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Zur Theorie der Multipolstrahlung.
von M. Fierz, Basel.

(1. IV. 1949.)

Zusammenfassung. Es wird in einfacher Weise die Intensität und Charakteristik
der niedrigsten, von einer elektromagnetischen Strahlungsquelle ausgesandten
Multipolwelle berechnet. Weiter werden allgemeine Formeln für die Korrelationen
von y- Strahlen mit Hilfe der Darstellungstheorie der Drehgruppe hergeleitet.

Einleitung.

Formeln für die Intensität der durch Kerne ausgesandten y-Strahlung

sind mit Hilfe des Tropfchenmodells abgeleitet worden1). Sie

entsprechen recht gut der Erfahrung2). Entsprechende Formeln hat
Berestetzky3) für eine beliebige Multipolquelle angegeben. Im
ersten Teile dieser Arbeit legen wir eine Methode dar, die in
einfacher Weise die Intensität und Charakteristik der Multipolstrah-
lung niedrigster Ordnung zu berechnen gestattet, die eine
elektromagnetische Strahlungsquelle ausstrahlen kann. Es zeigt sich, dass
die magnetische und die elektrische Strahlung auch im allgemeinen
Pralle dem schiefen und dem symmetrischen Teil eines gewissen
Tensors entspricht.

Wenn man die Formeln für ein bestimmtes Kernmodell anwenden
will, müssen natürlich die Multipolmomente durch entsprechende
Matrixelemente ersetzt werden.

In den folgenden Abschnitten werden Fragen, die mit der Korrelation

nacheinander ausgestrahlter y- Quanten zusammenhängen,
behandelt. Diese Fragen sind für Dipol- und Quadrupolstrahlung
vor allem von D. R. Hamilton4) ausführlich untersucht worden.
Er konnte seine Formeln so weit auswerten, dass sie leicht mit der
Erfahrung verglichen werden können. C. N. Yang3) hat darauf
hingewiesen, dass sich derartige Probleme allgemein gruppentheoretisch
behandeln lassen. Er beschränkt sich jedoch auf allgemeine
Aussagen, ohne auf Einzelheiten näher einzugehen.

Wir leiten in dieser Arbeit Formeln ab, die für Korrelationen bei
beliebiger Multipolordmmg gültig sind.
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Es ist auch berücksichtigt, dass im allgemeinen elektrische und
magnetische Strahlung kohärent auftritt. Weiter wird der Fall
behandelt, dass bei solchen Prozessen Korrelationen zwischen y-
Quanten und Konversionselektronen auftreten.

Zur Herleitung der Formeln bedienen wir uns der
gruppentheoretischen Methode.

1. Klassische Theorie der Multipolstrahlung.

Wir betrachten die Ausstrahlung, die durch eine periodisch
veränderliche Stromdichte

j (x) e~imt + konjg.

zustande kommt. Rechnet man in GAUss'schen Einheiten und eicht
man die Potentiale so, dass

div«+ - 0= 0
c

dann wird das Strahlungsfeld in der Wellenzone durch das
Vektorpotential

Akr— iv>t i r+- *-¦»- 1e 1 / * /-*- /\ _ .• il ~'\ -i / r
r

<H(z) ^_ — ¦-- j(x')e-i{kx'] dr'= —-eitr-iatJ (1,1)

beschrieben. Die Meinung ist dabei die, dass stets der konjugiert
komplexe Term zu addieren sei. k hat den Betrag co/c, seine Richtung

ist diejenige von x.
Wir wollen nun das Integral J in (1,1) nach Multipolmomenten

entwickeln. Das ist sinnvoll, wenn die Wellenlänge der Strahlung
gross gegen die Ausdehnung der Strahlungsquelle ist.

Wir entwickeln e~i{kx'} in eine Potenzreihe:

«-«<*•> Œ£izi^!LL (1,2)

*- °° »-

Entsprechend wird nun J £ Jm. Die Komponente J® ist durch
i i

(-i)'-ijy 17ï^iyrZ---Z;knx---knlllxn1...xni_xjnydT (1,3)

gegeben.
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Den Integranden spalte man nun in einen in den Indices %... n
symmetrischen Teil und einen, der im Indexpaar nz^x, n schief ist.

-i?« l 2-1xnx • • - xnt_x 1 n -~ i 2a Xni ' ' ' Xni-i 1n

(nx...n)

+ -y 2j xnx-- ¦ xn^_2 (ft^yin xninl_x) \\A)
(nx... nt_x)

Hier bedeutet 2J die Summe über die zyklischen Permuta-
(»*••• nk)

tionen der angeschriebenen Indices. Der symmetrische Teil
entspricht der elektrischen, der schiefe Teil der magnetischen
Multipolstrahlung.

Den symmetrischen Teil formen wir mit Hilfe der Kontinuitätsgleichung

div j. + q ¦== 0 um:

-j j xni... x„ q d t — -j / Xnx... xn div j d r

~y 2j I xnx • ¦ ¦ xnt_x indt
(nx... n) "

Somit is*t derjenige Teil von J{1], der der elektrischen
Multipolstrahlung entspricht:

J(lJ ^r~ f& y-'x&dr (1,5)

Interessiert man sich nun lediglich für die Multipolstrahlung
niedrigster Ordnung, die eine Strahlungsquelle ausstrahlt, so kann man
auch die Entwicklung

„JTÏ, _ y y ±n S?'1 (1-1)1
Zj Zj l-X (2l-2)\l=* 1 m * '

(-Mry-iYl_lim(6,®)Yllim(&,<p) (1,6)

betrachten, die man erhält, wenn man in der bekannten Entwicklung

nach Kugelwellen die BESSEiiunktionen nach kr entwickelt
und jeweils nur den 1. Term beibehält. Hier sind 6, 0 die
Polarwinkel von k; &, rp diejenigen von x. YUm (&, rp) sind die normierten
Kugelfunktionen. Da dies später wesentlich sein wird, wollen wir
hier schon anmerken, dass die Vorzeichen der Funktionen so ge-
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wählt sein sollen, dass Yu_m (— 1) m Y*m ist. Indem man nun
(1,5) und (1,6) vergleicht, ergibt sich

fy -^ëiy^y-'Z^-i,^ *) [è (x)x yy,my <pV-hx
(1,7)

Diese Formel ist nur richtig, wenn man die Strahlung höherer
Ordnung, die ein Multipol der Ordnung l ausstrahlt, vernachlässigt.

Die Ladungsdichte q entwickle man nach Kugelfunktionen:

l,m

Mit dieser Entwicklung erhält man für das Potential 0 in der
Nahezone r <^ X :

v^-z^^yyo'^fetyry^dr'l.m ' •>

Die Integrale

Qt,m=fel,m(r)rl+2dr (1,8)

nennen wir deshalb die Multipolmomente.
Unserer Näherung entsprechend, hat man in (1,7) nur den Term

Q{l] ZQi.m>(r)Ylm,y rp)

m'

zu berücksichtigen. Setzt man das ein und integriert über die Winkel,

so erhält man für das Integral in (1,7)

£ «Am'««,-.' (1.9)
mf

Die c^} / sind bekannte Koeffizienten. Insbesondere gilt

Z^.myt-i.m(^ ^)=YUT^-7^^^Ylm,(6, <*>)] (1,10)

(Siehe hiezu H. Bethe, Handbuch der Physik 24/1, 2. Aufl., S. 555ff).
Indem wir das beachten, erhalten wir einen Ausdruck für J® und
damit für 9t. Die elektrische Feldstärke ist gleich der transversalen

Komponente von 5t.
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Daher sind die Komponenten von (E in den Richtungen 6 und
0 (meridionale und azimutale Komponente)

1 f
d

1

e» ^r S7r (i-i)i /2fey-i de \y -- -t^" 8"(2T+i)Tl-r) i d 2Y».m(o. <p)ei.»
ŒS

Isinô d1*' (1,11)

Natürlich ist Q; m — co2 QZ, m*

Um die magnetische Strahlung zu erhalten, führen wir die Dichte
des magnetischen Momentes ein:

n-~[xi\ (1,12)

Diese entwickle man nach Kugelfunktionen:

^=E Eh-iy^Y^y^cp)
1 1 m

Die ^_i,m haben nun auf Grund gruppentheoretischer Sätze die
Form

P-l-l.m 2j Cm,m'til,m'(r)
m'

Wenn man die entsprechende Rechnung macht, wie für die
elektrische Strahlung, so findet man leicht, dass hier § an Stelle von (£

tritt und dass die magnetischen Multipolmomente sich zu

^.= ^-/a«i.M',+1*' (1,13)

ergeben. Der Faktor rührt davon her, dass in der Summe in

(1,4), die dem magnetischen Multipolmoment entspricht, nur l — l
Summanden auftreten. Der Faktor 2 rührt von der Definition (1,12)
her.

Die gesamte Ausstrahlung erhält man, wenn man —— (E2 über die

YlJ\dü= 1(1 + 1)

Kugeloberfläche integrier j. Nun ist

fl\ — Y
2

+
1 d

sin # d rp
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Darum ist die pro Sekunde und im Zeitmittel ausgestrahlte Energie

Für die magnetische Strahlung hat man die QLm durch die Mlm
zu ersetzen.

2. Charakteristik einer Multipolquelle in der Quantenmechanik.

Wir betrachten einen Atomkern in einem Zustande mit den Dreh-
impulsquantenzahlen jx, m^. Durch Ausstrahlung eines Lichtquants,
das einer 2J-Pol-Strahlung entspricht, gehe der Kern in den Zustand
mit den Quantenzahlen j2, m2 über. Das Lichtquant hat den
Drehimpuls j6). Aus dem Drehimpulssatz folgt weiter, dass

mx m2 + m (2,1)

gelten muss. Hier ist m der Drehimpuls des Lichtquants um die
2-Achse. Das diesem Übergang zugeordnete Matrixelement nennen
wir Qj,m. Dann wird der Endzustand, in welchem ein Lichtquant
und der Atomkern im Zustande ip^ vorhanden ist, durch den
Ausdruck

2J Qj.m Y),m Vf,, m.,-m (2>2)
m

charakterisiert. Der Drehimpuls dieses Endzustandes muss der
gleiche sein, wie derjenige des Anfangszustandes y>ji>m,, weshalb
sich (2,2) bei Drehungen des Koordinatensystems so transformieren
muss, wie die Eigenfunktion y>jvmi. Daher verhalten sich die
Matrixelemente Qj,m so wie die Koeffizienten der Clebsch-Gordan -

sehen Reihe der Produktdarstellung fy x &jt der Drehgruppe7).

Falls man sich für die Charakteristik der Strahlung interessiert,
so hat man den Erwartungswert von (2,2) bezüglich der Koordinaten

des Atomkerns zu bilden. Da die Funktionen ipjtiUtt mit
verschiedenen m2 orthogonal sind, addieren sich die Beiträge mit
verschiedenen m inkohärent. Dies entspricht auch der Rotationssymmetrie

des Problems um die 2*-Achse.

Beobachtet man die Strahlung in der Richtung &, <p und im
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Polarisationszustande a&, a (\a&\2 + | a |2 1), dann findet man
für die Intensität:

m ' T

+ (a»lèïlh-a*in>)Yi-^{&> v)M*-*.-<h'*ù\È (2,3)

Hier ist berücksichtigt, dass neben der elektrischen
Multipolstrahlung der Ordnung j noch eine magnetische Strahlung der
Ordnung j — 1 auftreten kann, die zur elektrischen Strahlung
kohärent ist.

Die Änderung der Parität des Zustandes des Atomkerns ist stets

(- I)''.
Falls entweder jx j + j2 oder j2 j + jx ist, so tritt keine magnetische

Strahlung auf; die M,._Ï>1B verschwinden. Die Qitm sind dann,
bis auf einen gemeinsamen von m unabhängigen Faktor, wie folgt
gegeben:

h j + h

k k + i
Q,m (ii, mx) ~ (-1)- f + y_; - mf f + )12 + T 2'4>

T Iti \ 7b^LI j,,, H, ; falls im Nenner ein Argument negativ wird,

verschwindet der Binomialkoeffizient per definitionem.

Ein Spezialfall, der in (2,4) nicht enthalten ist, ist der Übergang
]x ii %, j 1. Hier sind die Q?-?m wie folgt bestimmt:

Qi.o (y» y) Qi,o [y ' ~ y) 1

«h(|.-1)-oi.-ì(t't)"-^ (2'5)

Wenn hingegen ^ j + j2 — 1 oder */2 7 + jx — 1 ist, tritt eine
magnetische Strahlung der Ordnung j — 1 auf. Die M;-_lm sind
wiederum durch (2,4) bzw. (2,5) gegeben, wobei natürlich j durch
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j — 1 zu ersetzen ist. Weiter tritt eine elektrische Multipolstrahlung
auf. Es gilt :

L G,
ml) ~ (/£*)* f1 -.^+ T /ö + *)<h + l-»h)

- fi ; r:r o---1)1/2^-m^w m

¦Vdi+mi)(i+y
-f1+j--T-im'TC1+y"JTCm'T^iyyy--^] m

Diese Ausdrücke für QjiTn, M,-_ljM sind in die Formel (3",8)
einzusetzen. Dabei ist das Verhältnis von Phase und Intensität der
elektrischen und magnetischen Strahlung durch einen komplexen
Faktor zu berücksichtigen. Dieser kann aus einem Modell für die
Strahlungsquelle berechnet werden, oder man kann gegebenenfalls
versuchen, ihn aus der Erfahrung zu bestimmen.

3. Korrelation nacheinander emittierter y-Quanten.

Wir betrachten zwei hintereinander folgende Emissionsprozesse
eines Atomkerns, bei welchen dieser von seinem Anfangszustand
mit dem Impulsmoment jx in den einen Zwischenzustand mit dem
Impulsmoment j2 und hierauf in den Endzustand mit dem
Impulsmoment js übergeht. Dabei werden zwei Lichtquanten ausgestrahlt,
die in den Richtungen #, rp; &', rp' beobachtet werden, und zwar
unter den Polarisationsrichtungen *a,*ä'.

Wir interessieren uns für die Korrelation von Richtung und
Polarisation der ausgestrahlten Lichtquanten, falls im Anfangszustand
keine Richtung bevorzugt ist, d. h. alle m^ gleich wahrscheinlich
sind. Auf Grund des Drehimpulssatzes erhält man für die
Korrelationsfunktion W (6, a, a') — 0 ist hier der Winkel zwischen den
Richtungen &, rp; &' rp', — Ausdrücke folgender Gestalt:

w(erara') -ZE\(a^+%^4ip){a'^ + K^w^)-
mi m' ti" t

ZYj,m^,fp)Y^m,_m(&',rp')Qhm(j1>m1) Qr,m,.m(h,mx-m)\2 (3,1)
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Diese Formel gilt, falls z. B. jx j2 + j; j2 j3 + j' angenommen
wird. Die Qjim; Qf,m> sind dann wiederum durch (2,4) gegeben.
Dass der Ausdruck (3,1) nur von ö abhängt, ist eine Folge der
Struktur der Qjim und entspricht einem verallgemeinerten
Additionstheorem von Kugelfunktionen. Dadurch kommt die Symmetrie
des Problems zum Ausdruck.

Es ist daher zweckmässig, & 0, cp rp' 0 zu setzen.

Weiter wollen wir die Polarisation durch zirkulär polarisierte
Komponenten beschreiben :

1 / d 1 1 d \ 1 ¦ s

a^ + %^mTd^ a+P+ + «-P-

[ 0 für m 4= 1

Nun gilt (p+ Yy> J,_v^0 / 2-j + l \i/2 f 1
| U»?(; + i)^

0 für m #= — 1

(p_Y,J^ 0= / 2J+1 yi* für to _1 }
\ 8ji?(j + 1) /

Damit erhält man für die Korrelationsfunktion (N. B. 6 #') im
allgemeinsten Falle

IF(#', a,o')

ZZ
mi m'

[o+ Qy, i(h, ™i) + * «+ ]/((^' + i)0"-i) "M* - *• 1 (?1'Wl)

• [(o'+ p'+ + a'_ p'_) Yj,,m'-iQy,m>-i(h> mi —1)

+ i (o'+ p'+ — a'_ p'_) • Y,,_ j, w,_ x Mf _!,„,_! 0'2, *»«i — l)]

- [«A-ife^i)-*0-]/(2J + Ì) 0--Ì) :M/-i.-i^^]
• [(o'+ p'+ + a'_ p'_) Y^ „, + j Qf, w, + j 0'2, *% + 1)

+ i (a+ p'+ - a'_ p'_) Yy _Um, + x My _x,m, + 1 (j2, mx + l)] (3,4)
32
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Auch hier sind, je nach den Gleichungen, die zwischen jx, j2, j3, j, j'
bestehen, die Multipolmomente durch (2,4) bis (2,7) gegeben. Wieder

ist dem Verhältnis zwischen den elektrischen und magnetischen
Momenten mit Hilfe komplexer Faktoren Rechnung zu tragen.

Leider scheint es unmöglich zu sein, die in den Formeln (2,3)
und (3,4) auftretenden Summen allgemein auszuführen. Die Ergebnisse

von Hamilton sind in dieser Hinsicht jedenfalls nicht
ermutigend.

4. Bichtungsverteilung von Konversionselektronen.

Für weiche y- Strahlen, die ein Kern emittiert, kann die Konversion

der Strahlung in Elektronen beträchtlich sein. Man kann auch
die Charakteristik der Konversionselektronen angeben. Die hierfür
massgebenden Formeln sind aus zwei Gründen einfacher als im
Falle der Strahlungscharakteristik. Hier treten nämlich die
Kugelfunktionen selber auf und nicht ihre Ableitungen. Da man zudem
die Polarisation der Elektronen, d. h. ihre Spinorientierung, nicht
beobachtet, so addieren sich die magnetischen und die elektrischen
Übergänge inkohärent.

Das sieht man wohl am einfachsten wie folgt ein:

Wir betrachten die Emission eines i?-Elektrons. Die beiden K-
Elektronen bilden einen Singulett-Zustand. Bei elektrischer
Konversion bildet das herausgeworfene Elektron mit dem verbleibenden
K-Elektron einen Singulett-Zustand, bei magnetischer Konversion
bilden jedoch diese Teilchen einen Triplett-Zustand. Diese beiden
Zustände sind jedoch bei Summation über die Spinrichtungen
orthogonal und addieren sich somit inkohärent. Man kann deshalb
elektrische und magnetische Übergänge in diesem Falle getrennt
betrachten. Die zugehörigen Elektronenintensitäten sind jeweils zu
addieren.

Geht ein Kern im Zustande jx mx durch Konversion eines i?-Elek-
trons in den Zustand j2 über, so ist im Falle elektrischer Strahlung
die Charakteristik der Elektronenintensität einfach:

J W Z\Qhm(jx,mx)\2-\Y,.m($)\2 (4,1)
m

Für magnetische Übergänge erhält man 3 Terme, die den drei Ter-
men des Triplett-Zustandes entsprechen. Bei einem magnetischen
Übergang der Ordnung j-1 wird ein Elektron mit dem Bahndrehimpuls

j-2 ausgesandt. Dieser Bahndrehimpuls muss sich mit dem
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Spindrehimpuls 1 des Tripletts zum Gesamtimpuls 7-I zusammensetzen.

Sei Sm die Spinfunktion (m 0,l, —1), dann muss sich

T Y cj7l S (4 2Ì
^Ld — %,m -m.m —m m —m V-1-,"/
m'

wie Yj_x m transformieren. Es ist deshalb in diesem Falle

Jlff\- y\M \2(\Y <*» 12 + m-l)(j + m-2)
m

+ \Yi-^y((i~y-^)y\Yj_2yy2^-m-1^-m^y} (4,3)

Wenn der Kern zwei Übergänge hintereinander ausführt, wobei
beim ersten Übergang an Stelle eines Lichtquants ein Konversions-
Elektron ausgesandt wird, dann kann nach der Korrelation des
Elektrons mit dem beim zweiten Übergange ausgestrahlten
Lichtquant gefragt werden. Man wird zweckmässig die 2*-Achse in die
Richtung des Elektrons legen. Ist der erste Übergang elektrischer
Natur, so erhält man für die Korrelationsfunktion

W (&, a)

Z Z I Qi. 0 Oi, r>h) 12 •
I (a+P+ +0-P-) Yr. m>

¦ %'. m' tiv »h)

+ i (a+p+ - a^ p_) Yy _lim, My _hm, (j2, mx) \2 (4,4)

Wenn der erste Übergang dagegen magnetischer Natur ist, so gilt

W(&,1)

Z Z {I Mi-i, 1 Oi, mi)\21 (o+ P+ + -3-P-) Yy.m'-iQf.m'-iOa>mi-l)
mi m'

+ i(a+p+-a_p_)Yy_ltmr_xMy_lim^x(j2,mx-l)\2^yy

+ I Mi-i,o Oi, mx) |21 (a+ p+ + a_p_) Yy m, Qym, (j2, m^

7-i(a+p+-a_ p_) Yy _ x m, My _ :_ m, (j2, mx) \2 (j -1)2

7-\Mj_1_1(jx,mx)\2\(a+p+ + a_p7)Yymf + 1Qyim,+1(j2,mx+l)

+ i(a+P+-a^p7)Yy_lm, + 1My_hni, + 1(j2,mx + l)ì %

2 ?0'-l)

(4,5)

Im allgemeinen sind die Ausdrücke (4,4) und 4,5) mit passenden
Gewichten zu addieren.
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Im Falle, dass das zweite Lichtquant konvertiert wird, kann die
Korrelationsfunktion in der entsprechenden Art auch ohne Mühe
angegeben werden.

Basel, Seminar für theoretische Physik.
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