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Classification invariante des termes de la matrice .S
par A. Houriet et A. Kind.
(18. III. 1949.)

Pour éliminer les divergences que la théorie des perturbations introduit deés
le second ordre, il est utile de décomposer les termes de chaque ordre en classes
invariantes pour une transformation de LorENTz. C’est le but de ce travail, qui
repose sur la théorie des graphes.

La méthode proposée est générale. Cependant nous ’exposerons
sur un exemple particulier. Soient deux ensembles de particules de
spin 0, les premiéres chargées et de masse x, les secondes neutres
et de masse u. Elles sont décrites par les champs scalaires u* () et
% (x), respectivement ¢(x). Ce sont des fonctions d’espace-temps:
x = (&, t). Si les deux champs ne sont pas couplés, I'équation de
SCHROEDINGER est stationnaire et s’écrit

HoFo"*EoFo

ou H, est ’hamiltonien du systéme total et E, son énergie. Le vec-
teur énergie-impulsion de chaque particule est constant. Le systéme
n’évolue pas. ,

Introduisons un hamiltonien d’interaction ¢ H', ¢ désigne la cons-
tante de couplage. Le systéme est devenu évolutif. L’état au temps
t différera de I’état initial. Cette évolution obéit & I’équation

i 2P () = e H(HF () avec F(f) =e 5 F, (1)
ou H'(f) désigne ’hamiltonien dépendant du temps.

Si 'on intégre I’équation différentielle (1) par rapport au temps,
on la transforme en une équation intégrale. L’état du systéme au
temps t s’exprimera & partir de 1’état initial par une matrice d’évo-
lution S(f, — co) = S(t) que I'on obtient en développant la solution
suivant les puissances de e.

F(t)= S (f)F(—oo) avec (2)
S@)=1+8,(¢) + Sa(t)+... (3)

i tm

Sul) = (i)™ [ty Aty [y H(6) B ) HB) (8

—00 —00
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Il est commode d’introduire ici les fonctions

. 0 st <
U =1 & >y
. (5)
6“(j-fi)=1 51 t; <t
0 s t; >4
telles que 1
0+ (j-i) +0- (1) =1 (6)

On peut alors écrire

S (f) = (—fie)mfdtmfdtm_l---fdt19+(m~m—1) B+ (m—1-m—2)

e 07(2-1) H' (i) - - H'(%) (7)
Précisons le terme de couplage que nous adoptons:
H' ()= [ (d)° w+(2) u(a) 9 (2) ®)

L’intégrale s’étend a tout l'espace tridimensionnel. Les champs
ut(z), u(x) et p(x) développés suivant un systéme complet d’ondes
planes s’écrivent

_ 1 1 g 4 ,—ilk i (1 )
wh(2) = Gygm & e e ) + bt

_ 1 1 i (k + —i (k)
w(o) = Gygm & 7w (€7 + b T

1 1 t(nz —i{nx
@(z) = z V@)%Z o~ {c,et® 4 ghemilnal} (9)

n

avec
(kk) =—=% (nn)=—u?
les aif, a, b, by, ¢, ¢, sont les opérateurs connus de la théorie des
champs quantifiés, par exemple
G F (o Ny ) =y N, F1F (-, N+ 1,--) (1)
[a; s aw] = — O

Pour simplifier ’écriture, convenons d’écrire w* (2), % (2) ¢ (i) pour
wt(z,), u(x;), p(x;); wt u @ (1) pour ut (1) u(v) ¢ (7). Nous omettons
aussi de noter les intégrales spatiales et nous abrégeons les m inté-
grales sur le temps par une seule sur la variable t'. S, devient

S, = (-—fie)mfdt’ O+ (m-m—1)-- 0+ (2-D)utue@m) - utuep (1)
e (11)
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La définition de S,, montre que cette matrice est déterminée par
m éléments utu (7). Chacun d’eux décrit un ensemble d’absorp-
tions et d’émissions localisées en x; dans 'espace-temps. Ces élé-
ments se suivent dans un ordre opératoriel, qui coincide avec ’ordre
temporel de I'intégration représenté par les fonctions 6+. Nous suppo-
serons que dans chaque élément #+u ¢ (1), tous les opérateurs d’émis-
sion sont a gauche des opérateurs d’absorption. Notre but est de
trouver tous les termes que I'on obtient & partir de S, lorsqu’on y
place les opérateurs d’émission & gauche des opérateurs d’absorption.

A cet effet, examinons le produit %+(7) % (). Nous pouvons déplacer
les opérateurs de telle maniére que les opérateurs d’émission solent
a gauche de ceux d’absorption. C’est ce que nous appellerons un terme
ordonné. Mais cette opération fait apparaitre un nouveau terme, qui
résulte de la commutation des b, et des by, de sorte qu’on a

wh () () = ¥ () 4 (@) o + ()0 (1) (12)
Le premier terme %" (§) % (1) .;q. décrit tous les processus qui se passent
en z;indépendamment de ceux qui ont x; pour siége. Le second terme
représente 1’émission d’une particule en z,, suivie de son absorption
en x;, Nous le nommerons terme contracté et contraction le pro-
cessus qu’il décrit. Il ne contient plus d’opérateurs et vaut:

1 1 i 1 .
‘ii (])?,’{’(?’) f Vuko t(k - )_ 2 D;_ (']%) (13)

De méme, nous transformons les produits « (x;) ut (x,) et @ (z;) ¢ (x,)
en produits ordonnés auxquels nous ajoutons les termes contractés
correspondants

% (25) wh (25) = 1 (23) U™ (Bg) ora. + ¥ (mj)@‘ﬁ(:nz-)

@ (25) @ (2;) = @ (%) @ (2) 0. + @ (25) @ () (14)

I ]

On peut aisément interpréter les contractions que nous venons d’in-
troduire. Chacune représente 1’émission d’une particule en x; suivie
de son absorption en x;, soit:

'tlﬁ(az ;) 'z|1, (z) = 5 DJr (j-1) . particule » négative

':T(x,) oyt ()= ;—D (7-2) particule » positive

o (z;) @ (x;) = %D (7+4) particule u neutre (15)
I ;

21
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Pour simplifier les notations, nous convenons d’écrire:

utu o o=utu (16)

ord.
pour les produits ordonnés. Autrement dit, dans le terme général
S, nous n’'indiquerons que les contractions, sous-entendant par la
que tous les opérateurs qui ne sont pas touchés par elles sont or-
donnés, c’est-a-dire que les opérateurs d’absorption sont & droite des
opérateurs d’émission. Ceci fixé, on voit que toute combinaison de
contractions effectuées sur le terme général S,,, (11), en extrait un
terme particulier. Désignons par o une combinaison déterminée de
contractions, et S,,(«) le terme ordonné qui lui correspond, il est
clair que la correspondance est biunivoque entre « et S,, (o).

Considérons par exemple le terme général S,, qui contient le
produit des deux éléments

utu e (2)utue()

Il se décompose dans les termes suivants o, correspondant chacun
8 une combinaison donnée de contractions.

ao=utu @@ utue(l),  =svtue2) utuel)

ord.

n=wrug@uiupll)  w=urup@) uup)

otg = w1 @ (2) wtu (1) “427’,°+"1“p(2)"|“+'*("”(1)
| a L

o =utu () utuep(l ot = Ut @(2) utu ol

5= 1 9!9() lqlw() 6 L_?_L 9?()

(17)

Il est possible de donner une représentation graphique pour
chaque terme « et par conséquent pour chaque S, (). Pour cela,
observons que chaque élément %+ % @ (i) correspond & un point de
Pespace-temps: ;. Comme les trois dimensions spatiales sont équi-
valentes, nous n’en considérerons qu’une z associée au temps i.
Nous placerons chaque point x; dans le plan z, {, en tenant compte
de I'ordre temporel donné par les fonctions 6+. Puis, nous réunirons
par une ligne le points ou nceuds ou sommets entre lesquels existe
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une contraction. Chaque contraction sera représentée par une ligne

différente, correspondant aux trois types de contractions de (15).
Ainsi &

wiu@)  ufur® g E (2) - (8)
correspondront

¢

qui décrivent les échanges de particules x négatives, » positives, et
. 81 entre deux nceuds 1l y a plusieurs contractions, chacune sera
portée dans le diagramme ou graphe correspondant. Voici quelques
exemples:

Ala matrice S; (), olt oty désigne le terme ordonné sans contraction

i
S, (o) = (~fia)3/dt’ 6+ (3-2) 6+ (2-1) w* u ¢ (3) ut w ¢ (2) utu ¢ (1)
e (19a)
correspond le graphe

tandis qu’a

S, () = (—ie)3fdt’ 6+ (3-2) 6+ (2-1) ’IlL""&lb(p(S) ‘L|L+‘llb(p(2) wtu (1)
i | |

(19b)

correspond
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et &

Sy(a") = (—ie)° [dt 6+ (3-2) 6+ (2°1) wr p(8) wrp@ urup()

(19¢)

Il est manifeste que la correspondance est biunivoque entre un
terme a« ou S,,(«) et le diagramme représentatif. Ce dernier com-
porte m points ou sommets ou noeuds, qui peuvent étre reliés par
des lignes. C’est le graphe représentatif de o.

Nous disposerons les S,, («) en groupes invariants pour une trans-
formation de LoreNtz. Au lieu de regarder I'indice ¢ lié & I'ordre
temporel représenté par les fonctions 6+, on peut définir une nume-
rotation intrinséque des sommets. Définissons la permutation de
deux sommets j et 1. Par cette opération, nous entendons le produit
ordonné que l'on obtient en permutant les deux éléments u+ u ¢ (7)
et u* u @ (1), en laissant subsister les contractions qui les lient.
Quelques exemples feront comprendre cette opération: soit Py,
I'opération en question, on aura:

Pocfier g () wu g ()] = i p (i) wr g ()

Pyt plf) w4 w g ()| = wr u g i) wr u g)

Pﬁ{m u+w<>}—u+w(>u+w@> 20)

ou encore, s1 1’on utilise les graphes représentatifs:

T T
ey = (21)

On voit que cette opération échange les contractions x* et
%~, tandis qu’elle laisse la contraction g inchangée. Donnons



Classification invariante des termes de la matrice S. 325

un autre exemple. En permutant les sommets 2 et 3 de (19¢),
il vient:

S3 (") = (—’ie)?'fdt’ 0+(2-8) 6+ (3-1) ‘tf*ilf»co@) ik ¢ (3) @lﬁw(z)
o ' ' (22)

et son graphe

-

Nous définirons deux termes «,;, o, de S, comme équivalents
quand I'un se déduit de 'autre par des permutations de ses sommets.
Nous grouperons tous les termes équivalents entre eux en groupes.
Soit un terme o, [a] désignera « et tous les éléments qui lui sont
équivalents. On voit facilement que [«] contient m! éléments. Par
exemple, le groupe des termes équivalents &

est

d (28)

A chaque graphe « de [«], on pourra naturellement faire corres-
pondre une matrice S, («), et au groupe [«], on associera la matrice

S ([]) = %}’ S () (24)

ol o parcourt les m! éléments équivalents & un élément donné «.
Si « est un graphe donné , et S,,(«) la matrice correspondante,
[«] contenant m! graphes équivalents, S, ([«]) sera formée de la
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somme de m! matrices. Or, il importe de remarquer qu’il n’y a pas
en général m! matrices équivalentes dans le terme général S, (11).
Pour le montrer, définissons 1’égalité de deux graphes. Nous dirons
que deux graphes o, «y sont égaux entre eux quand ils sont super-
posables et qu’ils ne différent que par leur numérotation. Divisons
le groupe [«] des termes équivalentes & « en classes de restes dont
chacune contiendra tous les termes égaux entre eux. Soit {«} la
classe de reste des termes égaux au terme «. Comme le nombre des
termes égaux entre eux ne dépend que de la structure du graphe, 1l
est clair que chacune des classes de restes {a} de [«] contiendra le
méme nombre de termes: N,. Chaque classe de restes {a} corres-
pond & une et une seule matrice S, («), réellement présente dans
le terme général (11). Il y a correspondance biunivoque entre les
classes de restes {«} et les matrices S,,(x) du terme général.

On peut encore exprimer la décomposition qui précéde de la
facon suivante. Li’ensemble des m! permutations forment un groupe
[«] qui contient m! éléments, dont chaque graphe est un représen-
tant. L’ensemble des permutations, que nous appelons renumérota-
tion d’un graphe donné, forme un sous-groupe de [«], sous-groupe
que nous désignons par {1}. C’est le sous-groupe des automorphismes
d'un graphe déterminé. Soit N, le nombre des éléments de {1}.
Une décomposition du groupe en classes de restes module {1}, et,
suivant les éléments o', a”..., s’ écrit

[o] = {1} + &' {1} + o' {1} + - -- (25)

Cette décomposition est univoque et chacune des m!/N, classes
de restes contient N, éléments. D’apres la définition des matrices
Swm () & partir du terme général (11), dans lequel on effectue une
certaine combinaison de contractions, la correspondance est bi-
univoque entre les classes de restes et les S, («) équivalentes et
réellement présentes dans (11).

La correspondance entre « et les mémes matrices n’est donc bi-
univoque que dans le cas ot chaque classe de restes ne contient
qu'un élément. Alors {1} ne contient qu'un élément, 'unité. C’est
le cas, par exemple, du groupe (23), dont chaque élément forme une
classe de restes.

Dans le cas général, si <o> désigne ’ensemble des matrices
équivalentes entre elles et réellement présentes dans (11), on aura
pour la matrice

8 (<0>) = 37 8, () (26)

<a>
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ol o parcourt tous les éléments équivalents du terme général (11):
S (<>) = 3-8 () (27)

Donnons quelques exemples: soit le terme o’

S, (') = (—is)2fdt’ 0+ (2-1) ‘u,+fu,q|9(2) u+uq|3(1)

La permutation des nceuds 1 et 2 donne o

S, (") = (—i )2 f dt 6+ (1-2) u+u (’F(l) wt ()IJ(Z)

quin’est rien d’autre que le premier terme, dans lequel on a renumé-
roté les nceuds. Les deux graphes correspondants

— | S TN
/ £ / /
/ /
L. / /s /
« / @ = /
/ /
/ /
L I A

sont superposables et appartiennent donc & une méme classe de
restes. Le nombre N, correspondant est 2.

Reprenons aussi les termes (19¢) et (22). Leurs graphes ne sont
pas superposables. Ils appartiennent & des classes de restes diffé-
rentes et correspondent & deux termes réellement présents dans la
matrice S;. Par contre, toute permutation cyclique appliquée &
I'un d’eux redonne le méme terme: ainsi la permutation cyclique

(231) appliquée & (19¢) donne
t
o) = (i) [t 0+(1-) 013D p (D ur w p(3) 4w g(2) (26)
. |

qui est le terme (19¢) a la numérotation prés des variables d’mté-
gration. Le graphe correspondant

est superposable au graphe (19c¢) et les deux termes sont égaux.
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Ils appartiennent & la méme classe de restes. Le sous-groupe {1} est
ic1 le groupe cyclique d’ordre 3, et I'on a N, = 3.

Chacune des matrices S, ([a]) = N, S,,(<a>) est invariante
pour une transformation de LorenTz. En effet, toute transforma-
tion de LorENTZ transforme un graphe donné en un graphe qui lui
est équivalent. Le groupe des graphes équivalents se transforme
en lui-méme et la proposition est démontrée.

Un graphe étant donné et par lui le groupe des graphes qui lui
sont équivalents, il nous reste a trouver la structure analytique de
la matrice S, ([«]) ou S, (<a>) correspondante. Reprenons le
terme général (11). Au lieu de fixer la succession temporelle des m
points ou nceuds par les m — 1 fonctions 0+, on peut compléter
cette description en introduisant des fonctions en surnombre. Ainsi
nous fixerons la position de chaque nceud relativement aux autres:

S(®) = (—ie)" [ a0+ (m-m—1) 0+ (m-m—2).--

0+(m-1)0+(m—1-m—2).-..0+(m—1-1)-..

0+(2-1) utue@m) --utug(l) (29)
5 : s -1 4

Au lieu des m — 1 fonctions 6+, on a maintenant Mz—) fonctions,
dont la plupart sont en surnombre. Soit un ensemble de contrac-
tions effectuées sur S,, et définissant un terme «. Au lieu de noter
ces contractions dans le terme général, comme nous ’avons fait dans
{19b) ou (19¢), nous remplacerons la contraction par son expression
analytique correspondante D, (7-1) déefinie par (15). Ces contractions

@
ont pour effet de réduire le nombre des champs des éléments
wt u @ (). Désignons par R (1) les champs restants liés au point
1. Comme 1l y a coincidence entre l'ordre temporal des fonctions
0+ (1) et lordre opératoriel des différents éléments u* u ¢ (1), les
fonctions 0+ (j-1) et D;f (j+1) correspondant & deux points 7 et 1,

@
entre lesquels 1l y a une contraction, apparaitront toujours dans la
combinaison: .. ..
6+(j-1) Dy (5,9)
P
Iordre (5-7) est le méme dans la fonction 0+ (5-1) et dans la fonction
Dy (j4).
? Définissons encore par analogie avec (5):
0 i) = 0° i-)
Dy, (j+i) = D (i+]) (30)

u
P ®
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et notons par j et ¢ les couples de nceuds entre lesquels il n’y a pas
de contraction, par p et ¢ les couples de nceuds entre lesquels il y a
contraction Le terme correspondant & « s’écrira:

S (a:~m /dtﬂ6+ )]0 r-g D+pq]=m] (31)

Dans cette formule, lorsque, entre un couple de points p et g, il
vy a plusieu.rs contractions, 1l suffit de faire apparaitre les produits

0+ (p-q) o DJr (p-q) correspondants.
97

A partir de S,, («), essayons de former la matrice S,, ([«]) corres-
pondant au groupe de termes équivalents a o, Pour cela, considérons
la somme suivante:

S, (376%) fdtﬂﬁi(y JICRTE ]zmj
(32)

ou la somme est & effectuer sur toutes les combinaisons possibles

des fonctions 0+ et 6-. Chaque fonction 6 (r+s) pouvant devenir 6+
ou -, il y aura au moins 9™ %5 termes dans cette somme. Con-

sidérons I'un d’entre eux, en supposant qu’il est différent de 0.
Comme nous avons conservé les mémes expressions résiduelles I (1),
et que les contractions sont fixées par les couples de nocuds p
et g, le fait de changer un certain nombre de fonctions 6+ de (81)
en fonctions 0-, revient & redistribuer les nceuds dans le temps.
(C’est simplement une permutation, qui conduit & un terme équi-
valent & «. Cette remarque montre que tout terme de (32) différent
de 0 peut étre réinterprété sous la forme d’un graphe, équivalent
au graphe représentatif du terme primitif «, (31). Or, nous savons
qu’il y a m! graphes équivalents entre eux qui forment le groupe
[«]. Nous en concluons que la somme (32) ne contient que m! termes
différents de 0, et qu’elle se réduit donc & S,, ((«]). Il est facile de
comprendre que les termes nuls proviennent des relations d’incom-
patibilité des différentes fonctions 0+ et 0— présentes dans chaque
terme de la somme (32). Ainsi, si I'on reprend le terme (23), on
constate qu’en plus des 6 termes indiqués, la somme S, (Z6*) corres-
pondante introduit deux termes nuls, qui contiennent les combi-
naisons de fonctions

il

+(3-1) 6- (3-2) 6- (2-1)

0
- (8-1) 6+ (8-2) 6+ (2-1) =0

i
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Nous définirons enfin la fonction D¢ (p-q), ol ¢ est I'unité imagi-
naire: Y

. &
Dy(p-g) = 5|00 D (b0 + 0 (-0 Dy (-0} (5
¢ P P
de sorte que I'on aura, en observant que

3 TT0% (i) = [T{0+ (i) + 0~ G-i)} =1

(£) 4,¢ 7t
S (a]) = fdtn D) [TRO (69

Il apparait donc que, le graphe représentatif de o étant donné,
1l est possible d’écrire immédiatement la matrice S,, (<«*>), somme
de toutes les matrices équivalentes & S, («), présentes dans S, (11).
Cette matrice partielle est invariante d’apres ce qui précede.

- (< x>) =

Nous tenons & remercier ici M. le Professeur E. STUBCKELBERG
et M. le Dr D. Rivier de 'intérét qu’ils ont porté & notre travail,
ainsi que la Commission Suisse pour les recherches atomiques qui
I’a encouragé.

Institut de Physique de I'Université de Geneéve,

*) La fonction D¢, introduite par MM. STUECKELBERG et RIVIER: Phys. Rev.

74, 1948, p. 218, est notée Dp dans le travail de M. F. Dyson: Phys. Rev. 75,
1949, p. 486.
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