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Uber den Einfluss
des metrischen Feldes auf ein skalares Materiefeld
von W. Scherrer, Bern.
(27. V1. 1949.)

§ 1. Einleitung.

Der umfassende Charakter der klassischen Einstein’schen Gravi-
tationsgleichungen

Rog—3 GogR=—%Toq (1.1)

kommt unter anderem darin zum Ausdruck, dass die identisch ver-
schwindende Divergenz der linken Seite den sog. Erhaltungssatz

1 o(/-61y) _
2 ppmieo 12

erzwingt, gleichgiiltig wie auch im einzelnen der Energietensor T',,
gestaltet sein mag.

Obwohl schon seit langem Versuche unternommen werden, die
Theorie nicht nur durch passende Wahl von T, sondern auch
durch gleichzeitige Bereicherung der Metrik zu fordern, habe ich
den Eindruck, dass die bei Festhaltung der Riemann-Metrik sich
bietenden Moglichkeiten noch nicht ausreichend analysiert worden
sind. Im folgenden prisentiere ich daher eine Variante der Theorie,
welche sich in diesem engeren Rahmen hilt. Dabei stiitze ich mich
vor allem auf zwei Argumente:

1. Physikalisch ist es paradox, dass die Gleichungen (1.1) auch
dann noch Loésungen liefern, wenn keine Materie vorhanden ist.
Von einer Theorie, die die Materie nicht nur fiir die Abweichungen
von der Trégheitsbahn, sondern fiir die totale metrische Struktur
verantwortlich macht, sollte man eigentlich erwarten, dass sie 1im
Falle verschwindender Materie entartet.
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Anders ausgedriickt ist es paradox, wenn man einem Linien-
element ds gemiéss

ds? =Gysdrydrs (1.3)

eine reale Existenz zusprechen will, auch wenn den beiden infinitesi-
mal benachbarten Weltpunkten z, und z, + dz, kein materielles
Substrat entspricht.

So gelange ich zu der heuristischen Forderung, jeder Weltstelle
z, eine Intensitit ¢? zuzuordnen, etwa in dem Sinne, dass der Aus-
druck

p2)-Gdaydz, daydes =2 )-Gdz (1.4)

die relative Anzahl der im Volumelement -G dx vorhandenen
materiellen Elemente darstellen soll. Es liegt im Wesen der Konti-
nuumstheorie, dass die entsprechende absolute Anzahl als mathe-
matisch unendlich aufgefasst werden muss. Eine diskrete — und
damit erkenntnistheoretisch befriedigendere — Theorie mit end-
licher Elementzahl liegt wohl noch in weiter Ferne.

2. Mathematisch 1st es verfanglich, in der Einstein’schen Theorie
die so weit liber den uns vertrauten Anschauungsbereich hinaus
reicht, an den expliciten Gleichungen Zusatzglieder anzubringen.
Methodisch viel giinstiger ist es, von einem Wirkungsprinzip aus-
zugehen. Ein solches liefert immer ein vollstandiges System von
Gravitations- und Materiegleichungen. Ausserdem gestattet es —
ganz abgesehen von den rechnerischen Vorteilen — von Anfang an
eine klare Scheidung zwischen Annahmen und Folgerungen.

Wohl das einfachste Wirkungsprinzip, das dem unter 1. entwickel-
ten Gesichtspunkt Rechnung tréagt, hat die Gestalt

a/szyj;dm=o (1.5)

Dabei konnte angesichts des relativen Charakters der Intensitit p?
die normierende Nebenbedingung

afwz V=Gdz =0 (1.6)

von Interesse sein.

Eine naheliegende Bereicherung von (1.5) stellt das Prinzip

5‘[ (R w2+ 4 0 Ge° oy 00;{;

o )]/-“Gda;ﬁ() (1.7)

dar.
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Auf diese Ansatze habe ich schon vor lingerer Zeit hingewiesen?).
Jetzt konstatiere ich, dass Feldgleichungen, wie sie aus dem Prinzip
(1.7) folgen, in der Literatur zur Behandlung kommen sollen?). Ich
hoffe daher, dass eine einlésslichere Darstellung meiner Unter-
suchungen Interesse finden werde.

Selbstverstindlich hat man mit der Moglichkeit zu rechnen, dass
Ansétze mit einer skalaren Intensitit zu primitiv sind und man
kann als nachste Stufe auch Invarianten in Betracht ziehen, die aus
dem Vektorpotential @, aufgebaut sind3). Trotzdem beschrinke
ich mich auf den einfachsten Fall in der Hoffnung zu erfahren, was
fir Struktureffekte das metrische Feld allein schon ausiibt.

Gegen die primére Einfithrung eines Vektorfeldes @, lasst sich
némlich folgendes sagen. Ein Vektor ist nach seinem urspriinglichen
Sinne schon eine Relation zwischen zwei infinitesimal benachbarten
Punkten. Dasselbe gilt aber auch von dem Linienelement ds2. Es
1st daher eine Frage von grundsétzlicher Bedeutung, was aus der
Verbindung von ds? und 4?2 allein schon folgt.

In dieser Arbeit will ich nun zeigen, dass das zum einfachsten
Wirkungsprinzip (1.5) gehérige statische und raumlich zentral-
symmetrische Problem exakt und vollstindig losbar ist. Die Lé-
sungen bilden eine zweiparametrige Schar. Zu jeder dieser Losungen
gehort eine endliche Totalenergie. Wir haben hier ein Beispiel
fir ein Feld, das bei grosser Entfernung r vom Zentrum eine Energie-
dichte vom Typus

yp (1.8)

i

aufweist, dessen Totalenergie aber unter dem Einfluss des metri-
schen Feldes allein endlich bleibt.

§ 2. Die Feldgleichungen.

Wir legen uns vorderhand keine Beschriankung auf und leiten
die Feldgleichungen ab fiir das Prinzip (1.7) mit der Nebenbe-
dingung (1.6). Nach den Methoden der Variationsrechnung haben
wir zu dem Zweck einfach das Prinzip

6/[(1%—2/1) v+ 40 Ge° ji 20 ly=Gaz=0 1)

zu behandeln, wo A eine Konstante ist.

1) Verhandlungen der S.N.G., Basel, 1941, S. 86—87.

2) G. Lupwie uud C. MULLER, Archiv der Mathematik [, 1948, S. 80—82.

3) Mitteilungen der Berner Naturforschenden Gesellschaft, Neue Folge, Bd. 6
1949. ' ' S
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Zur leichteren Ubersicht verwenden wir folgende Bezeich-
nungen
or, or}

— el 0o
E,, = ox, Oz, Qoo
" (2'2)
Qoo =L oa L — T TS
PE =e F;‘#—G‘-’“ F;'ﬂ
REGQ"RU; R=R)-G
Q=G"Q,; Q=QV-G (2.3)
= PG |
Dann gilt bekanntlich die Identitét
_ o2
R = 32, + 2. (2.4)

Weiter charakterisieren wir die kovariante Differentiation nach
der Koordinate x, durch das Symbol D, und fiithren hierauf die
Beltrami’schen Operatoren

0 0
7y =Geo 0;"0 Ojg =GeDyy Dy, (2.5)
Oy=— (V-GGes 2% )=GeaDyDyy = Doy (26)
W~V_ oz, Sl T ooy =Loy -
ein.
Beniitzen wir schliesslich noch die Abkiirzung

5 = (2.7)

so verwandelt sich (2.1) nach der durch (2. 4) angezelgten partiellen
Integration in

0 —n X
5f H%%ﬂ._é_ﬁw%_;_(Q_QAI/_(,)XT(DEZLV—G de=0. (2.8)

Die weitere Rechnung wird etwas verkiirzt, wenn man als
unabhingig zu variierende Funktionen die Grossen y und y—@G G¢°
wiahlt. Die Variationen der D, y lassen sich in der tiblichen Weise
durch partielle Integration entfernen und man erhélt nach einer
ersten Berechnungsphase an Stelle von (2.8):

l |R- 2/1—|—w(57 2. 9%)| =Gy \
f dz=0 (2.9)
l_ Dy dPr470Q -2456 )~ G+o —9";"—" o (V-G GQ")‘
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Zur Umformung der zweiten Zeile in (2.9) — Wegschaffung
der Variationen der Ableitungen }—G G¢° — bendtigt man die
zum Ristzeug der allgemeinen Relativitatstheorie gehorigen For-
meln

OY=G = 5 Gou 6 (=G Ge0) . (2.10)
P — (L dl/ G o(l/jfazﬂ) @.11)
Ty p

OR = 5o [T 6 (/=G 6] — 5[4, 8 (-GG
+R,, 8 (/-GG). (2.12)

Nach einer zweiten Berechnungsphase erhilt man dann das
Teilintegral von (2.9)

f(**DAZ OPAt 4 6Q)dx
Y -
2/(DQDO'x+?GQGDX+RQGZ)6(V“GGQO)d$. (2.13)
Als Endresultat ergibt sich schliesslich die Formel

af R—2A)z+0V ](V—de

R 24+ o 257 V—Goy
( X )} (2'14)
:u/‘ DQDUer?GQUDZ 5 (/-GG dz
..|_ =
+ (Boo— AGyq) x + @ Dox Do
Die Feldgleichungen der Gravitation lauten daher vorerst
(Roo— AGyo) 1+ Dy Dy g+ 5Goo [y + 0 2eE2% =0, (2.15)
und als Feldgleichung der Materie ergibt sich
Ux 21
Rz/uw(x 21)0. (2.16)

Durch Mu]tiplikation von (2.15) mit G¢° erhalten wir die zuge-
horige skalare Gleichung

(R—4A)z+3m+w%=0. (2.17)
Bildet man nun die Kombination 4~ (2.15) — } x~ ' G,, (2.17), so
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erhilt man schliesslich die Feldgleichungen der Gravitation in der
Gestalt

1
Byo— ~2—GQGR +AGyg
+— (Dg D y—Cigo 07) (2.18)

w 1
+?(DQ;¢DG%—§GQUV1)=0

die zum Vergleich mit den klassischen Gleichungen (1.1) ge-
eignet ist. |

Analog bilden wir die Kombination (2.17) —y - (2.16) und er-
halten als Feldgleichung der Materie

B+2w)0x—24%=0 (2.19)

Aus dem Vergleich unserer Gleichungen (2.18) mit den klas-
sischen Gleichungen (1.1) entnehmen wir nun, dass wir als Energie-
tensor anzusetzen haben

1 {DQDG;(—GQUD;{ e Dex~Dax—-%Gle7;{}

TQO.:-; X y2

(2.20)

Schon Einstein hat das kosmologische Glied als einen Schoén-
heitsfehler der Theorie bezeichnet. Gerade an dieser Stelle kommt
einem das zum Bewusstsein, da es fiir sich allein schon dem Er-
haltungssatz (1.2) geniigt, konnte man es ungestraft zum Energie-
tensor schlagen. Dies aber hat wiederum nicht viel Zweck, da kein
Austausch mit T',, stattfindet.

§ 3. Das statische Zentralield.

Wir wihlen das Schwarzschild’sche Linienelement
ds?=f2dxt—g2dr2—r2(d9*+sin?dde?), (3.1)
wo nun alsc f und g Funktionen des Radius r sind. Es folgt

V-G=fgrisind, (3.2)

und man erhialt

(2 pranl 2 (2T o\
%= [g (frf+2f)}+2( . —|—fg)}smw9, (3.3)
wobel der Strich die Ableitung nach » anzeigt.
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Das Wirkungsprinzip (2.1) nimmt fiir 4 = o =0 und mit (2.7)
die Gestalt

6fo1/——Gd:x::O (8.4)

an. Lassen wir hier die Zeit und die Winkelvariabeln weg, so ergibt
sich nach Ausiibung der durch (3.3) nahegelegten partiellen Inte-
gration das Prinzip

a/{?”(rmzf)x' (2 ;+i+fg) 2} dr=0. (3.5)

Durch sukzessive Variation von f, y und g,‘ gefolgt von respektiver
Division durch g, f und xf erhilt man nach leichter Umformung
die Gleichungen

R RO
S-S0 b0 e
HED (=g o

Ersetzt man hier die beiden ersten Gleichungen durch ihre
Differenz und ihre Summe und fiihrt man iiberdies an Stelle von x
und f die neuen Funktionen

P=yf, QE—}{— (3.9)

ein, so erhilt man durch Auswertung einer an der Differenz un-
mittelbar ersichtlichen Integration, das System

T;g—=%’ (3.10)
S 5 e )0, o
O R

Hier empfiehlt es sich, (3.11) noch umzuformen in

Flor () (e 254

P P

+ (_3?)1- (% +4)+ + A —4r=0. (8.11%)
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Setzt man jetzt
4 0l

S=rP; K=Tg, (3.13)

I
If

so gilt offenbar
rS'=S(K+1). (3.14)

Nun findet man aus (3.12) und (8.11") nach einiger Rechnung
als Differentialgleichung zwischen S2 und K allein

C2(K+1)dK | d8Y)

K(K*+8K+4) ' 71‘54}482':0' (8.15)

Ihr Integral lautet
K2(A2448%)
K*48K+4 = (8.16)

Weiter finden wir aus (3.10), (3.13) und (3.14)

iQ _  AdS
29 gAY (3.17)

Aus (3.12), (3.13) und (3.16) aber folgt

KS
s, (3.18)

womit (3.17) tibergeht in
dQ  AK  dS

e (3.19)

Um nun die endgiiltige Integration einzuleiten, miissen wir die
nach (3.13) und (3.14) in (3.16) enthaltene Differentialgleichung
auflosen. Setzt man

s=Lgr (3.20)

und bezeichnet die Ableitung nach s mit einem Punkt, so erhilt
man

48+ A*+3 B*— 2 B)/4 87+ A%+ 3 B

S
&= T (3.21)
Fiithrt man nun die Abkiirzungen
Qa— AT+ 5B, A= (3.22)



Uber den Einfluss des metrischen Feldes.

ein, so verwandelt sich (3.21) vermittels der Substitution

S=a)yz2—1
n
a8 dr=ds
|

Die Integration ergibt mit Riicksicht auf (3.20)

545

(3.23)

(3.24)

(8.25)

(3.26)

(8.27)

(3.28)

s —1 18
’I“=“b]/a}2—1 z::li .
Aus (3.14), (3.20), (3.21), (3.22) und (3.23) folgt weiter
_ 2p
o x+28 °
Fithrt man nun (3.23) und (8.26) in (3.19) ein und integriert, so
folgt ,
Q-c| 1™
. IR EZS S
mit
4
* =94

Aus (3.13), (3.23) und (3.25) ergibt sich dazu

Wegen (3.9) erhalten wir also

g Ca | xz-1 |—@+h
2= 5
und
f2 e z—1 ‘La—ﬁ
Cb | z+1 | :

Aus (3.18), (3.23), (3.26) und (3.22) folgt schliesslich

9 _ x2-1
(x+2 )% °

(3.29)

(3.30)

(3.81)

(3.82)

Jetzt nehmen wir die Normierung im Unendlichen vor. Aus z > co
folgt nach (3.25) r > co. Damit also das pseudoeuklidische Linien-

element herauskommt, muss in (8.31) gesetzt werden

a
f;'g"f]..

(8.33)

35
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Weiter aber normieren wir die relative Intensitédt y so, dass im
Unendlichen herauskommt y = 1. Nach (3.30) bedingt dies

Ca

; =1 (3.34)

Wir haben also zu setzen |
b=a ; C=1. ~ (3.35)
Schliesslich ist noch zu beachten, dass wegen (3.22) und (3.28) gilt
243 f2=1 (3.36)

Die gewonnenen Resultate stellen wir nun zusammen in folgender
Tabelle

r=ajz2—1 i;iiﬁ
f2—= z—1 |a—B
~leT (3.37)
5 r2—1
= wr2py
g | ®—1|+h
x’“??ﬂ

Nach (3.23) muss auf jeden Fall |z|>1 sein. Doch gentigt es,
sich auf

x> 1 (3.38)

zu beschrinken, denn die den negativen z-Werten entsprechenden
Losungen erhélt man auch bel positiven z-Werten, wenn man in
der Tabelle das Exponentenpaar («, ) durch (—a, —p) ersetzt.

§ 4. Der Energietensor.

Um den Energietensor zu berechnen, fithren wir auch im
Linienelement (38.1) an Stelle von  den Parameter z ein. Nach
(8.87) haben wir also einzusetzen

r=a(z—1)°(z+ 1), (4.1)
und wir erhalten
ds?=f*da2—h2dz®—r2(d¥%+ sin®d d ¢?) (4.2)
mit
z—1 |8
B x+1‘. (4.8)
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Jetzt ermitteln wir die Dreizeigersymbole auf Grund der Tat-
sache, dass die Differentialgleichungen der geodatischen Linie auf
kanonische Gestalt gebracht, die Form

+Ig,z,x,=0 (4.4)

haben miissen, falls man die Bogenldnge als Parameter beniitzt.

Bezeichnen wir — in Abweichung von § 3 — die Ableitung
nach x mit einem Strich, so ergibt die Berechnung

fl
Fl?):T’
ff/ h/ TT’
Iy = 3E I = 7’ rzé-:*—k?’ Iy = ?sm?&
, (4.5)
I'}= : ' I')2= —sin & cos &,
T’
Iy = r Iy =tg?,

wéhrend alle tbrigen I'2 Null sind.

Ausgehend von (2.20) erhiilt man nun vorerst fiir die nicht
verschwindenden Komponenten des Energietensors

‘uf )ll !
xTO—= Goorﬂg./?z —7;;;‘;
T = Gu( FIZ): h"
’ P x! (4'6)
a2 (221X
2T = £ i 2" e
- . ll: B . ,rf xl
%= Lol . Y .
Die weitere Berechnung nach (8.37) und (4.3) liefert zuerst
I 2-8 ¥ o+B ¥ EE2p
T T r. x?—1~° (4.7)
und schliesslich
o _ @—p|w-1]-2p 1
0 - xa® | x+1 (x*—1)*
1 o a+pB | x—1|-2822+a+3f
L T Txat | @l (xi-1)2 (4.8)
2 L OL-{-ﬁ x—1|—28 m+2ﬁ
T3=Ts= xa® | 241 \ To(x2-1)2
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Mit
il 8
V-G =fhr?sin & Aa3‘¢+1 (z2— 1) sin &
ergibt sich also die Energiedichte
ath |
B0 ot ot e

Nun berechnet man ohne Schwierigkeit die Totalenergie

2n

E= fw/ TY-Gdedddz.

Die Integration iiber die Winkel ergibt zuerst

co atp

n_ _4??@_(042__ / 2 _dx
- w+1 -1

und mit Hilfe der Substitution

:c-—1_2

x+1
erhilt man weilter

1
B = Ama@- ) /"Zaﬂ-ﬁ—l da
* o
0
Damit das Integral konvergiert, muss also gelten

a+ >0
und es folgt

7 — A me )

X

(4.9)

(4.10)

(4.11)

(4.12)

(4.18)

(4.14)

(4.15)

(4.16)

Besonderes Interesse verdienen die Grenzfille « + 8 = 0, da fiir sie
der Energietensor in allen Punkten z > 1 verschwindet, wihrend
er im Punkte x = 1 unendlich wird. Die Totalenergie geht dabei

stetig in den durch (4.16) gegeben Wert iiber.
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Im Detail sind zwei Falle zu unterscheiden:
1
a) o=, f=—3. (4.17a)

Man kann in (3.37) r als unabhingige Variable verwenden und
erhalt

fre=1— 22, (4.18a)
g2= 1 (4.19a)
j_2a’ '
?‘,
x=1. (4.20a)

Es liegt also das Einstein’sche Zentralfeld fiir den Gravitations-
radius @ vor, dem nach (4.16) jetzt die Totalenergie

B BTE (4.21a)

zugeordnet ist.

b) a=—g, f=+ (4.17b)

fr=1+22, (4.18h)
g2 = — 2 (4.19b)
5,20 o
® r
z=1, (4.20b)

also ein Feld, das einer negativen Masse entsprechen wiirde. Als
Totalenergie folgt

s o R (4.21D)

g

Bezeichnet man im Falle a) die Masse mit m, so liefert der
bekannte Vergleich mit dem Newton’schen Potential

gt O (4.22)

c2

wobei k die Newton’sche Gravitationskonstante und ¢ die Licht-

*
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geschwindigkeit bedeutet. Nimmt man nun noch den Satz von
der Tragheit der Energie

m=2 (4.23)

CZ
hinzu, so erhilt man aus (4.21a)

w2k (4.24)
also die Halfte desjenigen Wertes, der fiir den phéanomenologischen
Energietensor aus der Poisson’schen Gleichung folgt.

Diese Abweichung hingt offenbar damit zusammen, dass fiir
ein Materiefeld, das ein statisches Gleichgewicht zulidsst, die
Poisson’sche Gleichung auch néherungsweise nicht zustdndig sein
kann.

§ 5. Schlussbemerkungen.

Riickblickend erhalten wir folgendes Bild. Wenn wir die
invariante Intensitit y als eigentlichen Reprisentanten der Materie
betrachten, 1st die Welt nirgends leer. Da nach (4.15) « + 8 > 0
und nur in den Grenzfillen o + g = 0 ist, weist die Intensitédt y
nach (3.37) normalerweise eine singuldre Verdichtung im Zentrum
auf, die kontinuierlich auf 1 abklingt. Wenn man dagegen die
Energiedichte als Repréasentanten der Materie auffasst, so kann
diese Dichte nach (4.8) positiv, Null oder negativ sein. In allen
Fallen aber liegt — auch nach (4.10) — eine singulére Verdichtung
des Absolutwertes im Zentrum vor.

Fir die weitere Abklarung wére nattirlich eine Ierleitung der
ponderomotorischen Kraft erwiinscht. Wenn man orientierungs-
halber das im Grenzfall (4.17a) bewédhrte Gesetz der geodatischen
Linie zugrunde legt, wird man auf die Vermutung gefiihrt, dass
ein kontinuierlicher Ubergang von anziehenden zu abstossenden
Kréaften stattfindet.

Grundséatzlich betrachtet, ist allerdings die Herleitung einer
ponderomotorischen Kraft gar nicht notig. Die konsequente Wei-
terentwicklung wiirde vielmehr darin bestehen, das Zweizentren-
problem vollstindig zu losen. Ich weiss aber nicht, ob irgendeine
Aussicht besteht, diese schwierige Aufgabe zu bewiltigen.

Da unser Modell ein vollstéindiges Gleichgewicht liefert, muss
es sinngeméss 1n erster Linie fiur Elementarteilchen in Aussicht
genommen werden. Man wird sich also fragen, weshalb noch keine
Quantisierung auftritt. Dazu mochte ich nur folgendes bemerken.
Einmal ist die Beschrinkung auf den absolut statischen Fall
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moglicherweise zu eng. Weiter aber ist es denkbar, dass eine
Quantisierung erst bei Wechselwirkung, also beim Zweizentren-
problem, auftritt. Faktisch liegt ja bei den klassischen Quanti-
sierungen immer Wechselwirkung vor,

Schliesslich gebe ich noch zwei Hinweise auf weitere in § 1
genannte Probleme:

1. das Problem (1.5) — also das eben behandelte Problem —
hat keine statische Losung, wenn man die Nebenbedingung (1.6)
hinzunimmt.

2. Das statische und zentralsymmetrische Problem (1.7) ohne
Nebenbedingung (1.6) lasst sich analog zum eben behandelten
Problem ebenfalls vollsténdig losen. Abgesehen von:einer an sich
natiirlich wesentlichen Strukturdnderung des Gesamtfeldes tritt
grundsétzlich nichts Neues auf. Die Energieverhéltnisse habe ich
noch nicht untersucht.
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