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Höhere strahlung-stheoretische Näherungen zur
Klein-Nishina-Formel

von Max Robert Sehafroth (ETH. Zürich).

(2. VII. 1949)

Zusammenfassung: Die von der neuen Quantenelektrodynamik entwickelten
Methoden zur Subtraktion, resp. „Deutung", der auftretenden Divergenzen
werden, parallel im Impulsraum- und Ortsraumformalismus, auf die e6-Näherung
zum Comptonquerschnitt angewendet und eine konvergente, lorentz- und
eichinvariante Formel (52) für das zuständige Matrixelement gegeben. Der
Wirkungsquerschnitt wird explizit nur für den Fall kleiner Energien berechnet. Die
Zusatzhypothesen, die für die Rechnung mit divergenten Ausdrücken notwendig sind,
werden ausführlich diskutiert. Besonderes Augenmerk gilt der Ultrarotkatastrophe,
die sich in richtiger Weise gegen die des Doppelcomptoneffektes kompensiert.

§ 1. Einleitung.

In den letzten zwei Jahren wurde erkannt, dass die
Quantenelektrodynamik trotz der ihr innewohnenden Schwierigkeiten wohl
imstande ist, bestimmte quantitative Aussagen über höhere
strahlungstheoretische Näherungen zu gewissen Problemen zu machen1)3).
Nachdem Phänomene zweiter Ordnung, wie die Feinstruktur des

Wasserstoffspektrums und das magnetische Moment des Elektrons
derart behandelt worden waren und die Resultate in schönster
Übereinstimmung mit dem Experiment lagen, erhob sich die Frage,
ob auch für Probleme 4. Ordnung dieses Verfahren brauchbar
bliebe. Insbesondere könnten die Korrekturen zur Klein-Nishina-
Formel interessieren, da dieselben wenigstens in bezug auf
Winkelverteilung mit den heutigen experimentellen Möglichkeiten durchaus

prüfbar sein dürften. Eine Arbeit von Corinaldbsi und Jost2),
in der das analoge Problem der Streuung von Licht an skalaren
Boseteilchen behandelt worden war, zeigte, dass offenbar auch in
4. Ordnung die Divergenzschwierigkeiten umgangen werden können.
Indessen litt diese Arbeit — abgesehen von der Tatsache, dass

nur der Fall von Teilchen mit Spin f experimentell interessant
ist — an einem fundamentalen Mangel an Lorentzinvarianz. So
stellte sich die Aufgabe, dasselbe Problem für Diracelektronen und
auf lorentzinvariante Weise in Angriff zu nehmen. Von Schwinger3)
ist eine lorentzinvariante Formulierung der gesamten
Quantenelektrodynamik im Ortsraum angegeben worden, die für Fragen
dieser Art besonders angepasst erscheint. Es dürfte indessen nicht
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allgemein bekannt sein, dass der übliche Formalismus der Störungsrechnung

im Impulsraum dazu vollständig äquivalent ist4), und
es mag deshalb ein gewisses Interesse haben, die Rechnungen
parallel in beiden Formalismen durchzuführen, wie wir das im
folgenden tun werden.

Die Idee, welche der erwähnten neuen Entwicklung der
Quantenelektrodynamik zugrunde liegt, ist im wesentlichen folgende3) :

Die jetzige Theorie ist als eine erste Approximation an eine

„richtige Theorie" aufzufassen, welche bei hohen Energien wesentliche

Veränderungen bringen wird. Bei strahlungstheoretischen
Problemen der Art, wie sie uns hier interessieren, treten solche
hohen Energien nur in virtuellen Zwischenzuständen auf und .be¬

wirken das Divergieren gewisser Integrale über diese Zwischenzustände.

Man wird erwarten, dass die wesentlichen Abänderungen
der künftigen Theorie darin bestehen werden, diese Integrale
irgendwie durch konvergente zu ersetzen. Die Tatsache aber, dass
sie in der heutigen Fassung der Theorie divergieren, deutet darauf
hin, dass ihr Wert sehr stark von dem Verhalten der Theorie bei
hohen Energien abhängt. Anderseits sollten die uns interessierenden
Phänomene wohl davon weitgehend unabhängig sein. Dies führt
zur Vermutung, dass sich diese divergenten resp. „theorieempfindlichen"

Ausdrücke daraus überhaupt wegschaffen lassen sollten.
In der Tat zeigt es sich bei allen bisher behandelten Problemen
dieser Art, dass sie sich als Korrekturen zu den Ausdrücken einer
niedrigeren strahlungstheoretischen Näherung deuten lassen, welche
durch Zusätze ôm, ôe zu der Masse und der Ladung der auftretenden
Elementarteilchen hervorgerufen werden. Nun lassen sich aber
solche Zusätze experimentell nie von den „wahren" Grössen trennen,
d. h. man hat m + ôm, e + ôe mit den experimentell gemessenen
Werten zu identifizieren („Renormalisation von Masse und
Ladung").

§ 2. Prinzip der Rechnung.

Die mathematische Durchführung der oben dargelegten Ideen
verläuft folgendermassen : Wir gehen aus von der Schrödinger-
gleichung des Systems

i-^=(H0 + H')W. (1)

Dabei bedeutet : HQ itatene + ^Strahlung die Hamiltonfunktion der

ungestörten Felder,
H' die Wechselwirkungsenergie.
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Im Ortsraum ist es vorteilhaft, in Anlehnung an Schwinger3), zu
einer anderen Darstellung, der „interaction representation", überzugehen,

indem man die ungestörte Zeitabhängigkeit auf die Obser-
vablen überwälzt. Im Sinne einer Massenrenormalisation haben
wir dabei die Selbstenergie als untrennbar mit der Masse
verknüpft zu betrachten und also mit in die Zeitabhängigkeit zu
nehmen; d.h. wir haben für diese anzusetzen:

ip' e~i-(H,, + Es)txp
^ (2)

Dabei bedeutet Es die Selbstenergie, deren Form wir noch zu
diskutieren haben werden. Die Schrödingergleichung wird damit:

i-^-=(H'-Es)W. (3)

Im Impulsraum gehen wir aus vom Hamiltonoperator

H H0 + H'-ES. (V)

Die Selbstenergie ist in Analogie zum Ortsraumformalismus
zwecks Renormalisation der Masse hinzugefügt worden.

Ausgehend von dieser Grundlage haben wir, im Sinne einer
Entwicklung nach Potenzen der Elektronladung e, Störungstheorie

zu treiben. (In natürlichen Einheiten h c 1, wie wir sie
hier durchgehend verwenden, zusammen mit dem Heavisideschen

Maßsystem ist e ]/~ ¦)

Dabei ist es noch wesentlich, zu bemerken, dass die Theorie in
ihrer jetzigen Fassung den Begriff des freien Teilchens gar nicht
kennt. Wie man leicht sieht, ist nämlich der Zustand, in welchem
nur ein Teilchen vorhanden ist, gar keine Lösung der Schrödingergleichung.

Um dem abzuhelfen, gehen wir durch eine kanonische
Transformation zu neuen Feldgrössen über, die wir dann mit den
physikalischen identifizieren. Auf diese Weise entkoppeln wir die
Felder gerade so, dass ein Zustand mit nur einem freien Teilchen
Lösung der Schrödingergleichung wird und so jener Begriff in
der Theorie einen Platz bekommt. Diese Transformation werden
wir natürlich im Sinne unserer Entwicklung nach Potenzen von e

ebenfalls nur störungsmässig durchführen.
Schreiben wir

H' eHx + e2H2 ]

Es e2W+eiW'+... \ (4)

H2-W H2
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so wird, zunächst im Impulsraum, (1') zu

H H0 + eHx + e2H2-eiW 7 (1")

Führen wir die erwähnte kanonische Transformation zunächst in
erster Näherung durch:

H --> e-"s He+eS *)

und verlangen wir im Sinne der Forderung nach Entkoppelung der
Felder, dass im neuen Hamiltonoperator die Terme proportional e

verschwinden, so kommt

Hx + [H0, S] 0

und hiermit:

H H0 + e2 §2 + e3 $, + e4 & - e* TF' + (5)

wo §>2 H2 + ±-[Hx,S]

§3 [fl„ S] + | [[Hlf 6'], S]

ô« y [[ff2, S], -5] + 4 [[[H1; S], S], S].

Bei der Transformation zweiter Ordnung

H^e-e°THe+e2T

besteht insofern ein Unterschied gegen vorhin, als §2 im Gegensatz
zu Hx Elemente auf der Energieschale besitzt, die wir mit
regulärem T nicht wegtransformieren können. Wir beschränken uns
deshalb auf

Sa - §2 + [H0, T] 0

und erhalten

wo
H H0 + e2 g, + e3 §3 + e1 §4 - e4 IF'+ (6)

§4 Si + 4 [02 - Ö„ T]

(Unterstreichen eines Operators bedeutet hier und im folgenden
stets den Energieschalenanteil desselben.)

<^ih("oi,) %yi
*) Es ist hier wohl keine Verwechslung zu befürchten zwischen der Basis der

natürlichen Logarithmen und der Elektronladung.
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An (6) ist zu erkennen, dass die Entkoppelung im oben
definierten Sinne nur dann (bis zur zweiten Ordnung) möglich ist,
wenn J52 keine Diagonalelemente besitzt. Gerade dies wird durch
die Massenrenormalisation bewirkt, die also mit der Umdefinition
der Felder zusammen nötig ist, um das obige Programm
durchzuführen.

Die e3-Transformation trägt zu unserem Problem nichts mehr
bei. Der Wirkungsquerschnitt für die Comptonstreuung wird uns
gegeben durch | e2 §2+ ei$>i |2, die gesuchten e6-Korrekturen zur
Klein-Nishina-Formel also durch e6 { $>2* §>i + |)4* §2 }. Unsere
Aufgabe besteht somit darin, §4 zu diskutieren.

Im Ortsraum gehen wir ganz analog von

i -^r =(eHx + e2H2- ei W) W (4')dt
ÒS
1)1mit W eeS W wo -rr- —iHx über zu

i ^- (e2 §>2 + e3 §; + e* &- e* TU') W (5')

mit denselben Bezeichnungen wie oben.
Die Transformation 2. Ordnung ist hier insofern einfacher als

im Impulsraum, als wir die Elemente auf der Energieschale in £2
auch wegschaffen können. Wir nützen diese Möglichkeit aus und
fordern also:

dTW' ee°TW"; JLL-^-i$dt 12,

Damit erhalten wir

i^-^yzye^i-^w')?"'. (6')

Wegen T(oo) — T(—oo) — 2 n i |)2 ¦+ 0 enthält diese
Transformation dabei zusätzlich zur Umdefinition der Felder noch eine
echte Streuung, als Ersatz für den verlorengegangenen Term §2
in (6).

Das uns interessierende §4 ist hier gegeben durch

2 TT §4 j dt-$4
— oo

wobei §4 mit §4 zusammenhängt durch

(fc|g4| l) (k\%i\l)ô(Ek-El)
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§ 3. Eichinvarianz.

Ein wesentlich nicht-lorentzinvarianter Zug kommt in die
Theorie herein durch die Elimination der longitudinalen
Komponenten des Strahlungsfeldes mit Hilfe der Nebenbedingung
zur Erhaltung der Eichinvarianz. Die Wechselwirkung lautet dann :

eHx + e2H'2 -fd* xjß (x) «„ (x) + ^-/d3 xfd* x'^^ (8)

wo W^x) das transversale Viererpotential:

iß(x) der Strom des Elektronenfeldes (o —ïj4) bedeuten. Das
Vakuum bezüglich der Photonen ist definiert durch 3t(+>. ¥*V„„ 0& (i vac

wo 2C(+) den Anteil von 31 mit positiven Frequenzen bedeutet.
Wir wollen nun zeigen, dass wir für unser Problem die richtigen

Resultate erhalten, wenn wir die longitudinalen Photonen nicht
eliminieren, die Nebenbedingung vernachlässigen und das Vakuum
als den Zustand definieren, in welchem weder transversale noch
longitudinale Photonen vorhanden sind; d. h. wenn wir als Wechselwirkung

ansetzen :

eH1 -Jdsxjll(x)AM(x); e2H2 0 (9)

wo nun AM(x) das vollständige Viererpotential bedeutet und das
Vakuum definiert ist durch A(+). ¥/Vac 0.

Zu beweisen ist also, dass, wenn wir die im Strahlungsfeld
bilinearen Terme in §4 — die allein zum Comptoneffekt beitragen —

mit |)£ bezeichnen, und falls aus (8) folgt

2ney J&xfd'x'J^x, x') {%(x), %(x')}\ (10)

wo
{A,B} AB^-BA

und aus (9)

2 7t^=fdixJdix'Jflv(x,x'){Aft(x),Av(x')} (11)

gilt:
jyx,x') Jflv(x,x'). (12)

Das bedeutet gleichzeitig die Invarianz unseres Resultates
gegenüber Umeichung des realen Strahlungsfeldes, da die Eichung
von Aß freibleibt.
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Der Beweis verläuft im wesentlichen folgendermassen : Die Ver-
tauschungsrelationen der Potentiale sind:

[Aß(x),Av(x')] ioßVD(x-x') (13)

[%ß(x),%(x')} ioßVD(x-x') + 2i dT)f-,X'] ¦ (14)

Die Vakuumerwartungswerte der symmetrisierten Produkte:

<{Aß(x), A„(x')}yYac oßVDi(x-x') (15)

<{2t», Kr(x')}yae ôllvB^(x-x') + 2 dDlfx:X'] (16)

D, D1 sind die invarianten D-Funktionen zur Masse Null in der
Bezeichnung von Schwinger3), während Dß und Dß folgendermassen

definiert sind:

Dß(x) -y 9

Dl(x) -

1 \3 f dSK Xu
=.-,= cos [xx); [x:2|*| \x

1 \3 f d3 X «„
Jt / J 2 ] k | I ä: [2 v

?<: x — x\
(17)

Die einzigen im Folgenden verwendeten Eigenschaften derselben
sind:

Dß(x)=D>l(-x) \

Dl(x) -DK-x)\
und

i
ausserhalb des Lichtkegels

(18)

Dk(x) \8n \x

D4(x) {8*|S[
0 innerhalb des Lichtkegels

jj- ausserhalb des Lichtkegels

innerhalb des Lichtkegels

Damit wird zunächst

§2 H2 + ~-Jdx'0&(x- x') [Hx(x0),Hx(x'0)]

U{x) " | 1 (x0<0) '

S =X- I dxû0(x-x')Hx(xj)): S(-oo) 0.

(19)

wobei
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Setzen wir hierin ein

&»*», iy)%.(x')]
^{itt(x),iv(x')}{iaßVT>(x-x')+2i dDf^

+Yüy)>iyn%(x)'Vy)}
so können wir durch partielle Integration die Ableitung von T>ß

auf 0 abwälzen:

-^\fä*xjd*x'0(x-x'){jß(x),jv(x')}dyyy-
I djv(x') n\
(wegen -Jx/~ 0)

7^JdixJdix'o(x0-x'0){jß(x),o(x')}Dß(x~x')

=^y[d3x[d*x'yy{y.8jiJ J I x-x \

Dieser Term kompensiert genau die Coulomb-Wechselwirkung und
wir verbleiben mit

9)2=+yjd*xjdy0(x-x'){jß(x),jv(x')}B(x-x')
+ l.Jd*xfd*x'0(x-x')[jß(x),JXx')i{%(x),%y)} (20)

während man aus (9) erhält:

$,2=+~fd*xJd*x'0(x-x'){jß(x),jy)}D(x-x')

+-l.fd*xJd*x'0(x-x')[jß(x),jv(x')}{Aß(x),Av(x')}. (20')

Rechnen wir unter Verwendung dessen nun JßV — JßV aus, so
erhalten wir einen Ausdruck von der Form

fd*x»jd*x"'saerß dDa^x'!,) +fd*x"fd*x'"s'aevß^i<y;lxy.
Dabei sind Saevß, S'agvß Summen von Termen von folgendem Bau:
ein Produkt dreier 0 mal einem aus jfl(x), jv(x'), je(x"), ja (x'")
gebildeten Kommutator. Diese Ausdrücke lassen sich zunächst in
x, x' symmetrisieren ; ferner, wegen der Symmetrieeigenschaften
von Dß und D1, kann man bezüglich x" und x'" im ersten Integral
antisymmetrisieren, im zweiten symmetrisieren. Wir dürfen also
ßoavß ersetzen durch S[ae]{vß), S'aevfl durch S'{aQi^Vß), wobei runde
Klammern Symmetrisierung, eckige Antisymmetrisierung an-
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deuten. Schliesslich lassen sich solche Produkte dreier 0 — die
eine Grössenbeziehung zwischen den xl festlegen — linear aus
vierundzwanzig Basisgrössen 0 (iklm) aufbauen, wo 0 (iklm) 1,

wenn xl < xk < xl < xm, sonst 0 ist. Zum Beispiel ist

0(x-x')0(x-x")0(x-x"') <9(0123) + 6>(0213) + 6>(0231).

Führen wir diese Zerlegung nach der Basis durch, so erhalten
wir vierundzwanzig Terme von der Form

fd*x» fd*x'"0(ikim) s<™, ^yy^-
W' fd*x"'0(ikim)s;««»), d-^y-]

Nun können wir partiell integrieren; infolge der Kontinuitätsgleichung

für die Ströme wälzt sich dabei die Differentiation nur
auf 0 ab. Das liefert z. B.

^p- - + ^4 ©(soi) ô y-4). (2i)

Fasst man jetzt alle Terme, die zu einer bestimmten Permutation
von (301) — z. B. (301) — gehören, zusammen, so findet man, dass
sich alle auftretenden Kommutatoren mit Hilfe der Jacobischen
Identität derart zusammenfassen lassen, dass [jv(x'), je(x")] als
Faktor erscheint. Wegen des Faktors ôei ô (x'r, — x'j,) in (21) ergibt
das [jv (x', x'0), ji(x", x'0)]. Für diesen Kommutator, der auch im
Problem der Vakuumpolarisation auftritt, findet man leicht

[ivy),je(x")l àQiô(x'0-xl) (y(x')fW(x")-f(x"yf(x'))ô*(x'- x").

Davon verschwindet der ,,Einteilchenterm"(*), da der Einteilchen-
term von y>a(x') ipß (x") bei x' x" regulär ist. Der
Vakuumerwartungswert hingegen ist zunächst unbestimmt

(nämlich formal -5—; - ö*(x'—*")),

muss aber aus physikalischen Gründen zu Null limitiert werden
(vgl.7)). In diesem Sinne dürfen wir also setzen

\jv(x Xq), */4(-x x0)_\ —> 0

Damit verschwindet unser Integral. Dasselbe gilt für den zweiten
Term und ebenso für jede beliebige Permutation von (301). Damit
ist (12) bewiesen.
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§ 4. Rechnung im Impulsraum.

Nach dem in § 2 angegebenen Schema führen wir zunächst die
Rechnung im Impulsraum durch. Auf Grund der Resultate des § 3

brauchen wir dabei keine Coulomb-Wechselwirkung einzuführen,
so dass H2 — W wird. Einfachheitshalber verwenden wir den
Formalismus der Störungstheorie im diskreten Spektrum (indem
wir etwa unser System in einen grossen Kasten eingeschlossen
denken) und führen später den Grenzübergang zum kontinuierlichen

Spektrum aus. Die Zustände numerieren wir symbolisch
durch einfache Indizes fc, l, m,

In der speziellen Darstellung, in welcher H0 diagonal ist:

(k\H0\l) Ek-(k\l\l)
wird

(fc|S|g £ßii£

(k\T\l) -E[èÌf- y * Ek) ; 0 (Et Ek).

Rechnen wir damit das §4 aus, so erhalten wir nach einfacher
Zusammenfassung der Energienenner:

{ }-il }~\X«, (Ek-En,)(Ek-En!)(Ek-Ena) W

»i 4= na

_ y f(fe|^)("i|giK)(»algi|i) | (*l^KH!hJ^1^0hlEi)l (h]
nnrS Wk-EKs) (Ek-En,)

'

(Ek- En,) (Ek- E„2) U
Ent +Ek

_ y (k\Hx\nx)(nx\W\n3)(n3\Hx\l) „,.£1 (E,.-E„ME,.-E„.) \ >

i + n3
(Ek—En,) (Ek—En.

(k\Hx\m)(m\Hx\l)

\
(k\Hx\m)(m\Hx\l) fj (k \Hx\p) |8, I (Ijfl^ p)

r (*'Xi?')f1'l){(ftlg,|fc)+g|&l<)-aWg,H} (c)

Ir2^1> Ek~Em II Ek-E„ (d)

y (fc[ffi[ra) (w [HjJ w) (to |ffx|m) (rojjyj) /no\^ ~

(E,.-E„.)(E,.-E.ME..,-E..) - l' l~"'
m, n (Ek-Em) (Ek~En) (Em~En

Dabei sind Summationsbeschränkungen der Art jE„ -4= Ek beim
Übergang zum kontinuierlichen Spektrum so zu interpretieren, dass
über den betreffenden Pol des Integranden der Hauptwert
genommen werden soll.

Unsere nächste Aufgabe besteht darin, die Terme zu diskutieren,
die zu selbstenergieartigen Divergenzen Anlass geben, das sie
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kompensierende W aufzusuchen und zu zeigen, dass sich dieses
tatsächlich als reine Massenrenormalisation darstellt. Zu diesem
Zwecke haben wir zunächst die oben nur symbolisch dargestellten
Matrixelemente aufzuschreiben. Machen wir in gewohnter Weise
eine Fourierzerlegung der Felder:

Spinorfeid: ip(x, t) (^)3'2^ fdspaa(p) ua(p) e^*"-5^ (23)

wo

Ea ± co (p) ; co (p) ym2+p2
4

2J Summation über Spin und Energievorzeichen,
(7 1

ua(v) normierte Spinoren

aa(p) Absorptionsoperatoren:

{%' (p'), aa(p) }= 0

{%' (p), aa(p')}= ôaa'ô(p —p')

Strahlungsfeld: Aß(x, t) (^Zj f={M*Kei{"'-"l)
+ A*(-x)esße-uy-xt)} (24)

wo

y Summation über die Polarisationsrichtungen,
s

esß(x) eß(—x) Polarisationsvektoren:
I 0 (s * «')

Ze»<y y= +i («=*;=i. 2.3)
ß { -1 (s s =0)

J.J (x) Absorptionsoperatoren:

[As(x),As,(x')] 0

[A:(x),As,(x')] -ôss,ô(x-x')

so erhalten wir leicht aus eHx — dsx jß Aß mit jß e (y* a^ y)

und unter Weglassen der Zeitfaktoren:

{ô(p -p' — x) (u*a(p) <x.ßesß(x) uB,(p'))a*a(p) aa,(p')As(x)

+o(p-p'+x)(u:(p)xßel(x)uApl)a:(p)aAp')A:(x)}. (25)
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Das Vakuum ist zu definieren als:

Aa(x)-il,Vlu. 0 bezüglich des Strahlungsfeldes

aa(P)'xf\iu_- 0(^„>0) I für das Spinorfeid im Sinne

al(p)-iPXjiC 0(Ea<iO) I der Löchertheorie.

Nun zur Diskussion der selbstenergieartigen Divergenzen. Es
treten dabei folgende Termtypen auf:

1. Terme mit einer Integration über zwei unabhängige virtuelle
Zwischenzustände. Es sind dies Terme in (a) und (e), bei welchen
neben der gewünschten Comptonstreuung virtuell ein Elektron-
Positron-Paar und ein Photon erzeugt und wieder vernichtet
werden. Diese Terme kompensieren sich bis auf gewisse konvergente
Restterme, die von der Modifikation des Vakuums durch die bei
der Comptonstreuung reell und virtuell vorhandenen Teilchen
herrühren.

2. Terme, in denen ein (reelles oder virtuelles) Elektron ein
Photon emittiert und später wieder absorbiert: sie kompensieren
sich exakt in (a) und (b).

3. Die Terme (c).

4. Paarterme, d. h. Terme, in denen das Vakuum in einem
zweistufigen Übergang virtuell ein Paar mit verschwindendem Gesamt-
impuls erzeugt: solche treten nur in (a) auf.

5. Die Terme (b) + (b').

Man sieht zunächst ohne weiteres, dass die Terme (c) wegfallen,
wenn die Diagonalterme von W genau die Selbstenergie von
Elektronen und Photonen im betreffenden Zustand darstellen. Von der
Photonselbstenergie weiss man zwar aus Gründen der
Eichinvarianz, dass sie verschwinden muss, und dies liefert ja gerade
eines der Hauptkriterien für ein sinnvolles Limitierungsverfahren
(vgl. 7) und § 8). Um uns aber mit solchen tieferliegenden Fragen
hier nicht zu belasten, werden wir in W auch die Photonselbstenergie

mitbegreifen, ohne damit etwas Neues einzuführen, da sie,
wenn nicht formal im Impulsraum, so doch physikalisch
verschwindet.

Für den Selbstenergieoperator setzen wir also an:

W We+ Wn (26)
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wo Wn eine Photonselbstenergie ist : Wn const. dsx-Aß(x)Aß(x),
auf die wir nicht näher einzugehen brauchen, und

x (u:(p)Aua,(p'))a*a(p)aa,(p')+con}. (27)

A^Z
a (p-x )+ ß m+ a> {p-x a (P~ x )+ ßm- a» (p-x)

~" 2 co (p-x) -2a>(p-x)
Ea(p)-w(p-x)-\x\ '

Ea(p)+a> (p-x)+\x\
der von Weisskopp und French4) eingeführte Selbstenergieoperator

des Elektrons ist. Mit dieser Wahl verschwinden die
Diagonalelemente von §>2, d.h. die Terme (c), und die Paarterme
in (a) kompensieren sich gegen den divergenten Anteil von (b) + (b').

Der Operator (27) hat zwar nicht die Form einer reinen Massen-
normalisation, die lauten würde:

We= const. Z[dzP«(P)ßuAp'))<(P)aAp') (28)

und man sieht auch leicht, dass ein Ansatz der Form (28) nicht
imstande ist, sämtliche Divergenzen zu kompensieren. Es wäre
indessen falsch, zu verlangen, dass die Selbstenergie in unserem
unrelativistischen Formalismus die Form (28) haben müsse. Das
Einzige, was wir fordern dürfen, ist, dass sie durch konsistente
Limitierung in die Form (28) gebracht werden kann, was für (27)
zutrifft. (Vgl. 4) und § 5). Ausserdem ist es nur konsequent, den
Selbstenergieoperator so zu übernehmen, wie er sich im Sinne der
verwendeten Störungstheorie ergibt, d. h. eben in der Form (27).

Nachdem auf diese Weise die selbstenergieartigen Divergenzen
eliminiert sind, besteht unsere nächste Aufgabe darin, sämtliche
verbleibenden Terme durch Aufsuchen aller möglichen Zwischenzustände

aufzuschreiben und zusammenzufassen. Das Resultat dieser
sehr langwierigen Rechnung ist eine Formel, die immer noch mehrere

Druckseiten füllt und deshalb hier nicht wiedergegeben werden
kann. Untersucht man die noch darin steckenden Divergenzen
bei hohen Impulsen, so findet man, dass sie alle die Form haben:
C-$2, w0 C ein von den Impulsen der Teilchen unabhängiges
divergentes Integral darstellt. Man kann sie also als Renormalisation

der Ladung interpretieren und subtrahieren; die exakte
Determinierung des zu subtrahierenden Ausdrucks werden wir
unten vornehmen11).

33
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Ausser den bisher allein erwähnten Divergenzen bei hohen
Impulsen enthält unser Ausdruck noch einen nicht-integrablen Pol
im Integranden, d. h. eine Ultrarotkatastrophe. Dass dieselbe keine
Schwierigkeit darstellt, ist wohlbekannt5)6). Der Grund ist
folgender: Bei jedem Streuprozess werden in Wirklichkeit ausser
dem gestreuten Photon noch unendlich viele Lichtquanten beliebig
kleiner Energie emittiert, so dass die Frage nach der Wahrscheinlichkeit,

dass genau nur das gestreute Photon emittiert wird,
physikalisch keinen Sinn hat. Einzig sinnvoll ist die Frage nach der
Wahrscheinlichkeit, dass das gestreute Quant in einem bestimmten
Raumwinkelelement d Q liegt und ausser ihm kein anderes von
einer Energie > pt emittiert wird, wo pt eine Grenzenergie darstellt,
für die e2 log (xjpt) y. 1 gelten muss. (xx Impuls des
Streuphotons). (Vgl. dazu § 9 und 6).) Zu unserer e6-Näherung für den
Compton-Querschnitt haben wir also noch den Wirkungsquerschnitt

für den Doppelcomptoneffekt zu addieren, bei dem das
zweite emittierte Photon < pt ist: dieser ist nämlich ebenfalls ~ e6.

Er beträgt für pt <^ xx :

d°y Tfe)ZJ w\yy-yy\-da* (29)

\x\<p

wo da4 der Klein-Nishina-Querschnitt, (px) px—&>(p)|*:| ist.
Dies kompensiert, wie man leicht nachrechnet, genau die durch §4
in die e6-Korrektur zum Compton-Querschnitt hereingebrachte
Divergenz beim Pol des Integranden. Formal kann man die
Addition von da"(pt) zum Compton-Wirkungsquerschnitt so
durchführen dass man den Pol im Integranden von Jf)4 dadurch
wegschafft, dass man dem virtuellen Photon die Masse pt erteilt, d. h.

einfach \x\ durch \/pi2 + x2 ersetzt, mit der Abmachung, alle Terme
;S 0(1m) zu vernachlässigen. Das so erhaltene §4(/w) bestimmt dann
direkt dae + da"(pt) dos(pi). Diese Bemerkung wird uns später
noch von Nutzen sein.

Nachdem so die Ultrarotschwierigkeiten eliminiert sind, können
wir die genaue Form der Ladungsrenormalisation festlegen
durch die von Corinaldesi und Jost2) aufgestellte Forderung,
dass im unrelativistischen Grenzfall die Korrekturen verschwinden
sollen. Dies bedeutet physikalisch, dass wir die Thomsonformel
als Definition der Elementarladung ansehen.

Wir subtrahieren also von da6(pi) ein solches Vielfaches von dcr4,
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dass nachher da6(pt) -> 0 für ~xQ -> p0. Damit erhalten wir für unser
definitives Matrixelement im Impulsraum:

|>4(/«; Po>*<>;Pi>ki) — &4.(t*;Po>Po'>Po>Po) (3°)

wobei: p0 Impuls des Anfangselektrons

Vi- » Endelektrons

*0 „ Anfangsphotons

*1 „ „ Endphotons

§ 5. Übergang zum Ortsraum, Lorentzinvarianz.

Die mit der in § 4 skizzierten Methode gefundene Formel für
§4(,m) zeichnet ein Bezugssystem aus, und es erwächst uns die
Aufgabe, dieselbe in lorentzinvariante Form umzuschreiben.
Vorteilhafterweise gehen wir hierzu wieder auf das §4 zurück, in
welchem Ladungsrenormalisation und Ultrarotkatastrophe noch
enthalten sind, und diskutieren dann dieselben am Schluss analog
zu oben.

Wir werden in diesem Paragraphen §4 in den Ortsraum
transformieren, wo die Lorentzinvarianz beinahe evident ist. Gleichzeitig

erreichen wir damit den Anschluss an den Schwingerschen
Formalismus. Zu dieser Transformation benötigen wir die in § 4
angegebenen Fourierdarstellungen der Felder und jene der
invarianten B- und S-Funktionen3) ; des weiteren die Gleichung

+00

p [d£_e-iat=_in J_ s_i„8(t) (31)

zur Transformation der Energienenner. P vor dem Integral
bedeutet, dass man über den Pol bei co 0 den Hauptwert zu nehmen
hat, was genau der Summationsbeschränkung in (21) entspricht.
Ausserdem ist zu beachten:

f^W)lF(p>+Mv))+F(p,-yp))]

Jdipô(pvpv + m2)F(p,p0). (32)

Um ein Beispiel für diese Art von Rechnung zu geben, führen
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wir die Transformation des Selbstenergieoperators We in (27)
durch: Wir schreiben ihn zunächst

^^fzjjd^p'j^yf^ô^'-p)
xôs(p"-x-p')a:(p)aa,(p")

x (u*(v)a \«1P'+ßm+mW> Zp'+ßm-<Q(p')) r'rn) ¦

Geht man von den a-Matrizen zu den y über mit

u* uyi; ß y*, a-ß iyiyß
so kann man IFe offenbar schreiben:

We= ^HlLîZZ /d3P fd3p" fd*p' fd*xô(xex°)ô(p'vy + m2)
oo' p l-i J J J

x *®'-£'Z% ^(p-p") x i[8(x0) + e(p'0)]{ya(p)Y"(YXp'yim)

x yßuar(p"))a*(p)aa,(p") + conj.

Durch Fourieranalyse der beiden dreidimensionalen ó-Funktionen
und des Energienenners nach (31) wird dies

We=-^(^ZZjd^JdirlJd3pfd^p"Jdip'fdixô(xex^)
yy(p'yym2)[e(x0) + e(p'0)] (ua(p)y'iypyim)yl"ua,(p"))

x a*a(p)a0,(p") e(r)0)ei{x + p'-p"i<xr>xe{i>-v"]ß'ß + conj.

wobei wir noch die Zeitabhängigkeit beigefügt haben, im Sinne
des Übergangs zur interaction representation. Dies ist unter
Beachtung der Definition der B- und S-Funktionen und von (23) :

We= — i- ]T fdax fd* x' (y (x) y"[Bx (x-x') S (x-x')
ii=i-i •>

+ D(x—x')Sx(x — x')]y"ip(x')) 7 conj. (33)

womit die Transformation geleistet ist.
(33) ist genau der Einteilchenterm von §2, von dem Schwinger3)

gezeigt hat, dass er durch formale Umformungen, deren Berechtigung

man durch konsistente Limitierung etwa nach Pauli und
Villars7) nachweisen kann (vgl. auch § 8), auf die Form einer
reinen Massenrenormalisation ô m y(x)f(x)d3x gebracht werden
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kann, was die Wahl von (27) nach einer Bemerkung daselbst
rechtfertigt.

Transformiert man analog zum Obigen unser §4, so erhält man,
mit den Bezeichnungen:

F (x) F (0),F (x') F (1),F (x")=F (2),F (x"')=F ß)

F(x-x')=F(01), ; e(xo-x0)^-^^v^s(01)
SVnrA <A>

2n%= ;

+ -i- fd* x fd* x' fd* x" fd* x'"

{^(08) (v(0) y" S (01) y"Aß (1) S (12) yM„ (2) SJ23) y>(3))
+ D (03) (y (0) y°Sx (01) y"Aß (1) S (12) y'A, (2) S (23) / y (3))

+ D (03) y (0) y" S (01) y"Aß (1)SX (12) yM„ (2) S (23) y" y (3))

+ D (03) y (0) y" S (01) y"Aß (1) S (12) yMr (2) Sx (23) y" y (3))}

IL

III.

+ \fd*x fd* x' fd* x" fd* x'"

{DL(18)(y(0)y»Aß (0) S (01) y°S (12) yM,(2) S (23)y" y(3))
+ D (13) (y (0) yM, (0) S (01) /Sj (12) /i, (2) S (23) y" y (3))

+ D (13) (y (0) yM„ (0) S(01)y"S (12)y'A, (2) Sx (23)y"y(3))}

-±fd*xfd*x'fd*x"fd*x'" e(13)(y(0)yM„(0)S(01)ya I

x [D1(12)S(12)+D(12)S1(12)]yaS(23)yMv(3)y(3)) j

- |y"d4 x/d4 x'yd4 «yd4 zw e (is) (y ^ 7m(, (o) s (oi) yM,(i )|

x S (12) [Di (23) S (23) + B (23) ^ (23)] y" y (3)

—J- /"d4 a;/"d4 a;'/d4 x" fd* x'"e (13) S (12) (y (0) yM-„ (0) S (01)

x y>(l))<yaS(23)yM„(3)^(32)> j

+ hermitisch konjugiert. (34)

Dabei haben wir bereits einen Term weggelassen, nämlich:

\fd* xfd* x' fd* x" fd* x'"(ip (0) y> (0))25 (03) < S (21) y"Aß (1)

S (13) y°Sx (32) yM„ (2) + Sx (21) y"ip (1) S (13) y" S (32) y'4, (2)

+ S (21) yM- (1) Sx (13) y" S (32) fkv (2) >

V.
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Diesem sieht man im Impulsraum nicht ohne weiteres an, dass er
verschwindet, während diese Eigenschaft im Ortsraum sofort
evident ist: Man braucht nur bezüglich (pt, 1) und (v, 2) zu symmetrisieren,

worauf man sieht, dass die Spur gegenüber simultaner
Umkehrung aller dreier Argumente der S-Funktionen schief ist und
sich demgemäss ihre Terme gegenseitig kompensieren.

Was nun die Lorentzinvarianz des Ausdruckes (34) betrifft,
so ist dieselbe für die Terme I und II ohne weiteres klar, da sie

nur invariante Funktionen enthalten; bei den übrigen Termen
zeichnet jedoch das freie e noch ein Bezugssystem aus. Solche
Integrale mit einem freien e, von der Form

Jd*Çe(Ç)F(Ç)

sind dann invariant, wenn F (f) ausserhalb des Lichtkegels
verschwindet. (Es ist zu beachten, dass wir unter Lorentzinvarianz
stets nur Invarianz gegenüber der eingeschränkten Gruppe ohne
Zeitumkehr verstehen.) Wir brauchen also nur zu beweisen, dass
die Funktionen

F (|) =Jd* if S -17) y" IA fa) S + D (rj) Sx (r,)]

(r"l^-m)y°0(i)
wo 0(C)E,Jd*riÄ(C-r,)[Bx(rl)S(V)+B(r])Sx(r])] (für III, IV)

und F'(£) fd*rìB(l;-rì)<yaS(rì)yvSx(-rì)> (für V)

ausserhalb des Lichtkegels verschwinden. Nun gilt: Eine invariante
Funktion F (x0, xx, x2, x3), die ungerade ist: F (x0, xx, x2, *x3)

—F(—x0, — xx, — x2, — x3), verschwindet ausserhalb des Lichtkegels.
Wir brauchen uns also nur um den geraden Teil der obigen
Funktionen zu kümmern. Derjenige von 0 z. B. lässt sich schreiben

^[0(t) + 0(-ï)yyeJd*riÂ(yri)[Bx(rl)y^A(rl)+B(V)^Ax(Vïï

und dies muss aus Invarianzgründen die Form haben

i[0(|) + 0(-|)] y^y(|)
Q

wo nun y (f) invariant und ungerade ist, und also ausserhalb des

Lichtkegels verschwindet. Damit ist die Behauptung für 0 (I)
erwiesen, also auch für F. Für F' geht der Beweis analog.
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Nachdem so die Lorentzinvarianz von (34) festgestellt ist,
könnte man leicht auch die Eichinvarianz verifizieren, d. h. die

Invarianz gegenüber einer Ersetzung von Aß durch Aß + ——. Da
ß

wir diese Eigenschaft über schon in § 3 bewiesen haben, gehen wir
hierauf nicht näher ein.

Bevor wir zur Diskussion von (34) schreiten, skizzieren wir noch
die direkte Herleitung im Ortsraum.

§ 6. Rechnung im Ortsraum.

Wir gehen mit dem in § 3 begründeten Ansatz für die Wechselwirkung

eHx =efd3xh(x) -fjß(x)Aß(x)dsx (35)

wo
jß(x) =ie{y (x)y"f(x))

in das Schema von § 2 ein. Für die Selbstenergie setzen wir ein

e2W e2 fd3xw(x) (33')

mit w(x) =-±fd*x' (iï(0)ya[S(01)D1(01) +S1(01)B(01)]yaf(l))
+ conj.

NB. Auch hier gerät man in Schwierigkeiten, wenn man statt (33')
direkt eine formale Massenrenormalisation

ic ' (x) ôm(y> (x) y (*x))

mit divergentem ôm ansetzt. Vgl. dazu 8).
Für die Felder gelten die Vertauschungsrelationen

[Aß(x),Av(x')] ioßvB(x-x') (36)

{w(x),f(x')}=-iS(x-x'); {y,y'} {y,y'} 0 (36')

Dabei bedeutet, wie früher, [A, B] den Kommutator, {A, B} den
Antikommutator. Ausserdem brauchen wir die Vakuumerwartungswerte

:

({Aß(x),Av(x')})Vllc=oßVDx(x-x') (37)

([f(x),f(x')])y&c -Sx(x-x') (37')

Aus S —iHx folgt

S -^fd*x'e (Ol) h (1)
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wobei wir die Integrationskonstante anders gewählt haben als in
§ 8, was für diesen Zweck günstiger ist. Damit:

£2 _ fdsxw(x) -4" fds x fd* x' e (01) [h (0), h (1)]

Für T gilt: T —i§>2. Wir zerlegen es in zwei Anteile, wovon
der eine nur w(x), der andere nur h(x) enthält:

Tx -yH1,S]: T^-i fd*x' fd*x"e(01) e(12)[h(l),h(2)]2

T2= +iW:T2= +^fd*x'e(01)w(l).

§4 zerfällt dadurch ebenfalls in zwei Teile:

a) Terme ohne w: §1 4 [[[HlSJ.S],«] +^[[HvS], Tx]

b) Terme mit w: §1 -1 [[W,S],8}- |[IF, Tx] +1 [[HlfS], T2]

Dabei ist ein Term [TF, T2] weggelassen, da er nur eine
Selbstenergie 4. Ordnung darstellt und zu unserem Problem keinen
Beitrag liefert.

§4, §4 können durch Anwendung der Jacobischen Identität,
Umnumerierung der Variablen und Zusammenfassung der
auftretenden Produkte dreier e geschrieben werden:

2 n 4; yfd*x fd* x'Jd* x" fd* x'" \[[h (0), h (1)], h (2)\, h (3)]
'

x e (01) e (02) e (23)

2 n |I -T fd* x fdix" fdi x'" 0> W'}l (2)h fe (3)1 e (°2) e (23).

(38)

NB. Die Zusammenfassung der Produkte dreier e ist wegen (31)
materiell identisch mit der Zusammenfassung von Energienennern
an entsprechender Stelle im Impulsraumformalismus; ausserdem
ist sie jedoch auch formal analog. Dies beruht auf Folgendem. Die
exakte Identität

(a) e(ik) e (il) =1 + e(ik) e (kl) —e (il) e (kl)

reduziert sich stets auf

(b) e (ik) e (il) "=* e(ik)e(kl)-e (il) e (kl)
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da die Eins im Integral wegen d*x-h(x) 2n %,x 0 keinen
Beitrag gibt, (b) ist aber identisch mit der Energienennerzusammenfassung

Ei~Ek Ei~El Ei~Ek Ek~El Ei~El Ek~El

In die Formel (38) haben wir die Ausdrücke (35), (33')
einzusetzen und mit Hilfe von

nyjy:]=^{iy:}[Aß, y]+\\jß,Q{Aß,Äv} (39)

und den Gleichungen (36) die Kommutatoren auszuführen, und
schliesslich vom Ganzen die „Einteilchenterme" zu bilden,
unterVerwendung von (37). Diese Operationen entsprechen genau dem
Aufsuchen aller Zwischenzustände im Impulsraum, sind aber
bedeutend kürzer als jenes. Hierin liegt — neben der evidenten
Lorentzinvarianz — der Hauptvorteil des Ortsraumformalismus
gegenüber demjenigen im Impulsraum.

Anschliessend kann durch erneutes Umnumerieren der Variablen
und Zusammenfassung von e-Produkten die Formel, wieder analog
dem entsprechenden Schritt im Impulsraum, weiter vereinfacht
werden. Zum Schlüsse erhalten wir so eine Formel, die sich von
(34) nur um Terme unterscheidet, welche die Photonselbstenergie
enthalten, die wir ja hier im Gegensatz zu § 4 nicht subtrahiert
haben. Da diese aber, wie bereits erwähnt, aus Gründen der
Eichinvarianz verschwinden resp. zu Null limitiert werden muss, was
das in § 8 zugrunde gelegte Regularisierungsverfahren auch
erreicht, so ist dieser Unterschied ohne Bedeutung.

§ 7. Auswertung der Formel (34).

Die Formel (34) enthält, so wie sie da steht, noch Unbestimmtheiten,

da die Ausdrücke im Integranden singular sind und je
nach Art der Zusammenfassung der Terme sich ein anderes
Resultat ergeben kann. In diesem Paragraphen werden wir die
Auswertung formal nach einem bestimmten Verfahren durchführen,
und erst in § 8 uns mit der Frage nach Rechtfertigung dieser
Rechnung befassen.

Zunächst kann man zeigen, dass der Term (V) in (34)
verschwindet. Unter Beachtung der Relation

- 6 (13) B (12) 8 (23) e (13) B (12) S (23) + 2 D (12) S (23)
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kann man ihn nämlich schreiben

+ -ì fd* x fd* x' fd* x" fd* x'" { e (13) B (12) + 2 D (12)}

x $(0)y«Aß(0)S(01)y°V(l))<y°S(23)ySxß2)>Avß). (40)

Nun ist — vgl. 3) und 7) —

Oiß(x) =fd*x'<y» S (01) y» SX(10)>AV(1)

der durch das Feld Av(x) induzierte Vakuumpolarisationsstrom,
und dieser verschwindet in Anwendung auf die Schrödingerfunk-
tion, falls Av 0, was im wesentlichen identisch ist mit dem
Verschwinden der Photonselbstenergie. (40) wird also:

+Ì fd*x fd*x'Jd*x"D (12) (y (0)y"Aß(0) S(01)y>(l)) dja(2)

+ ±-fd*xfd*x' fd*x'" e(18)(- (0)y»Aß(0)S(01)?v{l))At(S)ô£(S)
(41)

wo ôja(2) =Jd*x'"<y°S(2'o)fSxß2)>Avß)

aiLß) fd*x"<y° S (2S)fSxß2)>B (12)

resp. den vom realen und virtuellen Photonfeld induzierten
Vakuumpolarisationsstrom darstellen; da beide keine Quellen haben:
D --4„ 0, D 0, verschwinden ô ja, ô j'„v in Anwendung auf
die Schrödingerfunktion, und damit fällt (V) weg.

Zur Diskussion der übrigen Terme in (34) schreiben wir alle in
die Form:

2 n $4 fd*x fd* x' fd* x" fd*x'"(y (0) Aß (1) KßV(0123) Av(2) y (3))
J J J

(42)
wo

Kßv(0123) (yy*fd*qfd*xfd*x'ld*q'kßv(qrx,x',q')
x ô*(q+ x — x' — q') eiXQ eix'x e'1*"*' e-ix'"Q' (43)

Das Matrixelement von $4 für den Comptoneffekt wird damit:
1 \3 1

(Po-*o I S41Pi, «i) (*ö--)' o./ign^r (u^1**1 [eiht>v(Po> — «i,-*o»Pi)e(>

+ eo^v(Po,'<o,^i,Pi)eî]w(Po))^4(Po + ^o-Pi"^) (44)

wobei: pa, px die Viererimpulse von Anfangs-resp. Endelektron
x0, xx die Viererimpulse von Anfangs- resp. Endphoton
e0, ex deren Polarisations(vierer-)vektoren bedeuten.

NB. Wegen der Eichinvarianz der Formel brauchen die Polarisations-
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Vektoren e,- nicht transversal zu sein; sie müssen nur die
Gleichungen erfüllen: (e.-e,-) 1, (e{x{) 0. Sie sind also um ein
Multiplum von xt unbestimmt, entsprechend der Unbestimmtheit
der Eichung der Potentiale.

Die Bestimmung von kßV verläuft etwas verschieden bei den

„regulären" Termen I und II einerseits und bei den „e-behafteten"
Termen III und IV anderseits.

a) Beguläre Terme: Für I erhält man sofort:

¥^= + t(t^)'Z fd*ky"[iy(q-k)-m]y"[iy(q+x-k)-m]f
X [iy(q' — k)—m\ya

f ô(k2) ô{{q-k)* + m2)

[(q- &)2 + m2] [(q+x- fc)2 + m2] [(q'- /fc)2 + m2]
'

fc2 [{q + x- fc)2 + m2] Kq'- k)2 + m

ô((q+x-k)* + m2) ô ((q'- k)2 + m*)

k2[(q-k)2 + m2][(q'-k)2 + m2]
' P [(q- fc)2 + ro2] [{q+ x- fc)2 + »»2]

(Skalarprodukte von Vierervektoren schreiben wir hier als gewöhnliche

Produkte: a"bv ab; insbesondere ava" a2).
Der Ausdruck in geschweifter Klammer kann auf folgende

Weise zusammengefasst werden3) :

Kv -\{-h)ZZf d*kf\iy(q-k)-m\y^[iy(q+x-k)-m\f
i iix [iy(q' — k) —m]y"du-u2dvvdw ô'"(k2—2[qk + xk—qx] u

o oo
+ 2[xk — xq]uv + 2[q'k — qk]uviv). (46)

Ganz ähnlich findet man für II:
fe" + T(i)'Z fdi fc Y" bY (q + *) -m] y°[iy (q + x- fc) -m] y"

x [iy (g'_fc) _ m]r (g+^1+wl (45)

| ô(k)z ô ((g-fc)2 + m2) ô((q'-k)Hm*)\X
I [Ö-fc)2 + TO2][(?'-fc)2 + TO2] F[(î'-fc)2 + m2] &2 [(q-k)* + m2] I

und daraus

K=-t(^YZ fd*ky*[iy(q+x)-m]y°[iy(q + x-k)-m\f

(45)

2 \2w/
l l

X [iy(q' — k)—m]ya—y—fdu-ufdvô''(k2 — 2kq'u

+ 2[qx-kx']uv).
'

(46')
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Durch eine Verschiebung des Ursprungs im fc-Raum bewirken
wir die quadratische Ergänzung des Ausdrucks im Argument der
ô'"- resp. (5"-Funktion:

in (46) : (47) k'= k—(q + x) u + xuv -7 (q — q')uvw
in (46'): (47') k'= k-q'u-x'uv

worauf wir die Integration über fc' ausführen können, indem wir
für die ó-Funktion ihre Fourierdarstellung einsetzen:

+ 00 -f oo

ô(x)= „— /elmxdro; ô'(x) -^- I coéimxdco;
— oo

ô"(x) —4- I co2eimxdco; usw.x ' 2n J
— oo

Daraus erhält man unter Verwendung der Fresnelschen Integrale
+°° —

/^'M,=Fi&(i±iw)
— oo

leicht die Formeln

fd*kÔ"(fc2 + A) 7 -Ä ; fd*kô'"(fc2 + A)=--jL (48)

und durch partielle Integration nach co :

fd*kk ko" (k2 + A) -±ôj fd*kô' (k2 + A) +7i}}
Jr r (48')

j d*kkßkvo"'(k2 + A) -^oßV J d*kô" (k2 + A) |

während Integrale mit einer ungeraden Anzahl kß im Integranden
aus Symmetriegründen verschwinden.

b) Bie e-behafteten Terme: Um sie in ähnlicher Form wie die
regulären zusammenfassen zu können, benötigen wir eine
Umformung des in allen vorkommenden Operators

/1(02) =-i /"d4«'S(01)y-[Dx(12)S(12) + D(12)S1(12)]y°-e(02)
(49)

Dieser kann zunächst auf die Form gebracht werden

A (02) +± fd*x'S(01)y°[Bx(12yS(12) + B(12)Sx(12)]yy

+± fd* x' S (01) y°[Bx (12) S (12) + B (12)^(12)] y"-e (02)
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Durch Fourieranalyse und analoge Zusammenfassung wie unter a)
erhält man dafür leicht:

i
A (02) -1(-LV fd*k' fd*p /"d«[2(p2 + m2) (1 -u) -2m(l + u)

4 \2n,
o

x (iy p-m)] ^yy^-ine (02) e (p)ô(p2 + m2)^

x ô'(k'27m2u27-(p2 + m2)(u — u2))eill>(x-x")

Wenn man darin im Term mit ô (p2 + m2) überall p2 + m2 —>- 0

ersetzt, so kann man in ihm die p-Integration durchführen und
erhält

-i-e (02) S (02) 5(02),

was wir nun mit seiner Integraldarstellung wieder zurücktransformieren.

Das ergibt schliesslich:

i
A (02) - i- (—V fd*k' fd*p fdu (1 -») Ô' (fc'2 + m2«2

o

+ (p2 + m2)(u — u2))eiv(x-x")
i i

1

+ d4fc' d*p du(l—u2)u dv(iyp — m)2 (2 Ti)
ö

x ö"(fc'2 + m2*M2 + (p2 + m2) (« — •u«))^*-*"' (50)

Mit (50) ist noch ein zweiter Beweis für die Lorentzinvarianz der
«-behafteten Terme gebracht, und ferner können wir nun sofort
deren kßV analog zu dem der regulären Terme aufschreiben. Dabei
erkennt man, dass sich die divergenten Terme, d. h. diejenigen,
welche ô' enthalten, in regulären und e-behafteten Termen gegenseitig

wegheben. Dies beruht wesentlich auf folgende Identität,
die man leicht durch partielle Integration gewinnt:

i i
fdu(l-u)ô'(k2 + A) fdu-uô'(k2 + A)

0 0
1

-fdu-u(l—u)^-ô"(k2 + A). (51)
o

Die einzigen Divergenzen, welche unsere Formel für kßV noch
enthält, rühren von Polen im Integranden der tt,T,M)-Integration her.
Diese stammen von der Ultrarotkatastrophe; dies sieht man am
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einfachsten daran, dass sie verschwinden, wenn man entsprechend
einer Bemerkung in § 4 dem Photon formal eine kleine Masse pt

erteilt, d.h. den Wirkungsquerschnitt da" (pi) des Doppelcompton-
effektes addiert.

Unter Berücksichtigung dessen erhält man aus den Formeln
(46) bis (50) den vollständigen Ausdruck für den Kern kßV von
^i(pt) unter Einschluss des Doppelcomptoneffektes für ein Zusatzphoton

mit Energie < pt:

kßv(q,x,x',q';fi)
i i

+ t(iL)Sljdu-u2jdvv
0 0

I.
fdwt 1 \2

J \m2u2 + /j,2+2qxu(l-u)(l — v)—2xx'u2v2w(l — iv)j
0

x y"[iy (q— (q+ x)u + xuv + (q — q')uvw)—m\y''

x[iy(q + x — (q+x)u + xuv + (q — (î)uvw)—m\yv
x [iy(q' — (q+ x)u + xuv7- (q — q')uvws) — m]ya

V

i i
-i(-2y)3jdu-u2fdv-v

0 0

1

/ dw-
m2u2+ 2qxu (1 — u) (1 — v) — 2xx'u2v2w (1 — w)

o

x {yaysy''yeyv[iy(q' — (q+ x)u7- xuv + (q—q')uvw)—m\y"

+ yayQyß\iy((i7-x — (q+ x) u T-xuv-7 (q—q'juvw')—m]y"yQya

+ ya[iy(q—(q+x)u + xuv + (q—q')uvws)—m]y''yQyvyQya}

M 3 fdu-u fdr - ,.i.<y(g+«)-»,.o
2\2n) I aU U I at m2u2 + 2qx(u-u2)vy -2qx Y

Ò 0

x [*iy(g+ x — (q+ x)u + x'u(l— -u)) — m]yv

7<[iy(q — qu—x'uv) —mAy"

i i
III. —^-(-^—) I du-u(l—u2) I dv—^—; 0

m
ït-Y^Y"2 \2n 1 I v ' J m2u- + 2 q x (u-u2) v ' '

& ò

II.
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t l
71 j 1 \3 « iy{q+x)-m v\ t y f3 /i \ 2m2

¦-2\-2n) y -2qx yyi+ /d«-«(1-»)-«»M».u -
1

- du-u(l — u)
m

IV.

to2 tt2 + 2 g* « (w — u2)
0

l
- du-u(l—U)2 ; 0

g*
jr-_/

v ' ro2r + 2j)«(ii-!(!)
0

1 1

(Ìtt*!l2(l-H)(l-«2) dw r—„ - ^yt"'y /y ' J [m2u2+2qx(u-ti2)v]2
0 0

1 1

- [du-us(1 -u2) fdv¦ v r .2JS,[m2u2 + 2qx(u—u2)v]2
o o

l l |

+ fdu-u2(l-u) fdv-v 2 2 ^g^ ,— (52)
y K ' J m2u2 + 2qx(u-u2)v K '
0 o

+ das hermitisch Konjugierte, in welchem die Substitution
q -<—•> g', x <—> x' gemacht wird.

Die Terme I und I' stammen aus I von (34), II aus II, III und IV
aus III, IV, V und den Termen mit fc' k'v ô"(k'2 + A) aus II.

Die Tatsache, dass hier im Gegensatz zur Impulsraumrechnung
in § 4 nach Renormalisation der Masse keine Divergenzen

mehr auftreten, rührt daher, dass wir die Vakuumpolarisations-
terme (34, V) unter Berufung auf die Eichinvarianz resp. eine
geeignete Limitierungsvorschrift (§ 8) weggelassen haben. Eine
formale Rechnung hätte uns statt dessen wie in § 4 eine unendliche
Ladungsrenormalisation geliefert. Wenn die Theorie nun überhaupt
vernünftig ist, müssen wir erwarten, dass ausser der von der
Vakuumpolarisation herrührenden (unendlichen) keine weiteren
(endlichen) Ladungsrenormalisationen auftreten, d. h. dass unser
Matrixelement (52) im extrem unrelativistischen Grenzfall
verschwindet. Eine nicht schwierige Rechnung zeigt, dass dies in der
Tat erfüllt ist.

NB. Dabei ist der Zusatzterm +n in (48') wesentlich. Seine wahre
Begründung erhält dieser jedoch erst in § 8 vom Standpunkt der
Regularisierung.
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§ 8. Regularlsierung.

Die einzelnen Glieder jeden Terms von (34) divergieren i. A.
quadratisch, und erst die Zusammenfassung derselben mit den
Parametern u,v,w, verbunden mit der speziellen Variablentransformation

(47) reduziert die Divergenzen jeden Terms auf bloss

logarithmische (charakterisiert durch das Auftreten der Funktion
ó'). Diese heben sich dann, wie gezeigt, aus den einzelnen Termen
gegenseitig weg. Führt man die Zusammenfassung anders durch,
insbesondere mit einer von (47) verschiedenen Schiebung der
einzelnen Glieder gegeneinander, so treten (divergente oder konvergente)

Zusatzterme auf, die unser Resultat (52) wesentlich ändern.
Es ist also nötig, für unser spezielles Vorgehen bei der Auswertung
von (34) eine Begründung zu geben. Hierzu gibt es verschiedene
Möglichkeiten.

1. Erstens wäre denkbar, einfach zu postulieren, dass alle
quantenelektrodynamischen Formeln analog zu unserem Vorgehen
mit den u, v, w-Parametern zusammenzufassen seien. In der Tat
führt dieses Verfahren in allen bisher behandelten Fällen zu
sinnvollen Resultaten (vgl. 3)). Indessen ist diese Vorschrift doch ziemlich

undurchsichtig, und es ist auch nicht sicher, dass sie für
Probleme höherer Ordnung immer noch durchführbar bleibt.

2. Zweitens kann man eine in sich konsistente Limitierungsvor-
schrift rein mathematischer Natur erlassen, die unter Wahrung
von Eich- und Lorentzinvarianz den auftretenden unbestimmten
Symbolen einen eindeutigen Sinn beilegt, wie das Rivier und
Stückelberg9) und Pauli und Villars7) tun. So erfolgreich diese
Verfahren sind — besonders 7), wo die speziellen Eigenschaften
der Limitierung wieder herausfallen —, so haftet ihnen doch ein
sehr unbefriedigender ad hoc-Charakter an, so dass sie immer nur
für einen beschränkten Problemkreis formuliert werden können und
für neue Aufgaben erweitert werden müssen. Insbesondere führt
das Pauli-Villars-Verfahren in unserem Falle nur bei Hinzunahme
von Zusatzvorschriften darüber, welche Funktionen zu regulari-
sieren seien und welche nicht, zum Ziel.

3. Das befriedigendste Verfahren scheint uns deshalb zu sein,
dass man ausser den reell vorhandenen Teilchen noch andere,
schwere Teilchen ankoppelt, wobei besondere Relationen zwischen
den Kopplungskonstanten das Konvergieren der auftretenden
Ausdrücke garantieren, und am Schlüsse die Massen Mt der
Hilfsfelder als gross gegen die der realen Felder betrachtet und der
Grenzübergang M{->oo durchgeführt wird10). Dabei sind uns diese
Hilfsfelder hier nicht physikalische Realität, sondern bloss Mittel
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zur Formulierung einer Limitierungsvorschrift, die, im Gegensatz
zu 1. und 2. für jedes Problem ohne neue Zusatzvorschriften
definiert ist.

Diese Auffassung der Sachlage erlaubt uns, einfach neben den
Elektronen noch schwere geladene Spin J-Teilchen, neben den
Photonen schwere Vektormesonen anzukoppeln und die
Bedingungen zu formulieren, welche die Konvergenz erzwingen, ohne
uns darum zu kümmern, dass diese vielleicht mit reellen Kopplungskonstanten

bei diesen Feldtypen gar nicht erfüllbar sind.
Koppeln wir zunächst N schwere Elektronfelder an, so haben

wir zu ersetzen
s

iß (x; m) -> Xciif y Mi) wo c0 l,M0 m ist.
i=0

Man rechnet leicht nach, dass die einzigen Modifikationen, die
in (34) dadurch erwachsen, die Vakuumpolarisationsterme (V)
betreffen, die dadurch gerade die regularisierte Form, die ihnen in 7)

gegeben wurde, erhalten. Dort wird gezeigt, dass durch geeignete
Bedingungen zwischen den ct und den M{ die Vakuumpolarisation
formal eichinvariant wird und also für eine Lichtwelle verschwindet.
Dies rechtfertigt also das Weglassen dieser Terme in § 3 und § 7

auch formal.
Koppeln wir hingegen N schwere Vektormesonfelder neben dem

Photonfeld an, so ergibt eine einfache Rechnung nach dem
Verfahren von § 6 ein Resultat, das aus (34) dadurch hervorgeht, dass

man überall statt Bx resp. B schreibt:

Dx(x) =2;ciA1(x;Mi)ves^.'B=^;ciÂ(x;Mi) woc0 l,M0 0.

Man rechnet nun leicht nach, dass die Bedingungen

(A) 2>i 0, 2^ 0, Z*iM* 0
i=0 i=0 i 0

genügen, um zu garantieren, dass jedes Glied von (34) einzeln
konvergiert; die schwächeren Bedingungen

(B) j> o, ZciMy°
i=Q i=0

garantieren nur, dass höchstens logarithmisch divergente Integrale
auftreten. Dies genügt indessen für unsere Zwecke vollauf; denn
eine konvergente Differenz zweier nur logarithmisch divergenter
Integrale ist invariant gegenüber Schiebungen der Integrations-

34
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variablen, so dass die oben durchgeführte spezielle Zusammenfassung

der Glieder jeden Terms mit der speziellen Schiebung (47),
falls sie sich mit den abgeänderten D-Funktionen noch
durchführen lässt, genau so gerechtfertigt ist wie jede andere. Sie ist
hingegen dadurch ausgezeichnet, dass nach Durchführung des

Grenzüberganges Mt —¦> oo (i $ 0) in der Schlussformel keine Zu-
satzterme auftreten.

Um das zu zeigen, versuchen wir, alle Umformungen von § 7

neu durchzuführen, wenn B durch B ersetzt ist. Man erkennt
sofort, dass dies in der Tat möglich ist und dass dadurch einfach
jede der auftretenden Funktionen

ó'(fc2 + ^); Ô"(k2 + A); Ô'"(k2 + A)

ersetzt wird durch resp.

£e(o'(k* + Ä + M*(l-u)); Z^"QiyA + M\(l-u));
i=0 i=0

£Ciô'"(k2 + A + M2(l-u))
i=0

Alle übrigen Schlüsse bleiben unverändert, mit zwei Ausnahmen:
a) In der zweiten Formel (48') fällt der Zusatzterm + ti wegen

JV

Z ct 0 weg :

i=0

£ ct fd*k kß kv Ô" (fc2 + A + M\(1 - «))

~Tò">Zcifdikô'(k2 + A + M2(l-it)). (48")
i=0 •>

b) In (51) tritt ein neuer Zusatzterm auf:

N }
2Jet du(l-u) Ô'(fc2 + A + M\(l-u))
i-0 {

N }
£ct du-uô'(k2 + A7- Äff (1 —«))
i-o i

-Zctfdu.u(l-u)\^-M*\ô"(k2-rA + MUl-u)). (51')
t=0 k L
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Ms

Der Zusatzterm

-Z*
i=0

i
iM2fdikfdu

b

¦ u(l — u) ¦3"(fc2+^ + Af|(l--u
N

— Tt£c
i 0

i
t du-u

0

(1-

liefert in der Grenze Mt->°o (**0):
N

—^Zci
i

¦ Idu-u + —T 2

-u) A + Mt2(l-u)

und da (34) III und (34) IV je einen solchen liefern, so kommt im
Ganzen wieder der Zusatzterm + n, wie ohne Regularisierung, nun
aber besser begründet.

Wir verbleiben also mit einer zu (52) analogen Formel in der

jedoch die Brüche -~n r unter den Parameterintegralen ersetzt
werden durch:

§0F(u,v, w)+Mi2(l-u)

Da nun keines der auftretenden -=-? r bei u 1 eine Singula-F (u,v,w) ö
rität hat, geht für Mt —=? oo (i$ 0) jeder Zusatzterm (i 7 0) einzeln
gegen Null, und es ergibt sich genau die Formel (52), die damit
vom Standpunkt unserer Regularisierungsmethode gerechtfertigt ist.

Hätten wir statt der «^^-Zusammenfassung einen anderen Weg
zur Auswertung von (34) gewählt, der ohne Regularisierung eine
mit (52) nicht-äquivalente Endformel liefert, so würden durch die
Regularisierung gerade solche Zusatzterme hereingebracht, dass
(52) wiederhergestellt würde (vgl.7)). Die Stärke und Auszeichnung
der «^^-Zusammenfassung liegt eben darin, dass sie keine
Zusatzterme von der Regularisierung erhält und deshalb schon
ohne diese zum richtigen Resultat führt (abgesehen eventuell von
endlichen Ladungsrenormalisationen ; dass der Zusatzterm in (48')
ohne Regularisierung zum richtigen Resultat führt, dürfte kaum
mehr als Zufall bedeuten).

NB. 1. Die Anwendung der hier verwendeten Regularisierungsmethode

auf den Selbstenergieoperator (33) ist identisch mit der
Limitierung desselben nach Villars und Pauli7) und bringt ihn
auf die Form const, d3 xxj> (x) y (x), wie in § 5 erwähnt wurde.



532 Max Robert Schafroth.

2. Die Tatsache, dass die hier gewählte Limitierungsvorschrift
mit Hilfsfeldern im Gegensatz etwa zu den rein mathematischen
Vorschriften7) und9) die Formel (52) so normiert, dass keine La-
dungsrenormalisation mehr auftritt, deutet vielleicht darauf hin,
dass solche Hilfsfelder doch mehr als eine bloss formale Bedeutung
haben.

§ 9. Ultrarottcrme ; unrelativistischcr Grenzfall.

1. Die Ultrarotterme sind in (52) ziemlich komplex in die u,v,w-
Integration eingebaut, und es besteht keine einfache Möglichkeit,
sie mit dem Doppelcomptoneffekt (29) zu vergleichen. Wir haben
deshalb auch im Vorhergehenden einfach die Vorschrift, dem
Photon eine kleine Masse pt zu erteilen, aus der Impulsraumdiskussion

übernommen. Nun können wir aber die Impulsraumformel

von § 4 als eine andere Form der Auswertung von (34)
ansehen, die jedoch nicht der Regularisierung von § 8 genügt. Wir
haben infolgedessen keine Garantie, dass die Ausrechnung von (30)
dasselbe liefert wie (52). Da es sich aber bei den Ultrarottermen
nur um das Verhalten des Integranden in der Umgebung eines

nicht-integrablen Pols im Impulsraum handelt, auf das die
Regularisierung keinen Einfluss hat, können wir sie trotz der
allgemeinen Nichtäquivalenz von (30) und (52) an Hand von (30)
diskutieren, wie das in § 4 geschehen ist, und von da die
Vorschrift übernehmen, dass man da6(pt) da6 + da"(pt) erhält, wenn
man in §4 dem Photon formal die Masse pt erteilt. Damit ist unser
obiges Vorgehen gerechtfertigt.

2. Genau dieselbe Überlegung gilt auch, wenn man d<re(pi) für
kleine Energien berechnen will. Die Entwicklung des
Wirkungsquerschnittes nach der Energie x des einfallenden Photons lautet
nämlich im Schwerpunktsystem:

da6(pt) do£)-x2logx + daf)-x2 + o(x2)

und für sehr kleine x stellt der erste Term den Hauptanteil dar.
Die logarithmische Abhängigkeit von x kommt dadurch zustande,
dass im Limes x —=>- 0 zwei Pole im Impulsraum zusammenrücken,
so dass eine nicht-integrable Singularität entsteht. So wenig wie
auf die Ultrarotterme kann deshalb die spezielle Wahl der
Auswertungsvorschrift auf diesen Term einen Einfluss haben, und
wir dürfen ihn also auf Grund von (30) berechnen, was bedeutend
bequemer ist. Die Rechnung ist als solche uninteressant, so dass
hier nur das Resultat angegeben sei: •
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Bedeutet r0 e2/4 Tim den klassischen Elektronenradius, # den
Streuwinkel, dQ das Raumwinkelelement; übrige Bezeichnungen
wie bisher, so ist:

—f-[l + cos2,?]cos#-log(^

-±[l--cos2#]cos#-log(^)}12) (53)

3. Um die Diskussion der Ultrarotdivergenzen vollständig zu
machen, müssen wir noch in Anlehnung an Jost9) (im folgenden
zitiert als (J)) die Verhältnisse bei der Emission kleiner Photonen
beim Comptoneffekt untersuchen. Das Vorgehen ist genau analog
zu dem bei (J), bis auf die Ersetzung der Einelektrontheorie durch
Löchertheorie und die Berücksichtigung unserer
strahlungstheoretischen Korrekturen :

Man spaltet das Strahlungsfeld im Schwerpunktssystem durch
eine Grenzfrequenz pt in einen hochfrequenten (h. f.) (x > pt) und
einen niederfrequenten (n. f.) Anteil. Der Hamiltonoperator
H H0 + eHx zerfällt anale«••

h. f. H(pt) Ho (pi) + e Hx (/i)

n. f. w g») H[ (n) + e H'x(fi)

Wenn pi klein ist gegen die Elektronmasse und die Energie des
einfallenden Photons, kann man in H + H' alle Terme von der
Ordnung pt/m resp. ptjx vernachlässigen.

Eine erste kanonische Transformation

uw„+f
wo

mit

F-^e~uFe

U—Z fd*xx%(x) fd3pcp*(p')-*¥rp(p')

9cg (x) A* (x) As (x) Photonenzahlen

<p(p')=(^r-) d3xyi (x)e-{Pxy,
(im übrigen die alten Bezeichnungen)

führt rp (p) über in

<p(p~Z fd3xx%(x)),
S \4<ß
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wälzt also den Feldimpuls der n. f. Photonen auf das Materiefeld
ab. Die Strahlungsfeldamplituden gehen dabei über in

-xd3p'(p* (fj') <f (p')
As(x)^As(x)e J dp (54)

Im Sinne der obigen Vernachlässigungen dürfen wir den Energie-
Impulssatz im n. f. Gebiet vernachlässigen und damit den Expo-
nentialfaktor in (54) weglassen.

Auf den derart vorbereiteten Hamiltonoperator wird nun die
von Bloch und Nordsieck5) eingeführte kanonische
Transformation

F -+e~eSFe+eS
mit * ^

*=-yy, yym-W^^
ausgeübt. Es ist dies genau unsere frühere /^-Transformation, die
hier aber nicht im Sinne einer Entwicklung nach Potenzen von e,
sondern strahlungstheoretisch exakt, aber unter Vernachlässigung
des Impuls-Energie-Satzes im n.f. Gebiet durchgeführt wird.
Genau wie bei (J) erhält man damit für den Hamiltonoperator

H H0 + Hj. (pt) + 0 (pt/m, pr/x) (55)
wo

Hx(pt)=Hx(i*)-K'
nnd ^ ^(%(x),NT(p)\K'\X(x),Nr(p)-oatTô(p-p0)7-

+ ôai\ô(p-p'))=(%(x),p0(o0)\K\K's(x),p1(ax)) ((J)29)
Dabei sind N0 (p) a*(p) aa(p) Elektronenzahlen.

In (55) isti?! (pi) (bis auf Grössen 0 (pt/m)) der Hamiltonoperator der
Wechselwirkung mit einem Strahlungsfeld der Masse pt: er ergibt
also in der Störungstheorie den Querschnitt da (pi) dai + dae(/n) +...

Wieder genau wie (J) erhält man für den Streuquerschnitt
eines Prozesses, bei dem neben dem in ein bestimmtes Raumwinkelelement

d Û gestreuten Photon noch n. f. der Verteilung 3ls (x) emittiert

werden:
da IJ[%(x)]-dac (56)

wo n[$is(x)] eine Poissonverteilung für die n.f. Photonen
dae der störungstheoretisch aus Hx(pt) berechnete

Querschnitt für den Comptoneffekt ist:

dac dat + da6 (pt) 7-...
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Die Unabhängigkeit von pt, innerhalb gewisser Schranken,
ergibt sich leicht folgendermassen : Es ist nach (29) der
Wirkungsquerschnitt eines Doppelcomptoneffektes, bei welchem neben dem
in du gestreuten Photon und beliebigen n.f. Photonen noch ein
Photon mit einer Energie x' : pt < x' < pt' emittiert wird, falls
pt'/m^l, pt'jx-^1:

da"(fi,y i(yy f d9%\yy--y-\2.dai\r r i 2 \2nJ J 2\x'\\(p0x) {px x) J

jx < Ix'! < ii'
Somit gilt :

d o-6 (pi) + d a" (pt, pc') da6 (pt') (57)

Es ist also tätsächlich das Resultat unabhängig von der Frequenz pt,
die das Strahlungsfeld in einen h.f. und einen n.f. Teil spaltet,
unter den Bedingungen:

i. pt y. m, pty. x

2. e2 log (—) <€ 1Hy)<
(wo x Energie des einfallenden Photons im Schwerpunktsystem).
Die Bedingung 2 drückt aus, dass der Dreifach-Compton-Effekt
vernachlässigbar klein sein soll gegen den Doppelcomptoneffekt,
was natürlich in allen obigen Überlegungen implizit vorausgesetzt

war.
Im übrigen bleiben alle Folgerungen von (J) unverändert

erhalten. Insbesondere kann über die Form der Comptonlinie nicht
mehr ausgesagt werden, als was schon aus (J) folgt: Innerhalb
des n.f. Gebietes ist sie gegeben durch die Funktion 8 (J 49),
ausserhalb kann sie nur durch exakte Berechnung des Doppel-
Compton-Querschnittes bis zur Ordnung e6 berechnet werden.

* * *
Mit der Formel (52) sind wir grundsätzlich in der Lage, die

e8-Korrektur zum Streuquerschnitt des Comptoneffektes
auszurechnen. Der rein rechnerischen Schwierigkeiten wegen, die
diese Aufgabe bietet, mussten wir die Auswertung jedoch zurückstellen

und uns mit der Näherung kleiner Energien (53) begnügen.
Wir hoffen indessen, in absehbarer Zeit wenigstens noch den Fall
extrem grosser Energien behandeln zu können.

Zum Schlüsse möchte ich meinem verehrten Lehrer, Herrn
Professor W. Pauli, für seine kundige Leitung vielmals danken.
Ausserdem bin ich Herrn Dr. R. Jost. der diese Arbeit anregte,
für viele wertvolle Ratschläge und anregende Diskussionen zu
grossem Dank verpflichtet.
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