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Classification invariante des termes de la matrice S
par A. Houriet et A. Kind.

(18. III. 1949.)

Pour éliminer les divergences que la théorie des perturbations introduit dès
le second ordre, il est utile de décomposer les termes de chaque ordre en classes
invariantes pour une transformation de Lorentz. C'est le but de ce travail, qui
repose sur la théorie des graphes.

La méthode proposée est générale. Cependant nous l'exposerons
sur un exemple particulier. Soient deux ensembles de particules de

spin 0, les premières chargées et de masse x, les secondes neutres
et de masse pi. Elles sont décrites par les champs scalaires u+(x) et
u(x), respectivement <p(x). Ce sont des fonctions d'espace-temps:
x (x, t). Si les deux champs ne sont pas couplés, l'équation de
SchroedInger est stationnaire et s'écrit

où H0 est l'hamiltonien du système total et EQ son énergie. Le vecteur

énergie-impulsion de chaque particule est constant. Le système
n'évolue pas.

Introduisons un hamiltonien d'interaction eH', e désigne la
constante de couplage. Le système est devenu évolutif. L'état au temps
t différera de l'état initial. Cette évolution obéit à l'équation

i~F(t)=eH'(t)F(t) avec F(t) e~iE'lF0 (1)

où B.'(t) désigne l'hamiltonien dépendant du temps.
Si l'on intègre l'équation différentielle (1) par rapport au temps,

on la transforme en une équation intégrale. L'état du système au
temps t s'exprimera à partir de l'état initial par une matrice d'évolution

S(t, — oo) S(t) que l'on obtient en développant la solution
suivant les puissances de e.

F(t)=S(t)F(-oo) avec (2)

Sft^l + S^t) +S2(t) + (3)

Sm(t) (-ie)m fdtmJâtm^...JdlL H'(tm) H'(tm^)¦ ¦ ¦ H'&) (4)
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II est commode d'introduire ici les fonctions

telles que
0+(ri) + 0-(ri) l (6)

On peut alors écrire
t t t

Sm(t) (-ie)m[dtm[dtm_v--ïdtxQ+(m-m — l)Q+(m — l-m — 2)

— Où —CO —OO

¦¦¦6+(2-l)H'(tm)-.-H'(t1) (7)

Précisons le terme de couplage que nous adoptons :

H'(t) f(dxfu+(x)u(x)(p(x) (8)

L'intégrale s'étend à tout l'espace tridimensionnel. Les champs
u+(x), u(x) et <p(x) développés suivant un système complet d'ondes
planes s'écrivent

vy 7jhy^yr^ei(nx)+<e~i{nx)) (9)

avec
(fc fe) — x2, (nn) — pi2

les a£, ak, b£, bk, c+, cn sont les opérateurs connus de la théorie des

champs quantifiés, par exemple

a+F(-..,Nk,.-.)=yNk + lF(-..,Nk + l,.-.) (10)

[aï,ak,] -ôhik,
Pour simplifier l'écriture, convenons d'écrire u+(ï), u(i) <p(i) pour

u+(Xi), u(xt), <p[Xi); u+ u rp(i) pour u+(i) u(i) <p(i). Nous omettons
aussi de noter les intégrales spatiales et nous abrégeons les m
intégrales sur le temps par une seule sur la variable t'. Sm devient

t

S m (t) (— iy [di' 0+ (m -m — 1) • • • 0+ (2-1) u+ u<p (m) • ¦ ¦ u+ u<p (1)

(11)
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La définition de Sm montre que cette matrice est déterminée par
m éléments u+urp(i). Chacun d'eux décrit un ensemble d'absorptions

et d'émissions localisées en xt dans l'espace-temps. Ces
éléments se suivent dans un ordre opératoriel, qui coïncide avec l'ordre
temporel de l'intégration représenté par les fonctions 0+. Nous supposerons

que dans chaque élément u+ucp (i), tous les opérateurs d'émission

sont à gauche des opérateurs d'absorption. Notre but est de

trouver tous les termes que l'on obtient à partir de Sm, lorsqu'on y
place les opérateurs d'émission à gauche des opérateurs d'absorption.

A cet effet, examinons le produit u+(j) u (i). Nous pouvons déplacer
les opérateurs de telle manière que les opérateurs d'émission soient
à gauche de ceux d'absorption. C'est ce que nous appellerons un terme
ordonné. Mais cette opération fait apparaître un nouveau terme, qui
résulte de la commutation des bk et des b£, de sorte qu'on a

u+ (j) u (ï) u+ (j) u (i) otd + u+ (j) u (i) (12)

Le premier terme u+ (j) u (*i)ord. décrit tous les processus qui se passent
en Xj indépendamment de ceux qui ont x2- pour siège. Le second terme
représente l'émission d'une particule en xt, suivie de son absorption
en Xj. Nous le nommerons terme contracté et contraction le
processus qu'il décrit. Il ne contient plus d'opérateurs et vaut :

«+(*-0«(*>t27 =L-e*»-/--J= ÌD+ (j-i) (13)

De même, nous transformons les produits u (x3) u+(x{) et <p(xt) <p(xt)
en produits ordonnés auxquels nous ajoutons les termes contractés
correspondants

U (Xj) U+(Xf) u (Xj)u+(Xi)0Td + u(Xj)u+(Xi)

<p (x,) <p (x{) cp (x,) <p (Xi)0Id + cp (x,) f (Xi)oni. r r \*n t \™ij (14)

On peut aisément interpréter les contractions que nous venons
d'introduire. Chacune représente l'émission d'une particule en x4- suivie
de son absorption en x,-, soit:

u+(xj) u (Xi) — D+ (j-i) particule x négative
J

u (x,) u+ (Xi) -x- D+ (j • i) particule x positive

rp (x,) (p (xt) -=D+ (j-i) particule pi neutre (15)
I l

21
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Pour simplifier les notations, nous convenons d'écrire:

u+u ord= u+u (16)

pour les produits ordonnés. Autrement dit, dans le terme général
Sm, nous n'indiquerons que les contractions, sous-entendant par là
que tous les opérateurs qui ne sont pas touchés par elles sont
ordonnés, c'est-à-dire que les opérateurs d'absorption sont à droite des

opérateurs d'émission. Ceci fixé, on voit que toute combinaison de

contractions effectuées sur le terme général Sm, (11), en extrait un
terme particulier. Désignons par « une combinaison déterminée de

contractions, et Sm(a) le terme ordonné qui lui correspond, il est
clair que la correspondance est biunivoque entre a et Sm(a).

Considérons par exemple le terme général S2, qui contient le

produit des deux éléments

u+ u <p (2) u+ u <p (1)

Il se décompose dans les termes suivants cr.r correspondant chacun
à une combinaison donnée de contractions.

a0 u+ u <p (2) u+urp (l)or(L u+urp (2) u+ urp (1)

oq u+ u rp (2) u+ u cp (1 <x2 u+u rp (2) u+urp (1)

a3 u+ u cp (2) u+ u <px{l) a4 u+urp (2) u+ ucp (1)
I I

1 I

<x5 u+ u rp (2) u+ u rp (1) a6 u+urp (2) u+urp (1)
1

1
I U I

a7 u+ u cp(2) u+ u cp(l) (17)

Il est possible de donner une représentation graphique pour
chaque terme a et par conséquent pour chaque Sm(<x). Pour cela,
observons que chaque élément u+ u cp (i) correspond à un point de

l'espace-temps: xt-. Comme les trois dimensions spatiales sont
équivalentes, nous n'en considérerons qu'une x associée au temps t.
Nous placerons chaque point x( dans le plan x, t, en tenant compte
de l'ordre temporel donné par les fonctions 0+. Puis, nous réunirons
par une ligne le points ou nœuds ou sommets entre lesquels existe
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une contraction. Chaque contraction sera représentée par une ligne
différente, correspondant aux trois types de contractions de (15).
Ainsi à

u+(j)u(i) u(j)u+(i) <p(j)y(i) (mi i II *

I
v '

correspondront

i I

/iiii
-4

qui décrivent les échanges de particules x négatives, x positives, et

jx. Si entre deux nœuds il y a plusieurs contractions, chacune sera
portée dans le diagramme ou graphe correspondant. Voici quelques
exemples :

A la matrice S3 (a0), où a0 désigne le terme ordonné sans contraction

t

S3 K) (— i e)3 [di' 6+ (3 • 2) 0+ (2-1) u+urp (3) u+urp (2) u+urp (1)

(19 a)

correspond le graphe

-o 3

o 2

o /

tandis qu'à

83 («') (— i s)3 [di' 0+ (3 • 2) 0+ (2 • 1) u+ u rp (3) u+ u rp (2) u+ u rp (1)
-L I 1

I

correspond \ " >

3

+W-

-CT^ /
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et à

S3(x") (-ieffdt' 0+ (3-2)0+ (2-1) u+n y (S) u+u rp (2) u+u <p(l)
— OO l

(19 c)

Il est manifeste que la correspondance est biunivoque entre un
terme a ou Sm(<x) et le diagramme représentatif. Ce dernier
comporte m points ou sommets ou nœuds, qui peuvent être reliés par
des lignes. C'est le graphe représentatif de oc.

Nous disposerons les Sm (a) en groupes invariants pour une
transformation de Lorentz. Au lieu de regarder l'indice i lié à l'ordre
temporel représenté par les fonctions 0+, on peut définir une
numérotation intrinsèque des sommets. Définissons la permutation de
deux sommets j et i. Par cette opération, nous entendons le produit
ordonné que l'on obtient en permutant les deux éléments u+ u rp(j)
et u+urp(i), en laissant subsister les contractions qui les lient.
Quelques exemples feront comprendre cette opération: soit PH
l'opération en question, on aura:

Pji \u+ u rp (j) U+U(p (i) \ U+urp(%)u+urp (j)

PH \u+ u rp(j) u+ u rp(i)\ u+ u rp (i) u+urp (j)

Pji \u+ u rp (j) u+ u rp (i)\ u+u cp (i) u+ u rp (j) (20)
i | |

J
I

ou encore, si l'on utilise les graphes représentatifs:

pji {J_y}= _£ (21)

On voit que cette opération échange les contractions x+ et
x~, tandis qu'elle laisse la contraction pi inchangée. Donnons



Classification invariante des termes de la matrice S. 325

un autre exemple. En permutant les sommets 2 et 3 de (19 c),
il vient:

S3(a'") (— ieffdf 6+(2-3)d+(S-l)u+U(pX2)u+u<p(3)u+u<p(l)
* "

(22)
et son graphe

Nous définirons deux termes a1( <x2 de Sm comme équivalents
quand l'un se déduit de l'autre par des permutations de ses sommets.
Nous grouperons tous les termes équivalents entre eux en groupes.
Soit un terme oc, [a] désignera a et tous les éléments qui lui sont
équivalents. On voit facilement que [oc] contient m! éléments. Par
exemple, le groupe des termes équivalents à

est

(23)

A chaque graphe « de [oc], on pourra naturellement faire
correspondre une matrice Sm(a), et au groupe [a], on associera la matrice

s» ([«]) 27 s» («)
[al

(24)

où oc parcourt les m! éléments équivalents à un élément donné oc.

Si a est un graphe donné et Sm(a) la matrice correspondante,
[oc] contenant m! graphes équivalents, Sm([a]) sera formée de la
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somme de m! matrices. Or, il importe de remarquer qu'il n'y a pas
en général m! matrices équivalentes dans le terme général Sm (11).
Pour le montrer, définissons l'égalité de deux graphes. Nous dirons
que deux graphes oq, oc2 sont égaux entre eux quand ils sont super-
posables et qu'ils ne diffèrent que par leur numérotation. Divisons
le groupe [oc] des termes équivalentes à oc en classes de restes dont
chacune contiendra tous les termes égaux entre eux. Soit {a} la
classe de reste des termes égaux au terme oc. Comme le nombre des

termes égaux entre eux ne dépend que de la structure du graphe, il
est clair que chacune des classes de restes {oc} de [a] contiendra le
même nombre de termes: iVa. Chaque classe de restes {oc} correspond

à une et une seule matrice *Sm(oc), réellement présente dans
le terme général (11). Il y a correspondance biunivoque entre les
classes de restes {a} et les matrices Sm(a) du terme général.

On peut encore exprimer la décomposition qui précède de la
façon suivante. L'ensemble des m! permutations forment un groupe
[oc] qui contient m! éléments, dont chaque graphe est un représentant.

L'ensemble des permutations, que nous appelons renumérotation

d'un graphe donné, forme un sous-groupe de [oc], sous-groupe
que nous désignons par {l}. C'est le sous-groupe des automorphismes
d'un graphe déterminé. Soit Na le nombre des éléments de {l}.
Une décomposition du groupe en classes de restes module {1}, et,
suivant les éléments oc', oc"..., s' écrit

[oc]={l}+oc'{l}+oc"{l}+--- (25)

Cette décomposition est univoque et chacune des m!/JVa classes
de restes contient Na éléments. D'après la définition des matrices
Sm(ot) à partir du terme général (11), dans lequel on effectue une
certaine combinaison de contractions, la correspondance est
biunivoque entre les classes de restes et les Sm(a) équivalentes et
réellement présentes dans (11).

La correspondance entre oc et les mêmes matrices n'est donc
biunivoque que dans le cas où chaque classe de restes ne contient
qu'un élément. Alors {1} ne contient qu'un élément, l'unité. C'est
le cas, par exemple, du groupe (23), dont chaque élément forme une
classe de restes.

Dans le cas général, si <oc> désigne l'ensemble des matrices
équivalentes entre elles et réellement présentes dans (11), on aura
pour la matrice

Sm (<«>)= 27 S™(«) (26)
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où oc parcourt tous les éléments équivalents du terme général (11) :

Sm(<*>) ySm([«]) (27)
¦*-v a

Donnons quelques exemples : soit le terme oc'

Sz(oi') (-ief dt'6+(2-1) u+urp(2) u+urp(1)
-i I

La permutation des nœuds 1 et 2 donne oc"

S-2 («") Hy / àt' 6+ (1-2) u+urp (1) u+urp (2)

-i I

qui n'est rien d'autre que le premier terme, dans lequel on a renuméroté

les nœuds. Les deux graphes correspondants

-2
i '

i i
«'= ; a" j

sont superposabïes et appartiennent donc à une même classe de
restes. Le nombre Na correspondant est 2.

Reprenons aussi les termes (19 c) et (22). Leurs graphes ne sont
pas superposabïes. Ils appartiennent à des classes de restes
différentes et correspondent à deux termes réellement présents dans la
matrice Ss. Par contre, toute permutation cyclique appliquée à
l'un d'eux redonne le même terme: ainsi la permutation cyclique
(231) appliquée à (19 c) donne

t

S3(a"") (- i ef [di' 0+(l • 3) fl+(8 ¦ 2) u+ u rp (1) u+urp (3) u+ u rp(2) (28)
J I I I I 1 I

— oo 1

— =——I

qui est le terme (19 c) à la numérotation près des variables
d'intégration. Le graphe correspondant

—2

est superposable au graphe (19 c) et les deux termes sont égaux.
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Ils appartiennent à la même classe de restes. Le sous-groupe {1} est
ici le groupe cyclique d'ordre 3, et l'on a iVa 3.

Chacune des matrices Sm([oc]) Na $m(<oc>) est invariante
pour une transformation de Lorentz. En effet, toute transformation

de Lorentz transforme un graphe donné en un graphe qui lui
est équivalent. Le groupe des graphes équivalents se transforme
en lui-même et la proposition est démontrée.

Un graphe étant donné et par lui le groupe des graphes qui lui
sont équivalents, il nous reste à trouver la structure analytique de
la matrice Sm([«]) ou Sm(<cr>) correspondante. Reprenons le

terme général (11). Au lieu de fixer la succession temporelle des m
points ou nœuds par les m — 1 fonctions 0+, on peut compléter
cette description en introduisant des fonctions en surnombre. Ainsi
nous fixerons la position de chaque nœud relativement aux autres :

t

Sm(t) (— ie)m fdt'8+(m-m—1)0+(m-m— 2) • • •

— OO

0+(m-l)0+(m—l-TO—2)---0+(m—l-l)---
0+(2-l) u+urp(m)---u+urp(l) (29)

Au lieu des m - 1 fonctions 0+, on a maintenant ~ fonctions,
dont la plupart sont en surnombre. Soit un ensemble de contractions

effectuées sur Sm et définissant un terme oc. Au lieu de noter
ces contractions dans le terme général, comme nous l'avons fait dans
(19 b) ou (19 c), nous remplacerons la contraction par son expression
analytique correspondante D+ (j-i) définie par (15). Ces contractions

ont pour effet de réduire le nombre des champs des éléments
u+u<p(i). Désignons par B (i) les champs restants liés au point
i. Comme il y a coïncidence entre l'ordre temporal des fonctions
6+ (j-i) et l'ordre opératoriel des différents éléments u+ u <p(i), les

fonctions 0+ (j-i) et D£ (j-i) correspondant à deux points j et i,
<p

entre lesquels il y a une contraction, apparaîtront toujours dans la
combinaison :

e+(j-i)D+(j,i)
<p

L'ordre (j-i) est le même dans la fonction 0+ (j-i) et dans la fonction

9 Définissons encore par analogie avec (5) :

e-(j-i) e+(i-j)
Dü(j^) Di(i-j) (30)
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et. notons par j et i les couples de nœuds entre lesquels il n'y a pas
de contraction, par p et q les couples de nœuds entre lesquels il y a
contraction. Le terme correspondant à oc s'écrira:

t
r i m

Sm(a) (-*«)"• dt']Je+(j-ï)]j6+(p-q)\D^(p-q)]jB(ï) (31)

Dans cette formule, lorsque, entre un couple de points p et q, il
y a plusieurs contractions, il suffit de faire apparaître les produits
0+ (P'1?) V -^« (P'i) correspondants.

A partir de Sm (oc), essayons de former la matrice Sm ([oc])

correspondant au groupe de termes équivalents à oc. Pour cela, considérons
la somme suivante:

Sm(Z6±) (-ie)mZ[dt'ne±(j-i)[j6Hp-q)YDu(P-<l)nB(l)
±J„ M v,a i-i(32)

où la somme est à effectuer sur toutes les combinaisons possibles
des fonctions 0+ et 0". Chaque fonction 0 (r-s) pouvant devenir 0+

ou 0-, il y aura au moins 2 2 termes dans cette somme.
Considérons l'un d'entre eux, en supposant qu'il est différent de 0.
Comme nous avons conservé les mêmes expressions résiduelles B (l),
et que les contractions sont fixées par les couples de nœuds p
et q, le fait de changer un certain nombre de fonctions 0+ de (31)
en fonctions 0", revient à redistribuer les nœuds dans le temps.
C'est simplement une permutation, qui conduit à un terme
équivalent à oc. Cette remarque montre que tout terme de (32) différent
de 0 peut être réinterprété sous la forme d'un graphe, équivalent
au graphe représentatif du terme primitif oc, (31). Or, nous savons
qu'il yam! graphes équivalents entre eux qui forment le groupe
[a]. Nous en concluons que la somme (32) ne contient que m! termes
différents de 0, et qu'elle se réduit donc à Sm ([a]). Il est facile de

comprendre que les termes nuls proviennent des relations
d'incompatibilité des différentes fonctions 0+ et 0~ présentes dans chaque
terme de la somme (32). Ainsi, si l'on reprend le terme (23), on
constate qu'en plus des 6 termes indiqués, la somme Sm (-£0*)
correspondante introduit deux termes nuls, qui contiennent les
combinaisons de fonctions

0+(3-1)0-(3-2)0-(2-1) =0
0-(3-1)0+(3-2)0+(2-1) s0
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Nous définirons enfin la fonction Deu (p-q), oui est l'unité imaginaire

: v

Dl (P-q) ijö+ (p-q) Dì (p-q) + 0- (p-q) D~ (p-q))* (33)

de sorte que Ton aura, en observant que

Sne± (H) -iJ{e+0'-t) + e-(r*)} i
(±) J,» J, i

i

S»(<a>) -i"S.Œa]) i=J^_- [dt'Jj\Dl(p-q)fjB(l) (34)

Il apparaît donc que, le graphe représentatif de a étant donné,
il est possible d'écrire immédiatement la matrice Sm (<oc>), somme
de toutes les matrices équivalentes kSm(a), présentes dans S«,(11).
Cette matrice partielle est invariante d'après ce qui précède.

Nous tenons à remercier ici M. le Professeur E. Stueckelberg
et M. le Dr D. Rivier de l'intérêt qu'ils ont porté à notre travail,
ainsi que la Commission Suisse pour les recherches atomiques qui
l'a encouragé.

Institut de Physique de l'Université de Genève,

*) La fonction D°, introduite par MM. Stueckelberg et Rivier: Phys. Rev.
74, 1948, p. 218, est notée DF dans le travail de M. P. Dyson: Phys. Rev. 75,
1949, p. 486.
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