x + iyß,
und wir erhalten

ds2 f2dx2 — h2dx2 — r2 (d&2 + sin2 & dtp2)

x-1 1*3

mit
h a

x+ 1

(4.1)

(4.2)

(4.3)
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Jetzt ermitteln wir die Dreizeigersymbole auf Grund der
Tatsache, dass die Differentialgleichungen der geodätischen Linie auf
kanonische Gestalt gebracht, die Form

* inx'Ì.Xß- 0 (4.4)

haben müssen, falls man die Bogenlänge als Parameter benützt.
Bezeichnen wir — in Abweichung von § 3 — die Ableitung

nach x mit einem Strich, so ergibt die Berechnung

Pi-IL00 hi '

po /'
•* 10 i >

1 H h ' r1 -¦* 22
rr'

r^-y1 12 r >

rs r'
1 13 ~ r ' r3 -1 23 tg*,

r11 33
sin2 &,

F2 — sin ê cos &,
(4.5)

während alle übrigen J1/ Null sind.

Ausgehend von (2.20) erhält man nun vorerst für die nicht
verschwindenden Komponenten des Energietensors

v T° — G"i P i. z
XJ-o— u 00r
:T1=G11(4 -T 1_Z_

1 z,

*21'

*21'

-G22ry22

-G33r*^'33

Wfx
hX"-h'z'

h*X

f'x'
h2rx
f'x'

(4.6)

X W* X

Die weitere Berechnung nach (3.37) und (4.3) liefert zuerst

/' *-ß X

X

OL+ß r' x+2ß
' r. x2— 1/ a:2-l ' X2-

und schliesslich

n <x2-ß2 x-1
x+ 1

-2/3 1 -i

' (a;2-l)2x a2

mi oc + ß x-1 -2/32a;+a + 3 ß
' (x2-l)2±i x a2 x+ 1

T2=T% OL+ß

xa2
x-1
x+ 1

-2/3 x+2ß
' (x2-!)2 - j

(4.7)

(4.8)
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\/-G fhr2sin &= a3 x-1
x+ 1

a+5/3

ergibt sich also die Energiedichte

T°y-G- a(aL2-ß2)
X

x-1
x+ 1

a+ß
2 sin #

x2-l

(;x2-1) sind* (4.9)

(4.10)

Nun berechnet man ohne Schwierigkeit die Totalenergie

E= / T°0Y-Gd<pd&dx.
10 0

Die Integration über die Winkel ergibt zuerst

E 4 n a (a2
oe+/3

x—1\ 2 dx
x+ 1 v2-l '

und mit Hilfe der Substitution

X— 1
Z2

x+ 1

erhält man weiter

E= **a^-ß*) [f+ß-idi
X I

Damit das Integral konvergiert, muss also gelten

a + /3>0
und es folgt

E 4 n a (a- ß)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Besonderes Interesse verdienen die Grenzfälle a + ß 0, da für sie
der Energietensor in allen Punkten x > 1 verschwindet, während
er im Punkte x 1 unendlich wird. Die Totalenergie geht dabei
stetig in den durch (4.16) gegeben Wert über.
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Im Detail sind zwei Fälle zu unterscheiden:

a) a l, ß ~. (4.17a)

Man kann in (3.37) r als unabhängige Variable verwenden und
erhält

f2 1 - y*- (4.18a)

<?2 —\~, (4.19a)

r

X 1 • (4.20a)

Es liegt also das Einstein'sche Zentralfeld für den Gravitationsradius

a vor, dem nach (4.16) jetzt die Totalenergie

E y^- (4.21a)

zugeordnet ist.

b) « -i, ß i (4.17b)

Analog wie oben erhält man

/2=1 + ^, (4.18b)

-.2 —

r
1

~2ä7 '
1 + r

(4.19b)

% 1, (4.20b)

also ein Feld, das einer negativen Masse entsprechen würde. Als
Totalenergie folgt

E - yy (4.21b)

Bezeichnet man im Falle a) die Masse mit m, so liefert der
bekannte Vergleich mit dem Newton'schen Potential

o =•-£-, (4.22)

wobei k die Newton'sche Gravitationskonstante und c die Licht-
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geschwindigkeit bedeutet. Nimmt man nun noch den Satz von
der Trägheit der Energie

m y (4.23)

hinzu, so erhält man aus (4.21a)

x -^ik, (4.24)

also die Hälfte desjenigen Wertes, der für den phänomenologischen
Energietensor aus der Poisson'schen Gleichung folgt.

Diese Abweichung hängt offenbar damit zusammen, dass für
ein Materiefeld, das ein statisches Gleichgewicht zulässt, die
Poisson'sche Gleichung auch näherungsweise nicht zuständig sein
kann.

§ 5. Schlussbemerkungen.

Rückblickend erhalten wir folgendes Bild. Wenn wir die
invariante Intensität X als eigentlichen Repräsentanten der Materie
betrachten, ist die Welt nirgends leer. Da nach (4.15) sc + ß > 0

und nur in den Grenzfällen a + ß 0 ist, weist die Intensität X
nach (3.37) normalerweise eine singulare Verdichtung im Zentrum
auf, die kontinuierlich auf 1 abklingt. Wenn man dagegen die
Energiedichte als Repräsentanten der Materie auffasst, so kann
diese Dichte nach (4.8) positiv, Null oder negativ sein. In allen
Fällen aber liegt — auch nach (4.10) — eine singulare Verdichtung
des Absolutwertes im Zentrum vor.

Für die weitere Abklärung wäre natürlich eine Herleitung der
ponderomotorischen Kraft erwünscht. Wenn man orientierungshalber

das im Grenzfall (4.17a) bewährte Gesetz der geodätischen
Linie zugrunde legt, wird man auf die Vermutung geführt, dass
ein kontinuierlicher Übergang von anziehenden zu abstossenden
Kräften stattfindet.

Grundsätzlich betrachtet, ist allerdings die Herleitung einer
ponderomotorischen Kraft gar nicht nötig. Die konsequente
Weiterentwicklung würde vielmehr darin bestehen, das Zweizentrenproblem

vollständig zu lösen. Ich weiss aber nicht, ob irgendeine
Aussicht besteht, diese schwierige Aufgabe zu bewältigen.

Da unser Modell ein vollständiges Gleichgewicht liefert, muss
es sinngemäss in erster Linie für Elementarteilchen in Aussicht
genommen werden. Man wird sich also fragen, weshalb noch keine
Quantisierung auftritt. Dazu möchte ich nur folgendes bemerken.
Einmal ist die Beschränkung* auf den absolut statischen Fall
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möglicherweise zu eng. Weiter aber ist es denkbar, dass eine
Quantisierung erst bei Wechselwirkung, also beim Zweizentrenproblem,

auftritt. Faktisch liegt ja bei den klassischen
Quantisierungen immer Wechselwirkung vor.

Schliesslich gebe ich noch zwei Hinweise auf weitere in § 1

genannte Probleme :

1. das Problem (1.5) — also das eben behandelte Problem —
hat keine statische Lösung, wenn man die Nebenbedingung (1.6)
hinzunimmt.

2. Das statische und zentralsymmetrische Problem (1.7) ohne
Nebenbedingung (1.6) lässt sich analog zum eben behandelten
Problem ebenfalls vollständig lösen. Abgesehen von-, einer an sich
natürlich wesentlichen Strukturänderung des Gesamtfeldes tritt
grundsätzlich nichts Neues auf. Die Energieverhältnisse habe ich
noch nicht untersucht.
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