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On the elastic scattering of neutrons by deuterons
by Mario Verde
Swiss Federal Institute of Technology.

(March 18, 1949.)

Introduction.

The knowledge of the interaction potential between two nucleons
1s of fundamental importance in nuclear physics, and every experi-
mental result giving a clue to it is of great interest.

Especially important are the collision experiments which concern
two nucleons and those concerning the bound states of the deuteron.
These serve most directly to limit the theoretical possibilities for
the nucleon-nucleon potential, because the processes involving more
than two nucleons are so difficult from the mathetical point of
view, that one is forced to make use of simplifications which are
perhaps not fully justified. The difficulties involved in connection
with the so called “many body forces’ are also avoided by dealing
with only two-nucleon systems. _

The charge independence and short range of the nuclear forces
are now rather well established facts. On the other hand, the so
called “exchange’’ character of the forces remains (apart from preli-
minary experiments on proton-proton scattering) an open question.

The potential (between two nucleons, 2 and 3) may be either of
the form

—Us{(1—59)+ 5 9(0®- o)) 1)

which is suggested by neutral meson theory, or

i %Uzs (7@ 7®) . {(1 —;g) X %g (02 0(3))} 2)

which is suggested by the symmetrical meson theory.

The two body scattering experiments have not yet been able to
distinguish definitely between these two possibilities. One reason
for this is that when the P-wave scattering becomes important the
above static forces are no longer permissible. The proton-deuteron
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(P-D) or the neutron-deuteron (N-D) scattering on the other hand,
1s suitable to this purpose because the large size of the deuteron
gives an appreciable P-wave scattering for relatively small energies
(a few MeV). The experimental curves for the angular dependence
of the P-D scattering for proton energies from 1.5 to 3.5 MeV?) and
for the N-D scattering for a neutron energy of 2.5 MeV?2), have in
common a strong maximum at 180° in the center of mass system.
This maximum becomes more pronounced with increasing P. energy.

An adequate theory must be able to furnish on the basis of these
experimental results arguments for one of the two potentials given
abovel?),

The purpose of this paper is to present a theory of the N-D scatte-
ring. The three main results are:

1. Rigorous treatment of spin and isotopic spin.

2. The generalization of the well known integral form for the scatte-
ring phases for the case of three particles.

3. The extension of the variational method for the calculation of
these phases, which has already been successfully applied by
Hurraen3) for the two-body problem.

Inspection of these exact integral formulae allows one to draw
conclusions about the exchange nature of the forces.

A detailed comparison with experiment is unfortunately not pos-
sible because the experimental results on N-D scattering are rather
poor. On the other hand those for P-D scattering are excellent, and
a theoretical investigation of this more complicated problem is now
under way.

I. Interaction and equations of motion.

Our considerations apply to any potential between two bodies 2
and 8 which have the form

Vg = Upg™ {w" + b(23),+ h(23),+ m(23),.} (3)

where w, b, h, m are constants. (23) is the permutation of the spacial
coordinates of 2 and 3 and (23), is the permutation of coordinates
of spin, (23), that of isotopic spin and (23),, 1s simultaneously the
permutation of the spin and isotopic spin of the particles 2 and 3.
U,s depends only on the distance between 2 and 3.
Since

(6?- 6'¥) = 2(23),—1 (7. 78) = 2. (28), — 1

the two interactions 1) and 2) are particular cases of this type.
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In the three body problem an important part is played by the
symmetry operators 1, T, T" which are defined as follows

T% = (23) + (13) + (12) ] |
= V3 18)—(12)} 1)
T"— — (23) +  {(18) + (12)} [

These operators can operate on a single species of coordinates,
1. e. on the spacial, spin or isotopic spin coordinates, or act at the
same time at both spin and isotopic spin coordinates. This will be
mdicated by a subscript, as already used in (3) for the simple per-
mutation.

Applied to a function symmetric in the coordinates of 2 and 3,
these three operators generate three functions, the first of which
1s completely symmetrical in the coordinates of 1, 2, 8, while the
other two functions transform by permutation of two of the coordi-
nates, 1, 2, 3, according to the two-dimensional unitary represen-
tation D.

1/2 Q -1 0 1/2 —g
(12) = (28) = ( ) (13) =

V3 /3
e -1 0 +1 Y -1)2

Thus for example, if one operates on the spacial potential U,g,
the three following potentials are obtained

Ur=1° U23 s U23 -+ U21 + U13

r ! 5‘
U= T Uy = 7 (U — Uy Q
" " 1
U'=T"Up=—Us+ 5 (Un + Uy
of these U¢is completely symmetrical in 1, 2, 3 and U’, U" transform
according to the representation D. In particularly U’ is antisym-
metrical in 2, 3, while U” is symmetrical. If the distance of particle
1 to particles 2 and 3 increases, the potential U’ goes rapidly to zero,
whereas U’ reduces to — Uy, It may be readily proved that the
potentials U, U’, U" are mutually orthogonal, 1. e.

fUS-U’dv=fU8-U”dv:fU’- U dv=0

where dv =d3r; d® ry d® ry is the volume element in the space of
the nucleon coordinates 7;, 75, 73. The integrals are extended over
all space. |



342 , Mario Verde.

Assuming the addivity of the potentials, the total interaction of
the three bodies may now be written:

W=U0+U0+U0 (6)

where the operators O operate on the spin and isotopic spin coordi-
nates only and are defined as follows

()f = éﬁ (bTi—f— hT§+mTir) +w
0,:_% (bT . +hT +mT,) @
O e s g, (ber -+ hT:"l“ MTZI)

Three body potentials, 1. e. potentials depending simultaneously
on the coordinates of the three nucleons, the existence of which 1s
as yet not established, could be treated by the formalism just des-
cribed; one would have only to change the significance of Us, U’

and U".

The next step 1s to find in the spin and isotopic spin space a basis
in which the operators O are represented by irreducible matrices.

Both spin and isotopic spin of the nucleons have the values 1/2.
Hence the total spin S and the total isotopic spin T of three nucleons
can assume the values 8/2 and 1/2. Four eigenfunctions x°* belong
to S = 8/2 and to S = 1/2 another four eigenfunctions, namely two
pairs (x', x5 ) and (x_, "), each of which can be chosen in such
a way that as to transform by permutations according to the re-
presentation D.

To obtain for instance the pair (y', ') which corresponds to
S, = 1/2, one has to operate with T, and T, on the symmetrical
spin eigenfunction

‘9
K23 = Vg (0‘2 Bs + a3 :82) "%y
where
{ ot g =y
(

Gzl) ﬁl = —/31

The same applies for the 1sotopic spin eigenfunctions. To the total
1sotopic spin 1" = 8/2 belong four symmetrical eingenfunctions (¥,
and to the spin T = 1/2 the two pairs (¢, &%) and (¢, ¢7),
which may be obtained in the same way as the corresponding spin
eingenfunctions.
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The functions %%, (x', x"); ¢* (¢, {") are mutually orthogonal and
normalized. In the product space of spin and charge (for S = T' =
1/2), the direct product representation D x D decomposes into a
sum of three representations4)?), viz.

DxD=I+A4+D

a completely symmetrical one I, a completely antisymmetrical one
A, and a two-dimensional one D. Therefore, one can choose in the
product space of spin and charge, for S = T = 1/2, the basis

1

& = V% WEHLT), E= 1)
E: — ﬁ (%IC!I 1 x!/ Cl), EI/ _ I/I_E (Z’C, _xflé-//)

of which the &’; are orthogonal eingefunctions normalized to unity.
The latter transform under permutation of the variables according
to the corresponding representation I, 4, and D.

As the interaction W is an invariant with respect to rotation in
spin and isotopic spin space, the total spin and the total isotopic
spin are constants of motion. Only the case in which the isotopic
spin T = 1/2 has to be taken into account for N-D scattering, because
the deuteron is antisymmetrical in the charge in its ground state.
The isotopic spin eigenfunctions are therefore

< ' 2
" ’.’ ?
G 15 {]/3 (bg ag + by as) C"J1}

They correspond to a total charge

e=e [%—%—%Zrz]
equal to e.

Hence, the total eigenfunction may be written as follows

where ]l

for S =5 =y —y")p (8)
fOI‘Szém w:waésmwsga,_f_wfgﬂ_w”gf

(9" -9") and (y°, 9% depend on the spacial coordinates only. To
statisfy the Paur principle, %* must be totally symmetrical, ¢*
otally antisymrmetrical and finally (', »") must transform according
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to the D respresentation. We notice, in particular, that ¢’ is anti-
symmetrical in 2 and 3, while 9" is symmetrical in these coordinates.
The operators 1", T are represented in the space of (3* {’, %°{") by

T _3 s 0 Ts —0
! i 3 o 3

Td: Tr::' —EGI T01= —EGI (9)
" 1 3 i 3

" 0 o U .

where oy, 05, 05 are the usual two-dimensional PAuLI matrices

01 0 i 10
1=\1 o Gz:(—i 0 9=\ -1

In the product space of the &'s one has

T — T =0 T — 3 (g g)
e R B i B L
o3 (0% me (0N me 30

these matrices having four rows and columns. The operators T form,
for three-body problems, a most natural generalization of the usual
exchange operators,.

For the operators O defined by (7) one has

for S = 3/2
Of=w+b ‘
O = (h +m) 0y (11)
0"= (h+ m)-oy4
for S =1/2
=0 +("3 ) O (ivvey me) O (omitio, mer) (12
In the ScEROEDINGER equation of our problem
(E—T)p=Wy
E is the total energy, equal to the sum
E=E,—E,;

where F, is the kinetic energy of the impinging neutron and — £,
= — 2, 19 MeV the binding energy of the deuteron; T the operator
for the total kinetic energy, viz:

T:T1+T2“}"T3:““2h;1 A+ dp + 4y)
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We have chosen as spacial coordinates those generated by oper-
ating with the usual symmetry-operators 1" on one of the nucleon
radius vector, e. g. 7;

il

> 1 - > - -
=5 T ry =5 ("1 +72+73)

P =V
g = el T g (rg+72)

g° is the center of mass (C. M.) coordinate, 7 is proportional to the
distance of 2 from 3, and q is the distance of nucleon 1 from the
C. M. of 2 and 3. Any pair of components of the two vectors ¥ and
q transforms according to D. The volume element dv = d3r-d3gq
1s Invariant with respect to permutation of 1, 2, 3. In this coordi-
nate system, the kinetic energy has the form

h? 3 h
T=—gar =g 4+ 4)

In the C. M. system, which moves with respect to the rest system
with a kinetic energy E; = %Ek, putting

8 M

kt=o 2 B, W= B,

the SCHROEDINGER equation reads:

4 M

(A, + 4, + k2 =k p=57:

UsO+ U0 + U0y~ (18)

Eliminating the spin and isotopicspin coordinates, by means of (11)
and (12) one obtains the following systems of differential equations
for the spacial wave functions:

fOI‘ S = *g— fqu’ o (w+b) US ’lp'*(h +_m)_(DTITPH+ U”’q)’)

. 14
z’lp"=(w+b) Us’y)”—(h—i—’fﬁJ)'(DW?/),—-Dﬂi‘[)”) ( )
for S = %

Ty = (w+m) Uy*—(b+h) (U'y'—U"y')

Ty = (w—m) U'y? + (b—h) (U —T'y) ”

Ty’ = (b+h) U+ (b—h) Uy’ —m(U'y" + U'y)+w Uy’
zwﬂ _ g(b—f—h) U,’lpa—{— (b—h) Ull’l/)s‘f"m(U”’l])ll—U”lp') o Uswﬁj
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From now on all the potentials are understood to be multiplied

M
by —;—h—z and T stands for the operator
T=A4,+4,+k—k (16)
In our coordinate system the total angular momentum is given by

Rl RS AR TR AL

This operator commutes with T. As further the potentials U belong
to a total angular momentum zero, any one of the equations forming
the systems admits the group of the rotations in the space of 7 and
q. Every component y belong therefore to a given total angular
momentum.

For our collision problem one must now satisfy the following
requirements:

a) for S = 3/2, a solution y’, »” of the system (14) must be found
such that ¢’ go rapidly to zero as nucleon 1 leaves the ranges of
interaction of 2 and 3, while %" has for large q's the following
asymptotic behaviour

) 5 eika
p' e g () (eFeest 4 (D (3) 7). (17)
@ (r) is the eigenfunction of the deuteron in the ground state and
¢ 1s the angle by which the impinging neutron 1s scattered.

b) for S = 1/2 a solution ¥, »2, ', »" of the system (15) must
be found such that (y2, »') go to zero for large ¢’s, and *, " behave
asymptotically as follows

e+ $ @ (1) (e“"q cos & fCh) () @”“I)

i j (18)
Ty _i__ @ (?’) . (eikq cosﬁ_i_ f(lli_“) (19)) eiIcQ)

V2 q

In fact the deuteron must be left, once the neutron 1s elastically
scattered, in its ground state. This corresponds to the spin and iso-
topic spin eigenfunction

o 1
For evaluating the total cross-section ¢ (&) one needs only to know
the functions f (&), % (&) being

=2
)

(& —¢&%)

o () == [fV (9)[2 + 5 [ (9)]? (19)
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II. Integral relation for the determination of the phases.

The equation of motion, written in the form (14), (15) makes it
possible to generalize, for the three-body case, well known integral
relations®) which gives the phases of the scattered waves in two-
body problems.

Let us put

P TSN T I = (0 g T k0

where J; , v, (kq) and J_;_., (kq)are Bessel functions of order ! + 1/2
and — [ — 1/2 respectively. One has then for large ¢’s

It ~ sin (kq—1n/2) I ~ S8 (kq—1n/2)
L kq L kq
By a known property of these functions, one has furthermore
oIy L oI7 1

i — I

T T T i

Calling ¢;", ¢; the two functions defined as follows
A i AU
g (r,q) =@ -it@R1+1)e*r I (kq)-P,(cos dy)

where g g = q-k cos ¢4 and P, is the Legendre polynomial of order
l. Denoting by £2 the operator

Q=T+ Up=4,+ 4, +k*—k;+ Uy

one has
Qo =0 }
Qe =0
We shall now prove that the following formula
. k 1

applies to any function which is regular over all space and which
behaves asymptotically with respect to ¢

p = — (@ cosd, + @y sind,)

In order to show this, let us integrate, in the space of 7 and g, the
following identity :

o *Ry— Qe *=gf (A, +A)v—y (4, +4,) ¢ * =
= Div, (¢ *V, y — 9V, ¢*) + Div, (¢ *V v —pV ¢ *)
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taking into account that ¢;” and I, ¢;” go forlarge 7 rapidly enough
to zero and making use of the relation (20); ¢ (r) 1s understood to be
normalized as follows

[lem|2aer=1 (23)

Starting from the identity
¢ * Ry —yp Qe % =Div (¢ *V,p—y Ve, ) +
Dive (o *Veyp—vVag, ¥)
we obtain in analogous way a similar relation for the cosof the phases:

k 1 - _
(0i—1)cos &= 5= 577 [P *Qv—p Qe de (24

where w; 1s a constant as defined by

.k dp; ™
@y = if;a g ll+1 ‘ _/(‘Pl_ i g;ﬁﬁ » %9;) Brdw, ¢ (25)
This constant 1s finite only if v vanishes rapidly enough for small
values of q. ¢ (r) 1s here again supposed to be normalized according
to (23). We can now apply the integral relation (22) and (24) to the
particular case of a solution of the systems of differential equations
(14), (15) discussed in the preceding section, as these solutions are
of the required form. These systems of equations yield likewise
2 p as function of the potentials and the same »’s.

For S = 3/2 1t 1s the function " corresponding to a given angular
momentum which has the right asymptotic behaviour, while in the
case of S = 1/2, for the same reason, the linear combination

Y= V%(w”— ¥)

must be used. One has

for S = 8/2
oy =(wrb+ )Ty —aEm Ty (2
for S =1/2
o g BB W fe g AR L
Qv (o 3=5) Y (om0 5 U
¥ “o ,
—{b—h+m) S5+ (b VZ}U, (26)

where U= Uy + Uy
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Consequently, the following rigorous integral formulae are obtained
for the sines of the phases

S —3/2
sinél:{;- 2l1+1. (w+b+;i__§_ﬁ)f(pl+* ﬁ'l/)”d’f
—(h +fm)/qol+* U 'q)'d‘c} (27)
S —1/2

: k 1 1 m b—h T o
S 51:H'bm'v_§{(w+2"7)f¢’+*tw T
(’w—'m—b;zh)/‘fpf* U¢Sdr—(b—h+m)ff}9;r*U’%U’dT”
b+h) [¢f * U pedr) (27)’

Analogous formulae for the cosine of the phases are obtained star-
ting from (24) and are omitted here for sake of brevity.

The above integral relations (27), (27)" are very useful, because
they permit the calculations of the phases for large energies of the
impinging neutrons or whenever the phases are expected to be
small. Furthermore, they yields a powerful device for checking the
exactness of solutions obtained by approximate methods. One can
also obtain with their help, as it will be apparent from a subsequent
discussion, a fair general idea of the scattering, the latter depending
mainly on the exchange properties of the interaction.

II1. The variational method for the evaluation of the phases.

In view of the complexity of our problem, the best means of
evaluating the phases at small energies as in the two body problem
where the situation is far simpler, is offered by a variational method.

The usual variational principle which is based on the fact that the
Hamiltonian is a Hermitian operator, and which has been success-
fully applied in the two body problem by L. HurLtrEN?), can be
generalized for our problem in a quite natural way.

The fact of having put systematically into evidence the symmetry
properties of the eigenfunctions and of the potentials brings about
considerable simplifications in the calculations and makes a numeri-
cal calculation possible. The systems of equations (14), (15) can be
rewritten in the form

in which no distinction appears to existe between the two cases of
S = 8/2 and S = 1/2. This means simply that for S = 3/2 one has
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two u’s, namely o’ and 9" whereas for S = 1/2 there are four o’s
Le s 9% ', p’. T is the symmetrical and Hermitian operator
defined by (16) and U,, is a real and symmetrical matrix.

The integral

J = Zy 9 (3, T—U) w.dr (28)

is stationary if v, is a solution of the system (14) or (15) belonging
to a given angular momentum and if the variations dy; vanish
rapidly enough at ¢ = co ¢ = oo, which implies that the varied
functions have the same asymptotic behaviours. One has indeed

0T = 2, [{89] (01, T— V) v + v (0, T—U,,) d,}dv

= Zixfd Y (0. T—Up)y,+ 09, (6, T—U,) v, }dr
and if the y’s are solution of (14) or (15) 1. e.
Ty, —2,U;,p.=0 Ty, — 2, Upye=0
1t follows that
2oy (T, — 2, Upep,) =0 Zop Ty, — 2, Up9p)=0

hence
dJ=0

Conversely if 6 J = 0 for any variation 6y, such that (dy;) =0
one has g=0°
T Y = 2 Uix Y.

Though 4" and %" are not independent functions it follows never-
theless from the relation

J{ow* (T — ZUy) + 09" @y™*—ZUyp)}dr =0

both that ¥ " =2 U yand that T " = X Uy, because of the equality
of the two integrals

fa?,v'* Ty — ZUyp)dt :fay;”* (Ty' —ZUypNde  (29)

This equality follows immediately from the symmetry characteri-
stics of the integrated functions.

Once a trial function is chosen for a particular angular momentum,
the choice being such that it belongs to the correct symmetry class,
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has the right asymptotic behaviour, and depends from a certain
number of variational parameters ¢, besides the phase d¢,, one de-
termines the constants ¢; and 4, by means of the equations

J=20
oJ
—()ci:O

(30)

We can now write down explicitely the integrals to be made
stationary. In the case. S = 3/2 we can limit ourselves in view of
the 1dentity (29) to the integral

TO — g% (T — -+ b) Ury] + (htm) (U9 — U i) -} dx (31)

and for S = 1/2 to the integral:

U — [ {Tpn— (w+m) Usype +2 b+ 1) (U'y" — U"y) Y
+f«p-s*{w— (w—m) Usy? — (b+h) (U p'+ U'yp")kdr  (32)
+2 f VT — (b—h) Uyt +m (U y — U ") —w Us "}

We shall write also for S =38/2 y/=T" vy, and v, = T"-y, where y,
1s a function symmetrical with respect to the permutation of 2 and
3. This way of writing is by no means restrictive; indeed for any
two functions ', " which transform according to D one has

Conversely it is true, as we have mentioned earlier, that an arbi-
trary function symmetrical in the coordinates of 2 and 3 leads to
a pair of functions which transform according to D, when acted
upon by the operators 1" and 1".

For the case S = 3/2, we can write J) = 0 in the form

fw;’*gqpldr=(w+b+ =) wal pd7—(h +m) fU v do
(33)
To this purpose one has to observe that

2 ’q);’ — TS'T,U;_S 'lpt
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that T°-v, is orthogonal to v; and finally that the potential Up,
has been split up. The symbols in (38) have the usual significance.
In virtue of analogous considerations, we can write for S = 1/2,
putting

y; = Ty, &, =T, o, =T",
instead of

the equality :
f@pf*.@@pzdr*f@;’*!.?@zdr+%fﬁp?*9w§-dt= |
:(w_m_.b_;ﬁ)fwf*mdp(w?;_b;h)f@;’*“v’@m
+ (b—h+m)-f@;*U'@ldr+ (b—h)f(w;—qi’z)fU”('#f‘l'@;*)
+ UG- dv sy (wtm) [Ty 2ae—5 b+ 1) [(U7 yi*
— Uy %)yt de (33)

IV. The interactions acecording to neutral and symmetrical theories.

We can use the integral relations (27) and (27)" derived for the
phases to get a rigorous integral formula for the total cross-section
To do this one has to use the well-known formula

= 37, @1+1) %% P, (cos 9)
0

where f(#) 1s the function which appears in (17) or (18).
Considering (22) one has

. 1 [ _gwx
7(19):4;,;'j3 Pl () Lydr

0 yi1s ndependent from the azimuthal angle about k, I’ is a vector

of intensity &k and forming an angle ¢ with k. In view of (26) and
(26)" one has finally

- f) (9) = (w+b+}i+7m f(p Uy dr—(h + m)
'ff,v (r) -~ F AUy dr (34)
4x ]/2 f(/z)(ﬁ) w(w+ﬂwb;h)f(p(r)e—“? ;ﬁwﬂdr
_( _m_;’& o (r) e~ F T nydr
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These formulae become in the particular cases of a symmetrical
or neutral interaction, as respectively given by (1) and (2).
Symmetrical theory

0 () ——n 3 [otne FT Uy ae
9 (9) = 4= 1/2{ f<P e” 1T (v +y)de

—(9—3) f‘P (r) e~ F T (y —y*) U'de|

Neutral theory

(35)

/

[——

U (9) = ﬁ-i' {(39 1) /tp (r) e ] U(y" — %) dr { (36)

It 1s a quite noteworty fact that for S = 3/2 the scattering by
interactions of the symmetrical type results from the eigenfunction
v’ only, whereas with neutral interactions it comes from the eigen-
function " alone.

v’ 1s antisymmetrical in the coordinates of the nucleons 2 and 8
and this implies necessarily an exchange of the impinging neutron
with one of the nucleons of the initial deuteron. As a consequence
of the conservation of momentum which is particularly apparent
in the momentum space of # and @, especially at high energies,
the neutron will preferentially scattered backwards.

y" 1s symmetrical in the coordinates of 2 and 8, reduces to the
deuteron eigenfunction times a plane wave when the neutron 1 is at
large distances from the deuteron 2, 3 ; in this case a scattering without
exchange is also allowed, becoming preponderant at higher energies
and giving an important contribution to forward scattering. For
S = 1/2 one can follow an analogous argument. Assuming symme-
trical theories, there is now a wave y” + ¥* which appears in the
first integral and vanishes rapidly at large distances from 1 to 2
and 3, by interference (Cfr. 18) whereas in the case of neutral theories
there appears on the contrary a wave 9" — v* which obviously does
not cancel out. This fact accounts again for a preferential scattering
in the forward direction.

The eigenfunction 2 which is antisymmetrical in all three nuclear
coordinates implies a strong polarisation of the initial deuteron and
should be of importance at very low energies only. The variational

23
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formulae for calculating the phases individually (35) and (83)" have
a structure similar to that of the formulae just discussed, mnasmuch
as the same constants appear as factors of the various integrals,
our arguments should have an even more general significance. It
1s owing to this feature that the N-D scattering becomes particu-
larly interesting.

The formulae (27) and (27)" for evaluating the phases read for
the particular cases of symmetrical and neutral theories as follows
Symmetrical theory

S = 3/2 sin 61, == _734 ,4? 2,Z-|-1 /99+* Urr

k

S=1/2 sind=—or o [of*Tyjdr (87)

Neutral theory

1 k 1 1 —
=y 4 2ied -{—---g- f«)ﬂ?*U(wﬁ%)dr

—(9—3) /W* U (y,— ) dr)
S=1/2 sind,= Vlz_ W -{(2g-—l)f(pf*f](w”—'zps)dr
+9 /0 U (v + v d7) (38)

S=382 sing,

V. Preliminary numerical caleulations.

In analogy to the two-body problem the evaluation of the phases
1s quite simple if one can make use of the imperturbed solution in
the formulae (37) and (38). This may be certainly be done for small
phases. For small energies the phases corresponding to higher orbi-
tal momenta and for high energies all the phases are small. For
neutrons of 2.5 MeV for istance the phase d; can be calculated in
this way without introducing an appreciable error.

Putting

p(rg=e*"-9()
one can write in this case for S = 3/2

'lpszl.y); TI)HZT”"IP
and for S = 1/2

p'=Top py=T:9v =T =0
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Denoting by J,, J,, J, the integrals

~

Jy = /@(T)e—i?; Ui pdr,

o

Jy = f‘P (r)e” g Ugs* (23)yp dt; Jy :/‘P (r) e“if";Ula (13)ypdr

(37) and (38) can be written in the following form
Symmetrical theories

fO0) (9) = ﬁ (J3—eJ,)
7R (9) = 817 (Ja+ (8g—1)dy) (39)

fO(8) =4 @@ —8g) i+ Jy+ (1—8g) ) (39)

The integration to be carried out are straightforward if one chooses
Gaussian functions both for the potentials and for the eigenfunction
of the ground state of the deuteron, as has been already done by
various authors?)s),

barns

S
o
T

[

b 05 0 —05 -+ e
Fig. 1.

Angular dependence in the C. M. system of the scattering of 20 MeV neutrons by
deuterons. The upper curve refers to neutral (N.T.) and the lower one to
symmetrical theories (S.T.). The ordinates are in barns (10~2* e¢m?). The total
cross-section is 1.54 barns for N. T. and 0.71 barns for S.T.

*) These formulae have been given also by T.Y. Wuv and J. AsHrIN?). This
ist not the case for the symmetrical theories, because these authors have failed to
use rigorously the isotopic spin formalism.
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For the case of neutrons of 20 MeV, where this approximation is
expected to be a good one, the neutral and the symmetrical
theories lead to the two curves shown in fig. 1.

The numerical constants which we have adopted are

%#~1=1.9 10713 cm. (range of the forces)
%2 Uy — 5.22 ¢~ Ins—ril*

and this corresponds to a potential of 45 MeV for the deuteron in

the 3S state.
2 °fe — utp?
@ (r) = (:“']/;{) e

The constant u? = 0.347 %2 is determined by minimizing the energy
of the deuteron in the ground state. With these values one has

by Jl - 990 6-0.741;%(1—(:05 19); 5 Jz — 58.0 e—k2(1.45+ 1.16 cos 19);

- — k% (0.49 + 0.0085 cos &)
xdy3=242e

A pronounced maximum only at 180° is a characteristic feature
of the symmetrical theories and is also produced at smaller energies.
Therefore the results of Buckincuam and Massevy?), who find for
neutrons of 11.5 MeV a pronounced maximum only in the for-
ward direction for symmetrical as well as for neutral theories, are
hard to reconcile with the considerations made above.

Our curves have been calculated using values of g = 0.2 (N.T.)
and g = 1.4 (S.T.) which accounts for the energy difference bet-
ween the two S states of the deuteron, a ratio od 0.6 of the potential
in the 3S state to that in the 1S state being assumed. On the other
hand, in doing this one ignores the tensor force, which is predomi-
nantly responsible in the symmetrical theories for the difference
between the 23S and the 1S levels.

Using g = 0.1 the angular dependence of the scatterins (S.T.) 1s
still of the same type, but the total cross-section is lowered from
0.71 barns (corresponding to g = 1.4) to 0.2 barns.

In conclusion we wish to indicate in detail the formulae by which
the phases can be evaluated using the variational method.

In the case S = 3/2, we may, putting

v, = @ Gi cos 8, + ;7 G sin §,
where v;", @i are defined by (21), make use of the ansatz

w;:fzw.w; QP;’:T”.TPI
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The functions y; and y; have the right symmetry character,
belong to an angular momentum I(I + 1) h and show an asymptotic
behaviour as given by (17) .The trial functions G;- and G- must be
chosen so as to approach unity rapidly when ¢ goes to infinity.
Furthermore ¢;- must also vanish rapidely enough for ¢ = 0 to make
y; finite everywhere. The functions G contain the variational para-
meters which are determined by means of the equations (30).

For the actual calculation one must evaluate the following five
integrals

Ji= /‘P; Uy dr Jzsz; Uy (12) pyodr, Jy= /V’; Uy (18) i de

.

Ji= [viQude  Ty— [[12) y]- 2 pdv (40)
It is useful to transform J, in the following manner. As one has
J, = cos? 6, / (pf GV*Q (¢ GfF) - dr +
1 . -
+ 5 sin2 8, [1(of GH*Q (o G) + (o GO)* 2 (o7 GF)]-dv
+sin? 0, [ (g Gr)* 2 (o7 G7) dr (41)
and the 1dentity
(9 G )* 2 (e G) —
(97 G7) Q9" ") = (@ G )* (4, + 4) (977 Gy) —
(@ G)* (4, + 4) (¢ G) = Div,-[(¢ G)* v, (91 G) —
(9 GO)* o (977 GI)] + Diveley G1)* po(ey GF) —
(77 G)* oo G

one obtains integrating over all space, taking into account (20)

[(oif GF)* 2 (97 Gr) dr = [(o7 G)* @ (9} G dr— T @1+1).

w

The integral

[ G*2 el 61y dr
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can be written
Jlor G Qe Gy dr— [ (o7 G)*oit (4, + 4,) G} d
+2f or GOV, 9f V. GF +V, of V,Gf }dv =

OO

r *OG+ - ( —
/Gl g 4n21+1/1 (kq) I7 (kq)

oGl oGr* oeS a6 2 g
il o oq |9

One obtains finally using in analogous way Green’s theorem for
the integrals which appear in (41) as factors of cos? d; and sin? ¢,

Jy=—cost o, [|gf |2[|V, G |+ |V, G [2lde

O 1 A
67y

0

0GT* 06, 0GfT 06y .
mkfz e e L dg—+

—sinzo, (| g7 2|V, Gy |2+ |V, 67 |- d (42)

+ 4T (@214 1)sin 26,

This form is more appropriate for numerical calculations. For the
integral J; one can proceed in a similar manner and one finds

Jy—cos? 8- [ (9 GH*((4,+ 4 GF +2(Vr o -7, Gf
+ Vel VoG)lde
+sin20;- [ (g7 GO* (A + 40 GF +2 (70 172G/
+ Vg VG dT
+ 5 sin2d, /"(gp; GH)* (Ugy — Usg) (12) (97 G7) d 7
+sin? o (97 GD)*[(4,+ 4 67 +2(Veor -V, Gy
+ Voo VG )ldr (43)

Equation (33) 1s written explicitely
Symmetrical theories

Jo—d, + Jy—dy=0 (44)
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Neutral theories

Very great simplifications would result by choosing functions G,
independent of the coordinate r, i. e. disregarding the polarisation
of the deuteron, and also using Gaussian potentials by taking for
( linear combinations of Hermite functions. In the case S = 1/2 in
the approximation where y is disregarded, we may put as above

v, =@, Grcos o, + o G sind, i =Ty, =0

L

D, = ¢ Q cos 6, + ¢ @ sin 9, Q=1 - P O = T" Py

where the ¢)’s can be of the same form as the G’s but contain other
variational parameters. The integrals are still the same ones, as in
the case of S = 3/2, one has to add the integral

Jo= [ v} Uswidr

The relation (33)" may be written then in an explicit form as follows
Symmetrical theories

@Qdg—dp = Is—dpae=—9 1 +Jo+Jg),,+ g (J1+Js
—2J3)s,06+ (Js— Yo 0
b g B T — T T — T + T+ T— o) o,
— Ay + dy—do), o+ 4 BT, 6—2 (T ey} (45)
Neutral theories
B — L AT = B — T s+ T L) (B 2
(o6 —B9—1) (o o+ (J3)o o
S O S SO . S . . B N -, T
— 2+ ds— o)y 0+ 40 0—2 (T2 o} | (45)’

The notation used 1s almost selfexplanatory, e. g.
(J2) v, ® = f’l)z* Uy (12) @, dx

In a forthcoming paper we shall take up in great detail the actual
evaluation of the integrals and of the phases d, for smaller energies.
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