Zeitschrift:	Helvetica Physica Acta
Band:	22 (1949)
Heft:	IV
Artikel:	Stosswellen in der eindimensionalen nichtstationären Gasströmung
Autor:	Sauer, R.
DOI:	https://doi.org/10.5169/seals-112012

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 22.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Stosswellen

in der eindimensionalen nichtstationären Gasströmung

von R. Sauer.

(9. IV. 1949.)

Einleitung.

Herr F. CAP¹) hat kürzlich in dieser Zeitschrift einige Bemerkungen über die "instationäre Stosspolare" veröffentlicht, die ich vor längerer Zeit in einer nur in wenigen Exemplaren vervielfältigten Arbeit²) eingeführt hatte. Es mag daher gerechtfertigt sein, nochmals kurz auf die Darstellung eindimensionaler, nichtstationärer Verdichtungsstösse durch eine Stosspolare einzugehen und zu zeigen, wie man mit Hilfe dieser Stosspolaren die Reflexion und Überlagerung von Stössen in zylindrischen Rohren behandeln kann. Bezüglich weiterer Anwendungen sei auf eine demnächst erscheinende "Einführung in die Gasdynamik" verwiesen³).

Stosspolare.

In einer eindimensionalen Gasströmung (u = Gasgeschwindigkeit, a = Schallgeschwindigkeit, p = Druck) pflanze sich ein rechts- bzw. linkslaufender Verdichtungsstoss mit der Stossgeschwindigkeit $u \pm c$ fort; \hat{u} , \hat{a} und \hat{p} sind die Zustandswerte des Gases hinter dem Stoss. Bei Voraussetzung idealer Gase ($\gamma = c_p/c_v = \text{const}, c_p$ bzw. $c_v = \text{spezifische Wärme bei konstantem Druck bzw. Volumen) er-$

¹) C. CAP, Zum Problem der instationären Stosspolare, Helvetica Physica Acta, XXI, 6 (1948), S. 505-512.

²) R. SAUER, Theorie der nichtstationären Gasströmung. Forschungsbericht der Zentrale des wissenschaftlichen Berichtswesens für Luftfahrt Nr. 1675, Berlin (1943). Dieser Bericht wurde zwar von Herrn Cap zitiert, der auf die Stosspolare bezügliche Abschnitt war ihm aber offenbar nicht bekannt. — Erstmals wurde die nichtstationäre Stosspolare wohl von A. Busemann in einer Diskussionsbemerkung bei einer Mathematikertagung in München 1942 erwähnt.

³) R. SAUER, Méthodes analytiques de la théorie des fluides compressibles (erscheint im Verlag Béranger, Paris). geben sich aus den Erhaltungssätzen der Masse, des Impulses und der Energie die bekannten Stossgleichungen

$$\begin{aligned} \frac{\hat{u} - u}{a} &= \frac{2}{\gamma + 1} \left(\omega - \frac{1}{\omega} \right), \\ \frac{\hat{d}^2 - a^2}{a^2} &= \frac{2(\gamma - 1)}{(\gamma + 1)^2} \left(\omega^2 - 1 \right) \left(\gamma + \frac{1}{\omega^2} \right), \\ \frac{\hat{p} - p}{p} &= \frac{2\gamma}{\gamma + 1} \left(\omega^2 - 1 \right), \end{aligned}$$
(1)

durch welche die unstetige Änderung der Gasgeschwindigkeit und die unstetigen Anstiege der Schallgeschwindigkeit und des Druckes in Abhängigkeit von der Stossgeschwindigkeit $\omega = c/a$ ($|\omega| \ge 1$) gegeben sind.

Die Stossgleichungen (1) lassen sich in der u, a-Zustandsebene mit $\hat{u}-u/a$ und \hat{a}/a als rechtwinkligen Koordinaten durch eine "Stoss-

polare" darstellen, welche Skalen für ω und für \hat{p}/p trägt (Fig. 1). Mit Hilfe dieser Stosspolaren kann man einerseits zu einer vorgegebenen Stossgeschwindigkeit ω die Werte von \hat{u} , \hat{a} und \hat{p} oder andrerseits zu einem vorgegebenen Druckanstieg \hat{p}/p die Werte von \hat{u} , \hat{a} und die Stossgeschwindigkeit ω unmittelbar angeben.

Die Stosspolare ist eine algebraische Kurve vierter Ordnung mit den Koordinatenachsen als Symmetrieachsen. Physikalische Bedeutung haben nur die beiden vom Doppelpunkt A (vgl. Fig. 1) nach oben laufenden Kurvenäste; der Fortsetzung dieser Kurvenäste vom Doppelpunkt A bis zur Abszissenachse entsprechen die physikalisch nicht realisierbaren Verdünnungsstösse. Die Stosspolare hat im Doppelpunkt A zwei Wendetangenten. Sie liefern die adiabatischen Verdichtungen und Verdünnungen

$$\left(\frac{\hat{u}-u}{a}\right)_{\text{adiab.}} = \pm \frac{2}{\gamma-1} \left(\frac{\hat{a}-a}{a}\right)_{\text{adiab.}},$$

$$\left(\frac{\hat{p}}{p}\right)_{\text{adiab.}} = \left(\frac{\hat{a}}{a}\right)_{\text{adiab.}}^{\frac{2}{\gamma-1}}.$$

$$(2)$$

Schwache Verdichtungsstösse $(\hat{p}/p \rightarrow 1)$ können durch adiabatische Verdichtungen approximiert werden; wie Fig. 1 zeigt, fallen die Druckskalen für schwache Verdichtungsstösse und für schwache adiabatische Verdichtungen praktisch zusammen.

Bei starken Verdichtungsstössen $(\hat{p}/p\to\infty)$ lässt sich die Stosspolare durch ihre (in Fig. 1 strichpunktierten) Asymptoten mit der Gleichung

$$\frac{\hat{u}-u}{a} = \pm \sqrt{\frac{2}{\gamma(\gamma-1)}} \frac{\hat{a}}{a}$$
(3)

ersetzen.

Mit Hilfe der Stosspolaren kann man eindimensionale nichtstationäre Gasströmungen mit abschnittsweise konstanten Zustandswerten auf sehr einfache Weise diskutieren und berechnen, wie im folgenden an einigen Beispielen gezeigt wird.

Reflexion und Überlagerung von Verdichtungsstössen.

In Fig. 2 sind folgende Aufgaben behandelt:

- a) die Reflexion eines rechtslaufenden Verdichtungsstosses in einem zylindrischen Rohr, das linksseitig unendlich lang und rechts durch eine feste Wand abgeschlossen ist;
- b) die Reflexion eines rechtslaufenden Verdichtungsstosses in einem zylindrischen Rohr, das linksseitig unendlich lang und rechts offen ist;
- c) die Durchkreuzung eines rechtslaufenden und eines linkslaufenden Verdichtungsstosses in einem beidseitig unendlich langen zylindrischen Rohr;
- d) die Überlagerung zweier aufeinanderfolgender rechtslaufender Verdichtungsstösse in einem beidseitig unendlich langen zylindrischen Rohr.

Oben ist jeweils die Wanderung der Stösse und der bei b) und c) hinzukommenden adiabatischen Verdünnungswellen durch den "graphischen Fahrplan" in der x, t-Ebene dargestellt (x =Ortskoordinate in Richtung der Rohrachse, t =Zeit). Unten sind jeweils die Zustandsänderungen in der u, a-Ebene angegeben. Die ausgezogenen Linien in der u, a-Ebene sind Bögen von Stosspolaren, die gestrichelten Linien sind Stücke von Wendetangenten und beziehen sich auf adiabatische Verdünnungen. Die Doppellinien in der x, t-Ebene sind Bahnlinien von Gasteilchen und Mediengrenzen zwischen Bereichen gleichen Druckes und gleicher Strömungsgeschwindigkeit, aber verschiedener Schallgeschwindigkeit und demgemäss auch mit verschiedenen Werten der Temperatur, Dichte und Entropie. Die Stosspolaren und Wendetangenten samt den Skalen für

Fig. 2. Reflexion und Überlagerung von Stössen.

 \hat{p}/p und c/a sind jedesmal in dem durch die Lage des Doppelpunktes A bestimmten Maßstab zu zeichnen. So liegt z. B. bei a) der Doppelpunkt der Stosspolaren 2'3' im Punkt 2', bei c) der Doppelpunkt der Stosspolaren 3'5' im Punkt 3' usw.

Bei a) ergibt sich aus der Randbedingung $u_3 = 0$ am festen Rohrabschluss ein reflektierter linkslaufender Verdichtungsstoss. Die Ausbreitungsgeschwindigkeit des reflektierten Stosses und der Druckanstieg p_3/p_2 werden im Punkt 3' der Stosspolaren an den Skalen für ω und \hat{p}/p abgelesen. Im x, t-Diagramm erhält man hierbei $\beta > \delta$, d. h. der reflektierte Stoss läuft langsamer als der einfallende Stoss.

Bei b) hat man als Randbedingung am offenen Rohrende p_3 = Aussendruck. Der Stoss wird als Verdünnungswelle reflektiert. Man muss auf der Wendetangente von 2' bis zu dem Punkt 3' fortschreiten, in dem man aus der Skala der adiabatischen Druckänderungen \hat{p}/p den gegebenen Aussendruck p_3 erhält.

Bei c) muss man auf den Stosspolaren 3'5' und 2'4' soweit fortschreiten, bis die übereinanderliegenden Punkte 4' und 5' die gleichen Druckwerte $p_4 = p_5$ liefern. Man erhält hierdurch nach der

Durchkreuzung zwei mehr oder weniger abgeänderte Verdichtungsstösse, hinter denen in den Bereichen (4) und (5) das Gas denselben Druck $p_4 = p_5$ und dieselbe Strömungsgeschwindigkeit $u_4 = u_5$ besitzt; die Strömungsgeschwindigkeit bestimmt die Bahnlinie, welche die Bereiche (4) und (5) als Mediengrenze trennt.

Bei d) entsteht beim Einholen der beiden rechtslaufenden Verdichtungsstösse ein weiterer rechtslaufender Verdichtungsstoss und eine linkslaufende adiabatische Verdünnungswelle. Man muss auf der Stosspolaren 1'2'5' und der Wendetangente 3'4' soweit fortschreiten, bis die übereinander liegenden Punkte 4' und 5' dieselben Druckwerte $p_4 = p_5$ liefern. Die Bereiche (4) und (5) sind wieder durch eine Bahnlinie als Mediengrenze getrennt.

Druckausgleich.

In Fig. 3 ist der Druckausgleich dargestellt für ein beidseitig unendlich langes zylindrisches Rohr. Zur Zeit t < 0 soll das Rohr bei $x = x_0$ durch einen Verschluss in einen linken und rechten Teil getrennt sein; links und rechts ist das Gas in Ruhe, links mit dem Druck p_1 und rechts mit dem höheren Druck $p_3 > p_1$. Zur Zeit t = 0wird der Verschluss plötzlich weggenommen. Es bildet sich dann ein linkslaufender Verdichtungsstoss und eine rechtslaufende adiabatische Verdünnungswelle. Man muss auf der Stosspolare 1'2' und der Wendetangente 3'4' somit fortschreiten, bis die übereinander liegenden Punkte 2' und 4' mit Hilfe der Druckskalen für \hat{p}/p dieselben Druckwerte $p_2 = p_4$ liefern. Die Bereiche (2) und (4) haben wieder eine Bahnlinie als Mediengrenze.

Entstehung eines Verdichtungsstosses aus einer adiabatischen Verdichtungswelle.

In Fig. 4 ist für ein beidseitig unendlich langes zylindrisches Rohr eine rechtslaufende adiabatische Verdichtungswelle dargestellt, deren Wellenfront zur Zeit t = 0 durch einen linearen Anstieg der Schallgeschwindigkeit a gekennzeichnet ist. Für t > 0 steilt sich die Wellenfront mehr und mehr auf, bleibt aber geradlinig und geht bei $t = t_F$ in einen unstetigen Anstieg über. Die Verdichtungswelle wird daher durch einen Fächer von Verdichtungslinien gegeben, welche in einem Punkt F der x, t-Ebene zusammenlaufen.

Zur Zeit $t = t_F$ bildet sich ein rechtslaufender Verdichtungsstoss und eine linkslaufende adiabatische Verdünnungswelle. In der Zustandsebene wird die gegebene adiabatische Verdichtungswelle durch die Wendetangente 1'2', die Verdünnungswelle durch die Wendetangente 2'3' gegeben. Man muss auf 1'4 'und 2'3' wieder so lange fortschreiten, bis die übereinander liegenden Punkte 3' und 4' dieselben Druckwerte liefern. Es entstehen wieder zwei Bereiche (3) und (4) mit einer Bahnlinie als Mediengrenze.