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On the elastic scattering- of neutrons by deuterons
by Mario Verde

Swiss Federal Institute of Technology.

(March 18. 1949.)

Introduction.

The knowledge of the interaction potential between two nucléons
is of fundamental importance in nuclear physics, and every
experimental result giving a clue to it is of great interest.

Especially important are the collision experiments which concern
two nucléons and those concerning the bound states of the deuteron.
These serve most directly to limit the theoretical possibilities for
the nucleon-nucleon potential, because the processes involving more
than two nucléons are so difficult from the mathetical point of
view, that one is forced to make use of simplifications which are
perhaps not fully justified. The difficulties involved in connection
with the so called "many body forces" are also avoided by dealing
with only two-nucleon systems.

The charge independence and short range of the nuclear forces
are now rather well established facts. On the other hand, the so
called "exchange" character of the forces remains (apart from
preliminary experiments on proton-proton scattering) an open question.

The potential (between two nucléons, 2 and 3) may be either of
the form

-Uu[(l-\g) + ±g{oM-o«>)} (1)

which is suggested by neutral meson theory, or

+ \u2S(y-y)-{(i-lg) + ±gy»-eW)} (2)

which is suggested by the symmetrical meson theory.
The two body scattering experiments have not yet been able to

distinguish definitely between these two possibilities. One reason
for this is that when the P-wave scattering becomes important the
above static forces are no longer permissible. The proton-deuteron



340 Mario Verde.

(P-D) or the neutron-deuteron (N-D) scattering on the other hand,
is suitable to this purpose because the large size of the deuteron
gives an appreciable P-wave scattering for relatively small energies
(a few MeV). The experimental curves for the angular dependence
of the P-D scattering for proton energies from 1.5 to 3.5 MeV1) and
for the N-D scattering for a neutron energy of 2.5 MeV2), have in
common a strong maximum at 180° in the center of mass system.
This maximum becomes more pronounced with increasing P. energy.

An adequate theory must be able to furnish on the basis of these
experimental results arguments for one of the two potentials given
above10).

The purpose of this paper is to present a theory of the N-D scattering.

The three main results are:
1. Rigorous treatment of spin and isotopie spin.
2. The generalization of the well known integral form for the scatte¬

ring phases for the case of three particles.
3. The extension of the variational method for the calculation of

these phases, which has already been successfully applied by
Hulthen3) for the two-body problem.
Inspection of these exact integral formulae allows one to draw

conclusions about the exchange nature of the forces.
A detailed comparison with experiment is unfortunately not

possible because the experimental results on N-D scattering are rather
poor. On the other hand those for P-D scattering are excellent, and
a theoretical investigation of this more complicated problem is now
under way.

I. Interaction and equations of motion.

Our considerations apply to any potential between two bodies 2
and 3 which have the form

V2S =U,s-{w-7- b(23)a+ h(2S)T+ m(23)nr} (3)

where w, b, h, m are constants. (23) is the permutation of the spacial
coordinates of 2 and 3 and (23)a is the permutation of coordinates
of spin, (23)T that of isotopie spin and (23)or is simultaneously the
permutation of the spin and isotopie spin of the particles 2 and 3.

U23 depends only on the distance between 2 and 3.
Since

(a(2) • ff(s>) 2 (23) a -1 (t(2) • t(3)) 2 • (23),- 1

the two interactions 1) and 2) are particular cases of this type.
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In the three body problem an important part is played by the
symmetry operators Ts, T', 1" which are defined as follows

T (23) + (13) + (12)

T' Ç{(13)-(12)}

T"=-(23)+ L{(13) + (12)}

(4)

These operators can operate on a single species of coordinates,
i. e. on the spacial, spin or isotopie spin coordinates, or act at the
same time at both spin and isotopie spin coordinates. This will be
indicated by a subscript, as already used in (3) for the simple
permutation.

Applied to a function symmetric in the coordinates of 2 and 3,
these three operators generate three functions, the first of which
is completely symmetrical in the coordinates of 1, 2, 3, while the
other two functions transform by permutation of two of the coordinates,

1, 2, 3, according to the two-dimensional unitary representation

D.

(12)

J/3
2

-y,
(23) (13)

0 +1/

-VI
2

-1/2

Thus for example, if one operates on the spacial potential 7723,

the three following potentials are obtained

77'

" J- *^23 — ^23 u2l + u,

I,'L23 (7J21-7J:13J

L"=r"u23 -u„ + i(u21 + u:13;

(5)

of these 17s is completely symmetrical in 1, 2, 3 and U', 77" transform
according to the representation D. In particularly 77' is antisym-
metrical in 2, 3, while 77" is symmetrical. If the distance of particle
1 to particles 2 and 3 increases, the potential 77' goes rapidly to zero,
whereas 77" reduces to — 7723. It may be readily proved that the
potentials 77s, 77', 77" are mutually orthogonal, i. e.

/Vs-V'di Us-U"dv= U'-U"dv 0

where dv d3 r1 d3 r2 -J3 r3 is the volume element in the space of
the nucléon coordinates rlt r2, r3. The integrals are extended over
all space.
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Assuming the addivity of the potentials, the total interaction of
the three bodies may now be written:

W=UsOs+U'0' + U"0" (6)

where the operators 0 operate on the spin and isotopie spin coordinates

only and are defined as follows

0s I (bTsa+liTs + mTsat) + w

0' -{-(bTyhTT+mTl) (7)

0"= + i-(bT:+hT:+mT:z)

Three body potentials, i. e. potentials depending simultaneously
on the coordinates of the three nucléons, the existence of which is
as yet not established, could be treated by the formalism just
described; one would have only to change the significance of 77s, 77'

and 77".

The next step is to find in the spin and isotopie spin space a basis
in which the operators 0 are represented by irreducible matrices.

Both spin and isotopie spin of the nucléons have the values 1/2.
Hence the total spin S and the total isotopie spin T of three nucléons
can assume the values 3/2 and 1/2. Four eigenfunctions %s belong
to S 3/2 and to S 1/2 another four eigenfunctions, namely two
pairs (x'+, %"+) and (%'_, %"_), each of which can be chosen in such
a way that as to transform by permutations according to the
representation D.

To obtain for instance the pair (%'+, %'+) which corresponds to
Sz 1/2, one has to operate with T'a and T"a on the symmetrical
spin eigenfunction

— (<x2 ßs + a3 ß2) ¦ ccj

where

of>«i:

yßi
The same applies for the isotopie spin eigenfunctions. To the total

isotopie spin T 3/2 belong four symmetrical eingenfunctions fs,
and to the spin T 1/2 the two pairs (£'+, £'+) and (Cl, Ç"_),

which may be obtained in the same way as the corresponding spin
eingenfunctions.
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The functions %\ (%', %") ; £s, (£', f") are mutually orthogonal and
normalized. In the product space of spin and charge (for S T
1/2), the direct product representation DxD decomposes into a
sum of three representations4)5), viz.

DxD=I+A+D
a completely symmetrical one I, a completely antisymmetrical one
A, and a two-dimensional one D. Therefore, one can choose in the
product space of spin and charge, for S T 1/2, the basis

£s- ~-(x'C' + x"C"), Sa= ~ (x'?'-x"0>

f '

p (*r+m r p te'c-z"C")

of which the f ', are orthogonal eingefunctions normalized to unity.
The latter transform under permutation of the variables according
to the corresponding representation I, A, and D.

As the interaction W is an invariant with respect to rotation in
spin and isotopie spin space, the total spin and the total isotopie
spin are constants of motion. Only the case in which the isotopie
spin T 1/2 has to be taken into account for N-D scattering, because
the deuteron is antisymmetrical in the charge in its ground state.
The isotopie spin eigenfunctions are therefore

f y \
Z- T'r- \ Vy (&B «s + «2 h) «ij I xf ax a1

_ where l
c':=r';.{i/|(62a3+ò3a2)a1} K 6i ~01

They correspond to a total charge

^ + ±-
2^2
3 1 V-r

equal to e.

Hence, the total eigenfunction may be written as follows

forS=| y=(y'C-yT)-z* |

for/S y -y> ya|s—yf + i/l" —v>'l' j

(8)

(ip'-ip") and (ys, *ya) depend on the spacial coordinates only. To
statisfy the Paui principle, ips must be totally symmetrical, ipa

otally antisymLmetrical and finally (ip', y>") must transform according
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to the D respresentation. We notice, in particular, that ip' is anti-
symmetrical in 2 and 3, while y>" is symmetrical in these coordinates.

The operators T', T"are represented in the space of (%a £', %SC") by
T>' 3 Ts 0 Ti=0
Tyo
T"=0

T'T- Yffl
3

T'ar=-fa1
T" 3

— 0-3

(9)

2 u3 -OT 2

where o*1; o*2, o*3 are the usual two-dimensional Pauli matrices
0 1

1 0

0

In the product space of the £'s one has

0

T' -
rp" _

0 a.

cr3 0

0 <r

o*. 0

rj o

T"= + _3_ / 0 ia.
~2\~ ia« 0

rns
ar

r-*¦ OT.

T"

to» o\i
lo <y

_3_ /0 0

2 \0 ffx

JWO 0'

2 lo ff.

(10)

these matrices having four rows and columns. The operators T form,
for three-body problems, a most natural generalization of the usual
exchange operators.

For the operators 0 defined by (7) one has
for S 3/2

(H)

0s w + b

0' -- (h + m)-a1

0" -¦ (h + m) - cr3

for S 1/2

0*=W+(TOJ
» 0'= 0"=

6 #! + i A ffs
(12)

0 h + ba.

+ 6o*3 mffj/ ^ \bxa—iha,_

In the Scheoedinger equation of our problem

(E - T) y TF f
E is the total energy, equal to the sum

F Ek — Ed

where Ek is the kinetic energy of the impinging neutron and — Ed
— 2.19 MeV the binding energy of the deuteron; T the operator

for the total kinetic energy, viz:

T=T1+T2 + T3 ~yr(A1 + A2 + Aa)
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We have chosen as spacial coordinates those generated by
operating with the usual symmetry-operators T on one of the nucléon
radius vector, e. g. r1

5s=yTsT-1 y(T-1 + ?2 + 73)

1/3 ».
r T'rx= vT(r3 — r2)

q= rr^y.+ lc^+y
qs is the center of mass (C. M.) coordinate, r is proportional to the
distance of 2 from 3, and q is the distance of nucléon 1 from the
C. M. of 2 and 3. Any pair of components of the two vectors r and
q transforms according to D. The volume element dr d3 r-d3 q
is invariant with respect to permutation of 1, 2, 3. In this coordinate

system, the kinetic energy has the form

h2 3Ä2T=- jm A«° ~ tm (Ay AJ

In the C. M. system, which moves with respect to the rest system

with a kinetic energy Es — =- Ek, putting

aap h*-±y
9 /,2 ^k "-a 3 hi

the Schroedixger equation reads:

(Ar + At + k*-k*)y>= l-f;(U°0°+U'0'+U"0'')v (13)

Eliminating the spin and isotopie spin coordinates, by means of (11)
and (12) one obtains the following systems of differential equations
for the spacial wave functions :

for S ~ Zy>' (w + b) Usy>'-(h + m)-(77' f" + 77>')
X rp" =(w + b) 77s y>" -(h + m)-( 77>'- U"f")

l

(14)

for S
2

%ipa=(w + m)Usipa-(b + h)(U'y>"-U"f')
%y>s (w—m) Usips7-(b-h) (77'>"—77>')

Zip' (b + h)U"ipa+(b~h) 77>s-m(77>" + U"f') + w TJ'ip'

Xip" ~(b + h) U'ipa+(b—h) U"fs + m(U"ip"-U'ip') + wUsip"

(15)
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From now on all the potentials are understood to be multiplied
4 M

by -jTTF and X stands for the operator

X Ar + Aq + k2~k2 (16)

In our coordinate system the total angular momentum is given by

This operator commutes withï. As further the potentials 77 belong
to a total angular momentum zero, any one of the equations forming
the systems admits the group of the rotations in the space of r and
q. Every component ip belong therefore to a given total angular
momentum.

For our collision problem one must now satisfy the following
requirements :

a) for S 3/2, a solution ip', ip" of the system (14) must be found
such that ip' go rapidly to zero as nucléon 1 leaves the ranges of
interaction of 2 and 3, while ip" has for large q's the following
asymptotic behaviour

p(r)/6«io*»« + ^(*!)(0)5^!\ (17)

rp (r) is the eigenfunction of the deuteron in the ground state and
& is the angle by which the impinging neutron is scattered.

b) for S 1/2 a solution *^s, ipa, ip', ip" of the system (15) must
be found such that (ipa, ip') go to zero for large q's, and fs, ip" behave
asymptotically as follows

V

ips^ + ^=rp(r) Likq cos y /(1'y (d) —
'

ip"^-.y(p(r).(e^^"+y(&)e~
(18)

In fact the deuteron must be left, once the neutron is elastically
scattered, in its ground state. This corresponds to the spin and
isotopie spin eigenfunction

x"^j=2(^'-y
For evaluating the total cross-section a(d) one needs only to know
the functions f{3,i) (&), f'la) (&) being

o(d) l\fW(&)\* + \\fM(ff)\* (19)
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II. Integral relation for the determination of the phases.

The equation of motion, written in the form (14), (15) makes it
possible to generalize, for the three-body case, well known integral
relations6) which gives the phases of the scattered waves in two-
body problems.
Let us put

J«+-"|/SîrWfca). y^y^i^J-t-y^)
where Jl+ijz(kq) andJ.;.^ (kq) are Bessel functions of order I + 1/2
and —I — 1/2 respectively. One has then for large q's

j+ sin (kq—lnj2) j_ cos (kq— Infi)
1 kq l kq

By a known property of these functions, one has furthermore

Calling rpi~, rpj the two functions defined as follows

y (r, q)=<P (r) -il(2l + l) eiai If (kq) -Pt (cos &q) 1

<pt •>> i) (p m •{l (21+1 )&i h y (k s) • pi (cos *«) »

where q -k q-k cos &q and P( is the Legendre polynomial of order
I. Denoting by Q the operator

Q X7-U23 Ar + Aq + k2 -k2 + 7723

one has
Û <p+ 0

Q <pi 0

We shall now prove that the following formula

sindl -£;-1±rîf<pï*Qy>dT (22)

applies to any function which is regular over all space and which
behaves asymptotically with respect to q

ip =- — (y cos S i + rp~ sin ô j)

In order to show this, let us integrate, in the space of r and \, the
following identity:

rp+*Qip-ipQrpl-* <pt*(Ar + Aq)ip-ip(Ar + Aa)<p+*

Divr (rp+ *VrV~ipVr fft*) + Div9 (ff+ *Vqip-ipVQ y *)
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taking into account that rpt and Vr ft g° 1or large r rapidly enough
to zero and making use of the relation (20) ; rp (r) is understood to be
normalized as follows

[\(p(r)\2d3r l (23)

Starting from the identity

cfl * Q ip — y>Q ffl * Divr (ffj~*Vr ip^ipVr ffj *) +

Diva (ffl *Vaip — ipVQ (fl *)

we obtain in analogous way a similar relation for the cos of the phases :

(fo^l) cos 0^ ~ ¦ y+J- J(<pl*Q ip ~wQ(pi*)dr (24)

where ml is a constant as defined by

"'-J^Ä-Izrr/v^*^-^ )d»rd«Vì* (25)

This constant is finite only if ip vanishes rapidly enough for small
values of q. rp (r) is here again supposed to be normalized according
to (23). We can now apply the integral relation (22) and (24) to the
particular case of a solution of the systems of differential equations
(14), (15) discussed in the preceding section, as these solutions are
of the required form. These systems of equations yield likewise
Q ip as function of the potentials and the same ip's.

For S 3/2 it is the function ip" corresponding to a given angular
momentum which has the right asymptotic behaviour, while in the
case of S 1/2, for the same reason, the linear combination

V> 77= (v" — y
must be used. One has
for S 3/2

Ü ip" (w + b + h^~\ Ü ip" -(h + m) Vip'

for S 1/2

Qip= [(«;+ 2
- b-h\ y," 1 b-h\ ys\

-{(b-n+m)y2 + (b+h)y):
where 77= 7713 + 7723

(26)

(26)'
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Consequently, the following rigorous integral formulae are obtained
for the sines of the phases
S 3/2

-(h + m) f(ft*U'if'dr) (27)

S 1/2
• s k 1 1 I/ i» b-h\ f + s. ^ „-,smô' T^-2l^i-^[[w + -2¦—¥-)]*" ü^ dr-

(w—m —J i y* 77 Y dx — (b — h + m) f fft* 77' ip' dx —

(b + h)[ft*U'ipadr) (27)'

Analogous formulae for the cosine of the phases are obtained starting

from (24) and are omitted here for sake of brevity.
The above integral relations (27), (27)' are very useful, because

they permit the calculations of the phases for large energies of the
impinging neutrons or whenever the phases are expected to be
small. Furthermore, they yields a powerful device for checking the
exactness of solutions obtained by approximate methods. One can
also obtain with their help, as it will be apparent from a subsequent
discussion, a fair general idea of the scattering, the latter depending
mainly on the exchange properties of the interaction.

III. The variational method for the evaluation of the phases.

In view of the complexity of our problem, the best means of
evaluating the phases at small energies as in the two body problem
where the situation is far simpler, is offered by a variational method.

The usual variational principle which is based on the fact that the
Hamiltonian is a Hermitian operator, and which has been successfully

applied in the two body problem by L. Hulthen3), can be
generalized for our problem in a quite natural way.

The fact of having put systematically into evidence the symmetry
properties of the eigenfunctions and of the potentials brings about
considerable simplifications in the calculations and makes a numerical

calculation possible. The systems of equations (14), (15) can be
rewritten in the form

Zfi Z!yixfx
in which no distinction appears to existe between the two cases of
S 3/2 and S 1/2. This means simply that for S 3/2 one has
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two ip's, namely ip' and ip" whereas for S 1/2 there are four ip's
i. e. ips, ipa, ip', ip". X is the symmetrical and Hermitian operator
defined by (16) and 77ix is a real and symmetrical matrix.
The integral

J Zîxfv>î(àîxZ-Utx)ipKdx (28)

is stationary if ipt is a solution of the system (14) or (15) belonging
to a given angular momentum and if the variations òipi vanish
rapidly enough at q oo q oo, which implies that the varied
functions have the same asymptotic behaviours. One has indeed

ÔJ= Eix]{ ô y,; (ôixX- Uix) ipx + ip* (diHZ- Uix) ôipx}dx

Eixfôip* (òixX-Uix)ipx+ òipt(oixX-Uix)ip:}dx

and if the ip's are solution of (14) or (15) i. e.

Xipt-ExUixipx 0 Xip* -zxuixipyo
it follows that

Eóip* (ZWi - Ex U{K ipx) 0 Eô if, (X ip* - Ex U.x f*x) 0

hence

OJ=0

Conversely if ò J 0 for any variation ô ipi such that (a ip,) 0

one has q °°

Xipi= E Uix ipx

Though ip' and ip" are not independent functions it follows
nevertheless from the relation

[{ôip'* (Xip' -EUf) + ôip"* (Xip"*-EUip)}dx 0

both that X ip' E 77 ip and that X ip" E U ip, because of the equality
of the two integrals

fòip'* (Xip' ~ ETJ ip') dx fÒ ip"* (Xip" - EU ip") dx (29)

This equality follows immediately from the symmetry characteristics

of the integrated functions.
Once a trial function is chosen for a particular angular momentum,

the choice being such that it belongs to the correct symmetry class,
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has the right asymptotic behaviour, and depends from a certain
number of variational parameters c» besides the phase dlt one
determines the constants ct and òl by means of the equations

J 0 |

dJ_= (30)
dct J

We can now write down explicitely the integrals to be made
stationary. In the case S 3/2 we can limit ourselves in view of
the identity (29) to the integral

jim) =jxp-* {£ y. _ {w + b) jjs y» + {h + m){ xj' v; _ v» ^ .} dr (3i)

and for S 1/2 to the integral:

Jd/2) fw°*{Xipa-(w + m)Usipa + 2(b + h)(U'ip"- U"ip')}dx

+ [ips*{Xips--(w-m)Usips-(b + h) (77'ip' =77"ip")}dx (32)

+ 2fip"*{Zip"-(b-h) 77"ips + m(77'ip'-U"ip")-w Usip"}dx

We shall write also for £ 3/2 ipl'=T'-ipl and ip'j T"-ipl where ipx
is a function symmetrical with respect to the permutation of 2 and
3. This way of writing is by no means restrictive; indeed for any
two functions ip', ip" which transform according to D one has

w'=T'-{~~ip'
2

3

Conversely it is true, as we have mentioned earlier, that an
arbitrary function symmetrical in the coordinates of 2 and 3 leads to
a pair of functions which transform according to D, when acted
upon by the operators T' and T".

For the case S 3/2, we can write J™ 0 in the form

ip'j*Qipldx= (w + b+ -^1-) / Uip"j*ipidx — (h + m) U'ip'l*ipl -dx
(33)

To this purpose one has to observe that

2 ip'j T°-ipl-3iPl

y"=T"-{- V
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that Ts-ipt is orthogonal to ip'j and finally that the potential 7723

has been split up. The symbols in (33) have the usual significance.
In virtue of analogous considerations, we can write for S 1/2,
putting

%s=2>, &'l=T'0l 0'j=T"-0l
instead of

J('« 0

the equality :

[fl * Ü Wl dr- [&;* Û0l dx + y [ipf*Û ip«- dx

w-m __ZÌ) Jwl* UWldx- (w + y-^1) f*:* U0ldx

+ (b-h-1-m)-[0'l*U'0ldx + (b~h)[(ipl-0l)[U"(fsl+0j*)

+ U'0'l*]-dx + y (iv + m) [us\ipa\2dx--f (b + h) f(U' ip'*

-U"ip'j*) fl*dx (33)'

IV. The interactions according to neutral and symmetrical theories.

We can use the integral relations (27) and (27)' derived for the
phases to get a rigorous integral formula for the total cross-section
To do this one has to use the well-known formula

/(#) ^(2Z + l)Sinl-JP-7cos#)

where f(&) is the function which appears in (17) or (18).
Considering (22) one has

fy-i^-Jy^'y^-^wdx
Dip is independent from the azimuthal angle about k, fc' is a vector

of intensity fc and forming an angle & with fc. In view of (26) and
(26)' one has finally

4 n ¦y (&) (w + b + -~y\ fff (r) e-ik' •« 77 ip" dx - (h 7- m)

• [ff(r)-e~tk'^U'ip'dx (34)

47f-1/2-/(lw(t?) L+y--^y-) f<f(r)e-ik'-« Uf"dx

— iw — m —-I f y (r) e~%k''q Uipsdx

-Ji + m) f<f(r)e-ikr^Ü'ip'dx+(b + h) fff (r)e-"r* 77>ad*r (34')



On the elastic scattering of neutrons by deuterons. 353

These formulae become in the particular cases of a symmetrical
or neutral interaction, as respectively given by (1) and (2).
Symmetrical theory

P>(0) =_J_.A /*?,(r)e-«'*r u'ip'dx4jî 3

tf».)/m 1 1 fl/ (/,)W Tn-y^'U9']<f^e~ih''9ü(v' + vV* (35)

~(a—j) J<p We~ "' "* (v'- va)ü'd

Neutral theory

/™ (*) - 47F /«"'* 'r• V W Ü V" dr

/™W ^-^|-{(}3~l)/9'We-«'^77(¥»"-?s)dr [(86)

+ g- [<f (r) e-"''« 77' (*y>' + y>a) <ir

It is a quite noteworty fact that for S 3/2 the scattering by
interactions of the symmetrical type results from the eigenfunction
ip' only, whereas with neutral interactions it comes from the
eigenfunction ip" alone.

ip' is antisymmetrical in the coordinates of the nucléons 2 and 3

and this implies necessarily an exchange of the impinging neutron
with one of the nucléons of the initial deuteron. As a consequence
of the conservation of momentum which is particularly apparent
in the momentum space of r and q, especially at high energies,
the neutron will preferentially scattered backwards.

if" is symmetrical in the coordinates of 2 and 3, reduces to the
deuteron eigenfunction times a plane wave when the neutron 1 is at
large distances from the deuteron 2,3 ; in this case a scattering without
exchange is also allowed, becoming preponderant at higher energies
and giving an important contribution to forward scattering. For
S 1/2 one can follow an analogous argument. Assuming symmetrical

theories, there is now a wave ip" + ips which appears in the
first integral and vanishes rapidly at large distances from 1 to 2

and 3, by interference (Cfr. 18) whereas in the case of neutral theories
there appears on the contrary a wave ip" — ips which obviously does
not cancel out. This fact accounts again for a preferential scattering
in the forward direction.

The eigenfunction ipa which is antisymmetrical in all three nuclear
coordinates implies a strong polarisation of the initial deuteron and
should be of importance at very low energies only. The variational
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formulae for calculating the phases individually (35) and (33)' have
a structure similar to that of the formulae just discussed, inasmuch
as the same constants appear as factors of the various integrals,
our arguments should have an even more general significance. It
is owing to this feature that the N-D scattering becomes particularly

interesting.
The formulae (27) and (27)' for evaluating the phases read for

the particular cases of symmetrical and neutral theories as follows
Symmetrical theory

S 3/2 sin a, -\4~- ^ttt I ft* U' ip\-dx3 4ra 2Ï+1
k 1

Tn~ 2Z+1
S 1/2 sin dl - /V -=i-= • [ft* 77 ipj d x (37)

Neutral theory

h.=
V2

s 3/2 ^ô^y.y-.y—.iig./v*u->;+^)^4jt 2Z+1 12

-10- ],).ffft*u'(ipyipf)dx]
1/2 ^ô^y.y.y^-^lg^ffyuy-ydr

+ gfft*U'(ip'l+ipf)dx} (38)

V. Preliminary numerical calculations.

In analogy to the two-body problem the evaluation of the phases
is quite simple if one can make use of the imperturbed solution in
the formulae (37) and (38). This may be certainly be done for small
phases. For small energies the phases corresponding to higher orbital

momenta and for high energies all the phases are small. For
neutrons of 2.5 MeV for istance the phase ó^ can be calculated in
this way without introducing an appreciable error.
Putting

ip (r, q) e%k 'a ¦ (p (r)

one can write in this case for S 3/2

ip' T'-ip; ip" T"-ip
and for S 1/2

ips Ts-ip ip' T' -ip ip" T"¦ ip ipa 0
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Denoting by Jv J2, J3 the integrals

Jx= ^ y (r) e~ik'' * U13-ipdx,

72 ftp (r) e- «'•* 7723- (2% dx; J3 =Jrp (r) e~ip *7713 (lS)ipdx

(37) and (38) can be written in the following form
Symmetrical theories

fU)y 7h(Js-J*)4 n

'/•) (A\ _/'''»(¦*)
Neutral theories*)

8ji (J8 + (8sf-l)J,

/™(*fl)
1

4 jr
(2 Jx — J2 — J3

8 71
(2(2-33)J1 + J2 + (l-3g)J3)

(39)

(39)'

The integration to be carried out are straightforward if one chooses
Gaussian functions both for the potentials and for the eigenfunction
of the ground state of the deuteron, as has been already done by
various authors7)8).

0,0

OM

0,3

\n.t. /

07

OJ

¦st. \ ^y^
i i i >¦

tt +0,5 0 -0,5 -I CDS &

Fig. 1.

Angular dependence in the C. M. system of the scattering of 20 MeV neutrons by
deuterons. The upper curve refers to neutral (N. T.) and the lower one to
symmetrical theories (S. T.). The ordinates are in barns (10~24 cm2). The total
cross-section is 1.54 barns for N. T. and 0.71 barns for S.T.

*) These formulae have been given also by T. Y. Wu and J. Ashkin7). This
ist not the case for the symmetrical theories, because these authors have failed to
use rigorously the isotopie spin formalism.
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For the case of neutrons of 20 MeV, where this approximation is
expected to be a good one, the neutral and the symmetrical
theories lead to the two curves shown in fig. 1.

The numerical constants which we have adopted are

x'1 1.9 xlO-13 cm. (range of the forces)

x-2U23=o.22e-x*^-^'
and this corresponds to a potential of 45 MeV for the deuteron in
the 3S state.

<p(r)=(,yif
The constant p.2 0.347 x2 is determined by minimizing the energy
of the deuteron in the ground state. With these values one has

^J1 29.0e-°*74*8(1-cos*); x J2 58.0e-t'(1-*5 + 1-18co8*»;

x J _ 24 2 e-*2 (0.49+ 0.0085 cos •*>)

A pronounced maximum only at 180° is a characteristic feature
of the symmetrical theories and is also produced at smaller energies.
Therefore the results of Buckingham and Massey9), who find for
neutrons of 11.5 MeV a pronounced maximum only in the
forward direction for symmetrical as well as for neutral theories, are
hard to reconcile with the considerations made above.

Our curves have been calculated using values of g 0.2 (N.T.)
and g 1.4 (S.T.) which accounts for the energy difference
between the two S states of the deuteron, a ratio od 0.6 of the potential
in the 3S state to that in the 1S state being assumed. On the other
hand, in doing this one ignores the tensor force, which is predominantly

responsible in the symmetrical theories for the difference
between the 3S and the 1S levels.

Using g 0.1 the angular dependence of the scatterins (S.T.) is
still of the same type, but the total cross-section is lowered from
0.71 barns (corresponding to g 1.4) to 0.2 barns.

In conclusion we wish to indicate in detail the formulae by which
the phases can be evaluated using the variational method.

In the case S 3/2, we may, putting

Wi ft y cos òi + fi y sin óf

where ipt, fi are defined by (21), make use of the ansatz

ipyr-ip-, ip'yr-ip;
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The functions ip\ and ip'j have the right symmetry character,
belong to an angular momentum 1(1 + 1) % and show an asymptotic
behaviour as given by (17) .The trial functions Gt and Gf must be
chosen so as to approach unity rapidly when q goes to infinity.
Furthermore qi must also vanish rapidely enough for q 0 to make

ifi finite everywhere. The functions G contain the variational
parameters which are determined by means of the equations (30).

For the actual calculation one must evaluate the following five
integrals

7i= f w"i Unifiât J2= f ipìU13(12) ft-dx, J3 / % U13 (13) iptdx

J,=jip\Qiptdx Ja= f[(12) ip;]-QiPldx (40)

It is useful to transform J4 in the following manner. As one has

J4 cos2 ÒV / ((ft Gt)*Q(ft Gt) ¦ dr +

+ I sin2 ölf[((ft Gt)* Q (fi Gl) + (fl Gl)* Ü (y Gt)]-dx

+ sin2 Ô.-J^l Gl)*Q (ffl Gl) dx (41)

and the identity

(ftGt)*Q(flGD-
((fl Gl) ü ((ft Gt) (ft Gt)* (Ar - zy (fl Gl) -

(fl Gl)* (Ar + Aa) ((ft Gt) Divr-[(ft Gt)*- Vr (fi Gl) -
(fi Gl)* Vr (ft Gt)] + Div3[^+ Gt)* Va (fl Gl) -

(fj-Gl)*Vq(rptGt)]

one obtains integrating over all space, taking into account (20)

f(ftGt)*0(flGl)dx f(<piGl)*Q(ftGt)dx-y^(2l + l).

The integral

f((flGl)*Q(ftGt)dx
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can be written

\ffl Gl)* Q (ft Gt) dx j(rpi Gl)*ft (Ar + At) Gt dx

+ 2 [(rpl Gl)*{Vrft Vr Gt 7 Vq ft Vyt }dr

4*-(2l + l)[Gl*^--dq-4n(2l+l)flt(kq)Il(kq)
ii o

dO+ dO~* ÒG+ dOl*\v- -ir—+y—/- <f didr dr dq dq J1 *

One obtains finally using in analogous way Green's theorem for
the integrals which appear in (41) as factors of cos2 òl and sin2 ôt

J4 - cos2 dt f\ (ft |2 [| Vr Gt |2 + | Vr Gl j 2]dx

+ y(2l + i)sm2ôl- \/Gl*d^-dq
io

ÔO+* dO

*A+If -£ -ly+ny-iyW**-t
-sin2-3f- l\fl\2[\VrGl\2+\VrGl\2]-dx (42)

This form is more appropriate for numerical calculations. For the
integral J5 one can proceed in a similar manner and one finds

J5 cos2 of -f(fft Gt)*[(Ar + Aa)Gt + 2 (Vrft " VrGf

+ V«ftVQGt)]dx

+ sin 2 <5f • J((fl GD* [(Ar + A Q) Gt + 2 (vr ft Vr Gt

+ VQft -VqGt)]-dx

+ 1 sin 2 dt f((ft Gt)* (U13 - U23) (12) (v~ Gl) dx

+ sin2 ôl J(rpl Gl)* [(Ar + AQ) Gl + 2 (Vr fl • Pr G,"

+ (7^r-^Gr)]-^T (43)

Equation (33) is written explicitely
Symmetrical theories

75-J4 + 72-J3=0 (44)
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Neutral theories

J5-J4-2J1 + J2 + J3 0 (44)'

Very great simplifications would result by choosing functions Gt
independent of the coordinate r, i. e. disregarding the polarisation
of the deuteron, and also using Gaussian potentials by taking for
G linear combinations of Hermite functions. In the case S 1/2 in
the approximation where ip is disregarded, we may put as above

fi ft Gt cos ôl + ffl Gl sin òt vi T'ipl iff 0

®i ft Qt cos dt + fl Ql sin o-, 0' =T ¦ 0X 0" T"- «P,

where the Q's can be of the same foim as the G's but contain other
variational parameters. The integrals are still the same ones, as in
the case of S 3/2, one has to add the integral

J0= j f* U23 Vidr

The relation (33)' may be written then in an explicit form as follows
Symmetrical theories

(2 J5 - J4) wv- (J5- J4) 00 - g (J, + J2 + J3) vy, + g (J1 + J2

~ 2 J3)00 + J3 — J2)0j 0

+ -3 (g~^){(Ji~J2 + Js-Jo)v,y(Ji-J2 + Js~Jo)0,<,

-2(J1 + J8-J0),>. + 4(P(J,)¥i.-2(J1),>¥} (45)

Neutral theories

(2^~J4),,,-(J5-J4k*=(3ff-2)(J1 + J2 + J3)M+(3S~-2)

(^i)*,* —(3ff—1) (7a)0^ + (J3)0t0

~ 9 \(Ji — 72 + J3 — J0)y,iV + (J-i — J2 + J3 — Jo)*,*

-2(J1 + J3-Jo)Vi0 + 4(J2),,0-2(J2)0iJ (45)'

The notation used is almost selfexplanatory, e. g.

(Jz)v,0 fipìU13(12)0ldx

In a forthcoming paper we shall take up in great detail the actual
evaluation of the integrals and of the phases ô0 for smaller energies.
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