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Beitrag- zur Messung* von Erschütterungen
von Max Weber.

(22. III. 1949.)

Zusammenfassung: Die allgemeinste für die Erschütterungsmesstechnik in
Betracht zu ziehende Bewegung wird theoretisch untersucht. Es werden die
theoretischen Grundlagen zum Bau eines Erschütterungsmessers mit einfachster
Frequenzkennlinie gegeben und die Messgenauigkeit untersucht. Ferner wird dargelegt,

wie eine einwandfreie Eichung und Messung durchzuführen ist. Es wird ein
Beschleunigungsmesser gebaut und im Sinne der entwickelten Theorie vollständig
ausgemessen. Die erreichten Empfindlichkeiten sind für die praktischen Bedürfnisse

ausreichend.

Summary : The most general vibration is considered theoretically. The theoretical

basis for the construction of a vibration meter with simple frequency characteristic

is given, and accuracy of measurement is determined. Indications are given,
how to carry out calibration and measurement. An accelerometer has been
constructed, and calibrated in accordance with the above-mentioned theory, sensitivity
attained being sufficient for practical purposes.

I. Theoretische Grundlagen.

§ 1. Allgemeines über Erschütterungsmesser.

Erschütterungen sind kleine Verrückungen. Sie können, wie z. B.
in Fahrzeugen, auch einer beliebigen Bewegung überlagert sein.
Daher sind zu ihrer Beschreibung im allgemeinen drei Koordinatensysteme,

d. h. das Absolutsystem Sx und zwei Relativsysteme S2 und
S3 notwendig.

Ein Erschütterungsmesser, auch Schwingungsmesser oder
Seismograph genannt, besteht aus einem starren Rahmen oder Gehäuse,
in dem ein mechanisches System so befestigt ist, dass es kleine
Bewegungen um eine stabile Gleichgewichtslage ausführen kann. Der
starre Teil des Erschütterungsmessers heisst „Gestell", der bewegliche

„Gehänge".
Unter der Vielzahl der möglichen Gehänge interessieren besonders

diejenigen, deren Massenelemente sich, wenigstens näherungsweise,
auf geradlinigen Bahnen bewegen. (Lineare Vergrösserung.)
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§ 2. Die Beschleunigung, mit der ein beliebiges Massenelement des

Gehänges belastet wird.

Bewegt sich das Gestell, so wird sich das Gehänge infolge der
veränderlichen Belastungen b durch die Zentrifugalbeschleunigungen
— Pi und die Schwerebeschleunigung g relativ zum Gestell bewegen.
(Die Coriolis-Kraft ergibt für eine geführte Bewegung keinen Anteil
zur Bewegungsgleichung.) Es genügt im vorliegenden Fall,
anzunehmen, die Belastung sei unabhängig von den kleinen Auslenkungen

des Gehänges aus seiner Ruhelage. Die Belastung b eines
beliebigen Massenelementes dm des Gehänges ist daher so zu berechnen,

wie wenn das Element in seiner Ruhelage, bezeichnet durch
den Punkt P, festgehalten würde.

5»

/l Fig. 1.

Darstellung der eingeführten Koordinatensysteme und Vektoren. Es bedeuten:
Oj Ursprung des Systems Sf, p3- Ortsvektor des Punktes P im System <§,¦; c^- Orts¬

vektor des Ursprungs 0j+x im System ä,-. (j 1, 2, 3, 4).

Die eingeführten rechtwinkligen Koordinatensysteme Sx, S2 und
Ss, ein viertes, später noch einzuführendes System S4 mit
eingeschlossen, sowie die zur Beschreibung der Lage des Punktes P und
der Koordinatenzentren 03- notwendigen Vektoren p3- und q3- sind
in Fig. 1 dargestellt. Die Bedeutung der zur Beschreibung der
Drehungen der Systeme gegeneinander notwendigen <£ — Koordinaten

ipx; (fx; X! und ip2; rp2; x. geht aus Fig. 2 hervor. (Lit. 4.)

Die Komponenten von q3- im System $3- sind |3-; rj,; f,-

Die Komponenten von p3- im System Sj sind x$; yf, z}.



Beitrag zur Messung von Erschütterungen. 427

Für die Berechnung von b werden die folgenden Begriffe und
Bezeichnungen verwendet. Sind die beiden rechtwinkligen Systeme S
und S' mit gleichen Einheiten auf den Achsen und der Vektor r> mit
den Komponenten x; y; z im System S und den Komponenten x';

*

Fig. 2.

Zur Beschreibung der Drehung des Systems S2 in bezug auf das System S_. Analog
wie $2 zu $i wird mit Hilfe der <^C-Koordinaten y>2; <p2> X2 die Drehung des Systems

S3 in bezug auf das System S2 festgelegt.

y' ; z' im System S' vorgegeben, so bestehen die Gleichungen
(Transformationsformeln) :

x
y'
z'

11

— 21

(2qi X

Qj-t* Za12 y
«23 V 7- a23 z

«32 V + «33 Z

(1)

oder zusammengefasst

wobei %

v(S') Kv(S),

aik) die orthogonale Matrix

bedeutet. Die Gleichung
d (S) 2I-1 » (iSf')
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stellt in abgekürzter Schreibweise die nach x ; y ; z aufgelösten
Gleichungen (1) dar, wobei 3U1 die zu 31 inverse Matrix

a **^22 aW,

3 a23 a3l
bedeutet, d. h.

/l o o\
3U1 3t 31 3t"1 Ê o l o ist.

\o o 1/
Sind SB (bik) und ^ (prt) analoge Matrizen, so bedeutet das
Produkt ^} 31 • 23 die Matrix mit den Elementen

Pik — «3i bik + ai2 b2k + ai3 b3k.

Die Elemente der durch <ß' 3t + 93 definierten Matrix <ß' (p^)
erhält man aus der Gleichung

Pji «3* fc + **->J* fc •

Mit dnfdtn 3t soll die Matrix (dnfd\tn aik) bezeichnet werden.
Die Beschleunigung b ergibt sich aus der Gleichung:

6 9 - Pi [pi ^r Piî * Zeit] • (2)

Stellt die orthogonale Matrix g die Drehung des Systems S2 gegenüber

dem System Sx und die orthogonale Matrix (£ die Drehung
des Systems Ss gegenüber dem System S2 dar, so erhält man px(Sx)
durch folgende Operationen:

Pi % + P2 + Ps

Pi(Si) qi(Si) + 3-^,(5«) + rie-1p3(S3)

Pi («r) <h («r) + ¦£- [g"1 qa (S,)] + ^ g"1 C"1 P3 (&>) • (3)

Damit ergibt sich für b(S3)

b(s3) a%[Q(s1)-p1(Si)]
HS3) e{g[g(*S1)-q1(S1)]-9lq2(S2)-25R1ri2()S2)-q2(Sf2)}

<£X£-i + 2&miy<£-i + £i]ip3(S3) (4)

mit den Abkürzungen

(cos
ç?2 cos %2 cos <p2 sin y2 — sin <jj2 \

sin y>2 sin Q92 cos %2 ~ cos % sin Xi > sin ¥2 sin 952 sin Z2 + 008 V2 cos Xi >
s^n Vi cos <Pz

cos y j sin ç>2 cos %2 + sin y2 sin X2 » oos V2 sin 9?2 sin X2— sin V2 cos X2 > cos V2 00s 92 /
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Die Elemente von Q (Qjk) sind in einer Arbeit von F.
Gassmann (Lit. 4) veröffentlicht. Sie haben folgende Werte :

Qu — Xt cos2 9>2 — 9>l

Q12 — %2 cos (f2 cos ip2 — xl c°s ff2 sin (f2 sin ip2 + q>2 sin if2
+ 2 Xì iPi cos rf2 sin ip2 + 2 rp2 ip2 cos if2,

Qis X2 cos (f2 sin ip^ — xl cos 9?2 sin ç>2 cos ip2 + <y2 cos i/>2

+ 2 #2 V2 cos 9?2 cos y2 — 2 9?2 ip2 sin y2,

Q21 X2 cos ?>2 cos ip2 — xt cos 9?2 sin q>2 sin -y>2 — '<f2 sin ^
— 2^2 Q?2sin (f2 cos y2,

Q22 — xt (sin2 9?2 sin2 ip2 + cos2 *yi2) — if\ sin2 -y>2 — -y-|

+ 2 £2 9>2 cos 9?2 cos yi2 sin y>2 + 2 f2 % sin <p2,

Q23 X2 sin ^2 + Z2 c°s2 952 cos V2 sin ip2 — (ft cos y2 sin ip2 — ip2

+ %'/,2<p2 COS ff2 COS2ip2,

Q31 — X2 cos ff2sin ip2— xt cos ç?2sin Ç92 cos ip2 — if2 cos ip2

+ 2y.2rf2sin<p2sin ip2,

Q32 — X2 sin 9?2 + xl cos2 9?2 cos ip2 sin y2 — "P2, cos ip2 sin y2 + ip2

— 2x2ff2 cos 9?2 sin2 ip2,

Q33 — xl (sin2 (p2 cos2 ^2 + sin2 ip2) — ffl cos2 ip2 — ipt

-~ 2 7.2 V2 cos 9?2 cos ip2 sin y2 + 2 #2 -y>2 sin ç>2

Ersetzt man in (£ und Q die Winkel ip2 ; 9?2 ; Z2 durch ipx ; (fx ; -fr,
so erhält man g und 5R. Ferner ist

(0
; tfx sin ^ — ^ cos ipx cos Ç5X ; rpx cos *Vi+>Yi sin -yx cos <fx\

— (fx sin ipx + Xx cos ^r cos <px ; 0 ; — ^ + ^ sin ç>x

— ffx cos % — Xi sin ^ cos 9?! ; ipx — X\ sin ffx ; 0

Im allgemeinen wird der Erschütterungsmesser im System S3
eine beliebige Lage innehaben und somit das System S3 nicht mehr
das dem Gehänge am besten angepasste Bezugssystem darstellen.
Daher wird ein viertes Koordinatensystem Si eingeführt, das mit
dem System S3 starr verbunden ist. Beschreibt man die Drehung
des Systems S4 in bezug auf das System S3 mit Hilfe der Matrix

(cos
a.x cos ßx cos yxs

cos <x2 cos ß2 cos y2
cos a3 cos ß3 cos y3/
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so ergibt sich für die Belastung b(S4)

b (S,) 3J b (S,). (5)

Dabei hat man in b(S3) (Gleichung (4)) für p3(S3) den Ausdruck
QbC^s) + 3U1 p4(S4) zu setzen.

Ordnet man b(/S4) nach den Komponenten von p4(S4) so erhält
man

t> (Si) e4x (QÎ - -x4 Q^ - y4 Q12 - 04 Q13)

+ e4 » (V2 3'4 Y21 Vi V22 ^4 V23) (o)

+ ê4î (y3 ^ y31 y* V32 ^4 y33)'

wobei die tix; e4„; e4z die Einheitsvektoren auf den Koordinatenachsen

von S4, die Qj die Translations- und Schwereanteile und die
Q"jk die Rotationsanteile von b darstellen.

§ 3. Erschütterungsmesser mit einem Freiheitsgrad.

Ist die Rückstellkraft proportional der Auslenkung und die Dämpfung

proportional der Geschwindigkeit, so erhält man (Lit. 5) als

Indikatorgleichung des Erschütteiungsmessers mit einem Freiheitsgrad:

s + Ds + vi s z v; q; + 5V,; Q';k.
7=1 3,k

(s Indikatorausschlag; D Dämpfungsfaktor; v0j2n reduzierte

Eigenfrequenz; V/ und V-k sind die Übertragungsfaktoren des

Erschütteiungsmessers, bezogen auf das System S4; die Q"j und Q"jk

sind der Gleichung (6) zu entnehmen.)

Ist das System S2 mit dem System Sx identisch, so geht die
Gleichung (7) über in

s + Ds + vi s £ V/ Q/ + JTV/t Qn., (8)
7=1 i, k

und ist das System S4 mit dem System S3 und das System S2 mit
dem System Sx identisch, so reduzieren sich die Grössen Q/ und
Q'jk auf Qj und Qjk und die Indikatorgleichung wird

s +Ds +v20s Ì;VjQj +1J;V, s Q,, (9)
7=1 7,*

(F,; Fj-j. Übertragungsfaktoren, bezogen auf S3)
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Zwischen den Grössen V}; Vjk; Q}; Qjk und V/; V-k; Q/; Q'jh bestehen
mit rx — £3; r2 rjs und r3 f3 die Beziehungen

y3* —- 2j Cki' Q' 2ii Ci> Cmk rk Qim>
k k,l,m

Qjk 2*1 Cl' Cmk Qlm '
l,m

vk' z^y^
7

Vjk 27 cu cmk (rk Vi + Vik).
I, m

(10)

Ein Erschütterungsmesser soll in bezug auf ein gegebenes System
Sn ein Grundtypus genannt werden, wenn von den zwölf
Übertragungsfaktoren, bezogen auf Sn, ein einziger von Null verschieden
ist. Es gibt drei Arten von Grundtypen. Beispielsweise auf S3

bezogen, Hegt der erste, zweite oder dritte Grundtypus vor, je nachdem

ein Vj, ein Vik (j+k) oder ein VH von Null verschieden ist.

ii
Fig. 3.

Die drei Grundtypen von Erschütterungsmessern.

Beispiele : Die Arbeitsrichtung der Erschütterungsmesser sei parallel

zur y3-Achse.

1. Grundtypus: V2 4= 0.

Beispiel einer Bewegungsgleichung: Alle Lagekoordinaten Null,
ausser r]2.

's + Ds + v\ s -V.2 *Ì2' (u)

2. Grundtypus : V21 4= 0.

Beispiel einer Bewegungsgleichung: Alle Lagekoordinaten Null,
ausser X2 '¦

s +D, »s ^21 X2 ¦ (12)
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3. Grundtypus : Vxx -4= 0.

Beispiel einer Bewegungsgleichung: Alle Lagekoordinaten Null,
ausser X2 '•

s+Dè7-v2s -Vxlxl (13)

Um über die Wirkungsweise von Erschütterungsmessern Auf-
schluss zu erlangen, betrachte man z. B. Gleichung (11). Mit der
Annahme, r\2 sei harmonisch, also r/2 rj0 eimt(i j/ — l)
(allgemeinere Funktionen durch Zusammensetzung nach Fourier) erhält
man als stationäre Lösung von Gleichung (11)

s s0ei{mt~d)

«oM VaVoœ*W{œ); W(a>)
*

n7T ' (14)
+K'"o - (o2)2 + i>2CU2

tg * =-f^r ; 0<*<*.
Ist m <^ v0 und D o, so ergibt sich aus Gleichung (14) für den

Indikatorausschlag s:

8^~\-V0^^mt -^-Vi, (15)

d. h. der Erschütterungsmesser ist ein idealer Beschleunigungsmesser.

Zweifellos stellt Gleichung (15) die erstrebte Lösung dar.
Dagegen sind in praxi die beiden Bedingungen oo <^.v0 und D 0 oft
nicht realisierbar.

Bei der Dimensionierung des Beschleunigungsmessers fragt es

sich daher, wie gross v0 sein muss, und welcher Dämpfungsfaktor D
noch zulässig ist, damit bei vorgegebener oberer Schranke cob von
co (allgemein durch Filter realisierbar, siehe § 9) die maximale
Amplitudenüberhöhung den Betrag von mb% und die maximale
Phasenverschiebung den Betrag von &£ nicht überschreitet.

mb (lineare Verzerrung) sei durch folgende Gleichung definiert:

1 + mb W(a>)

100
~

W(0) -

Aus Gleichung (14) erhält man damit als Bedingung für v0 :

^1 (^)W*.'
und für D -.

D^^^\tgêh\. (17)
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Ist cd^$> v0 und D ^ 0, so ergibt sich aus der Gleichung (14) für
den Indikatorausschlag s:

s^V2Vo eimt ^V2r,2, (18)

d. h. der Erschütterungsmesser arbeitet als idealer Amplitudenmesser.

Die Dimensionierung des Amplitudenmessers ist analog wie die
des Beschleunigungsmessers. Bezeichnet man mit coa die untere
Schranke von co, mit ma die maximale Amplitudenüberhöhung und
mit &a die maximale Phasenverschiebung, so ergibt sich für v0

v0^a>a]l-- — — (19)

und für D

D^|-V2^tg^[. (20)

Als Mass für nicht lineare Verzerrungen werde der Klirrfaktor
eingeführt. Vorgegeben sei ein Übertragungsglied (Erschütterungsmesser,

Schütteltisch, Verstärker), das die harmonische Funktion
a sin co t in die periodische Funktion

a0 + ax sin (cot — &x) + a2 sin (2 cot — &2) + ¦ - ¦

oo

— 2J ün Sm (n W * — &n)
0

überführt. Als Klirrfaktor F dieses Übertragungsgliedes bezeichnet

man (Lit. 19) die dimensionslose Grösse :

r-^VZai. (21)

Beim Erschütterungsmesser sind nichtlineare Terme praktisch
nur in der Rückstellkraft zu erwarten. Bleibt diese symmetrisch, so
nimmt die Bewegungsgleichung folgende Form an:

's + Ds + v2 s + ex s3 V2 rj0 co2 sin cot. (22)

Zur Entwicklung der Lösung nach bekanntem Schema sei für
die erste Näherung sx gesetzt und dafür ex 0 angenommen. In
Gleichung (22) eingesetzt ergibt dies:

's x + D s x + vi sx V2 rj0 co2 sin co t

und für sx erhält man :

si V2 rj0 co2 W(co) sin (cot — &)
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Damit geht Gleichung (22) für die zweite Näherung über in:

s2 + Ds2 + 1*0 s2 + e-, Sj F2 rj0 co2 sin cot,

und für s2 findet man:

s2 sx- ex (V2 Vo co2 W(a>)Y {- W(m) sin (co i - 2 0)

- r(^w) 8in(3a>f-3*g-tf1)}. (23)

Durch Fortsetzung des Verfahrens ist es möglich, beliebig viele
Glieder der Fourierreihe zu bestimmen.

Aus Gleichung (23) bestimmt man den Klirrfaktor rs in erster
Näherung zu:

rs EX(v2iho^W(oj)yw(3oj) ,U\
4 «l(^2 % «2 W((o)Y W(co) cos #)ü

Es sei noch beigefügt, dass, wie aus Gleichung (23) zu ersehen ist,
mit der Bildung von „Obertönen" auch eine zusätzliche lineare
Verzerrung verbunden ist.

Löst man ferner die Gleichung (24) nach r]0co2 auf, so erhält man
die, bei vorgegebenem Klirrfaktor Fs, noch zulässige
Beschleunigungsamplitude rjryfo2:

(r]0co2
ex W2(3 w) [V2W(o>)Y

-

{- 3 rs W(co) cos & + */(8 rs W(aï)yy&)2 + IF2(3 co)}.

Berücksichtigt man einen quadratischen Ergänzungsterm zur
Rückstellkraft, so lautet die Bewegungsgleichung:

S + D s + vi s + e2 s2 V2 rj0 co2 sin cot.

Man berechnet den Klirrfaktor Fu analog dem Klirrfaktor ra
und erhält in erster Näherung:

Fu ±e2V2Îloœ2W(œ)W(2a>).

Eine zusätzliche lineare Verzerrung entsteht in diesem Fall nicht.
Dagegen wird der Schwingungsmittelpunkt angenähert um den
Betrag — e2[F2 rj0 co2 IF(co)]2/2 v02 verlagert.

Ferner erhält man bei vorgegebenem Klirrfaktor ru für die
zulässige Beschleunigungsamplitude rj0a>2:

rio co2 ^e2 V, W(ro) W{2 w)
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§ 4. Der prismatische Stab ohne Einzelmasse als Erschütterungsmesser.

Für einen Stab von konstantem Querschnitt q ergibt der Ansatz
l-F0(xi)eimt für die Störung (allgemeinere Funktionen siehe § 3),
eingeführt in die Differentialgleichung der Querschwingungen

¦*S+»£+**£-*.M<"C:ir)-- (25)

EJH — ; E Elastizitätsmodul ; J Trägheitsmoment des Querschnittes ;
llQq ' o -«

q Dichte; l Stablänge; xi Stabachse; wx Ausschlag,

mit den Randbedingungen

r 0 : w 0 ; - s =0.' òr

1 d2it> „ dsw „r l: -ä-5 0 ; -r-v 0
dr- ' drs

die Lösung (Lit. 13) :

w (r,t) eimtY-^—f= U.y (26)' ^< vi- ft>a- iD(v„- co) v '
n=l n \ n i

Dabei ist
i

v\—i Dvn — H?in 0 oder H2.n N2 und Kn= F0(r) un(r)dr,
o

(A„ Eigenwerte; «re normierte Eigenfunktionen).

Ist co klein gegenüber vx, also auch gegenüber v2, v3,..., vn
(Beschleunigungsmesser), so geht Gleichung (26) über in

Wl (r, t) ^ e*«" ^1^ - é^-^ - —AML= (27)
Ai2-eo2 + tZ>co (/(ÏV-œy+ ^ffl*2

tg &
Nx2-co2 -

Soll der Stab als Erschütterungsmesser verwendet werden, so

muss aus seinem Biegungszustand ein Indikator s(t) hergestellt
werden. Man gewinnt diesen, indem man der Funktion wx durch
eine geeignete, physikalisch realisierbare Operation eine von r
unabhängige Funktion s(t) zuordnet. Nach Gleichung (27) wird dies
erreicht, indem man der Funktion ux (r) eine Konstante 0 zuordnet,

i
(0 Mi(l); 0 ux(r)dr sind Beispiele solcher Zuordnungen) und

s(t) - 54===-
j/(ÄY-cü2)2 + .D2a>2
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setzt. Nach § 3 Gleichung (14) genügt s der Indikatorgleichung

s +Dè + N2s 0Kxeimt.

Zur Ermittlung des Klirrfaktors Fx bedarf die Differentialgleichung

(25) einer Erweiterung, d. h. in ihrer Herleitung ist für die
Krümmung, an Stelle der ersten die zweite Näherung zu
verwenden.

Damit lautet die Differentialgleichung der Bewegung:

Ò2w
y r. àio

y rr ç^w 3 „ d2 \Ò2w I d w\2
ot2 + dt + òr* " 2 òr2 [òr2 " [òr

Betrachtet man den nichtlinearen Term als Störungsglied, so
ergibt sich für Fx in erster Näherung mit Hilfe der Störungsrechnung

r _ Kx tfjNl-œtfTD2!»2
1 ~ Ki '

]/(Nl - (3 cu)2)2 + I»2 (3 (o)2
'

^î»*->-y,myy-
0

Verwendet man einen piezoelektrischen Stab als Beschleunigungsmesser

und <S4 als Bezugssystem (System S2 identisch Sx) und lässt
die Stabachse (xt 0 bis x4 l) mit der x4-Achse und die
Schwingungsebene mit der (x4; i/4)-Ebene zusammenfallen, so gibt von
b (S4) nur die î/4-Komponente zu einer EMK Anlass, eine Tatsache,
die aus Symmetriegründen zu erwarten ist und durch das Experiment

bestätigt wird (siehe § 10).
Für die mit l multiplizierte rechte Seite von Gleichung (25) ist

die î/4-Komponente von b($4) einzusetzen, daher gilt

l-F(r,t) Q'2-lrQ'21 Q'2-xiQ'21.
Setzt man

Qy)=Zakémkt und Qyt)=zhkeimkt'
k k

so geht die Indikatorgleichung für den Stab über in

s + De + N*s V'2Q'2(t) + V21Q'21(t) r 0£Byy
i i

F2 T I ui(r)dr; V2

o

0 / rux(r) dr.

Das System <S4 soll aus dem System S3 durch eine Parallelverschiebung

in Richtung der -r3-Achse um den Betrag rx=—lj5
hervorgehen. Es ist also t2 t3 0 und 3) <S. Nach den Transfor-
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mationsformeln (10) wird dann,F21 0 und F2 F2, so dass sich
die Indikatorgleichung auf

s + Ds + N2xs V2Q2(t)
reduziert.

Der Stab ist demnach für alle Störungsfrequenzen cok, die klein
gegenüber Nx sind, ein Beschleunigungsmesser vom ersten Grundtypus,

d. h. auf der Stabachse existiert ein ausgezeichneter Punkt
(neutraler Punkt) mit der Eigenschaft, dass alle Rotationen, um
eine beliebige Achse durch den neutralen Punkt (ausgenommen der
Schwereanteil), keinen Beitrag zur EMK geben.

Für den Amplitudenmesser ist die Dimensionierung analog dem
Beschleunigungsmesser. Jedoch ist hier der Messbereich grundsätzlich

beidseitig durch Resonanzstellen begrenzt.
Eine rohe Abschätzung des maximalen Messbereiches ergibt mit

vx 0,4 v2 und v2 0,59 v3 (Lit. 14), z. B. für vx 8 Hz; v2 20 Hz
und v3 33,5 Hz. Allein diese Zahlen zeigen zur Genüge, dass ein
piezoelektrischer Stab ohne Einzelmasse als Amplitudenmesser
wenig geeignet ist. Es lassen sich jedoch, wie aus verschiedenen
Arbeiten, insbesondere aus einer Arbeit von F. Gassmann (Lit. 6)
zu entnehmen ist, diese Resonanzstellen, unter zu Hilfenahme einer
Einzelmasse am freien Ende derart auseinanderziehen, dass sich
praktisch brauchbare Messbereiche ergeben.

§ 5. Der prismatische Stab mit Einzelmasse als Erschütterungsmesser.

Mit S4 als Bezugssystem (S2 identisch Sx), der xt-Achse als
Stabachse (ai4 0 bis x4 l), der (x4; î/4)-Ebene als Schwingungsebene
und der Einzelmasse M am Stabende x4 l, ergibt sich für praktisch

ungedämpfte Querschwingungen des Stabes (kleine
Dämpfungsfaktoren sind ohne merklichen Einfluss auf die lineare
Verzerrung; siehe auch § 4), die Differentialgleichung (Lit. 12)

% + B%$ F{r,t), (28)

mit den Randbedingungen

r 0: w 0;^ 0,

r l: Lxò~y -Hd-y HGx(t),\ (29)
dt2 drz
c3w jjd2w

' ûVdt2 + Tr2L2 777üT2 + H7r^ HGy)-



GiW-^ÏT&W-O)
(30)

(32)
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und den Abkürzungen

A
~~EJ [T^2

G2(t) ~[-exQ'21(i) + 62Q'12

(dx; ö2; ö Trägheitsmomente der Einzelmasse)

öi i; y-l)2dm; d2=£yidm; d dx + 62

M M

M -Li-E1!, m -h.-ELml - H ~ EJ ' X 2~ H ~ JE'
Der Ansatz w un.eiVnt ergibt für die Eigenfunktionen un die

Differentialgleichung

<" -< «, 0 « H vi ; ^ <") (31)

mit den Randbedingungen

r 0: m„ 0; u'n 0,

r l: < L2-4<; < —Li«>K

Bildet man mit Hilfe der Gleichung (31) die Gleichung:

«7"m*~~ mj m*"=(a;_ <**) %Uk y ¦+ a*)

und integriert dieselbe von 0 bis 1 unter Berücksichtigung der
Randbedingungen (32) und der Identität

fî" u- h /;'"=i (fx /2 - fi /;+/;/;- /i /;'), (33)

so erhält man
1

fuf(r) uk(r) dr + Lj %(1) uk(l) + L2«)(l) %(1) 0. (34)
o

Verwendet man den Operator S Stielt] essches Integral) :

i
Sf(r)uk(r)dr= ff(r)uk(r)dr + Lxf(l)uk(l)+L2f'(l)u'k(l), (35)

o

so lautet die sogenannte „belastete Orthogonalität" (Lit. 16)
zwischen den Eigenfunktionen (Gleichung (34)) :

Suj(r)uk(r)dr 0 (j*k) (36)
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und entsprechend die Bedingung zur Normierung der Eigenfunktionen

Sul(r)dr l. (37)

Ferner sei
i

Fn (t) Jf (r, t) un (r)dr + HGx (t) un (1) + HG2 (t) u'n(1). (38)
o

Als Lösungsansatz dient eine Entwicklung nach Eigenfunktionen

oo

w(r,t)=£Cn(t)un(r). (39)
» i

Daraus folgt
/)2 °°

|^M) 2U(*KW. (40)
n l

S angewendet auf (39) und (40) führt unter Berücksichtigung von
(36) und (37) auf die Gleichungen

Cn(t) Sw(r,t)un(r)dr, (41)

Cn(t) S^w(r'tyu^r'dr- (42)

Mit den Gleichungen (28), (29), (35) und (38) bildet man den
Ausdruck

i
~^undr + HJ j^Undr + (-Hj^ + H—2un)r^Fn(t). (43)

o

Das Integral x

rdiw
jTfr^^dr
o

geht mit Hilfe der Identität (33) über in

if "" -, \d3w Ò2W i ÒW ii milj WUn dr+ \j-r^Un--f^Un + J7Un-WUn^
b

und durch Einsetzen der Randbedingungen für r 0 und r 1 und
unter Berücksichtigung der Gleichung (31) für ujj'(r) in

i i
y™ i 4 t j \dsw d2w i 4 rr dw T T

0 0 r=l r=X
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Dies in die Gleichung (43) eingeführt, ergibt mit den Gleichungen
(41), (42)

Cn + H*yn Fn(t). (44)

Setzt man die harmonischen Störungen

F(r,t) =Fx(r)ei«t; HGx(t) gxeimt; HG2(t) g2eimt;Fn(t) Knei°";
i

Kn JFx(r)undr + gxun(l) + g2u'n(l)
i:i

an, so ergibt sich für die stationäre Lösung :

w(r,t)=é°>tZK^yi. (45)
n 1 *"

Damit kann man die Dimensionierung (ausgenommen Klirrfaktor)

unter der Bedingung, dass das Massenträgheitsmoment der
Einzelmasse in bezug auf die (xi; 2*4)-Ebene zu vernachlässigen ist
(siehe Gleichung (30)), analog wie im § 4 zu Ende führen und
gelangt so zu einem Beschleunigungsmesser des ersten Grundtypus.

§ 6. Der dreieckförmig zugespitzte Stab als Erschütterungsmesser.

Die Ausdehnung des Stabes in Richtung der Querschwingungen
sei konstant und seine Form, in derselben Richtung betrachtet,
entspreche einem gleichschenkligen Dreieck. Mit q als Querschnitt und
J als Flächenträgheitsmoment ergibt sich, das gleiche Bezugssystem
wie im § 5 vorausgesetzt, für die Differentialgleichung der
Querschwingungen (Lit. 8) :

d2w .p^dw E ô2

J¥+ dl + lyqy cT2 J(r)~]=F(r,t) (46)

mit den Randbedingungen:

n c2w ò3w „ _ dw „r= 0:-r-r 0; -^ 0; r l: w 0; -r-* 0.
dr* dr3 dr

Ergibt das Stabprofil die Gleichungen q(r) q0r (q0 konstant)
und J J0 r (J0 konstant), so führt der Lösungsansatz
w u(r).eimt die Gleichung (46) für die Störunge (r, t) F0(r) eimt

über in

-(a>2-icoD)u + -l^7(ru")" F0(r). (47)

Mit
Sq°

^^M+^Slv o=ly^(co2-ia>D)-,F(r)=a0 + axr (48)
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(siehe Gleichung (6)) erhält man aus Gleichung (47)

rv"" + 2v'" — arv 0 (49)

mit den Randbedingungen

r 0: v" 0; v"'=0; r l: v
a0 + ax

ca2— im D ;v' oi2— icaD

Zur Lösung von (49) dient der Reihenansatz v 2J An rn. Be-
n=0

rücksichtigt man vorerst nur die beiden Randbedingungen für r 0,
so ergibt dies

V= Ar, 1+27—
n 1 i74j(4;-l)2(4;-2)

7 1

+ AX r+V —
n 1 n(4j+l){4:j)2(4j-l)

7 1

(50)

Als Näherung v sollen die ersten vier Glieder der Reihenentwicklung

für v genommen werden.

v A0 + Axr + ^ar^ + ^arK72 240
(51)

Zur Berechnung von A0 und Ax benützt man die beiden
Randbedingungen für r 1. Diese ergeben

(i+SK+^+söH a0 + ax

co2 w2 — i coD

Für die Determinante A0 dieses Gleichungssystems ergibt sich

!+ä 1+—^240 a a2
o -~ 48 + 17280

18 1+s
(52)

und für A0 und Ax erhält man

co2A0A0 (l + ^) a0 + ^ax,

œ2A0Ax -^a0+(l — yjax. (53)
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Damit nimmt unter Berücksichtigung von (48), (51), (52), (53) und

H0 —— ,4
° die Näherungslösung folgende Form an :

10 :

elmt fl /. a \ 1 fl 1 /1 o* \
Uï04,Ul1^72ÔJao + ÎÔai~[¥ao+ 8"l1+36ÖJ(

1 1 <r

(54)

+ 12[(1+äao + ^ai]r4 + 4ohSao+(1-ä)ai]r5-

Aus /J0 0 ergibt sich für die tiefste Resonanzstelle

ax ^ 57,036 [exakt ax 51,20; (Lit. 20)].

Damit kann man die Dimensionierung (ausgenommen Klirrfaktor)

analog wie im § 6 zu Ende führen und erhält einen
Beschleunigungsmesser des ersten Grundtypus.

§ 7. Erschütterungsmesser vom zweiten und dritten Grundtypus.

Die §§ 4, 5 und 6 zeigen, dass ein Stab von konstantem
Querschnitt mit oder ohne Einzelmasse und ein Stab von variablem
Querschnitt ohne Einzelmasse einem Erschütterungsmesser des

ersten Grundtypus entsprechen.

Sind die Systeme S2 und Sx einerseits Ss und St andererseits
identisch, die Längsachse des Stabes z. B. parallel zur *x3-Achse,
und liegt seine Schwingungsebene z. B. in der (x3, -z/3)-Ebene, so

lautet die Indikatorgleichung :

s + D s + N2 s =V2 Q2 + x3V2X y21 + y3V22 Q22.

Mit Hilfe von zwei Erschütterungsmessern des ersten Grundtypus,
die eine geeignete gegenseitige Lage innehaben und in einer
Differenzschaltung vereinigt sind, ist es möglich einen Erschütterungsmesser

des zweiten oder dritten Grundtypus zu konstruieren. Eine
Differenzschaltung entsteht, wenn man entweder die piezoelektrischen

Stäbe entgegengesetzt orientiert (bei gleicher Belastung
entgegengesetzt polarisiert) und sie in Reihe schaltet, oder sie gleich
orientiert und Minuspol mit Minuspol verbindet und die EMK an
den beiden Pluspolen abnimmt. Mathematisch bedeutet entgegengesetzte

Orientierung eine Änderung des Vorzeichens der Störung.
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Für die Erschütterungsmesser Ex, E2 und E3 in Fig. 4 lauten die
Indikatorgleichungen :

's1 + Dsx + N2s1 V2Q2-

Sn 7 Ds N2s2

\72<

ì ^21 y21 ~7y3 v22Q22

*2 y2 xa ' 2i y2i 7 y3 V22 Q22

(55)

(56)

(57)s a 7 Ds3 + N2 s3 -V2Q27- xs V2X Q21 — y3 V22 Q22.

Addiert man die Gleichungen (55), (56), so ergibt dies:

(sx 7- s2) + D(Sl + s2) + N2 (sx + s2) =2y3V22Q22.

Die Kombination von Ex und E2 ist somit ein Erschütterungsmesser
des zweiten Grundtypus.

Aus den Gleichungen (55), (57) folgt:

(s'i + sa) 7- D (sx + s3) + N2 (sx + s3) 2 x3 V2XQ2X,

was einem Erschütterungsmesser des dritten Grundtypus entspricht.

E, %&Z Et

Fig. 4.

Ex, E2 und E3 sind Erschütterungsmesser des ersten Grundtypus mit der
Arbeitsrichtung ya. Die Kombination von Ex und E2 ergibt bei entgegengesetzter
Orientierung und Serieschaltung einen Erschütterungsmesser des zweiten Grundtypus.
Die Kombination von Ex und Eä ergibt unter denselben Voraussetzungen einen

Erschütterungsmesser des drittes Grundtypus.

Zu bemerken ist noch, dass die Resultate auch dann keine Änderung

erfahren, wenn man die Schwingungsebene und mit ihr die
Längsachse des Stabes parallel zu sich selbst verschiebt. Für einen
Erschütterungsmesser des zweiten oder dritten Grundtypus gibt es
oo2 verschiedene adäquate Bezugssysteme, während es für einen
Erschütterungsmesser des ersten Grundtypus genau ein adäquates
Bezugssystem gibt.
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II. Aufbau und Prüfung eines Erschütterungsmessers.

§ 8. Die dynamischen Eicheinrichtungen.

Aus den §§ 3 und 4 geht hervor, dass zur vollständigen Eichung
eines Erschütterungsmessers eine Einrichtung, die innerhalb seines
Messbereiches beliebige harmonische Translations- und
Rotationsbewegungen erzeugt, ausreichend ist.

In der Literatur sind mehrere Konstruktionen mit horizontaler
oder vertikaler Arbeitsrichtung für Translationsbewegungen
(Schütteltische, Lit. 1, 7, 17, 21) beschrieben. Diese Schütteltische sind
vorwiegend für Prüflinge von mehreren kg oder gar Tonnen
(mechanisch registrierende Seismographen) gebaut und ihr
Messbereich liegt in der Regel zwischen einigen Zehntels- und ca. 100 Hz.

3J—>K
20 Oi 100

a/2t
Hertz

Fig. 5.

Resonanzkurve des beidseitig eingespannten Doppelstabes mit Zusatzmasse, auf¬

genommen mit konstanter Antriebskraft. vx tiefste Eigenfrequenz;
o0 Amplitude.

Für den nun in Betracht zu ziehenden piezoelektrischen
Erschütterungsmesser mit einem Messbereich von ca. 1 bis 400 Hz und
einem Gewicht, das je nach Aufbau und Zubehör (eingebauter
Vorverstärker) 200 bis 500 g beträgt, sei nachstehend eine einfache
und zweckdienliche Einrichtung zur Eichung beschrieben.

Die Schwierigkeiten beim Bau des Schütteltisches sind die
praktische Durchbildung des Schwingers und seine Einspannung.

Für den Aufbau des Schwingers eignet sich besonders Anticorodal,
das in dynamischer Hinsicht mit Stahl vergleichbar, aber
bedeutend einfacher zu bearbeiten ist.

Zur Dimensionierung des Schwingers sind die Überlegungen und
teilweise auch die Resultate der §§ 4 und 5 ohne Einschränkung
zu übernehmen.

Berücksichtigt man noch die Tatsache, dass es praktisch (Material)

nicht möglich ist, die tiefste Eigenfrequenz des Schwingers
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oberhalb 200 Hz zu legen, so bleibt als einzige Möglichkeit noch die
Verlegung der tiefsten Eigenfrequenz an die untere Grenze und der
nächst höhern Eigenfrequenz an die obere Grenze des Messbereiches
offen.

Im vorliegenden Fall erfüllt ein beidseitig eingespannter und in
der Mitte mit einer Zusatzmasse versehener (gleichzeitig Träger des

Prüflings und der Antriebsspule) Doppelstab (siehe die schon
zitierte Arbeit von F. Gassmann sowie Lit. 9) die gestellten
Anforderungen weitgehend. (Siehe Fig. 5 und Fig. 6.)

120

wo

BO

60

10

20

I

\
X

\
\\ \V,

\;
~;

10 40 70 130 160

0,1211

190 HertzWO

Fig. 6.

Die Länge des Doppelstabes mit Zusatzmasse als Funktion der tiefsten
reduzierten Eigenfrequenz.

Für den Antrieb ist dasselbe Prinzip wie beim elektrodynamischen
Lautsprecher (Lit. 19) angemessen.

Der dafür gebaute RC-Generator ist in drei Frequenzbereiche
unterteilt, nämlich (Lit. 15) :

0,9—5 Hz; 3,8—30 Hz und 25—2000 Hz.

Der maximale Klirrfaktor des letzten Bereiches ist < 1 %.
Der Kraftverstärker besteht aus einer Gegentaktend- und einer

Phasenkehrstufe. Er ist zweifach gegengekoppelt und hat eine maximale

Ausgangsleistung von 17 Watt. Der Klirrfaktor ist bis zu einer
Ausgangsleistung von 7 Watt < 1,5%.

Zur Registrierung der Tischbewegungen (Tisch Zusatzmasse)
dient ein mechanisch-optisches und ein elektrisch-optisches Ver-
grösserungssystem (Tauchspule).
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Die aus einem linearen Glühfaden, einem Hohlspiegel und einer
Zylinderlinse bestehende einfache Optik ergibt eine Strichbreite von
ca. 2/10 mm und lässt Registriergeschwindigkeiten bis zu 3 m/sec zu.

Die Ausmessung des Schütteltisches wurde wie folgt durchgeführt

:

1. Statische Ausmessung des mechanisch-optischen Vergrösse-
rungssystems mit Hilfe einer kontrollierten Messuhr. In Überein-

40
¦OfJ

30

20

10 y
VL

yy
./

0 0,2
I

0,8 ßmp0,4 0,6

Fig. 7.

Die Amplitude des Doppelstabes in Funktion des Tauchspulenstromes.

Stimmung mit der Theorie ergab sich eine 131fache Vergrösserung
± 0,5%. (Vergrösserung Quotient aus Lichtzeigerausschlag und
Tischauslenkung.)

\ \ A A A-A
\l y V V \j

Fig. 8.
Zwei Registrierproben von Tischschwingungen, aufgenommen bei 45 und 500 Hz.

2. Dynamische Vergleichsmessung der beiden Vergrösserungs-
systeme. Fig. 9 zeigt das Resultat. Daraus ist ersichtlich, dass das
mechanisch-optische Vergrösserungss}'-stem oberhalb 60 Hz nicht
mehr brauchbar ist, was auf das „Rattern" der Kugellager
zurückzuführen ist. Die Vergrösserung des elektrisch-optischen Vergrösse-
rungssystemes ist 500fach ± 2%, gemessen bei 10 Hz.
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3. Messung der Tischamplitude in Funktion des Tauchspulenstromes

(siehe Fig. 7).
4. Kontrolle der vertikalen Tischbewegung auf Neigungsschwingungen.

5. Messung der Stablänge in Funktion der tiefsten Eigenfrequenz
(siehe Fig. 6).

Die tiefste Frequenz, die vom Kraftverstärker noch einwandfrei
verstärkt wird, ist 25 Hz. Diese Grenze ist nur mit Hilfe eines be-

Ä.
a„

yy
/ ;

^**—S

/X
yX S

20 40 60
CJ/2ÏÏ

80 Hertz

Fig. 9.

Zur dynamischen Vergleichsmessung der beiden Vergrösseiungssysteme. Es
bedeuten: cu Frequenz der Tischbewegung; v0 Geschwindigkeitsamplitude und

a0 Amplitude des Tisches.

deutend grösseren Aufwandes an Material noch merklich zu
unterschreiten. Eine zweckmässige Lösung wäre daher ein rein
mechanischer Antrieb.

Eine andere Lösung besteht darin, dass man die Zusatzmasse des
Schwingers vergrössert und diesen jeweils durch kurzes Anstossen
mit der Hand in seiner tiefsten Eigenfrequenz (die höheren
Eigenfrequenzen werden nach verhältnismässig wenig Grundschwingungen

unmerklich) erregt. Aus einer solchen Abklingkurve kann,
infolge der kleinen Dämpfungsfaktoren (innere und äussere Dämpfung,

eingeschlossen der Energieabfluss über die Einspannstellen,
siehe Fig. 5) stets ein Teilstück, das mehrere Schwingungen enthält,
herausgegriffen und als harmonische Schwingung betrachtet werden.
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Über die Rotationseicheinrichtung vermittelt Fig. 10 ein schema-
tisches Bild. Die tiefste Eigenfrequenz der Einrichtung liegt bei
45 Hz und brauchbar ist diese bis ca. 60 Hz (Kugellager). Für die
Kontrollregistrierungen dient ein auf der Drehachse angebrachter
Hohlspiegel. Der Erschütterungsmesser E kann dabei längs der
?/3-Achse verschoben werden. Da es sich hier nur noch um die
Bestimmung der Übertragungsfaktoren und des neutralen Punktes
handelt (siehe § 4), ist dieser relativ kleine Messbereich ausreichend.

T
Fig. 10.

Schematisches Bild der Rotationseicheinrichtung. Es bedeuten : T
schütteltisch; A Einspannstellen des Stahldrahtes; B

Translations-
Stahldraht;

D Drehachse des Tisches; E Erschütterungsmesser.

Um mit einer Eicheinrichtung einwandfrei arbeiten zu können,
ist es notwendig, dass die zulässigen Tischbewegungen gross sind
im Vergleich zum mittleren Erschütterungsstörpegel (z. B.
Verkehrserschütterungen der Stadt, Vorlesungspausen usw.). Für die
beschriebene Eicheinrichtung, die sich in der Werkstatt des Instituts

für Geophysik (ETH., Hauptgebäude, Keller) befindet, ist
dieses Verhältnis, abgesehen von einigen Ausnahmen, befriedigend.

§ 9. Messverstärker und Filter.

Die Leistung eines Erschütterungsmessers mit elektrischem
Indikator, als Spannungsquelle aufgefasst, genügt zur Aussteuerung
eines Registriergerätes (ausgenommen hochempfindliche Galvanometer

und niederohmige Erschütterungsmesser, Lit. 25, 26) nicht.
Die notwendige Anpassung ist daher mit einem Messverstärker
vorzunehmen. Im vorliegenden Fall wurde ein zweistufiger Gegentakt-
verstärker mit Eintakteingang (Prinzipschema Lit. 3) gebaut. Die
Spannungsverstärkung ist 3000fach bei einer Ausgangsimpedanz
von 10 kß — und einem Störpegel von — 70 dB, bezogen auf die
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maximale Ausgangsleistung. Der Klirrfaktor ist < 1,5%. Die
Frequenzkennlinie ist aus Fig. 11 ersichtlich.

UU i

'00*
¦»I—— u/!ir

*> 6 S 10 2 i 6 s n! 2 i 6 S I0! 2 3 4 Hertz

Fig. 11.
Die Frequenzkennlinie des MessVerstärkers. (Verstärkung bei 200 Hz 100%.)

0.1 0,2 S 7 10 Zk0,5 OJ 1 2

Fig. 12 a.

Frequenzkennlinie (ohne Abschlusswiderstand) des Filters.
(Durchlass für a>/a>0 ->¦ oo 100%.)

c

H h
iffyZ2C fin

\Us

n
Fig. 12 b.

Grundsätzliches Schaltschema des Filters.

Fig. 12 zeigt das grundsätzliche Schaltschema des Filters (Lit. 23),
das zur Realisierung der im § 3 erwähnten Schranken coa und cob

benützt werden kann. Für Ua/Ue erhält man, als Resultat einer
längeren Rechnung, mit x 1/coC

üa _ /-. 4iEx 1_ 2iRx(R-ix\-i
Ue ~\ R2-x* ~ Rg W^tf •

29
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Ein gutes Hoch- oder Tiefpassfilter (durch Kombination Bandpass)

entsteht nun, wenn zwei solche Filter mit co0 und 4/5 co0 in einer
Rückkopplungsschaltung, wie sie in Fig. 13 dargestellt ist,
eingegliedert werden. Fig. 14 zeigt z. B. die gemessene Frequenzkennlinie

eines Hochpassfilters.

IT 17

Fig. 13.

Grundsätzliches Schaltschema eines Hoch- oder Tiefpassfilters.
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Fig. 14.

Gemessene Frequenzkennlinie eines Hochpassfilters.
(Durchlass bei 200 Hz 100%.)

§ 10. Der Kristallbieger als piezoelektrischer Beschleunigungsmesser.

Über die Herstellung und Behandlung von Seignettesalz- und
Quarzbeschleunigungsmessern sowie über deren Empfindlichkeiten
(Empfindlichkeit Beschleunigung in mm/sec2 pro mm
Zeigerausschlag) mit grosser Zusatzmasse, findet man in der Literatur
zwei ausführliche Arbeiten von A. Herrmann (Lit. 10, 11). Die
Seignetteelektrika, Ammonium- und Kaliumphosphat (Lit. 2), sind
in jenen Arbeiten nicht besprochen. Die Empfindlichkeiten dieser
Phosphate dürften jedoch, wie eine rohe Abschätzung zeigt, von
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derselben Grössenordnung wie diejenige von Quarz sein. Valasek
(Lit. 24), später Schulwas-Sorokin (Lit. 22) untersuchten die
Temperaturabhängigkeit des Piezomoduls dXi und der Dielektrizitätskonstanten

e von Seignettesalz, während W. Lüdy (Lit. 18) in einer
Arbeit über das dynamisch-elastische Verhalten von Seignette-
elektrika berichtet. (Weitere Zitate sind in den erwähnten Arbeiten
zu finden.)

Die nachstehend beschriebene Eichung und Prüfung wurde an
einem Beschleunigungsmesser aus Seignettesalz durchgeführt. Der
Beschleunigungsmesser besteht aus einem dreieckförmigen Bieger
und ist zusammen mit einer Vorstufe (Impedanztransformation),
bestehend aus einer Raytheon-Miniaturelektrometertriode und den
dazu gehörenden Batterien, in einem zylindrischen Gehäuse von

/
/
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U/21C
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Fig. 15.

Prüfung der Einspannung eines Biegers mit Zusatzmasse (40 g). Kurve a: Bieger
vermittelst Gummiunterlagen festgeklemmt; Kurve 6: Derselbe Bieger mit Pasta
festgeklebt; v0 Geschwindigkeitsamplitude des Tisches; b0 registrierte Be¬

schleunigungsamplitude

8,5 cm Durchmesser und einer Höhe von 3 cm untergebracht. Die
Form des Biegers ist durch die Spaltbarkeit des Kristalls gegeben.

Mit besonderer Sorgfalt wurden die verschiedenen Einspannungs-
möglichkeiten in bezug auf ihre Härte untersucht. Fig. 15 zeigt
zwei Beispiele. Die Kurven wurden mit demselben Bieger (Zusatzmasse

40 g) aufgenommen. Geändert wurde nur die Einspannung.
Biegereinspannung zu Kurve a: Kristall vermittels zweier

Gummiunterlagen festgeklemmt.
Biegereinspannung zu Kurve b: Kristall mit Pasta festgeklebt.
Die Kurve a zeigt deutlich die Wirkung der Gummiunterlagen.

Die Einspannung ist zu weich im Vergleich zur Kristallhärte und
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es entstehen zwei gekoppelte Pendel. Die Kurve b entspricht qualitativ

einem schwach gedämpften Pendel, was auf eine gute
Einspannung schliessen lässt.

Fig. 16 zeigt die Translationsempfindlichkeit des Kristallbiegers
(Länge 2,6 cm; Dicke 2,1 mm) in Funktion der Zusatzmasse
M, bezogen auf die Empfindlichkeit ohne Zusatzmasse.
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Fig. 16.

Die Translationsempfindlichkeit des Kristallbiegers (Länge 2,6 cm;
Dicke 2,1 mm) in Funktion der Zusatzmasse M, bezogen auf die Empfindlich¬

keit ohne Zusatzmasse.

y
Fig. 17.

Schematisches Bild, wie die Empfindlichkeit in Funktion des Neigungswinkels
gemessen wurde. x3 Arbeitsrichtung des Kristalls; rp2 Neigungswinkel zur

Translationsbewegungsrichtung ; T Tischebene.

Dieser Kristallbieger, mit einer Zusatzmasse von 30 g wäre z. B.
in der Seismik als Beschleunigungsmesser brauchbar; denn die
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Empfindlichkeit beträgt ~ 6/100 mm/sec2 pro mm, was z. B. bei
10 Hz einer Bodenamplitude von — 1j6-10~i mm entspricht.

Für eine exakte Erschütterungsmessung (Beschleunigung) ist ein
Messbereich von ca. 1 bis 400 Hz obere Schranke) erforderlich,
und eine maximale Amplitudenüberhöhung mb von ~ 1 % und eine
maximale Phasenverschiebung &b von ~ 6° noch zulässig. Diese
Bedingungen erfüllt (Gleichungen (16), (17)) ein praktisch unge¬
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Fig. 18.

Die Empfindlichkeit in Funktion des Neigungswinkels. — theoretische Kurve
+ gemessene Werte.

dämpfter (D 0) Beschleunigungsmesser mit einer Eigenfrequenz
von 3500 Hz. Ein Beschleunigungsmesser mit diesen Eigenschaften
ergibt sich z. B. aus einem dreieckförmigen Kristallbieger
(Gleichung (54)) mit einer Länge von 2,5 cm und einer Dicke von 2 mm.
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Fig. 19.

Die gemessene Frequenzkennlinie des Beschleunigungsmessers.
(Empfindlichkeit bei 200 Hz 100%.)

(Abklingkurven zeigen, dass diese Kristallbieger praktisch
ungedämpft sind.)

Die Prüfung und Eichung dieses Beschleunigungsmessers wurde
wie folgt durchgeführt.



454 Max Weber.

1. Die Prüfung der <C-Abhängigkeit der Empfindlichkeit wurde,
wie in Fig. 17 schematisch dargestellt ist, ausgeführt. Fig. 18 zeigt
das Ergebnis der Messung.

2. Messung der Translationsempfindlichkeit in Funktion der
Frequenz der aufgeprägten Beschleunigung. Fig. 19 zeigt die gemessene
Frequenzkennlinie des Beschleunigungsmessers. Die Empfindlichkeit

beträgt 5 mm/sec2 pro mm ±5% und schwankt unter den
einzelnen Kristallen bis zu ± 20%.

3. Bestimmung des neutralen Punktes und Prüfung des
Beschleunigungsmessers auf Rotationsempfindlichkeiten.

^I 1 1 ; _ _l 1—1 L_ _1_L..L_J*I

Fig. 20.

Kristallbeschleunigungsmesser mit eingebauter Elektrometertriode.

Erste Lage: Die Längsachse des Kristalls fällt mit der Drehachse

D des Tisches zusammen. Es konnte kein messbarer Ausschlag
festgestellt werden.

Zweite Lage: Die Längsachse des Kristalls steht J_ auf der
Drehachse D und schneidet dieselbe. Die Empfindlichkeit zeigt den
erwarteten linearen Verlauf und wird Null, wenn die Einspannstelle
Vs ± -5% der Kristallänge von der Drehachse entfernt ist
neutraler Punkt).

Dritte Lage: Die Seitenkanten liegen in einer Ebene, die J_ zur
Drehachse ist. Ein messbarer Ausschlag konnte nicht festgestellt
werden.

Damit sind die in der Theorie gemachten Voraussetzungen
experimentell bestätigt, und die erreichten Empfindlichkeiten sind für
die Praxis ausreichend.
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Zum Schlüsse möchte ich meinem sehr verehrten Lehrer, Herrn
Prof. Dr. F. Gassmann, für das grosse Interesse, das er dieser Arbeit
entgegenbrachte sowie für die vielen Anregungen und Diskussionen
herzlichst danken. Ebenso bin ich Herrn R. Berger, Feinmechaniker,

der mich bei den experimentellen Arbeiten gewissenhaft
unterstützte, zu Dank verpflichtet. Die Seignettesalzbieger wurden
von der Firma Torson in Zürich hergestellt.

Zürich, Institut für Geophysik der Eidg. Techn. Hochschule.
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