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Hohere strahlungstheoretische Nidherungen zur
Klein-Nishina-Formel
von Max Robert Schafroth (ETH. Ziirich).
(2. VII. 1949)

Zusammenfassung: Die von der neuen Quantenelektrodynamik entwickelten
Methoden zur Subtraktion, resp. ,,Deutung®, der auftretenden Divergenzen
werden, parallel im Impulsraum- und Ortsraumformalismus, auf die ef-Niéherung
zum Comptonquerschnitt angewendet und eine konvergente, lorentz- und eich-
invariante Formel (52) fiir das zustandige Matrixelement gegeben. Der Wirkungs-
querschnitt wird explizit nur fiir den Fall kleiner Energien berechnet. Die Zusatz-
hypothesen, die fiir die Rechnung mit divergenten Ausdriicken notwendig sind,
werden ausfiihrlich diskutiert. Besonderes Augenmerk gilt der Ultrarotkatastrophe,
die sich in richtiger Weise gegen die des Doppelcomptoneffektes kompensiert.

§ 1. Einleitung.

In den letzten zwei Jahren wurde erkannt, dass die Quanten-
elektrodynamik trotz der ihr innewohnenden Schwierigkeiten wohl
imstande ist, bestimmte quantitative Aussagen i{iber hohere strah-
lungstheoretische Naherungen zu gewissen Problemen zu machen?)?).
Nachdem Phénomene zweiter Ordnung, wie die Feinstruktur des
Wasserstoffspektrums und das magnetische Moment des Elektrons
derart behandelt worden waren und die Resultate in schonster
Ubereinstimmung mit dem Experiment lagen, erhob sich die Frage,
ob auch fiir Probleme 4. Ordnung dieses Verfahren brauchbar
bliebe. Insbesondere kénnten die Korrekturen zur Klein-Nishina-
Formel interessieren, da dieselben wenigstens in bezug auf Winkel-
verteilung mit den heutigen experimentellen Méglichkeiten durch-
aus priifbar sein diirften. Fine Arbeit von CoriNnaLDESI und Jost?),
in der das analoge Problem der Streuung von Licht an skalaren
Boseteilchen behandelt worden war, zeigte, dass offenbar auch in
4. Ordnung die Divergenzschwierigkeiten umgangen werden konnen.
Indessen litt diese Arbeit — abgesehen von der Tatsache, dass
nur der Fall von Teilchen mit Spin } experimentell interessant
1st — an einem fundamentalen Mangel an Lorentzinvarianz. So
stellte sich die Aufgabe, dasselbe Problem fiir Diracelektronen und
auf lorentzinvariante Weise in Angriff zu nehmen. Von ScEWINGER?)
1st eine lorentzinvariante Formulierung der gesamten Quanten-
elektrodynamik im Ortsraum angegeben worden, die fiir Fragen
dieser Art besonders angepasst erscheint. Es diirfte indessen nicht
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allgemein bekannt sein, dass der iibliche Formalismus der Storungs-
rechnung im Impulsraum dazu vollstédndig dquivalent ist?), und
es mag deshalb ein gewisses Interesse haben, die Rechnungen
parallel in beiden Formalismen durchzufiihren, wie wir das im
folgenden tun werden.

Die Idee, welche der erwdahnten neuen Entwicklung der Quanten-
elektrodynamik zugrunde liegt, ist im wesentlichen folgende3):

Die jetzige Theorie 1st als eine erste Approximation an eine
,,richtige Theorie* aufzufassen, welche ber hohen Energien wesent-
liche Verédnderungen bringen wird. Be1l strahlungstheoretischen
Problemen der Art, wie sie uns hier interessieren, treten solche
hohen Energien nur in virtuellen Zwischenzustédnden auf und be-
wirken das Divergieren gewisser Integrale iiber diese Zwischenzu-
stande. Man wird erwarten, dass die wesentlichen Abanderungen
der kiinftigen Theorie darin bestehen werden, diese Integrale
irgendwie durch konvergente zu ersetzen. Die Tatsache aber, dass
sie in der heutigen Fassung der Theorie divergieren, deutet darauf
hin, dass thr Wert sehr stark von dem Verhalten der Theorie be1
hohen Energien abhéngt. Anderseits sollten die uns interessierenden
Phianomene wohl davon weitgehend unabhéngig sein. Dies fiihrt
zur Vermutung, dass sich diese divergenten resp. ,,theorieempfind-
lichen Ausdriicke daraus iiberhaupt wegschaffen lassen sollten.
In der Tat zeigt es sich bei allen bisher behandelten Problemen
dieser Art, dass sie sich als Korrekturen zu den Ausdriicken einer
niedrigeren strahlungstheoretischen Néherung deuten lassen, welche
durch Zusétze dm, de zu der Masse und der Ladung der auftretenden
Elementarteilchen hervorgerufen werden. Nun lassen sich aber
solche Zusétze experimentell nie von den ,,wahren** Grossen trennen,
d. h. man hat m + dm, e + de mit den experimentell gemessenen
Werten zu identifizieren (,,Renormalisation von Masse und La-
dung*).

§ 2. Prinzip der Rechnung.

Die mathematische Durchfithrung der oben dargelegten Ideen
verlauft folgendermassen: Wir gehen aus von der Schrédinger-
gleichung des Systems

. 0¥ N
i——=(Hy+H)¥. (1)
Dabei bedeutet: H,= H}ateric  [jitrahlung qje Hamiltonfunktion der
ungestorten Felder,
H' die Wechselwirkungsenergie.
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Im Ortsraum ist es vorteilhaft, in Anlehnung an SceEwINGER?), zu
einer anderen Darstellung, der ,,interaction representation, iberzu-
gehen, indem man die ungestorte Zeitabhingigkeit auf die Obser-
vablen tiberwalzt. Im Sinne einer Massenrenormalisation haben
wir dabei die Selbstenergie als untrennbar mit der Masse ver-
kniipft zu betrachten und also mit in die Zeitabhéngigkeit zu
nehmen; d. h. wir haben fiir diese anzusetzen:

Y gt (Het Bty (2)

Dabei bedeutet E, die Selbstenergie, deren Form wir noch zu dis-
kutieren haben werden. Die Schrodingergleichung wird damit:

i (B, (8)

Im Impulsraum gehen wir aus vom Hamiltonoperator
H=H,+H —E,. (1"

Die Selbstenergie ist in Analogie zum Ortsraumformalismus
zwecks Renormalisation der Masse hinzugefiigt worden.

Ausgehend von dieser Grundlage haben wir, im Sinne einer
Entwicklung nach Potenzen der Elektronladung e, Stérungs-
theorie zu treiben. (In natiirlichen Einheiten h = ¢ = 1, wie wir sie
hier durchgehend verwenden, zusammen mit dem Heavisideschen
‘ . 47
MaBsystem ist e = ]/Té?_ .

Dabei 1st es noch wesentlich, zu bemerken, dass die Theorie in
threr jetzigen Fassung den Begriff des freien Teilchens gar nicht
kennt. Wie man leicht sieht, ist ndmlich der Zustand, in welchem
nur ein Teilchen vorhanden ist, gar keine Losung der Schridinger-
gleichung. Um dem abzuhelfen, gehen wir durch eine kanonische
Transformation zu neuen Feldgriossen tiber, die wir dann mit den
physikalischen identifizieren. Auf diese Weise entkoppeln wir die
Felder gerade so, dass ein Zustand mit nur einem freien Teilchen
Losung der Schriodingergleichung wird und so jener Begriff in
der Theorie einen Platz bekommt. Diese Transformation werden
wir natiirlich im Sinne unserer Entwicklung nach Potenzen von e
ebenfalls nur storungsméssig durchfihren.

Schreiben wir
H =eH, + e¢*H, l
E. =W+ et W'+... (4)
H,— W = H, l
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so wird, zundchst im Impulsraum, (1') zu
H=Hy+eH, +e2Hy—etW +... (1"

Fithren wir die erwiahnte kanonische Transformation zunichst in
erster Ndherung durch:

H —> ¢S HeteS %)

und verlangen wir im Sinne der Forderung nach Entkoppelung der
Felder, dass im neuen Hamiltonoperator die Terme proportional e
verschwinden, so kommt

H,+[HyS]=10
und hiermit: '
H=H),+e9,+e3H,+erH, —et W +... (5)
wo $, = Hy + 5 [Hy, S]
9, = [Hy, S]+  [[Hy, S], 8]
$; = [[Ha. 81, 8] + 5 [[[Hy 81, 81, 8].
Bei der Transformation zweiter Ordnung
H-—se*THet®T

besteht insofern ein Unterschied gegen vorhin, als $, im Gegensatz
zu H; Elemente auf der Energieschale besitzt, die wir mit regu-
larem T' nicht wegtransformieren kénnen. Wir beschranken uns

deshalb auf
Do — Do +[Hy, T1=0

und erhalten

H=Hy+e*9y + e H; + et H, —et Wt (6)

$1= 51+ 5[5 — 55 1)

(Unterstreichen eines Operators bedeutet hier und im folgenden
stets den Energieschalenanteil desselben.)

wony={*INY w0 @

*) Es ist hier wohl keine Verwechslung zu befiirchten zwischen der Basis der
natiirlichen Logarithmen und der Elektronladung.

WO
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An (6) i1st zu erkennen, dass die Entkoppelung im oben defi-
nierten Sinne nur dann (bis zur zweiten Ordnung) moglich ist,
wenn %, keine Diagonalelemente besitzt. Gerade dies wird durch
die Massenrenormalisation bewirkt, die also mit der Umdefinition
der Felder zusammen nétig ist, um das obige Programm durch-
zufithren.

Die e3-Transformation trdgt zu unserem Problem nichts mehr
bei. Der Wirkungsquerschnitt fiir die Comptonstreuung wird uns
gegeben durch | e? $,+ 49, |2 die gesuchten e-Korrekturen zur
Klein-Nishina-Formel also durch ®{ $,*$, + $,*9, }. Unsere
Aufgabe besteht somit darin, $, zu diskutieren.

Im Ortsraum gehen wir ganz analog von
() ‘I’

v—— = (eH;+e*Hy — et W) ¥ (4"
. , 28 .
mit ¥ = e ¥’ wo 51 = — 1 H, tber zu
. ()EU’ i_; 2 1 3 ’ 4 r 4wr ]I].r -4
LAY T *ﬂ(e o1 Byg1-* Iy — € ) (5%)

mit denselben Bezeichnungen wie oben.

Die Transformation 2. Ordnung ist hier insofern einfacher als
im Impulsraum, als wir die Elemente auf der Energieschale in £,
auch wegschaffen kénnen. Wir niitzen diese Moglichkeit aus und
fordern also:

T’ZGEZTWH; —()T::—'Iégg.
Damit erhalten wir
. 0¥ 3’ 4 4 W/ 'T’!l 6’
i 5 = (39 +ertH,—et W) P, - (6)

Wegen T'(co) — T'(—o0)=-—2m71 S_j_4 +0 enthélt diese Trans-
formation dabei zusatzlich zur Umdefinition der Felder noch eine

ochte Streuung, als Ersatz fiir den verlorengegangenen Term $,
in (6).

Das uns interessierende $, ist hier gegeben durch
A —I-ACD
279, [dt-9,

wobel _3_54 mit §, zusammenhingt durch

(k |94l ) = (k| $a| 1) 6 (B — E)).
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§ 3. Eichinvarianz.

Ein wesentlich nicht-lorentzinvarianter Zug kommt in die
Theorie herein durch die Elimination der longitudinalen Kom-
ponenten des Strahlungsfeldes mit Hilfe der Nebenbedingung
zur Erhaltung der Eichinvarianz. Die W’echselwirkung lautet dann:

eH1+eH=—fd3a:9 (x) A +~fd3 fd?» ’9 8)
wo U, (x) das transversale Viererpotential:
OQI#
Ay =0, oz, = 0

7,(x) der Strom des Elektronenfeldes (0 = —1j,) bedeuten. Das
Vakuum beziiglich der Photonen ist definiert durch AW ¥, =0
wo AL den Anteil von A, mit positiven Frequenzen “bedeutet.

Wir wollen nun zeigen, dass wir fiir unser Problem die richtigen
Resultate erhalten, wenn wir die longitudinalen Photonen nicht
eliminieren, die Nebenbedingung vernachldssigen und das Vakuum
als den Zustand definieren, in welchem weder transversale noch
longitudinale Photonen vorhanden sind; d. h. wenn wir als Wechsel-
wirkung ansetzen:

eH, = — [ dej, (@) 4,(x); eH -0 (9)

wo nun A4 ,(z) das vollstandige Viererpotential bedeutet und das
Vakuum definiert ist durgh AL ¥, =10,

Zu beweisen ist also, dass wenn wir die 1m Strahlungsfeld
bilinearen Terme in 54 — die allein zum Comptoneffekt beitragen —
mit H¢ bezeichnen, und falls aus (8) folgt

97 H¢ = f iz f d*a'd, (z, @) {U (), %, () }; (10)

WO
{4,B}= AB+ BA
und aus (9)
2n50-—fd4 fd%*J z,2'){4 (1), 4,(2")} (11)
gilt:

I (@) =d,,(z 2). (12)

Das bedeutet gleichzeitig die Invarianz unseres Resultates

gegeniiber Umeichung des realen Strahlungsfeldes, da die Eichung
von A, freibleibt.
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Der Beweis verlauft im wesentlichen folgendermassen: Die Ver-
tauschungsrelationen der Potentiale sind:

[Au(m),Ay(:E')]:fi6MD(;E——:I:’) (13)
, . , . 0D, (x—x')
[Qlﬂ(m),ﬂlv(m )]r@éwD(a:—a:)—FQ@’éT. (14)
Die Vakuumerwartungswerte der symmetrisierten Produkte:
<{AM($)’ A:r(xl)}>Vac - ﬁle(:I}—:C') (15)
, . , OD;(x— ') )
U (2), W2 ) ype = 8,, D (:E—:E)-{-QTV,————, (16)

D, D! sind die invarianten D-Funktionen zur Masse Null in der
Bezeichnung von Scmwineer®), wihrend D, und D) folgender-
massen definiert sind:

113 d3 * . _m =
D#(.av;)—ju(w)fz';l (3 o8 (xa); (xa) = %B—| %y
(17)

1\3 a3 ;
D (x) = + (2“}{) f_fﬁ ﬁ;“i? sin (#x) .

Die einzigen im Folgenden verwendeten Eigenschaften derselben
sind :

D,(2) =D, (=) |

L (18)
DL(#) = —Di(—2) |
und |
D4 ( 33) _ I“g"‘“f["eé"l ausserhalb des Lichtkegels
l 0 innerhalb des Lichtkegels (19)
Dk(gc) X l gxgﬂz 'I*;ka ausserhalb des Lichtkegels
l 0 innerhalb des Lichtkegels

Damit wird zun#chst

$o= Hy+ 5 [ 5,0 (o — o) [, (), Ha (w)]

wobel
_ 10 (2>0)
Szét.—/da:(')@(m—w’)Hl(xé): S(—o0) = 0.
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Setzen wir hierin ein

i,(2) %,(0) () 2, (a")] =
i{f,xm),j,,(x')}(w D(a—2) 4 2?1”’“‘27”)

2

+27,(@) s (@)%, (2), (o))

so kénnen wir durch partielle Integration die Ableitung von D,
auf @ abwilzen:

1 / N . ny 0Dy (-2
+?/d3xfd4m Ox—1x'){], (m,yv(m)}%,,%(x,,ﬂ

Ty
(Wegen ——g”g ¥ O)

= o lfd%fd‘lm’d(mo——xo {j,(x),0(2")}D, (x—1z")

Lﬁ_fds fd3 z _"fl.

Dieser Term kompensiert genau die Coulomb-Wechselwirkung und
wir verbleiben mit

B — +71fd3m./ad4m’@ (w— ) {j, (@), ],(x)} D(a— )
- @ @42 0@ — ), (0).5,(@)]{% @), W)} (20)

wahrend man aus (9) erhilt:
- +--1—fd3:cfd4x’@(;c—m' {jy 2), 'v(x")}D(a:—a:’)
= fd?» fd“x 6 (z— ) [, (2), 7, (@)]{A4,(2), 4,(&)}. (20"

Rechnen wir unter Verwendung dessen nun J,, —dJ,, aus, so er-
halten wir einen Ausdruck von der Form

dDd(a: — " 0D (x"— 2")
4 a4 i 4" "
jd fd 28,0 fd fd% ooy 22 O%f :

Dabei sind S,,, ., So,u . Summen von Termen von folgendem Bau:
em‘Produkt dreier @ malleinem aus 7,(x), y,,(ac’),. 1o (& )5 Pa (a:.’”)
gebildeten Kommutator. Diese Ausdriicke lassen sich zunéchst in
z, ' symmetrisieren; ferner, wegen der Symmetrieeigenschaften
von D, und D!, kann man beztiglich z” und 2” im ersten Integral
antlsymmetrisieren, Im zweiten symmetrisieren. Wir diirfen also
Ssovu ersetzen durch Sy 1. Saev,. durch Siy Wobei runde
Klammern Symmetrisierung, eckige Antlsymmetmslerung an-
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deuten. Schliesslich lassen sich solche Produkte dreier @ — die
eine Grossenbeziehung zwischen den x* festlegen — linear aus
vierundzwanzig Basisgrossen O (iklm) aufbauen, wo @ (iklm) = 1,
wenn ot < gF < g8 < 2™, sonst = 0 ist. Zum Beispiel ist

O (2—a') O (z—a") @ (x—7") = O(0128)+6 (0218)+6 (0231).

Fihren wir diese Zerlegung nach der Basis durch, so erhalten
wir vierundzwanzig Terme von der Form

Jarar [asar O (ikim) Sikim, 2Lt )

GQJ pfj, 0359”

OD (xfl IH
ik
+fd4 "fdw@ (iTclm) S{kim 220 220

Nun konnen wir partiell integrieren; infolge der Kontinuitéts-
gleichung fir die Strome wilzt sich dabei die Differentiation nur
auf @ ab. Das liefert z. B.

00 (3012)

03:0

== 4 8,,0(301) 6 (z,— ) - (21)

Fasst man jetzt alle Terme, die zu einer bestimmten Permutation
von (301) — z. B. (301) — gehiren, zusammen, so findet man, dass
sich alle auftretenden Kommutatoren mit Hilfe der Jacobischen
Identitdt derart zusammenfassen lassen, dass [7,(z'),7,(z")] als
Faktor erscheint. Wegen des Faktors d,, 6 (x; — zp) 1n (21) ergibt
das [5, (&', )), J4(x", x;)]. Fir diesen Kommutator, der auch im
Problem der Vakuumpolarisation auftritt, findet man leicht

[7,(2), 1(2")] 8,4 8y — ) = (p ()" (") —p (2" (') 84 (' — ).

Davon verschwindet der ,,Einteilchenterm‘(?), da der Einteilchen-
term von wy,(2') ys (z") bei z’' = z” regular ist. Der Vakuum-
erwartungswert hingegen ist zunéchst unbestimmt

oA~y o,
e 4 (5 —a)

muss aber aus physikalischen Griinden zu Null limitiert werden
(vgl. 7). In diesem Sinne diirfen wir also setzen

(7, (&, %), ja(@”, 2)] = 0.

Damit verschwindet unser Integral. Dasselbe gilt fir den zweiten
Term und ebenso fir jede beliebige Permutation von (301). Damit
1st (12) bewiesen.

(namlich formal =
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§ 4. Rechnung im Impulsraum.

Nach dem in § 2 angegebenen Schema fithren wir zunéchst die
Rechnung im Impulsraum durch. Auf Grund der Resultate des § 3
brauchen wir dabel keine Coulomb-Wechselwirkung einzutiihren,
so dass Hy = — W wird. Einfachheitshalber verwenden wir den
Formalismus der Storungstheorie im diskreten Spektrum (indem
wir etwa unser System in einen grossen Kasten eingeschlossen
denken) und fithren spater den Grenziibergang zum kontinuier-
lichen Spektrum aus. Die Zustdnde numerieren wir symbolisch
durch einfache Indizes k, [, m, ..

In der speziellen Darstellung, in welcher H, diagonal 1st:

k|Hy|) =E,(k|1]]

wird (k| Hy| D
(e|81) = LD

l)
(6| T1) = 5200 (B4 By - 0 (B~ Ey.

Rechnen wir damit das $, aus, so erhalten wir nach einfacher
Zusammenfassung der Energienenner:

(k| Hy|ny) (ny | Hy|ng) (ng | Hy|ng) (ng [H,y[1)
54“ Z 1 Elk IlTnl) iEkz E:)(Ei 3En3)3 1 (2)
]L’na*E:’.
Ny T fig
_ (B|Wny) (ng|Hylns) (ng|Hy[1) | (E[Hy|ny) (ny [Hy|ng) (ng| WI)
nl%:n{ (Ey— Bn,) (Ey— En,) * (By— En,) (B~ En,) } (b)
Ep, +E;, '
(k| Hy|ny) (g | W |ng) (ng [H,y|l) '
f,,; (E,=En) (B En) v
k| H, H1 l) | _
— 3 R G {k18a) U al)—20m Salm)} (0
1 (k| Hy[m) (m |H, 1) (| (k[H,|p) | |p) 2}
7 B-E, {, B, ” lEp J (d)
v (R Hy ) (o |Hy ) (o [ Hy | m) (| Hy D |
2 (By—E,y) (By— B,) (B, E,) ' (e)  (22)
Ey % Ey

Dabei sind Summationsbeschrinkungen der Art E, + E; beim
Ubergang zum kontinuierlichen Spektrum so zu interpretieren, dass
iber den betreffenden Pol des Integranden der Hauptwert ge-
nommen werden soll.

Unsere néchste Aufgabe besteht darin, die Terme zu diskutieren,
die zu selbstenergieartigen Divergenzen Anlass geben, das sie
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kompensierende W aufzusuchen und zu zeigen, dass sich dieses
tatsachlich als reine Massenrenormalisation darstellt. Zu diesem
Zwecke haben wir zunéchst die oben nur symbolisch dargestellten
Matrixelemente aufzuschreiben. Machen wir in gewohnter Weise
eine Fourlerzerlegung der Felder:

4 ' L
Spinorfeld: v (r, t) = (2—15)3/22 fd3p a,(p) u,(p)e®*=ED  (23)
o=1
WO
Be =+o0@);od)=ymtp?
4

Q' = Summation iiber Spin und Energievorzeichen,
o=1

#g(P) = normierte Spinoren

g (P) = Absorptionsoperatoren:

{ao- * ‘) }: 0 . N
{056 aa (p)}=666’5(13_p')
Strahlungsfeld: 4, (z,t) = (u 3/22 f S(%)el, gi (e 2= 1)
+A:(—+)e e-—t(xa:——xt)} (24)
WO
= | % |
Z = Summation iiber die Polarisationsrichtungen,
e (%) = ei(—i) = Polarisationsvektoren:
0(s+ 8"
e (%) e (x) = ¢°*' = [+1s—s_123)
Z g l -1 Es:: §'=0)
A, (%) = Absorptionsoperatoren :
A, A G -0
[A; (%), Ay ()] = — 0,0 (¢ —=")
so erhalten wir leicht aus eH, = — /Pd3m j, A4, mit 7, =e (¥* o, )

und unter Weglassen der Zeitfaktoren:

e 5 fef

{6(p—p'—%) (w,(P) v, € (%) u, p))a
Tﬁ(ﬁ—ﬁ'+§)(uﬁ(5)a (%) uy (D)) 0 (P

Q
=Y
=3
R
W
—
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Das Vakuum ist zu definieren als:
4»15(5)-‘17‘_.30

a,(p) Wy = 0(E,>0) ‘ tir das Spinorfeld im Sinne

.

ar(p) Wy, = 0(E,<0) [ der Lochertheorie.

— 0 beziiglich des Strahlungsfeldes

Nun zur Diskussion der selbstenergieartigen Divergenzen. Es
treten dabei folgende Termtypen auf:

1. Terme mit einer Integration tiber zwel unabhéingige virtuelle
Zwischenzustédnde. Es sind dies Terme in (a) und (e), bel welchen
neben der gewiinschten Comptonstreuung virtuell ein Elektron-
Positron-Paar und ein Photon erzeugt und wieder vernichtet
werden. Diese Terme kompensieren sich bis auf gewisse konvergente
Restterme, die von der Modifikation des Vakuums durch die bei
der Comptonstreuung reell und virtuell vorhandenen Teilchen
herriihren.

2. Terme, in denen ein (reelles oder virtuelles) Elektron ein
Photon emittiert und spéter wieder absorbiert: sie kompensieren
sich exakt in (a) und (b).

3. Die Terme (c).

4. Paarterme, d. h. Terme, in denen das Vakuum in einem zwei-
stufigen Ubergang virtuell ein Paar mit verschwindendem Gesamt-
immpuls erzeugt: solche treten nur in (a) auf.

5. Die Terme (b) + (b').

Man sieht zunéchst ohne weiteres, dass die Terme (¢) wegfallen,
wenn die Diagonalterme von W genau die Selbstenergie von Elek-
tronen und Photonen im betreffenden Zustand darstellen. Von der
Photonselbstenergie welss man zwar aus Griinden der Eich-
invarianz, dass sie verschwinden muss, und dies liefert ja gerade
eines der Hauptkriterien fiir ein sinnvolles Limitierungsverfahren
(vgl. ) und § 8). Um uns aber mit solchen tieferliegenden Fragen
hier nicht zu belasten, werden wir in W auch die Photonselbst-
energle mitbegreifen, ohne damit etwas Neues einzufiihren, da sie,
wenn nicht formal im Impulsraum, so doch physikalisch ver-
schwindet. |

Fiir den Selbstenergieoperator setzen wir also an:

W =W, + vV:z (26)
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wo W, eine Photonselbstenergie ist: W, = const. /d%ﬁ -4, (x) 4,(x),
auf die wir nicht néher einzugehen brauchen, und

IS

| % (13 (D) A6, (")) 4% (P) e (B) + coni. 27)

L aP-k)+Bmiw (P-%) a(P-x)+pm—w(p-x).
A:Z“’vl“‘ 20 (p-%) % —20 (p-#%) |
2 R - ey a3 a1 R AT Wy 3w -

der von WEeisskorr und Frencu?) eingefiihrte Selbstenergie-
operator des Elektrons ist. Mit dieser Wahl verschwinden die
Diagonalelemente von $,, d. h. die Terme (¢), und die Paarterme
in (@) kompensieren sich gegen den divergenten Anteil von (b) + (b").

Der Operator (27) hat zwar nicht die Form einer reinen Massen-
normalisation, die lauten wiirde:

W, = const. 2fd3p(u P)Buy(p))a,(p)ay(p’) (28)

und man sieht auch leicht, dass ein Ansatz der Form (28) nicht
imstande ist, simtliche Divergenzen zu kompensieren. Es wire
indessen falsch, zu verlangen, dass die Selbstenergie in unserem
unrelativistischen Formalismus die Form (28) haben miisse. Das
Einzige, was wir fordern diirfen, ist, dass sie durch konsistente
Limitierung in die Form (28) gebracht werden kann, was fir (27)
zutrifft. (Vgl. 4) und § 5). Ausserdem ist es nur konsequent, den
Selbstenergieoperator so zu ibernehmen, wie er sich im Sinne der
verwendeten Storungstheorie ergibt, d. h. eben in der Form (27).

Nachdem auf diese Weise die selbstenergieartigen Divergenzen
eliminiert sind, besteht unsere nichste Aufgabe darin, sdémtliche
verbleibenden Terme durch Aufsuchen aller moglichen Zwischenzu-
stdnde aufzuschreiben und zusammenzufassen. Das Resultat dieser
sehr langwierigen Rechnung ist eine Formel, die immer noch meh-
rere Druckseiten fiillt und deshalb hier nicht wiedergegeben werden
kann. Untersucht man die noch darin steckenden Divergenzen
bei hohen Impulsen, so findet man, dass sie alle die Form haben:
C-$y wo C ein von den Impulsen der Teilchen unabhéngiges
divergentes Integral darstellt. Man kann sie also als Renormali-
sation der Ladung interpretieren und subtrahieren; die exakte
Determinierung des zu subtrahierenden Ausdrucks werden wir
unten vornehmen??).

33
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Ausser den bisher allein erwéhnten Divergenzen bei hohen Im-
pulsen enthéalt unser Ausdruck noch einen nicht-integrablen Pol
1m Integranden, d. h. eine Ultrarotkatastrophe. Dass dieselbe keine
Schwierigkeit darstellt, ist wohlbekannt?)®). Der Grund ist fol-
gender: Bei jedem Streuprozess werden in Wirklichkeit ausser
dem gestreuten Photon noch unendlich viele Lichtquanten beliebig
kleiner Energie emittiert, so dass die Frage nach der Wahrschein-
lichkeit, dass genau nur das gestreute Photon emittiert wird, physi-
kalisch keinen Sinn hat. Einzig sinnvoll ist die Frage nach der
Wahrscheinlichkeit, dass das gestreute Quant in einem bestimmten
Raumwinkelelement d £ liegt und ausser thm kein anderes von
einer Energie > u emittiert wird, wo g eine Grenzenergie darstellt,
fir die e?log (#,/u) €1 gelten muss. (%; = Impuls des Streu-
photons). (Vgl. dazu § 9 und %).) Zu unserer ef-Néherung fir den
Compton-Querschnitt haben wir «lso noch den Wirkungsquer-
schnitt fiir' den Doppelcomptoneffekt zu addieren, bei dem das
zwelte emittierte Photon < p ist: dieser ist namlich ebenfalls ~ €8.
Er betragt fir u <€ »,:

" _1 134 3%]?93 Pi 12
"W = 3 (33) & | 151 (oo —mm| "4 @9)
%] < p

wo do, der Klein-Nishina-Querschnitt, (px) = p% —w (p)[x| ist.
Dies kompensiert, wie man leicht nachrechnet, genau die durch §,
in die e8-Korrektur zum Compton-Querschnitt hereingebrachte
Divergenz beim Pol des Integranden. Formal kann man die Ad-
dition von d¢”’ (#) zum Compton-Wirkungsquerschnitt so durch-
fithren dass man den Pol im Integranden von £, dadurch weg-
schafft, dass man dem virtuellen Photon die Masse u erteilt, d. h.

einfach |»| durch 17;73}752_ ersetzt, mit der Abmachung, alle Terme
=< 0(u) zu vernachlassigen. Das so erhaltene $,(x) bestimmt dann
direkt dog + do'’ (1) = dog(u). Diese Bemerkung wird uns spéiter
noch von Nutzen sein.

Nachdem so die Ultrarotschwierigkeiten eliminiert sind, kénnen
wir die genaue IForm der Ladungsrenormalisation festlegen
durch die von CoriNaLDESI und Jost?) aufgestellte Forderung,
dass im unrelativistischen Grenzfall die Korrekturen verschwinden
sollen. Dies bedeutet physikalisch, dass wir die Thomsonformel
als Definition der Elementarladung ansehen.

Wir subtrahieren also von dog(u) ein solches Vielfaches von doy,



Hohere strahlungstheoretische Niherungen zur Klein-Nishina-Formel. 515

dass nachher dog(u) > 0 fiir %, - P,. Damit erhalten wir fiir unser
definitives Matrixelement im Impulsraum:

5;’4(;“; 50’205%—11,;‘1)_§4(N;50:§50§ﬁmf’0) (30)
wobei: P, = Impuls des Anfangselektrons

Py = ,,» Endelektrons

B = s ,»  Anfangsphotons

Hi= ,» Endphotons

§ 5. Ubergang zum Ortsraum, Lorentzinvarianz.

Die mit der in § 4 skizzierten Methode gefundene Formel fiir
9a(u) zeichnet ein Bezugssystem aus, und es erwichst uns die
Aufgabe, dieselbe in lorentzinvariante Form umzuschreiben. Vor-
teilhafterweise gehen wir hierzu wieder auf das $, zuriick, in
welchem Ladungsrenormalisation und Ultrarotkatastrophe noch
enthalten sind, und diskutieren dann dieselben am Schluss analog
zu oben.

Wir werden in diesem Paragraphen $, in den Ortsraum trans-
formieren, wo die Lorentzinvarianz beinahe evident ist. Gleich-
zeitlg erreichen wir damit den Anschluss an den Schwingerschen
Formalismus. Zu dieser Transformation bendtigen wir die in § 4
angegebenen Fourierdarstellungen der Felder und jene der In-
varianten D- und S-Funktionen?); des weiteren die Gleichung

Pf-‘?wﬁe—wtz—mi = ime(l) (81)

zur Transformation der Energienenner. P vor dem Integral be-
deutet, dass man iiber den Pol bei w = 0 den Hauptwert zu nehmen
hat, was genau der Summationsbeschriankung in (21) entspricht.
Ausserdem 1st zu beachten:

[om s [F G+ 0 @)+ F (B — o))
~ [ potp,p+m)F (B,p) . (32)

Um ein Beispiel fiir diese Art von Rechnung zu geben, fiithren
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wir die Transformation des Selbstenergieoperators W, in (27)
durch: Wir schreiben ihn zun#chst

O P

>

><<53p — T?) (D) ag (p")

* > ap’'+Pmt+o(p) ap’+pm-op)
X(u"(p)mC [ P~ w(p)—x po+w(zv)+x

] o, U (P )) + conj.
Geht man von den a-Matrizen zu den y tiber mit
u* =uyt; B=ypY a,=1iy*y”

so kann man W, offenbar schreiben:

We= ZZfdspfd"’ ”fd“ fd‘*xéxx (p,p” +m?)

oo’ u=1
S (3N _ _ i .
‘;‘*’Lf %) 03 —p") % (e (x0) + £ ()] (0, (p) y* (Pl im)

X p* g (") )aa (p) a, (p") + conj.

Durch Fourieranalyse der beiden dreidimensionalen ¢-Funktionen
und des Energienenners nach (81) wird dies

We=—1 ngdsffdw/ds [@p [asp’ s ()

oo’ u=1
X 5(m) + m2) [ (i) + € (pg)] (%, () Y*(¥* P+ 1m) p*u,(p"))
X 0% (p) @y (p") & (1g) €+ 2"y 1" g0 =9"p5" 4 conj.

wobel wir noch die Zeitabhiingigkeit beigefiigt haben, im Sinne
des Ubergangs zur interaction representation. Dies ist unter
Beachtung der Definition der D- und S-Funktionen und von (23):

_}T;/dsmfdw (% (2)y*[Dy (z— ) 8 (2 —2)
+D(z—2z") 8, (x—z)]9* p(z )+con3 (33)

womit die Transformation geleistet ist.

(33) 1st genau der Einteilchenterm von g)z, von dem SCHWINGER3)
gezeigt hat, dass er durch formale Umformungen, deren Berech-
tigung man durch konsistente Limitierung etwa nach PauLri und
VinLars?) nachwelsen kann (vgl. auch § 8), aut die Form einer

reinen Massenrenormalisation ém f Y (z)y(x)d®x gebracht werden



Hohere strahlungstheoretische Naherungen zur Klein-Nishina-Formel. 517

kann, was die Wahl von (27) nach einer Bemerkung daselbst recht-
fertigt.

Transformiert man analog zum Obigen unser £, so erhalt man,
mit den Bezeichnungen:

F(z)=F(0),F (a;)EF(1),F(:E”);F(z),F(mf”);Fw) | l
F(z—a')=F(01), ... ;e (wp—x)) = %_5(01)
Spur 4 = <A> | , | l E

' 2%54

+e fd4 Jasa [arar [aser

{Dy(03) (3 (0)y S(Ol)y""A (1)S(12)y74,(2) S (28)y"%(3))
+D(03) (7 (0) " Sy (1) 4, (1) S (12) "4, (2) S (28) 7 w(3) L.
+D(03) (w(O)y S (01) ”A() (12)774,(2) S (23)y" v (3)) |
+D(03)(v (07" S (014, (1) S (12)7°4,(2) S: 287"y 3))}

+ fd4 d4 fd4 flfd4 I.Fl

(D (1) (9 (074, (0) 8. (01) 7S (12) "4, 8 @)y ®) | 11
+D(18) (v (0) yid L (0)8(01)5°8,(12) 14, (2) 8 (23) y v(3))
S, (23

+D(19) (7 (0)7"4, (0) 5(01)y7 S (12)7" 4, (2) 8, 28) 7" v (8))}

—5 [ata [ara [ase’ [asar e(13) (5 (0) "4, () S (01 ”

1) 5,
S

III.

x [D;(12) S (12) + D (12) 5, (12)]y° S (28) V”A (3)(3))
-—fd4 fd4 fd4 ”fd4m”’a A (0)S(01)974,(1) v
« S (12)[D; (23) 8 (23) + D (23) 8 (23)]7/ »(3) | |
~3 f iz f dt ' f 42" f d4x"e (13) b (12) (% (0)y»4,(0) S (01)
x (1)) <y S (23)y"4,(8) S, (82)> .o f

+ hermitisch konjugiert. (34)

Dabel haben wir bereits einen Term Weggelassen, nimlich:

—-fd‘l fd4 fd4 ”fd‘*x’”(w y7p (0))D (03)<S (21) y*4,, (1)
(;13)}7/"»3 _(32) ,(2)+ 8, (21)y"4,,(1) 8 (13)9/ 8(32) A4,(2)
+8(21)p#4,,(1) 5, (18)y" S (82) y"A, (2) >, |
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Diesem sieht man im Impulsraum nicht ohne weiteres an, dass er
verschwindet, wihrend diese Eigenschaft im Ortsraum sofort evi-
dent ist: Man braucht nur beziiglich (x, 1) und (», 2) zu symmetri-
sieren, worauf man sieht, dass die Spur gegeniiber simultaner Um-
kehrung aller dreier Argumente der S-Funktionen schief ist und
sich demgemiss ithre Terme gegenseitig kompensieren.

Was nun die Lorentzinvarianz des Ausdruckes (34) betrifft,
so ist dieselbe fiir die Terme I und II ohne weiteres klar, da sie
nur invariante Funktionen enthalten; bei den ibrigen Termen
zeichnet jedoch das freie & noch ein Bezugssystem aus. Solche
Integrale mit einem freien &, von der Form

f&&@ﬂﬂ

sind dann invariant, wenn F (&) ausserhalb des Lichtkegels ver-
schwindet. (Es 1st zu beachten, dass wir unter Lorentzinvarianz
stets nur Invarianz gegeniiber der eingeschrénkten Gruppe ohne
Zeitumkehr verstehen.) Wir brauchen also nur zu beweisen, dass
die Funktionen

F(§)= [ty S (E—n)y Dy (n) S () + D (n) Sy ()]
= (r"5g—m)r 2®
wo (&)= [atn A(E—n) [Dy(n)S ) +D (n) Sy (n)] (fir 1L, IV)

und (&)= [dqD(E—n <y Sy Si(—n)>  (far V)

ausserhalb des Lichtkegels verschwinden. Nun gilt: Eine invariante
Funktion F (x4, z;, s, x3), die ungerade ist: F (xy, 21, Xsy T3) =
—F(— x4, — 21, — %, — 3), verschwindet ausserhalb des Lichtkegels.
Wir brauchen uns also nur um den geraden Teil der obigen Funk-
tionen zu kimmern. Derjenige von @ z. B. ldsst sich schreiben
L P+ D (&)= [d4n A (§—n)[Ds (1) - A (1) + D)5 -]

4

und dies muss aus Invarianzgriinden die Form haben

[0+ 8] = v5v(®)

wo nun v (&) invariant und ungerade ist, und also ausserhalb des
Lichtkegels verschwindet. Damit ist die Behauptung fir & (&) er-
wiesen, also auch fir I. Fir F’ geht der Beweis analog.
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Nachdem so die Lorentzinvarianz von (34) festgestellt ist,

konnte man leicht auch die Eichinvarianz verifizieren, d. h. die

. s * ‘;0 A
Invarianz gegentiber einer Ersetzung von 4, durch 4, + - %, Da

wir diese Eigenschaft iiber schon in § 8 bewiesen haben, gehen wir
hierauf nicht naher ein.

Bevor wir zur Diskussion von (34) schreiten, skizzieren wir noch
die direkte Herleitung im Ortsraum,

§ 6. Rechnung im Ortsraum.

Wir gehen mit dem in § 3 begriindeten Ansatz fiir die Wechsel-
wirkung

e H, _=.efd‘*mh(:c):——ij(cc)AM(x)d‘*w (35)

ju () =1ie(y () "y (@)

in das Schema von § 2 ein. Fiir die Selbstenergie setzen wir ein

WO

2 = 2 f d3aw(z) (88")

mit w(a) = — [d*a’ (7 (0) 7[5 (01) Dy (01) +8,(0) DOD "y (1))
-+ conj.

NB. Auch hier gerit man in Schwiefigkeiten, wenn man statt (33")
direkt eine formale Massenrenormalisation

w' (z) = dm (v (z) v (x))

mit divergentem dm ansetzt. Vgl. dazu 8).
Fiir die Felder gelten die Vertauschungsrelationen

[4,(z), 4,(2")] = 16,,D (z—a') (36)

{p(@),p()}=—iS(@—a); {v.v'}={v, 9} =0 (86

Dabei bedeutet, wie frither, [4, B] den Kommutator, {A, B} den
Antikommutator. Ausserdem brauchen wir die Vakuumerwartungs-

werte:
({A4,.(z), 4,(2") Pyae = 0, Dy (z— 1) (37)
([ (2), ¥ (2)])yae = — 81 (z— ) (37')
Aus S = —iH, folgt |
S = -—%/d‘l ' ¢ (01) h (1)
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wobel wir die Integrationskonstante anders gew#hlt haben als in
§ 8, was fiir diesen Zweck giinstiger ist. Damit:

:—/d3xw H—/d3 fd4 & (01)[h (0), b (1)]

Fiir T gilt: T = —i$, Wir zerlegen es in zwei Anteile, wovon
der eine nur w(x), der andere nur h(z) enthalt:

le—%[Hl,S]: Tl———/d“ fd‘-‘ e(01) e (12)[h (1), R (2)]
Ty = +iW: T, — +%’/‘d4w ¢(01)w(1)

9, zerfillt dadurch ebenfalls in zwei Teile:

a) Terme ohne w: $, = —1— [[[HI, S],S],S] ~‘rl[[H1, S1, T] o

b) Terme mit w: $,=—— [[W S — W5 T5] o [[HI,S] Ty

Dabei ist emn Term [W, T';] weggelassen, da er nur eine Selbst-
- energie 4. Ordnung darstellt und zu unserem Problem keinen
Beitrag liefert.

é;, é;’ konnen durch Anwendung der Jacobischen Identitét,
Umnumerierung der Variablen und Zusammenfassung der auftre-
tenden Produkte dreier ¢ geschrieben werden:

27§, = 32fd4 /d4 fd4 2" [ dta” [[h(0), k(1)) h(2)],h (3)ll
x &(01) € (02) & (23)

27 §) = — 5 f iz f d4 x”w/nd‘l 2" [[w (0), T (2)], 72 (3)] & (02) & (23)]

NB. Die Zusammenfassung der Produkte dreier ¢ ist wegen (31)
materiell identisch mit der Zusammenfassung von Energienennern
an entsprechender Stelle im Impulsraumformalismus; ausserdem
1st sie jedoch auch formal analog. Dies beruht auf Folgendem. Die
exakte Identitit

(38)

(a) e(k)e(il) =1+e(ik)e(kl)—e(rl) e(kl)
reduziert sich stets auf

(b) e(ik)e (i) —e(ik) e (k) —e(il) e (k1)
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da die Eins im Integral wegen f dia-h(z) =27 $, = 0 keinen Bei-

trag gibt. (b) ist aber identisch mit der Energienennerzusammen-

fassung
. 1 11 1 1 1

Ei_Ek Ei_El B Ez_Ek Ek_El W*"Ei_El EIG_ET,

In die Formel (38) haben wir die Ausdriicke (35), (833") einzu-
setzen und mit Hilfe von

’ Y 1 .. . ' | [ ’
D,u,A,u’?vAv] = 'E_{?,u’?w}[A,u’ "41/] i _g[?y’ ?v]{A,u’Av} (39)

und den Gleichungen (36) die Kommutatoren auszufithren, und
schhiesslich vom Ganzen die ,,Einteilchenterme® zu bilden, unter-
Verwendung von (87). Diese Operationen entsprechen genau dem
Aufsuchen aller Zwischenzusténde im Impulsraum, sind aber be-
deutend kiirzer als jenes. Hierin liegt — mneben der evidenten
Lorentzinvarianz — der Hauptvorteil des Ortsraumformalismus
gegeniiber demjenigen im Impulsraum.

Anschliessend kann durch erneutes Umnumerieren der Variablen
und Zusammenfassung von e-Produkten die Formel, wieder analog
dem entsprechenden Schritt im Impulsraum, weiter vereinfacht
werden. Zum Schlusse erhalten wir so eine Formel, die sich von
(34) nur um Terme unterscheidet, welche die Photonselbstenergie
enthalten, die wir ja hier im Gegensatz zu § 4 nicht subtrahiert
haben. Da diese aber, wie bereits erwahnt, aus Griinden der Eich-
invarianz verschwinden resp. zu Null limitiert werden muss, was
das In § 8 zugrunde gelegte Regularisierungsverfahren auch er-
reicht, so ist dieser Unterschied ohne Bedeutung.

§ 7. Auswertung der Formel (34).

Die Formel (34) enthilt, so wie sie da steht, noch Unbestimmt-
heiten, da die Ausdriicke im Integranden singuldr sind und je
nach Art der Zusammenfassung der Terme sich ein anderes Re-
sultat ergeben kann. In diesem Paragraphen werden wir die Aus-
wertung formal nach einem bestimmten Verfahren durchfiihren,
und erst in § 8 uns mit der Frage nach Rechtfertigung dieser
Rechnung befassen.

Zunichst kann man zeigen, dass der Term (V) in (34) ver-
schwindet. Unter Beachtung der Relation

—¢(13) D (12) S (23) = & (18) D (12) S (28) + 2 D (12) 5 (23)



522 Max Robert Schafroth.

kann man ihn namlich schreiben

+%fd4m/d4m’fd4m”/d4m’” £(18) D (12) + 2D (12)}
X (¥ (0) 74, (0) 5 (01) 7y (1)) <y (28)7"58,(32) > 4,(3). (40)
Nun i1st — vgl. 8) und 7) —
7, (1) = [ @4a/ <y 3 (01) 7", (10)> 4, (1)
der durch das Feld A4,(z) induzierte Vakuumpolarisationsstrom,
und dieser verschwindet in Anwendung auf die Schrédingerfunk-

tion, falls [J 4, = 0, was 1im wesentlichen identisch ist mit dem
Verschwinden der Photonselbstenergie. (40) wird also:

L e[ f aa' D(12) (# (074, (05 01"y (1)) 97, (2)

g [dta ] da [dta e (19)(9 (0074, (0)S(01) 7y (1)) 4, (3)07,,(3)
) ) (41)
WO 07,(2) = f dia"<y°S (28)"1 (32)> 4, (8)

57 (8) = f dt 2" <97 §(28) " S, (32)>D (12)

resp. den vom realen und virtuellen Photonfeld induzierten Va-
kuumpolarisationsstrom darstellen; da beide keine Quellen haben:
04,=0, OD =0, verschwinden é7,, 67, in Anwendung auf
die Schrodingerfunktion, und damit fallt (V) weg.

Zur Diskussion der tibrigen Terme in (34) schreiben wir alle in
die Form:

Qngrf& fd4 d4 v d4 2 (9 (0) 4, (1)K, (0123) 4,2) p(3))
(42)

Km(om:-s)_( ”/d4 /d4xfd4 Z [d*q'k,, (g%, q)
X 84 (q+x—u'—q') % e'® ”e*”""'e_”‘"'q (43)

Das Matrixelement von $, fir den Comptoneffekt wird damit:

: 1\3 1 e 1
(Pos %0 | Dal Prs %) = (_2“;;) 2l 5] (w4 (P[] K, (Por— 21— %0, P1) €
0 1

+ €4 k., (Pos %0, %1, P1) €7 ] % (Po) ) ) 0% (Do + #o— P1— 1) (44)

wobei: p,, p; die Viererimpulse von Anfangs- resp. Endelektron
#g, #; die Viererimpulse von Anfangs- resp. Endphoton
ey, ¢, deren Polarisations(vierer-)vektoren bedeuten.

NB. Wegen der Eichinvarianz der Formel brauchen die Polarisations-
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vektoren e, nicht transversal zu sein; sie miissen nur die Glei-
chungen erfillen: (e;e;) =1, (e;%,) =0. Sie sind also um ein
Multiplum von #; unbestimmt, entsprechend der Unbestimmtheit
der Eichung der Potentiale.

Die Bestimmung von k,, verlduft etwas verschieden bei den
. regularen‘ Termen I und II einerseits und bei den ,,e-behafteten’
Termen IIT und IV anderseits.

a) Regulire Terme: Fir I erhélt man sofort:

b=+ (o) X @y Tiy g—0) —mdy iy (g-+ w—k)—m]y’

X [1y (¢ —k)—m]y°

{ 0 (k) : d ((g—k)*+m?)
[(@= B2+ m?][(g+ o~ B2+ m?] ([~ k)*+m?] k2 [(q+x—k)*+m*][(q"~ k)*+m?]
0 ((g+x—k)*+m?)

1 B b mA [~ B

- o o @)

k? [(g— k)*+m?] [(g+ % — k)*+m?]

(Skalarprodukte von Vierervektoren schreiben wir hier als gewdhn-
liche Produkte: a’b, = ab; insbesondere a,a’ = a?).

Der Ausdruck in geschweifter Klammer kann auf folgende
Weise zusammengefasst werden?®):

b ——5(z) X [ @y liy @—1)—mly iy @+ x—k)—mly

1 1 1

x[1y(@ —k)—m]y® [ du-u? [ dv-v [ dwd" (k2—2[qk +»xk—qx]u
{2

+2[xk—xqluv+2[q k—qkluvw). (46)

Ganz ahnlich findet man fiir I1:

1/ 1\3 : e ,
by = +"§'(§E) .Zfd4ka/“[w (g+ =) —m]y°[1y (@ + x—k)—m]y
4 4 o 1 o 4
x [iy(g'—k) —m]y (gt x)P+m? (45)
se | o (k)? d ((g—k)F+m?) | 6((¢'—k)>+m?) |
Llg- k2 +m2] (@'~ k)2 +m?] ' B[(@'-k)*+m?] & [(q—k)*+m] |

_l_

und daraus

k=5 (35)° 2 (@ iy lg+ 9 —mly iy (a+ n—l)—m]y*

1

1
. ' ! PN 23 1 " ’
x[iy (g —K)—m]y* —5 [du-u [dvo' (k2 —2kq u
0 0

+2[qx—Fk ' uv). (46")
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Durch eine Verschiebung des Ursprungs im k-Raum bewirken
wir die quadratische Ergénzung des Ausdrucks im Argument der
0"~ resp. ”-Funktion:

in (46): (47) K =k—(q+»)u+=uv+(@q—q)uvw
in (46"): (47) k'=k—q u—x"uv

worauf wir die Integration iiber k' ausfilhren konnen, indem wir
fir die ¢-Funktion ithre Fourierdarstellung einsetzen:

‘ 1 + o0 4o
: ) .
6(m):-2nfe%wxdw; d'(m)zﬂu‘/wez xdw;
SO ..
+00
/" 1 * 2 iwa:
0 (:E)=—E;/w e*dw; usw.
—o0

Daraus erhédlt man unter Verwendung der Fresnelschen Integrale

+00 —
Jamerer =gy (1= )

— 00

leicht die Formeln

Jars (4 )=+ 55 (ke (e + ) —— (48)

und durch partielle Integration nach w:
1 '
., -?am{fd%a (k2+A)+n}l
[d‘*kk#kvd’”(k“rfl)w—é—émfd‘*ké” (k2+ A) l

[askle, b, 0" (k2 + 4) = - -

wihrend Integrale mit einer ungeraden Anzahl &, im Integranden
aus Symmetriegriinden verschwinden.

b) Due e-behafteten Terme: Um sie in dhnlicher Form wie die
reguldren zusammenfassen zu konnen, bendtigen wir eine Um-
formung des in allen vorkommenden Operators

A(02) = —% fd‘l 2’ 5 (01)9°[D, (12) S(12) + D (12) S,(12)]y°- & (02)
(49)
Dieser kann zunéchst auf die Form gebracht werden

A(02) = + 4 [d*' 5 (01)y°[D, (12) 5 (12) + D (12) 5, (12) 1" +

+ 5 [ S(01)7°[D,(12) 5 (12) + D(12) 8, (12)] "¢ (02)
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Durch Fourieranalyse und analoge Zusammenfassung wie unter a)
erhélt man dafiir leicht:

1

(02):—1(2 )fd4kfd4pfdu[2 p?+m?) (1—u) — 2m (1 + w)

X Gy p—m] |y b —ime (02) ¢ (p) 6 (24 m?)]
X a’(k’z—{—’m u? 4 (p2+m?) (%__u2)>e'£p(x—a:")

Wenn man darin im Term mit 6 (p2+ m?2) tberall p2+m? - 0
ersetzt, so kann man in ihm die p-Integration durchfithren und
erhalt

— L e(02)8(02) = §(02),

was wir nun mit seiner Integraldarstellung wieder zuriicktransfor-
mieren. Das ergibt schliesslich:

A(02) = M—%(El—j?yfd%’fd“pjdu(lw—u) 5 (K% + m2u?

+(p2+m)(u u? )ewtw ")

s /d4k’/d4 fdu(l—uz ]dv iy p—m)

x 0"(k'2 4+ m2u? + (p? + m?) (u—u?) )e”’(m L (50)

Mit (50) 1st noch ein zweiter Beweis fiir die Lorentzinvarianz der
e-behafteten Terme gebracht, und ferner kdnnen wir nun sofort
deren k,, analog zu dem der reguldren Terme aufschreiben. Dabei
erkennt man, dass sich die divergenten Terme, d. h. diejenigen,
welche 6" enthalten, in reguldaren und e-behafteten Termen gegen-
seitig wegheben. Dies beruht wesentlich. auf folgende Identitét,
die man leicht durch partielle Integration gewinnt:

1
fdu(l-wu)é’(kz +A) =fdu-ru,é’(k2+A)
0

—[au-u—uw) L g2 a). (1)

Die einzigen Divergenzen, welche unsere Formel fiir k,, noch ent-
hélt, rihren von Polen im Integranden der u,v,w-Integration her.
Diese stammen von der Ultrarotkatastrophe; dies sieht man am
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einfachsten daran, dass sie verschwinden, wenn man entsprechend
einer Bemerkung in § 4 dem Photon formal eine kleine Masse u
erteilt, d. h. den Wirkungsquerschnitt do”(u) des Doppelcompton-
effektes addiert.

Unter Beriicksichtigung dessen erhélt man aus den Formeln
(46) bis (50) den vollstandigen Ausdruck fir den Kern k,, von

94(#) unter Einschluss des Doppelcomptoneffektes fiir ein Zusatz-
photon mit Energie < u:

If

I1.

k.uv (Q’ s %” q’; M) =

1 1
L2 R T LIV 5 PPUr O A T
+?(?:?) jduu/dv@
0 0

'

ld \ 1 \2
_/ w: (m2u2+p,2 +2qxu(l—u) (1—v)—2xx’u2vzw(1—w))
0

xyliy(g—(g+ %) u+ xuv+(g—q ) uow)—m]y*
x[iy(g+x—(g+ =) u+xuv+(g—q)uow)—m]y”

X [iy(q'— (g + %) u+ xwo+ (g—q) wvw) —mly”

4 1 l 1
7 3 v 2 )
_K(ﬂ) /du % fdfu v
0 B

1
1

fdw mEutt 2gru (l—u) (1—0)= 2 ut ol w (1—w)
0

x{ytyey vty iy (¢ — (g + %) u+ xuv+ (q—q') wow) —m]y° +
+ 72y 1y (q+ x—(q+ %) U+ xuv+ (q—q’)uvw)—m]y"y"y“+
+ 97Ty (q—(g+ #)u+ xuv + (g—q ) wvw)—m]y*yey"y»°}

1 1
/1 \3 ) 1 iy(g+x)—m
—_ — . 4 u o
2 (2:-5) ‘/du ’u,/ dv m2u2+2qx(u—u2)vy —2qx L4
0 0

X [iy(q—f—x—(q+x)u+%’u(l—?)))—m]y”

x iy (q—qu—x"uv) —m]y”
1 1

mn{1\3 [/ 3 m v
“?(2:1:) /d%'%(l—’lﬂ)./d’() m2u2+29n(u—u2)vy#y
0

%
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) .
(L m(1\38 ,iylg+x)—-m , - .
+“§“(“2?) TP -—1+fd“ ull =) e

1 2 | O
m2
+/d%'%(1-u) m2u2+2q;¢(u—u2)
0
1 2
. —_— qx
—/du fi L =) mPu?+2qx (u—u?)
§ _
A 1 Am?(gx)
m2
+ /du-uz(l—%) (1—u?) fd”'” [m2u2+2qx?:—“2)”]2
6 0
1 , , ; 4 (gx)?
—fdu-u (1—u )fdfu-v[m2u2+2qx(u_uz)y}2-
o 0
+/ld’u--‘u,2(1—%) ld’um () | (52)
L miul+2qx(u—u)v : '
B 0

+ das hermitisch Konjugierte, in welchem die Substitution
q<—> q', x<—> x' gemacht wird.

Die Terme I und I" stammen aus I von (34), II aus II, III und IV
aus III, IV, V und den Termen mit &’ k, 6" (k'® + 4) aus IL

Die Tatsache, dass hier im Gegensatz zur Impulsraumrech-
nung in § 4 nach Renormalisation der Masse keine Divergenzen
mehr auftreten, rithrt daher, dass wir die Vakuumpolarisations-
terme (34, V) unter Berufung auf die Eichinvarianz resp. eine ge-
eignete Limitierungsvorschrift (§ 8) weggelassen haben. Eine for-
male Rechnung héatte uns statt dessen wie in § 4 eine unendliche
Ladungsrenormalisation geliefert. Wenn die Theorie nun iiberhaupt
verniinftig 1st, miissen wir erwarten, dass ausser der von der Va-
kuumpolarisation herrithrenden (unendlichen) keine weiteren (end-
lichen) Ladungsrenormalisationen auftreten, d.h. dass unser
Matrixelement (52) im extrem unrelativistischen Grenzfall ver-
schwindet. Eine nicht schwierige Rechnung zeigt, dass dies in der
Tat erfiillt ist.

NB. Dabei ist der Zusatzterm -+ in (48") wesentlich. Seine wahre
Begriindung erhilt dieser jedoch erst in § 8 vom Standpunkt der
Regularisierung.
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§ 8. Regularisierung.

Die einzelnen Glieder jeden Terms von (34) divergieren i. A.
quadratisch, und erst die Zusammenfassung derselben mit den
Parametern «,v,w, verbunden mit der speziellen Variablentrans-
formation (47) reduziert die Divergenzen jeden Terms auf bloss
logarithmische (charakterisiert durch das Auftreten der Funktion
0'). Diese heben sich dann, wie gezeigt, aus den einzelnen Termen
gegenseltig weg. I'ihrt man die Zusammenfassung anders durch,
insbesondere mit einer von (47) verschiedenen Schiebung der ein-
zelnen Glieder gegeneinander, so treten (divergente oder konver-
gente) Zusatzterme auf, die unser Resultat (52) wesentlich andern.
Es 1st also notig, fiir unser spezielles Vorgehen bei der Auswertung
von (34) eine Begriindung zu geben. Hierzu gibt es verschiedene
Moglichkeiten.

1. Erstens ware denkbar, einfach zu postulieren, dass alle
quantenelektrodynamischen Formeln analog zu unserem Vorgehen
mit den %,v,w-Parametern zusammenzufassen seien. In der Tat
fihrt dieses Verfahren in allen bisher behandelten Fallen zu sinn-
vollen Resultaten (vgl. 3)). Indessen ist diese Vorschrift doch ziem-
lich undurchsichtig, und es ist auch nicht sicher, dass sie fiir Pro-
bleme hoherer Ordnung immer noch durchfithrbar bleibt.

2. Zweitens kann man eine in sich konsistente Limitierungsvor-
schrift rein mathematischer Natur erlassen, die unter Wahrung
von Eich- und Lorentzinvarianz den auftretenden unbestimmten
Symbolen einen eindeutigen Sinn beilegt, wie das Rivier und
STUCKELBERG®) und PAuLI und ViLrars?) tun. So erfolgreich diese
Verfahren sind — besonders ?), wo die speziellen Eigenschaften
der Limitierung wieder herausfallen —, so haftet ithnen doch ein
sehr unbefriedigender ad hoc-Charakter an, so dass sie immer nur
tiir einen beschréankten Problemkreis formuliert werden kénnen und
tir neue Aufgaben erweitert werden missen. Insbesondere fithrt
das Pauli-Villars-Verfahren in unserem Falle nur bei Hinzunahme
von Zusatzvorschriften dariiber, welche Funktionen zu regulari-
sieren seien und welche nicht, zum Ziel. .

3. Das befriedigendste Verfahren scheint uns deshalb zu sein,
dass man ausser den reell vorhandenen Teilchen mnoch andere,
schwere Teilchen ankoppelt, wobei besondere Relationen zwischen
den Kopplungskonstanten das Konvergieren der auftretenden Aus-
driicke garantieren, und am Schlusse die Massen M, der Hilfs-
felder als gross gegen die der realen Felder betrachtet und der Grenz-
tibergang M, co durchgefithrt wird!®). Dabei sind uns diese
Hilfsfelder hier nicht physikalische Realitiit, sondern bloss Mittel
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zur Formulierung einer Limitierungsvorschrift, die, im Gegensatz
zu 1. und 2. fiir jedes Problem ohne neue Zusatzvorschriften defi-
niert ist.

Diese Auffassung der Sachlage erlaubt uns, einfach neben den
Elektronen noch schwere geladene Spin %-Teilchen, neben den
Photonen schwere Vektormesonen anzukoppeln und die Bedin-
gungen zu formulieren, welche die Konvergenz erzwingen, ohne
uns darum zu kitmmern, dass diese vielleicht mit reellen Kopplungs-
konstanten bei diesen Feldtypen gar nicht erfiillbar sind.

Koppeln wir zunéchst N schwere Elektronfelder an, so haben
wir zu ersetzen

i (2 m -—>207(*) z; M) wo ¢p=1, M, =m ist.

Man rechnet lelcht nach, dass die einzigen Modifikationen, die
in (34) dadurch erwachsen, die Vakuumpolarisationsterme (V) be-
treffen, die dadurch gerade die regularisierte Form, die ihnen in 7)
~ gegeben wurde, erhalten. Dort wird gezeigt, dass durch geeignete
Bedingungen zwischen den ¢; und den M; die Vakuumpolarisation
formal eichinvariant wird und also fiir eine Lichtwelle verschwindet.
Dies rechtfertigt also das Weglassen dieser Terme in § 8 und § 7
auch formal.

Koppeln wir hingegen N schwere Vektormesonfelder neben dem
Photonfeld an, so ergibt eine einfache Rechnung nach dem Ver-
fahren von § 6 ein Resultat, das aus (34) dadurch hervorgeht, dass
man {iberall statt D, resp. D schreibt:

v
D, (» 2 ey (w; M)resp D Y, A (x5 M;) wo co=1, My=0.
=0

Man rechnet nun lemht nach, dass die Bedingungen

N »
(A) e, =0, Ec M:=0, e, M;=0
= =

’L—

geniigen, um zu garantieren, dass jedes Glied von (34) einzeln
konvergiert; die schwacheren Bedingungen

(B) Zci =0, Zci Mf = ()
=0 i=0 |

garantieren nur, dass hochstens logarithmisch divergente Integrale
auftreten. Dies geniigt indessen fiir unsere Zwecke vollauf; denn
eine konvergente Differenz zweier nur logarithmisch divergenter
Integrale ist invariant gegeniiber Schiebungen der Integrations-
34
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variablen, so dass die oben durchgefiihrte spezielle Zusammen-
fassung der Glieder jeden Terms mit der speziellen Schiebung (47),
falls sie sich mit den abgeanderten D-Funktionen noch durch-
fihren lasst, genau so gerechtfertigt ist wie jede andere. Sie ist
hingegen dadurch ausgezeichnet, dass nach Durchfiihrung des
Grenziiberganges M; — oo (1 + 0) in der Schlussformel keine Zu-
satzterme auftreten.

Um das zu zeigen, versuchen wir, alle Umformungen von § 7

neu durchzufiihren, wenn D durch D ersetzt ist. Man erkennt so-
fort, dass dies in der Tat mdoglich ist und dass dadurch einfach
jede der auftretenden Funktionen

o' (k2+ A4); 0" (k2+ A); 0" (k*+ A)
ersetzt wird durch resp.
N N
e o (k2+A+M:(1—w); Yo 0" (k2+ A+ M:(1—u));
i=0 i=0 ,
N
2)c; 0" (k2 + A+ M;(1—w))
i=0

Alle iibrigen Schliisse bleiben unverdndert, mit zwei Ausnahmen:
a) In der zweiten Formel (48') fallt der Zusatzterm + 7 wegen

N
2 ¢;=0 weg:

=0
N
_*Ocifd%kﬂkv § (2 + A+ M2(1—uw)) =

1 N
=30 Yo [ahe (R A+ ME(1—u)). (48")
1=0

b) In (51) tritt ein neuer Zusatzterm auf:
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Der Zusatzterm
- 1
— Yo /d*k[du.ua—u) 5" (K2 A+ M2(1—u))
1= . v 0

N : M2
zs_nzo’ci/du-fu,(l—u) A+M-;(1—’w)
= 0 ’

liefert in der Grenze M;-> co (i + 0):

N 1 ﬂ |
0

=1

und da (34) III und (34) IV je einen solchen liefern, so kommt im
Ganzen wieder der Zusatzterm + 7, wie ohne Regularisierung, nun
aber besser begriindet.

Wir verbleiben also mit einer zu (52) analogen Formel in der
jed_och die Briiche ]‘?'(u,lTw) unter den Parameterintegralen ersetzt
werden durch:

N
%
é; F (u, v, w)+ M2 (1—u)

: 1 : ; ;
Da nun keines der auftretenden 4——— bel % = 1 eine Singula-
(u, v, w)

ritdt hat, geht fiir M; — co (14 0) jeder Zusatzterm (¢ 4 0) einzeln
gegen Null, und es ergibt sich genau die Formel (52), die damit
vom Standpunkt unserer Regularisierungsmethode gerechtfertigt ist.

Hatten wir statt der «,v, w-Zusammenfassung einen anderen Weg
zur Auswertung von (34) gewahlt, der ohne Regularisierung eine
mit (52) nicht-aquivalente Endformel liefert, so wiirden durch die
Regularisierung gerade solche Zusatzterme hereingebracht, dass
(52) wiederhergestellt wiirde (vgl. 7)). Die Stdrke und Auszeichnung
der u,v,w-Zusammenfassung liegt eben darin, dass sie keine
Zusatzterme von der Regularisierung erhélt und deshalb schon
ohne diese zum richtigen Resultat fiihrt (abgesehen eventuell von
endlichen Ladungsrenormalisationen; dass der Zusatzterm in (48)
ohne Regularisierung zum richtigen Resultat fiihrt, dirfte kaum
mehr als Zufall bedeuten). |

NB. 1. Die Anwendung der hier verwendeten Regularisierungs-
methode auf den Selbstenergieoperator (33) ist identisch mit der
Limitierung desselben nach ViLrars und Pavurr?) und bringt ihn

auf die Form const. f d®xzy (z) v (x), wie in § 5 erwdhnt wurde.
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2. Die Tatsache, dass die hier gewihlte Limitierungsvorschrift
mit Hilfsfeldern im Gegensatz etwa zu den rein mathematischen
Vorschriften?) und ?) die Formel (52) so normiert, dass keine La-
dungsrenormalisation mehr auftritt, deutet vielleicht darauf hin,
dass solche Hilfsfelder doch mehr als eine bloss formale Bedeutung
haben.

§ 9. Ultrarotterme ; unrelativistischer Grenzfall.

1. Die Ultrarotterme sind in (52) ziemlich komplex in die u,v,w-
Integration eingebaut, und es besteht keine einfache Moglichkeit,
sie mit dem Doppelcomptoneffekt (29) zu vergleichen. Wir haben
deshalb auch im Vorhergehenden einfach die Vorschrift, dem
Photon eine kleine Masse u zu erteilen, aus der Impulsraum-
diskussion tibernommen. Nun kénnen wir aber die Impulsraum-
formel von § 4 als eine andere Form der Auswertung von (34) an-
sehen, die jedoch nicht der Regularisierung von § 8 geniigt. Wir
haben infolgedessen keine Garantie, dass die Ausrechnung von (30)
dasselbe liefert wie (52). Da es sich aber bei den Ultrarottermen
nur um das Verhalten des Integranden in der Umgebung eines
nicht-integrablen Pols im Impulsraum handelt, auf das die Regu-
larisierung keinen KEinfluss hat, konnen wir sie trotz der allge-
meinen Nichtdquivalenz von (30) und (52) an Hand von (30)
diskutieren, wie das in § 4 geschehen ist, und von da die Vor-
schrift tibernehmen, dass man dog(u) =d o5+ d o”(u) erhilt, wenn
man in $, dem Photon formal die Masse u erteilt. Damit ist unser
obiges Vorgehen gerechtfertigt.

2. Genau dieselbe Uberlegung gilt auch, wenn man dog(p) fiir
kleine Energien berechnen will. Die Entwicklung des Wirkungs-
querschnittes nach der Energie » des eimnfallenden Photons lautet
néamlich im Schwerpunktsystem:

dog(u) = dol’-x%log » +d o x% + 0 (?)

und fiir sehr kleine » stellt der erste Term den Hauptanteil dar.
Die logarithmische Abh#ngigkeit von » kommt dadurch zustande,
dass im Limes % — 0 zwel Pole im Impulsraum zusammenriicken,
so dass eine nicht-integrable Singularitdt entsteht. So wenig wie
auf die Ultrarotterme kann deshalb die spezielle Wahl der Aus-
Wertungsvorschrlft auf diesen Term einen KEinfluss haben, und
wir diirfen ihn also auf Grund von (30) berechnen, was bedeutend
bequemer ist. Die Rechnung ist als solche uninteressant, so dass
hier nur das Resultat angegeben sei: ‘
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Bedeutet 7, = ¢%/4 #m den klassischen Elektronenradius, 4 den
Streuwinkel, d 2 das Raumwinkelelement; tibrige Bezeichnungen
wie bisher, so ist:

dog (4) _—313"7_% : ( ") {[1—}«00320] [2 log (;) glog(—g)]
H[l + cos?d] cos &+ Iog( )
g [lmeoszﬁ] cos &+ 1og( )} = (53)

3. Um die Diskussion der Ultrarotdivergenzen vollstindig zu
machen, miissen wir noch in Anlehnung an Jost?) (im folgenden
zitiert als (J)) die Verhiltnisse bei der Emission kleiner Photonen
beim Comptoneffekt untersuchen. Das Vorgehen ist genau analog
zu dem bei (J), bis auf die Ersetzung der Einelektrontheorie durch
Lochertheorie und die Beriicksichtigung wunserer strahlungs-
theoretischen Korrekturen:

Man spaltet das Strahlungsfeld im Schwerpunktssystem durch
eine Grenzfrequenz u in einen hochfrequenten (h.f.) (x> u) und
einen niederfrequenten (n.f.) Anteil. Der Hamiltonoperator
H = H, + eH, zerfillt analog:

h. f. | H (u) = Hy () + e Hy ()
n. f. H' (u) = Hy (p) + e Hy(u)

Wenn u klein ist gegen die Elektronmasse und die Energie des

einfallenden Photons, kann man in H + H’ alle Terme von der
Ordnung u/m resp. /= vernachlissigen.
Eine erste kanonische Transformation
F—>e UFet?

WO
— X @G [#pet () 5 9 B)
0p
mit i< ’

E

N, (%) = A (%) A, (%) Photonenzahlen

Sl 1 3/2 - -
0 () =(55)" [aray @) e
(im tbrigen die alten Bezeichnungen)

fithrt @(p) itiber in

v(p— 2 [a2 %, (%),

$ ui<p
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wilzt also den Feldimpuls der n. f. Photonen auf das Materiefeld
ab. Die Strahlungsfeldamplituden gehen dabei iiber in

= . % B (7)) 0 (F)

Ay () — A (%) e / T (54)
Im Sinne der obigen Vernachléssigungen diirfen wir den Energle-
Impulssatz im n. f. Gebiet vernachléssigen und damit den Expo-
nentialfaktor in (54) weglassen.

Auf den derart vorbereiteten Hamiltonoperator wird nun die
von Brocm und Norpsieck®) eingefiihrte kanonische Trans-
formation

F e—eS Fetes
mit 2 *

~— ()" [ax farp ol L E

S=—(gz) X @ J@pgy =i a ) o, 0)

a, s
| 2] <pa

ausgeiibt. Es 1st dies genau unsere frithere S-Transformation, die
hier aber nicht im Sinne einer Entwicklung nach Potenzen von e,
sondern strahlungstheoretisch exakt, aber unter Vernachléssigung
des Impuls-Energie-Satzes im n.f. Gebiet durchgefiihrt wird.
Genau wie bei (J) erhilt man damit fiir den Hamiltonoperator

H — Hy+ Hy (1) + 0 (jm, /%) (55)
H, (g) = Hy (p)-K’ o
(R, (%), N, () | K| %, (%), N, (P) —6,,. 0 (p — Do) +

+ 05, 0(p—D") = (N, (), 2o (00) |K| M, (), Py (00)) ((J)29)
Dabei sind N, (p) = a; (p) a, (p) Elektronenzahlen.

WO

In (55) ist H, (u) (bis auf Grossen 0 (u/m)) der Hamiltonoperator der
Wechselwirkung mit emnem Strahlungsfeld der Masse u: er ergibt
also in der Storungstheorie den Querschnittdo (u) = do, + dog(u) +...

Wieder genau wie (J) erhédlt man fiir den Streuquerschnitt
eines Prozesses, bel dem neben dem in ein bestimmtes Raumwinkel-
element d 2 gestreuten Photon noch n.f. der Verteilung R, (%) emit-
tiert werden:

dg:n[ms (z)]dgc (56)
wo II[9,(*)] eine Poissonverteilung fiir die n.f. Photonen
do, der storungstheoretisch aus H,(u) berechnete

Querschnitt fiir den Comptoneffekt ist:
do, = doy + dog () +...
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Die Unabhingigkeit von g, innerhalb gewisser Schranken,
ergibt sich leicht folgendermassen: Es 1st nach (29) der Wirkungs-
querschnitt eines Doppelcomptoneffektes, bel welchem neben dem
in d 2 gestreuten Photon und beliebigen n.f. Photonen noch ein
Photon mit einer Energie x':p <" < p’ emittiert wird, falls

wim L1, pwin <L 1:

" "o 1 1 \3 : 42 %’ [P S Z.
do" (u, pu') = ) (g) 20\ (puO%) (pllx) } dos
. . n< ||y
Somit gilt: p / o 5
dog (1) +do" (u, ) = dog (1) (57)

Es ist also tatsachlich das Resultat unabhéngig von der Frequenz pu,
die das Strahlungsfeld in einen h.f. und einen n.f. Teil spaltet,
unter den Bedingungen:

L opmu< x
2 x
2, elog(u)<1

(wo % = Energie des einfallenden Photons im Schwerpunktsystem).
Die Bedingung 2 driickt aus, dass der Dreifach-Compton-Effekt
vernachlassigbar klein sein soll gegen den Doppelcomptoneffekt,
was natiirlich in allen obigen Uberlegungen implizit vorausge-
setzt war.

Im tbrigen bleiben alle Folgerungen von (J) unverandert er-
halten. Insbesondere kann tiber die Form der Comptonlinie nicht
mehr ausgesagt werden, als was schon aus (J) folgt: Innerhalb
des n.f. Gebietes ist sie gegeben durch die Funktion S (J 49),
ausserhalb kann sie nur durch exakte Berechnung des Doppel-
Compton- Querschnittes bis zur Ordnung e® berechnet werden.

* %k k

Mit der Formel (52) sind wir grundsitzlich in der Lage, die
e®-Korrektur zum Streuquerschnitt des Comptoneffektes aus-
zurechnen. Der rein rechnerischen Schwierigkeiten wegen, die
diese Aufgabe bietet, mussten wir die Auswertung jedoch zuriick-
stellen und uns mit der Naherung kleiner Energien (53) begniigen.
Wir hoffen indessen, in absehbarer Zeit wenigstens noch den Fall
extrem grosser Energien behandeln zu kénnen.

Zum Schlusse mochte ich meinem verehrten Lehrer, Herrn
Professor W. Pauwi, fiir seine kundige Leitung vielmals danken.
Ausserdem bin ich Herrn Dr. R. Jost, der diese Arbeit anregte,
fir viele wertvolle Ratschlige und anregende Diskussionen zu
grossem Dank verpflichtet.
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