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Une meéthode d’élimination des infinités en théorie des champs
quantifiés. Application au moment magnétique du neutron *)
par D. Rivier.

(28. 1. 1949)

Introduction. La méthode utilisée est due & M. STURCKELBERG. Elle s’appuie
sur la forme intégrale qu’il a donnée & la théorie des champs quantifiés (1), (2),
(3), (%), et que nous exposons dans un premier chapitre. A I'étude d’un opérateur
hamiltonien A, la nouvelle forme de la théorie substitue celle de ’opérateur intégral
S, donnant par ’équation:

p[r"] = S[", v]y[r]

I’évolution entre deux époques quelconques t” et 77 de la fonctionnelle y décrivant
le systéme.

Dans un deuxiéme chapitre, nous appliquons cette forme de la théorie au calcul
du moment magnétique du neutron en troisiéme approximation. Comme on le
sait cette valeur est infinie. Nous montrons alors comment il est possible de la
rendre finie par une modification convenable de 'opérateur S, lui conservant
toutefois ses propriétés essentielles d’invariance, de causalité et d’unitarité. Mais
ces conditions pour § ne suffisent pas pour le déterminer complétement. Il s’en
suit que la valeur du moment magnétique du neutron n’est pas déterminée; il
est possible toutefois de donner une régle simple déterminant sans ambiguité cette
valeur.

Nous avons groupé dans un appendice un ensemble de résultats mathématiques,
pour la plupart connus, relatifs principalement aux fonctions D, et dont le déve-
loppement fera ’objet d’une note a part. C'est & cet appendice que renvoient les
indications telles que (A. I.12).

CHAPITRE 1.
La forme intégrale de la théorie des champs.

1. La description des quanta dans I’espace homogeéne.
| 1. Champ scalaire.

Considérons un quantum d’énergie-impulsion (k) = (k, k%); s1 #,
est sa masse (de repos), nous avons:

K=+ V] k|2 + #2. (1.1)

*) Ce travail constitue, & des détails prés, une thése présentée a 1’Université
de Lausanne, le 2 juillet 1948, pour 'obtention du grade de Docteur és Sciences.
F
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L’état du quantum est caractérisé par I'amplitude de probabilité
p(k/) satisfaisant comme telle a la relation:

_/‘dV(Z”) vt (k) =1 av (k) =(—(%ﬁ mvariant. (1.2)

Les phénomeénes de diffraction auxquels sont sujets les ensembles
de quanta permettent de les décrire par des paquets d’ondes planes
dans I'espace:

u(af) = @) [aV(R) 6y (k) — Ulelk)y <*-/ (13)

en utilisant la notation abrégée (.../k) (k/...) = [dV (k) (...[k) (/...)
pour le produit matriciel et la matrice:
Ulz/k) = (2 m)-32 *2) (1.8a)

Si en un point (z, t) de I'espace-temps on a w(xz/) + 0, 11 y a une
probabilité non nulle d’interaction entre le quantum et un champ
«extérieur» C(z) différent de zéro en ce point. On a d’ailleurs:

(D—#2)u(x/) =0 M = 8%, | (1.4)

La matrice U (ar:/k) satisfait aux relations:

[ao* U+ (1) p, UK = 0®'[K); Pu="; 0, (15)

- [av (&) U(2"[k) U+ (k=) = D} (a'/2') (1.6)

ou f do* désigne une intégrale étendue & une hypersurface spatiale

\r
t(:{c)):O (& normale (do,do)<0) de l’espace-temps. La premiere de
ces relations exprime que le systéme des paquets d’onde k”,k’, est
orthonormal, c’est-a-dire formé d’ondes planes représentées par des
fonctions orthogonales et normalisées & 'unité; et la seconde que
ces fonctions représentatives forment un systéme complet ou «sa-
turé». Nous appelons pour abréger ces deux relations: relations
d’orthogonalité et de «saturation» du systéme de paquets.

Nous avons envisagé dans ce qui préceéde des paquets d’ondes
formés d’ondes planes; cette restriction n’est pas nécessaire; dans
bien des cas, au contraire, il est préférable de décrire la particule
par des paquets d’ondes tout a fait généraux, pourvu qu’ils forment
un systeme orthogonal et saturé.

Soit donc v, v’,... un ensemble de paquets d’ondes. Nous pou-
vons décomposer la fonction d’onde w(z) décrivant la particule
dans I'espace x suivant ce systéme, en écrivant:

u(zf) = U(z/v) p(v/) (1.7)
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avec:

Ulzfv) y (v)) = [ AV () Ulwf) p (o)) (1.8)

Le systéme de paquets est orthogonal et saturé si nous imposons
les relations analogues & (1.5) et (1.6):

f do* U+ (v"[z) p, U(zjv’) = 8 (v [v") (1.9)
= (@)
[av() Ua'fv) U+(v/a’) = D} (2 ]2) (1.10)

ou dV (v) est I’élément de volume invariant dans ’espace des pa-
quets, et d(v"/v") la fonction singuliére invariante satisfaisant a:

f av ) é (v'jv") =1 (1.11)

Dans I'espace k, que nous avons considéré pour commencer, on
avait par exemple:

o (kK'1k") = kY 6 (k' —Fk") (1.12)

De cette maniére la fonction v (v/) est une amplitude de proba-
bilité, puisqu’il résulte de (1.7) et (1.12):

[ave w(vf) = (1.13)

On peut passer directement de l’espace ka I’espace v par une
matrice S (v/k):

w(v/) =S lk) v (/) (1.14)

Les conditions (1.2) et (1.18) entrainent l'unitarité de cette
matrice:

SO'[k) S+Ek') = 8@ vy  S+(k"fv) Sww/k") = 6(k"[k') (1.15)
Il est clair que les matrices U (x/k), U (2/v),... considérées comme

fonctions de =z, k, v,... étant constants, décrivent des paquets

d’ondes correspondant & des états k,v,... bien déterminés du
quantum. Nous pouvons écrire:

Uafi) = u(z/k) = (2); Uzp") =u(zh’)=u'(x) (1.16)

et, pour les relations d’orthogonalité et de saturation utiliser les
formes condensées:

[do* (@) p, w'(w) = o (u" ') (1.17)

f dV(w) u(z") ut(z’) = D (z'/z) (1.18)
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Enfin, pour les applications, notons que (1.17) peut s’écrire, en
prenant pour hypersurface 7 un plan 7(z) = z*—a = 0:

j(da:)3u”+(x) 2 u'(x) = 6(u fu') (1.19)

avec 'opérateur % 0; = L.
Cette derniére relation montre que dans I'espace x la fonction:
212 4 ()

joue le role d’une amplitude de probabilité. Soit alors G un opéra-
teur 1ié & une grandeur physique: il est défini par ses représentations
G(z"/z’) dans I'espace ou G (u"/u’) dans 'espace (des paquets) wu.
On passe d'une représentation & 1’autre par la relation:

G fw) = [ (dz)® u'*(a) (22 G 2'2) o' (x) (1.20)

Nous n’avons maintenant envisagé que le cas d’'un seul quantum
k dans I'espace homogeéne. Mais la description utilisée se généralise
immeédiatement au cas de plusieurs quanta sans interaction dans
I'espace homogene. Par exemple dans le cas de 2 quanta, le premier

étant décrit par w(ﬁ)/, w(%/),..., nous représentons le second, si

[ est son énergie impulsion, par une amplitude de probabilité w(l)),
p(v/),... Nous avons une description simultanée des deux quanta

{sans interaction) dans un seul espace de configuration (ch), (u, v)...

au moyen d'une amplitude de probabilité w(k, 1)), wuof)... On
peut décrire ces deux quanta dans un espace (x,, ©,) (& temps mul-
tiples) en introduisant la fonction:

(@ 2./) = Ule/k) Ul@/1) w(k,T1) (1.21)

Comme on le voit, le passage & plusieurs quanta sans interaction
s’opére sans difficulté.

Pour achever la description du champ de quanta scalaire 1l est

utile d'introduire une densité de courant JJ* définie par la matrice:

T ) () = S (w0, u — 0w (2); 0,0%=0 (1.22)%

permettant de représenter la charge totale par:

e(u' fu) =fda°‘Ja(u”/u') (x) (1.28)
T(x)
On voit facilement que, en particulier:
e(k"[k") = o (k"[k"). (1.24)

*) Nous écrivons, d’une maniére générale (u v k) (x) pour u(x)- v(x)- h(x).
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2. La description des quanta dans U'espace homogene.
II. Champ spinoriel.

La description que nous venons de donner des quanta scalaires
s’étend sans difficulté aux quanta vectoriels et spinoriels. Pour le
montrer traitons rapidement ce dernier cas.

L’état d’une particule spmomelle est donné par son quadrivecteur

impulsion énergie (k) = (k, k% = + ]/xu +|k|? d’une part, et par sa
polarisation n d’autre part. On doit donc décrire cette particule par

une amplitude de probabilité 1/)(79 nf), avec:

(dk’j) v m) () = AV m) v+ (T m) p (ko nf) =1 (21)

dans ’espace (k, n). Dans l'espace z, la particule est décrite par la
fonction spinorielle:

wt(ef) = UA(afk, n) p (&, nl) = [ AV, ) U ofRom) w(Eon)) - (2:2)

paquet d’ondes planes, ou:
" 1 - c 15
U4 (xffe, n) = 2 m)2 7t (ks m) € ® (2.8)

est I’onde plane correspondant & une particule dans 1’état (k, n).
(2.2) satistait & ’équation de M. Dirac:

(o, 0) + 2y u®(xf) =0 (p,0) = p*0,; (2.4)
a cause de l'identité: _
() — i) (1) + %) = (1) +#) =0 (25)
on a:
at (k,m) = ((y, k) +ix)4,a (2.6)

ou @ est une constante. L'indice A’ allant de 1 a 4, il peut sembler
quil y a 4 polarisations. Mais, comme on le déduit facilement de
(2.5), la dégénerescence de ((y, k) + %)%, est 2: il n’y a que deux
polarisations indépendantes: n = 1, pour 4'= 1,3 n = 2 pour 4’'=
2,4%).
La nécessité d’introduire dans la théorie une densité de courant
J* définie par la matrice:
J*(u” ) ()
satisfaisant & I’équation de continuité:
0, J* =0 (2.7)

*) Nous utilisons pour les matrices y la représentation réelle de MATORANA (5).
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nous oblige d’introduire pour décrire la méme particule dans I’état

zp(fE, n/), & coté de u4(x/), un autre spineur satisfaisant a 1’équation
adjointe de celle de M. Dirac. Le plus simple est de poser, ¢ étant
un facteur numérique:

T (0" ') (&) = e (v 7" A uP) (2); (2.8)

puis, au moyen de (2.7), nous déterminons I'équation adjointe pour
v} (/%) . On trouve facilement:

v () (0, 7) — %)% = 0 (2.9)

qu’il faut lire de droite & gauche (0 opére sur v} (/x)). Nous écrivons
la décomposition du paquet v (/) en ondes planes:

ville) = 9" ([k, n) Vi (k. n/z);
- 1 - it a
Vi (k, n/z) = @apr 0 (k,m)-e * B2 (2.10)
d’'une maniére analogue a (2.2), avec:
04 (s m) = ((k, y) + i)y b (2.11)

ol b+ est un nombre constant et I'indice #n, allant de 1 & 2, numé-
rote les polarisations, comme en (2.6). Posant:

xabt =1 (2.12)

1l vient:

2
Dt (o) o (Fom) = e i)y (2.18)

Les spineurs UA(a:/k n) et V7 (k n/x) vérifient les relations d’or-
thogonalité et de saturation:

[ac Vi@ wfa) v, UM @k w) = o (6w B ) %) (214)

7 (x)

f AV({E,n) U4 (" ,m) Vo (b, n/a)
=((y,0") — )4, D} (2 [2") = D}y (2" [2) (2.15)

Nous avons jusqu’ici considéré la décomposition en ondes planes.
Comme dans le cas scalaire, il est préférable de ne point sy limiter.

*) Cette relation impose certaines conditions pour les paquets 4, v}, car elle

= -
signifie que la matrice e (k" n"/k'n’) est diagonale; or en toute généralité, la charge
ne commute pas avec le spin.
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Soit donc w4, w'4..., un ensemble de paquets d’ondes spinoriels.
Nous pouvons effectuer la décomposition:

w(a)) = UA(zfu) p(w)) = [dV(w) U(zfo) o) (216)

oY (/x) = wr(/w) V] (w/x) (2.17)
ot o (w/) est une amplitude de probabilité dans I'espace de ces pa-
quets. Le systéme de paquets est orthogonal et saturé si:

v/dc“l”(w”/a:) —i— v, Ulz/w") = 6 (w"/w') (2.18)

7 (%)
[ av(w) U4 (a" hw) V- (w]a’) = D (2" ') (2.19)

Toute I'écriture se simplifie encore par l'introduction d’un spi-
neur fondamental &, (c’est la «matrice B» de M. PauL1®)) permet-
tant le passage entre composantes spinorielles de variance diffé-

rente:
silB s B __ 4B - i 44
Uy =Eqpt’ s U° =1y & Eap=8&"=—y"p (220
entrainant les identités importantes:
4 4 B A
w0t =& pulot = —uP &y vt = —wBuy = — o, ut. (2.21)
Nous écrivons maintenant:

vi = uf = (&4 “B)+ = gt £ pa ' (2.22)

ce qui donne pour les relations d’orthogonalité et de saturation en
utilisant la notation condensée U4(x/u") = w"4(x), Vi (z/u') = w'i(x):

/do‘“ 2" +(x) —ia v u'(x) = 6(u[u) (2.28)
T (%)
de(u) W (2" k. (&) = DI (2 [x) (2.24)

Une grandeur physique G a laquelle correspond l'opérateur G
est représentée dans I'espace u, par la matrice:

G (' u') = /(dw W (@) = 74 G () (2.25)
Par exemple, celle qui représente la densité de courant:
T (' ') () = 4 (" y* w') () (2.26)

ottona fait dans (2.8) ¢ = 1, afin que la charge totale soit donnée par:

e (u'ju') :fda“Ja (w” [w') (z) = O (u"[u) (2.27)
7 (x)
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3. La description de I'évolution des quanta dans Uespace inhomogeéne.

Dans 'espace homogeéne, des quanta sans interaction mutuelle
n’'évoluent pas: la fonctionnelle v (u, v, w/...) qui les décrit dans
I'espace des paquets u, v,... ne varie pas. Mais dans I’espace in-
homogeéne ou lorsqu’il y a interaction entre quanta, il y a évolution.
Des observations faites & différentes époques ordonnées ' (x), 7" ()
révelent une variation en fonction de celles-ci. Une époque est dé-
finie par une hypersurface spatiale 7(x) = 0 de l'espace-temps z
caractérisée par sa normale do* () temporelle en chaque point.
Ainsi I’état du systéme physique est décrit par une fonctionnelle:

wlt(), %, v,... /] (3.1)

de I'époque 7(x) et des paquets contenant les différents quanta;
la variation de cette fonctionnelle en fonction de ’époque est dé-
crite par un opérateur unitaire S donnant par ’équation:

w[='()] = S[='(), 7'O]w[='()]; $*§ =1 (3.2)
la relation entre la fonctionnelle a I’époque 1" et celle a ’époque 7'.
L’unitarité de S découle immeédiatement de la propriété pour la
fonctionnelle d’étre une amplitude de probabilité. Si les deux
époques sont infiniment voisines l'une de l'autre 7" (z) —1'(z) =
d7(x), S est un opérateur infinitésimal:

S—1—i68 dSm/(daér[i(dr,()r)]%h(m)*) (3.9)

dont 'unitarité entraine:
0S8+ =08 ou ht(x) = h(x) (3.4)
L’équation d’évolution (3.2) devient ’équation différentielle de
MM. STUECKELBERG(?) et TomoNAGA(?)
— ot =[—(07,07) ]t h(z)y (3.5)

Il est possible de trouver pour S une expression en fonction de
h; il suffit pour cela d’intégrer (3.5) entre les limites =" et 7. Nous
le faisons en développant h suivant un parameétre de couplage &:

h=ch® + 22h@ 1 BhRG | (3.6)
ce qui donne aussi pour S le développement correspondant:
S[7'( ), ()] =1+eSV["(), /()] +e2SP["( ), ()] +...  (3.7)

*) Avec nos définitions, I’élément de volume quadridimensionnel est en effet
o%*
AoV = (do 67[- (0T, 002 (2), ot (07,0T) =0T, cT* et do*=do- —_:d‘_ﬂf
: V —(da,do)



Une méthode d’élimination des infinités en théorie des champs quantifiés. 273
On trouve alors facilement les relations:
SW[", 1) = (—4) [ (')t RO’ ‘
L
S, 7' =(=i)2]i [ (da' ) K+ | (da")s- [ (da')*- 0+ RO BV
: L I: ) I: ’ (38)
SO, 7] = ()3 — [ (@a) R +i | (da')*- [(@)s-0+" TR B
L i i
+h(2)f. h(l)ll] 1+ /(d xlfl)4 . /.(dm//)4_/4(dxf)4 9+m;ﬂ . 9+//;r . h(l)m : h(l)n . h(l):]
L L L

ou nous avons utilisé les notations abrégeées:
hY" = p9(z"); Y = RV (2");. ..

0+ =0+ (¢"(x) — v'(x));... 0+(z) =0-(—2) = { 1z>0 ‘ 8-+

0z<0

(dz')*=67rdo—(07,07)]"t(2'): élément de volume de 'espace-
temps; L: hypervolume de l’espace temps limité par les 2 sur-
taces 7' (z) et 7" (x) et par le cylindre R = oo.

La théorie habituelle des champs quantifiés utilise 1’équation
(3.5); opérateur h qui y figure est la densité d’énergie d’interaction
caractérisant I'inhomogénéité de ’espace. On 'obtient dans le cadre
d’un formalisme lagrangien assurant la covariance de la théorie, bien
que la variance méme de h ne soit pas définie en général. L’hermacité
de h conserve & v son caractére d’amplitude de probabilité. Enfin,
la causalité de la théorie est assurée par I’équation d’évolution diffé-
rentielle (3.5).

Sous la forme que lui donne M. STUECKELBERG, la théorie s’appuie
sur I’équation intégrale (3.2). Les critéres de validité de la théorie
sont alors appliqués a 'opérateur S. La covariance relativiste de-
mande que § soit un scalaire invariant, puisque les amplitudes de
probabilité u[7"] et y[t"] le sont. Le caractére probabiliste de v
entraine I'unitarité de S. Enfin la causalité, qui n’est plus assurée
par 'existence d’une équation différentielle a priori, exige pour
I'opérateur S la structure particuliere suivante: dans les différents
termes S% du développement (8.7) ne peuvent apparaitre dans les
noyaux des intégrales qui les représentent qu’'un seul type de fonc-
tions potentielles, les fonctions D¢ (A. III. 19).

Ce dernier point peut étre justifié de maniére axiomatique: si par
causale on entend une théorie qui permette 1’énoncé d’un principe
de causalité, et si 'on remarque qu'une condition nécessaire pour
celui-ci est I’exclusion d’états d’énergie négative, on peut montrer

18



274 D. Rivier.

que la seule fonction potentielle d’'une théorie quantique, inva-
riante et causale est précisément la fonction:

D (2) =~ [0+ (24) D, () + 0-(a%) D; ()] (3.10)

qui contient dans le futur (z* > 0) uniquement des ondes & fré-
quences positives, et dans le passé (z* < 0) uniquement des ondes
a fréquences négatives. Elle traduit cet aspect du principe de cau-
salité quantique selon lequel une inhomogénéité d(x) de I'espace
peut: ou bien émettre (futur) un quantum dans un paquet «”(z), ou
bien absorber (passé) un quantum dans un paquet ' (x).

Mais on peut aussi démontrer la présence nécessaire des D¢ (x)
dans les $% d’une maniére directe, en construisant l'opérateur S
a partir d'un scalaire h représentant un type défini d’interaction
(c’est un des termes de l’hamiltonien de la théorie habituelle,
lorsqu’on le développe suivant les demi-champs). On se sert pour
cela des relations (3.9). Schématiquement on proceéde comme suit:

1. On choisit le type d’interaction: nombre, variance et degré
de chaque champ u, v, ¢, ¥ en se donnant une matrice de transition:

sh(w' 0" |o'y) = e (W .. 0" .. ¢ o) (3) (3.12)

(décrivant un processus élémentaire ot il y a absorption des paquets
@', y', et création des paquets «”, v",...).

2. On construit, au moyen des relations (3.9), les différents S®@,
représentation des $%. On remarque qu’ils ne sont pas invariants.

3. On compléte ces S en faisant intervenir tous les processus
possibles du type (3.12), en ayant soin de les combiner en accord
avec le principe de causalité énoncé plus haut. Dans certains cas,
cela suffit pour faire apparaitre les fonctions D¢ (x). L’opérateur S”
convenable (c’est-a-dire unitaire, invariant et causal) est construit.
Mais en général, pour obtenir celui-ci, il faut encore ajouter des

termes correspondant & un processus additionnel d’ordre supérieur
en ¢ en (3.12) (cf. § 4. B).

Linvariance des différents 8% est assurée sans autre par I'inva-
riance des fonctions D¢(x).

Par contre, I'unifarité de S doit faire I’objet d’'une démonstration.
On peut premiérement montrer que le S est engendré par un opé-
rateur h qui est hermitien; S est unitaire vpso facto. Mais la démons-
tration n’est pas générale: c’est une vérification a posteriori.

On peut aussi démontrer directement 'unitarité de S, sans faire
appel a l'existence d'un opérateur h. Cette démonstration a deux
avantages. Premiérement elle libére la théorie de I’équation diffé-
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rentielle (3.5); secondement — et grace & cela —, elle permet de
trouver, & partir de I'opérateur S «convenable», d’autres opérateurs
S, convenables aussi, mais ayant un sens physique, tandis que
I’opérateur S n’en a pas toujours, comme c’est le cas si des $% sont
anfinis. Le deuxieme chapitre du travail a précisément pour objet
Pétude d’'un de ces cas.

4. Applications élémentaires. 1. Un seul champ quantifié.

Les quatre cas trés simples étudiés dans ce paragraphe ont pour
but d’illustrer I'invariance de la méthode par rapport aux différents
types d’'interaction. Nous ne quantifions qu’un seul champ afin de
simplifier les raisonnements et I’écriture. La généralisation & plu-
sieurs champs quantifiés est 1’affaire du § 5.

A. Champ de quanta scalaires; champ extérieur scalaire.
Le type d’interaction est donné par:
eh(w/u') =ew"t Cu)(z) C(z): nombre C (4.1)

Les relations (3.8) donnent, avec
‘L‘”(.’E) =g — 4=, T’(QU) ot gh ().

»

SO fu') = S fu’) S (') — (— 1) [ (da)* (u'+ Cu) ()

[

SO ) = () [ (da)* [ (dar)
. L L
jdV(u) (w"+Cu) (x") (ut Cu') (z') O+ (xt" — ¥')... (4.2)

S'@(u"u') peut s’écrire en utilisant les relations de saturation
(10.12a):

~ "

S ') = (— 02 [ (@d')* [ (da') (w7 ) ()

L L

0+ (a7 — 2'%) D (2/fa')- (CW) () (4.8)%)

Il n’est pas invariant, comme les S®, S® ... On ajoute alors les
interactions:

he (W 4’ [0) = e (u"+ Cu'+) (x) (4.4)
he (ofu'u') = &(u” Cu') () (4.5)

correspondant & des créations et & des annihilations de paires.

*) Dans la suite, nous écrivons f pour f
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L’opérateur S n’est pas modifié par la correction de h, puisqu’il
ne décrit qu’une seule transition. Par contre a4 l'opérateur S'*
s’ajoute la contribution nouvelle, représentée par:

SO (' fu') = (—0)* [ (da")* [ (da')* [ dV () (' C) (@) (w* Cu) ()
RPN = Y ) = (=) / (da”)* / (da)*- (' O) (") -0+ (2" — 2¥)
D} (&' [z')- (Cu*") ()
ou encore, en changeant l'ordre des facteurs en échangeant les va-
riables x’ et =" (cf. A. III. 12):
8(2)” (%ﬂ/ur) _ (__ ’b) 2/~(d$”)4 /“(dwr).;. (‘M;""”O) (mﬂ) = (334”—3)4’)
- DI (z"]z') - (Cw') (2 (4.6)

H

On obtient alors:
(2 oyt [0 ! (2)* (2)r P A £ 2/ ”
SO fu') = (SO + S (') = (—i)2 2 [ (da")*

/(dﬁ')"" (ut"C) (z")- Dy (2" [2") - (Cw’) (2) (4.7)

Les mémes calculs et les mémes raisonnements doivent étre faits
pour obtenir $®, $®_  On trouve sans difficulté:
(n} !
R[] nn (2\n1 [ " n () n—

S () = (=i ()" [ [ €) () - DY (2 )

S C(z Y ... C(x") DE(2" [2) (C ') () (4.8)

en ne faisant intervenir que les trois interactions (4.1), (4.4) et (4.5).

B. Champ de quanta scalavres chargés; champ extérieur vectoriel.

L’'interaction type est donnée maintenant par (cf. 1.22):
eh (' fu,) = Fe(AMT, (" u) (a) =
- r e A@) (W 0 — 0,0 1) (2) (4.9)

%, suivant qu’il ’agit de quanta ou d’antiquanta. On trouve:

82w juy) =0 | eyt /(dm) [(0,0 0" - A*") (") - 6+(aA" — 2%)
Dfy(a"[z'): (47 -u!) (')
— (0wt -A") (2") -0+ (24" — 1) D+ (2" [2') - (47 0 g u,,) (2)
— (w4 (2)0H(2 — a¥) D, by (2 [2)- (AP ) ()
F AT (@) 04 (@ —ad') DY (e ) (A7 0,00, ) ()] (4.10)%)

*) Pour alléger I’écriture, nous laissons tomber l'indice »x dans D, ().




Une méthode d’élimination des infinités en théorie des champs quantifiés. 277

qui, manifestement n’est pas invariant. Pour la correction intro-
duisons comme précédemment les invariants correspondant aux
processus de création et d’annihilation de paires:
eh, (u w, /)
S o z o Il+ g ”+ . J+
~——8A Ji(w ' [) = e AX(x) (u " 0w — 0 u_ w, ) (x) (4.11)

o4

eho(/ul u_)
L e AR (ful ) — e L A%(x) (w0, u_ —0, " w.) (x) (4.12)
2 + 2 | +

Compte tenu des identités évidentes (cf. IT1I. 2):
D (2'[8) = —Dr@[a’) Doy (&2") = Dy (&)

et en effectuant les transformations indiquées déja pour le cas pré-
cédent, on trouve une correction:

8@ (ul ) = /’(da:” 1 f (da')b- [(w'+ - A%") () -6~ (at — 2%)
.D;_oc" ”/SC Aﬂ, 0 u+)( )
— (O e} A™") (") - 9 (z¢ —a%')-D~(z" [2")- (A% 0p ) (2')
( +.~qu”) (33”) .0- (5134” . $4/) .D;_a”ﬁ’ (wﬂ/xl) i (Aﬁ’ ] u'_'_) (37’)
(0" - A (") - 0-(a" —3%) - D, (" [2') (APu, ) (2)] (4.18)

donnant pour la matrice corrigée:

SO y) = 5 [ (e (@0 [l o) (@) D (2 )
(g 0pu) (@)
— (O ul" ¥ (@) Dr (2") [2") (¢7 0, w,) ()
— (ut" 7) (@) 1, o (a[2): (¢ uy) (2)
+ (O ul" @) (@) D" g (' [2) - (97 - 0i) ()]
— SO (5" i) (4.14)

ou le terme S®”(w) ju',) vaut (cf. A. III. 24):
SO (! u,) = (—i)2- / (da')t: 5 (Wl A4 ) () (4.15)

S2(u"/u’) n’est pas invariant, tandis qu’en vertu des propriétés de
la fonction D¢, les termes entre crochets donnent la contribution in-
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variante et causale, seule admissible. Force nous est done de prendre
pour représentation de $2:

S(Z)(,u’_’*_ /‘Lb+) 28(2)’(‘1,6:,/%’_}_) _]__S(Z)/!(‘u’:_/u;) ;PS(S)”I (ui/u:r) (416)

De cette maniére, nous avons montré que la correction par I'intro-
duction des processus de création et d’annilation de paires ne suffit
pas. Il faut encore corriger en additionnant & l'opérateur S® issu
de la premiére correction I'opérateur 8", représenté par (4.15).

S1 nous revenons maintenant & ’expression générale donnée en
(8.8) pour les opérateurs $@, nous constatons que le terme addi-
tionnel S®”, qui est une intégrale simple sur 'espace temps, ne peut
provenir que d'un terme en &* dans le développement (3.6) du
scalaire h: (3.8) donne méme la valeur de sa représentation, qui est:

eI () = —5 ('l (AN 40, () (4.17)
Manifestement, elle n’est pas invaria,nte‘par rapport au groupe de
LorENZ.

Nous avons ainsi démontré, dans ce cas particulier, que les inva-
riances des opérateurs h et S sont exclusives I'une de 'autre. Mais
I'énoncé et la démonstration du théoréme général correspondant sont
immeédiats si I’on remarque que 'addition d’'un terme du type de
(4.15) est due uniquement au fait que 'opérateur h contient des
dérivées (seule la dérivée temporelle intervient, mais la covariance
exige la présence simultanée des 4 dérivées). Ainsi nous avons le
théoréme suivant:

Sv Dopérateuwr hamaltonien de diffusion pure décrivant U'interaction
d’un champ quantifié u(x) avec un autre champ (quantifié ou non)
contient des dérwées du champ u(x), Uinvariance de Uhamilionien
fotal h et Uinvariance de Uopérateuwr intégral S sont incompatibles.

Revenons a la formation des S (u"/u’); on voit que les interac-
tions introduites, auxquelles il faut ajouter celles qui leur corres-
pondent par changement de %, en %_ et encore:

R CI - %;’ (w7 (492 wF) (3);
e2h2(fu w) = — & (u (A% ) () (4.18)

2
correspondant a (4.17), comme (4.11,12) correspondent a (4.9),
permettent de donner aux S® la structure en D¢ prévue par la
théorie.
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C. Champ de quania spinoriel; champ extérieur scalaire.
Le type d’interaction est ici:
h(uw'fu') =ei(w' Cu)(z) C(z): nombrecréel. (4.19)

le facteur ¢ assure l’hermicité de h. On obtient ’expression non
Invariante:

SO (u' fu') — — [ (da)* [ (da')* (ut ©) () -6+ (2 —a¥)
DL (@ [3)- (Cu ) () (4.20)
Pour la correction, on introduit les interactions:
he(u” w' [o) = i(uw'] Cu'+4) () | (4.21)
ho (0fu’ w') =—1 (u'y Cu') (x) (4.22)

Mais ici, il faut se souvenir que les particules spinorielles satisfont
au principe d’exclusion de M. Paurr. OQutre la condition d’hermicité:

(hc + ha)+ = (hc + ha) (423)
qui entraine:

hg (0/w” u') = (h, (w" % [0))* (4.24)
nous devons donc avoir la condition d’antisymétrie:

he (W' ' Jo) = — h, (" 4" 0) (4.25)

he (0/w” 4') = — hg (0w u") (4.26)
(En effet, 'amplitude de probabilité:

w (W', w') = he (w" u'fo) y ()

ne peut étre antisymeétrique que si h, I'est aussi).
On trouve alors pour la correction, apres les transformations con-
venables:

S ) = (=) (@) [ (@) (' ©) (a) -0~ (2 — a¥)
D" (g7 ) (O ) () @)
Ce qui donne pour représentation de I'opérateur S .
S (w fu,) = (—i)2 2 / (da") f 4 (0t C) (27)- DA, (2 )
(Cuw) (z) (4.28)
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mvariant et causal, exactement comme en théorie scalaire. La cor-
rection effectuée est nécessaire et suffisante pour donner & S™ (1" ju’.)
la forme:
, : f 9\n—1 [ 3
() (p," - (n) (n—1)\4
SO @l fu) = (=i (5)' [ @) [ (da s

PP

(0¥ i ©) (&) - DAR_ (2 [anD) ... DAL (& o) (Cu') (') (4.29)

Cette correction est compléte, parce que, conformément au théo-
réme que nous avons démontré tout a ’heure, le scalaire A (hamil-
tonien d’intéraction par diffusion pure) ne contient pas les dérivées
du champ w(x).

D. Champ de quanta spwnoriel chargé; champ extérieur vectoriel.

Le calcul est analogue a celuil développé en B. Mais le fait que
Ja " ’ - .l II+ o ’ t' 't d dr i) ’ G i
(uly/ul) =1 w." y*w', ne contient pas de dérivées n’'impose pas

correction en &2 pour h.

5. Applications élémentaires. I11. Plusieurs champs quantifiés.

Jusqu’ici, nous n’avons envisagé que le cas ol le scalaire d’inter-
action h est lilinéaire en un seul champ quantifié (scalaire ou spino-
riel). Comme nous venons de le voir, les propriétés de transforma-
tion du champ ne jouent pas de role dans le raisonnement; celui-ci
n’est pas non plus modifié par la présence éventuelle de dérivées
des champs dans le scalaire h; le résultat lui-méme n’est pas essen-
tiellement changé par ces complications: ¢’est toujours la fonction
D¢ (z) qui figure dans le noyau des intégrales au moyen desquelles
s’expriment les termes S™. C’est pourquoi, dans la généralisation
qul nous occupe maintenant, 1l nous suffit de considérer le cas ol
le scalaire h dépend linéairement des champs scalaires eux-mémes,
et non de leur dérivées. Pour ne pas charger inutilement 1’écriture,
nous nous contentons de trois champs, u, v et @. (Le cas ou h est
bilinéaire dans un champ « est alors celui ott deux des champs u et
v sont 1dentiques: u = v).

Dans ces conditions, les interactions types s’écrivent:

£ h (UII(PH/%/) —_ (’U+” (P”+ ‘Ll:’) (CE)
eh (u' v ¢') = e (ut v’ ¢') (a)

(5.1)

elles décrivent en un point x, le premier, la création d'un «quantum
v"» et d’'un «quantum ¢”», simultanée avec I’annihilation d’un «quan-
tum «'», le second la transition inverse. Calculons alors les termes
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S"E(u"u') et '@ (v" ¢"[v'@") correspondant aux deux cas ou, dans
les états initial et final figurent un ou deux quanta; on obtient:

81 (W' fu') = (—i)?* [ (da)* [ (da)hu" (2) 0+ (a8 —a)
. Df (¢ [a)- D (2 [2') w' ()

§' ("' @) = (—i)2 [(da") [ (@) 0+ 9") (')
0+ (2% —a¥) D (o [a')- (' 9') ()

 (5.2)

Pour obtenir les expressions correctes, il faut, comme nous I'avons
vu, ajouter & h les invariants décrivant les processus de création et
d’annihilation complémentaires & ceux de (5.1), tels que:

{-‘h’(%” (P”/@,) . (%+Il 994_//,1)1) (.CB) : é‘h’(’l)” " fI/O) . 8(U+ll(p+llu+ﬂ) (.’E) ;
(,DII %H/gp ) ( " 99/ ’L(z+”) ({17),
e’ (v" ’u’w’) (vt w'g’) (z); eh' (o/w'v'¢") = & (u'v' ") (2);
Eh’( ”/’U ! =£(%’U’§D+”)( )’

Reprenant alors les mémes transformamons qu’au § 4, on obtient
dans le second des cas:

S (2) (u” 99”/,0’ _ —’L ~_/ d{L‘” (’D+”(P+”) (.’B”)
Dg (2" o) ( ¢M ) (5.4)

contenant la fonction Df(x), conformément & la théorie générale:
Remarquons en passant que la valeur de S® (v"/v") out le champ ¢
n’est pas quantifié s’obtient & partir de (5.4); mais il faut alors
que ’on ait ¢*= ¢, c’est-a-dire que le champ ¢ (x) (nombre C) soit
réel: on retrouve alors aux notations preés 'expression (4.7).

(5.3)

Dans le second cas, en utilisant les identités:
0" (x) 0+ (2) =0%(x); 0% (z) 6~ (2) =0 (5.6

qui permettent en particulier d’ajouter des termes & noyaux de la
forme:

O+ (a*" —x*) D, (2" [x) -6~ (x*" — x*) D (2" [2)
on trouve pour le S®(w"/u') corrigé:
8O (' fu') = (—i)2- () [ (da")* [ (da)w" (o) - Dy(a"fa')
D3 (@) (@) 57)

ou les deux fonctions Dj , ont le méme argument.
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On peut maintenant passer au troisieme ordre, et calculer par
exemple le terme S%(v"@"[u). lci, comme il y a plus d’un champ
quantifié et plus de deux points ol création et annihilation peuvent
avoir lieu, les sommations sur les états des quanta u, ¢, v peuvent
se faire de diverses maniéres: chacune correspondant & un couple
des points 2", 2", &' de 'espace-temps, qui est I’argument de la
fonction D consécutive & cette contraction (contraction est le mot
que nous emploierons pour ce genre particulier de sommation sur
les états). Le résultat de cette complication est que, dans le cas
général, chaque terme S®(..../....) se décompose en autant de
sous-termes qu’ll y a de combinaisons possibles entre les arguments
et les contractions, dont le nombre est lui-méme déterminé par
I'ordre n et 'argument de S®(.../...).%)

C’est ainsi que pour S® (v"¢"/u’) sans correction, 'on obtient

P o i
la somme des 4 termes (nous écrivons f pour f (da")*

S (v"g" u') = (—1)3 / ! / f [o*"(2") 0+ (x¥" — ") - D} (2" [2")
D (o) 6+ (24— 2¥) D: (o [') - 9" (&) 4 (a")
+ g ()00 (@ —a¥) Dy (2" [a") Dy (2 [a?) -0 (a8 — %)
- Dy (2" [2") 0" () -’ (2')
0t (@) g () B+ — 8) D (o Ja”) -0 (8" — a¥)
- Dy (2"[«") Dy (" [2') - w (2)
+ 0¥ (af) 0+ (o4 — ) D} (2" [2')- ¢* (a')- D (2"
BF (g a8}~ DI (o fa") -0 (') ] (5.8)
Utilisant alors le registre complet (donné par 5, 1 et 3) des pro-
cessus d’Interactions (au nombre de 23 = 8), on obtient en utilisant
le méme raisonnement qu’au paragraphe précédent, le S® (v"¢" u")

corrigé, qui se décompose aussi en 4 termes, séparément causals et
moariants

g3 (%”/u’,) _ (—%)3 (%)fffillw/i,jﬁ’[v+ll (mm) DZ, (mlﬂ/mﬂ) 'D(;(ww/mﬂ)
Dy (" [") - ¢+ (2) w' (2')
e (P” (xm) Dzi (mlfl/mll) . Ds (mm/m”) ] D; (m///mr) ] v+”(a:’) gy (QC’)
+ (0" (@) DE (" [a") DE (a'[2') - DE (2 [2') ' ()
+ ?)_i_/l(mlfl) cha (&IJ’”/(E”) . ‘P”+ (mll) Dé(iﬂ”’/ﬂ?') . DZ (w/f/xf) . %,(QE’)] (59)

Ce résultat est bien conforme & la théorie générale du § 3. Nous
voyons maintenant que la présence des fonctions D?(z®/z®) dans

*) Ces sous-termes correspondent & un type bien défini de graphe représentant
ces contractions dans I’espace temps.



Une méthode d’élimination des infinités en théorie des champs quantifiés. 283

le noyau des intégrales représentant les différents S™(.../...) est
due & la combinaison systématique de toute contraction du type:
/'dV(u) T w () (u+ (z)....)
avec la contraction complémentaire:
f AV) (veeeernn. w (20)) (u+ (z)... )

toutes choses restant égales d’ailleurs. Nous avons ici une démonstra-
tion, moins axiomatique que celle qui se fonde sur les propriétés
causales de la fonction D¢(x), de la proposition selon laquelle la
structure d'un (sous-)terme d’ordre » de l'opérateur S dans son
développement en fonction du paramétre de couplage ¢ est:

(n) (n—1)
SO (... ) = (—i) (%)N‘”’ / / . / " () g (2)
<D (2™ [z7)... g, («) D°(a'?) [2®)...D° (2" [2) g, (2) - ' (2) (5.10)

N (n) est le nombre de fonctions D¢ présentes dans le noyau. Dans
le cas général ot I'interaction fait intervenir les dérivées des champs,
les fonctions g;(2®) contiennent les opérateurs de dérivée 0, .

On voit facilment que pour ce terme d’ordre n, le nombre de
fonction D¢ intervenant dans le noyau, N (n, m) est compris entre

les limites:

nm .
[—_—17?, ou m pair

m—1) < Nn,m) < ] 2 (5.11)

nm—3 . .
——5 T etm 1mpair
si m est le nombre de champs quantifiés (m > 2)*).

Quant au nombre d’arguments possibles pour ces fonctions il est

¢videmment »(n) = C%.

6. L'unitarité de Uopérateur S.

Pour fixer les 1dées nous donnons la démonstration de 'unitarité
de S dans le cas ou le scalaire d'interaction dépend linéairement des
champs & l'exclusion de leur dérivées. Il est facile de voir que
cette limitation n’est pas essentielle pour la démonstration.

Comme nous I'avons vu, la condition d’unitarité pour S découle
de la nécessité pour y(u”...) de conserver au cours du temps la
propriété d'une amplitude de probabilité.

*) Nous laissons de coté les transitions du vide au vide («énergie propre» du
vide) entrainant une contraction supplémentaire.
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On doit donc avoir:
S+S=1 ' (6.1)

S1 l'on développe S suivant:

S=1+ 3 ss¥ (6.2)
I

la condition (6.1) se décompose dans la suite dénombrable de condi-
tions:

S(l) I S(1)+ =0 \
S(Z) s S(1)+ S(l) e S(E)-I- -0
S(3) 54 S(1)+ S(2) 1 S(2)+ S(l) 5o S+(3) = 0 (6.3)

------------------------

Nous savons que la représentation S™(.../...) se décompose en

une somme de termes: T

B = S (6.4)
!
ot les S en nombre défini, sont tous de la forme (5.10).
A cause des propriétés des fonctions D¢ et D%, on a:
Li{n)
S+ = Zl' S+ (6.5)
avec: Nn,m) nn—1)
SPHY" oo W) = (1O (g ()

(@) g, (@) TP (2 oY), .. g, (2%) D (a9 Ja®)
DMl 2 g (2)u' (). (6.6)

On obtient donc S} & partir du S correspondant en y substituant
D* ()aux D¢ () et en multipliant par (— 1)+ ®m - nuisque I’or-
dre n, le nombre m de champs et I’argument (w”, .../u"...) de S déter-
minent le nombre N (n, m) de fonction D°(x) présentes dans Si™.
Dans les conditions (6.3) interviennent les produits du type:

SO gin=v (6.7)

Il faut bien en comprendre la signification: un de ces produits
représente la somme de tous les produits entre des S@+(.../...) et
des S==9(.../...) dont les arguments contiennent outre les champs
contractés communs & S@ et & S®=¥ les champs figurant dans 1’ar-
gument de S®™ (.../...), et cela naturellement dans le méme état.
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Démontrons d’abord l'unitarité dans le cas particulier ou le
nombre de champs quantifiés est m = 2 (h bilineaire en %). On a
alors

Nm?2) =n—1

fonctions D¢ dans le terme S™, qui est toujours simple. Comme
dans les contractions (6.7) un seul champ peut étre contracté, mais
par 'intermédiaire des demi-champs + et —, on a pour ce terme:

S+(i)S(n—i)(u”/u') ( 1)27, 1, ’“ X ”+ (n)
B ( / / f (n—i—1)
. DZ(:E("‘)/I,((” 1)) (Da( (n—i+2) /mn z+1)) ( ) DR (—z)
0 g D)L g0 o D Gl -4
D (2" 2y w'(x). (6.8)

Les identités (6 3) a satisfaire peuvent s’écrire alors:

(— 1) ( =4 / /u” (o 5y R (o5 =) oo TIE 0P )
i (D; a:(" [e* 0D (g 1)/93“ N...D(a" [z
+ D&(z® [zn=1) DU(gv= [xn=2)). Do ()... D* (2" |a')
+ oo + DO (£ [xn=DY | DE (2" [&") DL (2" |2") DS (2" [«)
+ D2 (2 [z=1) ... D2 (2" [a")- DY (z" [2')} — D& (a™ &™) ...

L DE (2 2] w () =0 (6.9)
elles le sont pour n quelconque, en vertu de 'identité vraie pour
n quelconque et quels que soient les arguments et indices (1), (2)...
(n—1):

D(1) D°(2) ... D*(n — 1) — i (DY(1) D*(2)... D°(n—1)
+ D*(1) DY (2) D*(8)... D' (n — 1) + ... Da(1)..
..D*(n—38) DY(n —2) D* (n — 1) + D (1)..

..D“(n—«fz) D'(n— 1))

— D2(1) D*(2)....D?(n—1)=0. (6.10) .
Cette identité se démontre par récurrence; multipliant tous les
termes de (6.10) sauf le dernier par D¢ (n) et le dernier par ¢+D(n) -+

D®(n) (= Df,), on obtient l'identité dans le cas de n = n+1. Pour
n = 2, ¢’est simplement I'identité:

De(1) —iDI(1) —De(1) =0 (6.11)

dont toutes les autres sont une conséquence.
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Dans le cas ol m est quelconque, on sait que le nombre N de
fonctions D¢ présentes dans le noyau de S™ est compris entre les
limites:

nm .

—-—1 moun parr
(n—1) < Nm,m<{,5._3 _ _

—5 m et m 1mpair

Alors le facteur (— 1)#*& = m peut étre + 1 ou — 1, suivant la
parité de n + N (n, m), qui n’est définie séparément ni par m,
ni par m, ni par la structure de I'argument de S, mais seulement
lorsque ces trois données sont fixées simultanément.

S1 l'on remarque alors que (nous n’écrivons pas les arguments
supposés distincts):

DPDF......Di=DDs . Do (o) 3 DADYDS L D>
N +(5) X DD DD D

R ST LT

+(3) X' DD DD DADr . Do
— Rey 4 + I, (6.12)
(2 signifiant que la somme s’effectue sur tous les termes ot figurent

le méme nombre (< N) d’indices 1) on peut écrire, pour N quel-
conque les deux identités:

De(1) D*(2)..... D¢(N) — 2 I, — Da(1)D*(2).... D*(N) =0 (6.13a)
De(1)D4(2)..... D*(N) — 2 Rey + D%(1) D2(2).... D¢(N) =0 (6.13h)
)
S

Ce sont ces identités qui assurent, de maniére analogue & (6.10
(qui est une manieére d’écrire (6.13a) pour le cas ot N =n—1) le
relations (6.3) assurant l'unitarité de ’opérateur S.

Il faut remarquer que dans les conditions (6.13), les expressions:

Iy=Y'D'Dr.... D+ (L) X/ DiDIDIDe.... Doy - - (6.14n)

\ /

Rey=DD... D' (5] X' DDID*.... Do 4 - (6.14D)
(n) !
figurent sous les intégrales multiples j f ...: de ce fait, et aussi

parce que les arguments des fonctions D (x) ne sont en général pas
indépendants, il y a des simplifications et des regroupements pos-



Une méthode d’élimination des infinités en théorie des champs quantifiés. 287

sibles, différents suivant chaque sous terme S d'un S%. Cest ce
qui peut rendre la vérification de ces relations souvent fastidieuse.
A titre d’exemple, prenons le cas de 3 champs quantifiés, examiné

au paragraphe précédent; pour la relation du troisiéme ordre, ol
n + N(n, m) = 6, c’est donc l'identité:
Dy(1) D3(2) Di(3) — 2 Reg + Dy(1) Dg(2) Dy(3) = 0
avec
2 Re, — 2 Di(1) D(2) D) + () [Di(1) DH2) Dy(8)
+ D}(1)D;(2) Di(3) + Di(1) DX(2) D} (3)] (6.15)

qui intervient. Cette identité s’écrit de 4 maniéres différentes, sui-

vant les 4 combinaisons possibles d’arguments des fonctions D, D,
D¢ dans (15.9):

Pour D:(a"[a") De (2" [z") Ds (" [2'):
2 Rey, = — DiD.D} +—(DiDf +D; D;) Dy (6.16)

pour Dj(z"/x") D;(z"/x") Di(x"/#") on échange simplement dans
(6.16) les indices v et .
Pour Dg(a"[«") D2(2" [") DE(z"[2'):
2 Re;=—~ [D5(D; Df + D, D) +D,(Dj Dy +D; D})
+ (D D} + D, D7) Dj] (6.17)
et enfin pour D¢ (" [«") D (2" [%") D (%" [«"):
2 Re, = DLDD; + D (D, Df +D; D7) (6.18)

Ces 1identités font mieux apparaitre les produits S+ §@ et
S+ S

7. Conséquences générales; passage o Uespace des quanta.

Reprenons devant les yeux les applications de la théorie données
au paragraphe 4, plus précisement les deux cas d'un champ une
fois scalaire, l'autre fois de spin 15, 11nh0mogenelte de I'espace
¢tant scalaire (4 et C).

Pour trouver 'opérateur S correct, nous avions alors fait I’hy-
pothese de l'existence de processus d’interaction décrits par h, et
hq. Dans le cas scalaire, nous avons admis la symétrie:

he (4" %' o) = R, (u' u")o),...
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tandis que dans le cas du champ spinoriel, nous avons écrit:
he (%" ' [0) = — h, (W' %" [0),...

nous appuyant sur le principe d’exclusion de M. Pavrr.

On peut renverser le raisonnement: admettre a priori comme
seule forme possible pour les différents S celle out les noyaux con-
tiennent la fonction potentielle.

Partant alors de la forme incompléte S®’ (u”/u’) pour S® (w'/u)
nous déduisons que la seule correction possible est donnée par le
terme S®" (w”/u’). Nous savons d’autre part qu’a cette correction
doit correspondre des processus de création et d’annihilation de
paires, c’est-a-dire des invariants scalaires du type h,, et h, qu’il
faut additionner & h. Pour que ces invariants donnent bien la cor-
rection (4,27), il faut et il suffit qu’ils satisfassent & la condition
d’antisymétrie (4.25, 26). Ainsi donc le principe de M. Paurt appa-
rait 14 comme une conséquence: 1. de la description relativiste des
particules & spin V5; 2. de 'invariance et de causalité de la théorie.
Ce fait connu apparait ici, nous semble-t-il, bien simplement. Les
mémes raisonnements peuvent étre repris dans le cas de champs de
quanta vectoriels ou scalaires, de spin 0,1,... On trouverait les ré-
sultats correspondants, & savoir la nécessité d'une statistique de
Bose.

En outre, on peut remarquer que la différence de statistique
entre les particules scalaires décrites par le champ « () et les parti-
cules spinorielles décrites par le champ u4(x) tient entiére dans les
propriétés de symétries des fonctions D} (a"/x’') scalaires et spi-
norielles:

D~ (z"[z") = D+ (z'[2") (7.1)

D-Ards (CE”/Q}’) = — D+4rdn (iB’/(E”) (72)

intervenant dans les relations (1.18) et (2.24) de saturation des sys-
témes de paquets. Ce sont elles en effet, qui nécessitent la symétrie
des invariants h,(u"u’fo), h, (o/uw"s") de la théorie scalaire et la
dissymétrie des invariants correspondants de la théorie spinorielle.
Une autre maniére de le voir consiste & revenir au formalisme de la
deuxi¢me quantification dans l'espace des quanta, en introduisant
les opérateurs u(z) et w(x). Les relations de commutation entre ces
opérateurs ne peuvent faire intervenir au deuxiéme membre que la
fonction DO(z"/z'). (Pour s’en rendre compte, il suffit, d’utiliserles
relations de saturation ou encore remarquer que le commutateur
doit contenir une fonction singuliére d(x)). Dés lors, 'antisymétrie
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de DY (x) d’'une part, et la symétrie de D4"4" (z”"/x') d’autre part,
montrent que dans le premier cas (champ scalaire) ¢’est le commuta-
teur des opérateurs de champs qui doit intervenir:

v [at (2"), u(x')] = DY (2" [z') 1 (7.3)
et que dans 'autre c’est 'anticommutateur:
[u+AIl ({B”), ud (ml)L_ — DSA”A’ ({13”/33’) -1 (7'4)

Pour passer des demi-champs u.(x), u4(z), aux opérateurs de
champs u(z), u4(z),... opérant dans I’espace des quanta de la deu-
xieme quantification, on introduit les opérateurs:

a,(u), a_(u) (7.5)
satisfaisant aux relations de commutations:
la, (w),al (u")] =0 (w'fu") -1 (7.6)

(les autres commutateurs s’annulant)

ol interviennent le commutateur ou I'anticommutateur suivant la
statistique (ou le spin).
Les opérateurs de demi champs sont alors donnés par:

Cu, (2) = 2 a, (w,) w, ()
wh (o) = Y a, () wh (2

les opérateurs de champ complet étant eux-mémes:
u(z) =u, (z) + ul (x); ui(zx) =ui(z) + ul¥(a) (7.8)

ils vérifient (7.3) ou (7.4), compte tenu des relations (7.6). L’on
obtient alors facilement les opérateurs correspondant aux grandeurs
apparalssant dans notre exposé comme des «<nombres ¢». Par exem-
ple, a la grandeur:

(7.7)

™

SO’y ful) = (— 1) j (d2)* (u}+Cu’) () (7.9)
L
correspond l'opérateur, pour le champ entier:
SO — (— i) [(d2)t (u+ Cu) () (7.10)
i

Il est clair que ces opérateurs sont appliqués & la fonctionnelle
YN, ("), N_(w); ..., ...] décrivant ’état du systéme dans l’es-
pace des quanta.

Comme le montrent les applications particuliéres et générales que
nous avons faites, la forme intégrale de la théorie proposée est
équivalente & la forme hamiltonienne habituelle dans ses résultats

19
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relatifs aux phénoménes de diffusion ou de collision, les seuls étu-
diés 1ci.

Mais son point de vue est bien différent: I'opérateur caractéris-
tique est I’opérateur intérgral S, au lieu de h. C’est sur cet opérateur
que portent les tentatives d’amélioration de la théorie, en parti-
culier dans les essais pour supprimer les infinités. C’est ce qu’illustre
~ bien le chapitre suivant.

CHAPITRE II.

Une expression finie pour le moment magnétique du neutron.*)
8. La méthode d’ évaluation du moment magnétique.

Nous nous plagons dans la premiére approximation par rapport
au champ électromagnétique que nous ne quantifions pas. Nous
supposons donc qu’il régne un champ extérieur constant B, ,, cor-
respondant au potentiel:

Ay = — Byy ab (8.1)

D’autre part il est utile pour les applications de faire dans les
formules (83.8) v'=1",7"=T" et (dz")*=dt' (dz’)3 ou 1", T" et ¥’
sont des valeurs particuliéres du temps ¢. Introduisant alors I'opé-
énergic H= [(dz)® h, on a en développant comme en (3.6, 7 et 8):

o
e SM = (—q) e/dtH(l), ete. (8.2)
/i

Nous connaissons d’autre part la valeur de I’énergie d’'un moment
électromagnétique w*? (c’est-a-dire d’un moment électrique p* =
't associé & un moment magnétique pt = w'*; 1,7,k =1, 2, 8) dans
un champ constant: elle vaut:

e H=— (B, i) — (1, p) = —= B, u* (8.3)

Nous pouvons donc écrire, en passant aux représentations dans
I’espace des paquets:

T.’I
" 7 . 1 % 1 ' )
eSO (ul fuy) = (—1) —5 - Bup- [dt-u® (wiful)  (8.4)
TI

Cette expression est le point de départ de ’évaluation d’un mo-
ment magnétique.

Appliquons-l1a4 d’abord & une particule chargée, dans les deux cas
de spin zéro et Y.

*) Un compte-rendu des résultats obtenus dans ce chapitre a fait ’objet d’une
«Lettre & 1’éditeur» de la Physical Review?).
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a) Particule scalaire.

Comme I'a montré le § 4, le scalaire d’'interaction est ici (4 & =
charge de la particule):

eh (wful) = Fe(4*d, (w)[ul)) (z)
Nous obtenons alors pour l'opérateur S%) la représentation:
e SO (uf fu) = (— i) e [ (do)* h(u'fu) =
(—i) k47 e Byy [ (@)t (x*0P —xP 09y, (8.6)%)
ou, d’aprés (1.20):
e SO, ) = £ e By, [ dt- (@I Q) (wlfuty)  (8.7)

Le moment magnétique vaut donc:
2 () Jul) = £ (@ T2 (! ful) (8.8)

En particulier, dans le systéme de repos de la particule défini par:

E

2 =R — -1 (kR ~0) (8.9)
on obtient la relation bien connue de LORENTZ:

prP (', ) = ok 5 D () (8.10)

b) Particule de spin 15.

Le scalaire d’interaction h =& J* 4, est modifié en ce sens que
le courant J* a pour représentation:

af M . 1 » o 1
J*(u’, ful,) ZZ‘“';?’ Uy (8.11)

On a donc pour SW (u ju)):
e SO, ful) = — i Bop [ (d2)*ulf (@ y*— 27 ") wly (8.12)
En utilisant identité facile a démontrer:
inul (2P — 2P w = ul" (LP*+ 2 8°%) u) (8.13)
il vient:
e S0 fuy) = F 19, * By [(d0)tout (442 57wl (814
11‘”

.
*) Nous écrivons j pour f
TI
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d’ou, en vertu de (2.25) et (8.4):
18 ()l ful) = £ 5 (VA (L + 2 89)) (u) ful) (8.17)

Dans le systéeme de repos de la particule, nous retrouvons le re-

sultat connu: ) . .,
W (u ful) =+ 2 gy S (i fuly) - (8.18)

Déduisons en passant des relations (8.6) et (8.7) d’une part, (8.12)
et (8.14) d’autre part, la représentation des invariants h dans les
deux théories scalaires et de spin %:

g
eh(u,/u')=4¢ 7} B,z L w!, (8.19)
eh (W jul) = e Byt (L7 +2 59w, (8.20)

D’apres les exemples qui précedent, on voit qu’en premieére ap-
proximation le moment magnétique d'une particule est proportion-
nel & sa charge*). En premiére approximation donc, le moment
magnétique du neutron est nul. Il faut dans ce cas aller a4 une
approximation supérieure, c’est-a-dire faire appel a des états vir-
tuels intermédiaires, le neutron se décomposant en un proton et
en un méson de charges opposées, influencées par le champ électro-
magnétique.

81 g est le parameétre de couplage entre la particule lourde et le
champ de mésons, ¢ restant le parameétre pour l'interaction d’une
particule de charge -+ ¢ avec le champ électromagnétique, la pre-
miére approximation différente de zéro pour S est évidemment le
terme en eg? de son développement en ¢ et g.

Nous obtenons donc le moment magnétique du neutron en troi-
sieme approximation en écrivant, selon la méthode générale:

+
£g? S® = (—i) 5 B, [ dt-pu* (8.21)
+1”
C’est la relation de base pour notre calcul.

*) Pour les particules spinorielles, il est possible comme 1’on sait d’introduire
dans I’équation de M. Dirac des termes invariants A Sgg Bxf:

((90) + i (y, ) + 4 Sup Bab + w)u(zf) = 0
dont la conséquence est d’attribuer a la particule décrite par cette équation un
moment magnétique:

] 7 __._e_. 0([3 78,7 cxﬁ' 1
- 2(/»+2%)s TR (8.21)

au lieu de (8.17). A est appelé moment magnétique intrinséque de la particule.
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9. La formation de 'opératenr S® dans le cas d’un champ mésonique
pseudo-scalaire. Une premiére expression pour le moment magnétique.

Nous considérons le cas ol le méson de masse #, est décrit par un
champ pseudoscalaire ¢ (x).

Le neutron, de masse x,, est une particule de spin %, décrite par
le champ d’onde spinoriel v4/x).

Il y a quatre types d’invariants scalaires d’interaction & consi-
dérer:

1. Celul qui décrit I'interaction pure entre les champs mésonique
¢ () et neutronique v4(z):

gh (¢_ ul [v') = g(u'+it*v" 0,9"") (a)
& 1
™=y RSyt v (9.1)

il décrit 'annihilation du neutron, avec création simultanée d’un
proton (champ %, (%)) et d’un méson négatif; il y a aussile processus
inverse correspondant a (g hW)+,

2. Celul qui décrit I'interaction pure entre le méson négatif et le
champ électromagnétique, calculé déja au § 8:

n ’ 1 i a ’
ehV(g” Jgl) = — et By, gt L* ¢ (9.2)

3. Celul qui semblablement décrit I'interaction pure entre le pro-
ton et le champ électromagnétique, donné en (8.20).

4. Enfin celui qui décrit 'interaction mixte entre le champ neu-
tronique, le champ mésonique et le champ électromagnétique:

egh® (¢" w' ') = eg(u'+1*v'4, ¢"*) (z) (9.3)

1
Aot R ? Baﬁ ;Tuﬁ

Afin de présenter clairement les quatre processus différents qui
vont apporter leur contribution & l'opérateur $© (donc au moment
magnétique dans I'approximation d’ordre 3), nous les distinguons
par les indices Ta, Ib, ITa et ILb; le chiffre I caractérisant les con-
tributions dues & trois interactions «pures», II désignant les contri-
butions avec interactions mixtes.

A chacune des évolutions correspond une contribution & I'opéra-
teur 8%, contributions que nous désignons par:

3) QB QB 3
St Sib» St et ST, -
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Nous avons ainsi, conformément & 1’expression (3.8):
eg? S (v [o") = (—i)Peg®- [ (da")*- [ (da)*- [ (dx')*-0+(aV"—a¥
o) [aV (@) [aV W0 e ) (@)
h“)(qo’i’,/ ") (x) A (W), ¢ J0') () (9.4)

avec les matrices h données ci-dessus.
En utilisant alors les relations de saturation, on obtient:

eg* S ) = (—i)* — eg? By [ @) [ (d0)*- [ (@)
L (wﬁ) s Ta”_ O+ (m4ff_w4l) D:[ (mll/a,:l) .0+ (234” ) D+ . ( ”/iE)
0t (2t —a¥)-L** D (z]z') 70" (2) (9.5)

(nous écrivons D, pour D,,). Car on a I'identité évidente:
G+ (2 — ') 0 (22" — %) - 0+ (2¥ — at) = O+ (2 — %) O+ (22— 2¥)

De maniére tout & fait semblable, on obtient S
Calculons maintenant les contributions Sﬁ;’ et Sﬁ’b’. Nous avons:

SEL (") = (—i)3egti [ (de)"s [ (da')t-0+ (¥ —a¥)

W (0l ) () B (9.7 f0) ()
et

S ") = (—i)Pegi [ (da:”)‘* [ (da) 0+ (a4 — )
2 (" @7 ) () - B (@ o) ()

ot AV (v" Ju’, ¢ ), h® (0" [u", ¢” ), etc. sont donnés par (9.1 et 8). Apres
usage des relations de saturation, on trouve:

oW/ : 1 " ’
2 g2 SR (0" ) = (— )% e 92— By [ (da')* [ (da')"
ot (&) 7 0F (2t —2¥) D (2 [2)
O+ (2 — ') D, (a5 - 2P 7 0 () (9.6)

@l
: 2 ’(3)

et une expression analogue pour & g2 S'(}) . _ . N

Ces contributions sont causales, mals non pas invariantes. Utili-

sant la méthode générale que nous avons donnée au § 3, nous pou-

vons former directement les représentations des opérateurs S

Ia>

S, SB) et $)3) & lafois causals et invariants: il suffit de remplacer

partout les combinaisons: 0+ (24 — y%) D; (2/y) par — 214 D2 (2/y).
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Utilisant alors la relation (8.21) ot nousfaisons 7" =—T" = T - oo,
ce qui revient & prendre pour domaine invariant d’intégration L
en (3.6) tout I'espace temps, nous obtenons pour le moment magné-
tique (moyen):

21w (v o) = i e g {—4- [ (da")*- f(dw)4~ f (d)- (v"+ (a") ")
-Dc(m”/m) D, 0 (& fa) - L#- D, (s - (2% o' (&)
gt f (da')t- [ (da)® /(da;) (" () 7
D (012 DSy (0 7) [ + 2 9] D () - (/)
4 / (da')t- / (da)t- (0" + (') %) -

D (' [x) - DS, (@ [)- 2 (v v ()

v 44/ (da)s / (dx)d- (0" (@) 7°) 2P
. D¢ (z)x’) D, (x)) - (* ?)(a;))}. (9.7)

10. Décomposition des noyaux D°De D¢ et D°De: les cing fypes d’in-
tégrales donnant des contributions différentes de zéro.

Dans I'expression du moment magnétique que nous venons de
trouver figurent des intégrales «triples» et des intégrales «doubles»
de la forme (les limites infinies sont sous entendues):

d/ﬂ(dm”)“f (dar)® f(dx')f-lei 5 7 (0,) - De(a” Jw) De(w/a’) D*(a" [2) ... (10.1)
ou:

/'(daf) 4f (dz)* ¢ By (0,) De (a'[z) Do (x'[z) ... (10.2)

elles contiennent donc comme noyaux des produits, doubles ou
triples de fonctions D¢. T et V sont des opérateurs linéaires continus,
fonction des dérivées 04). Posons

L2 V(0) = M(x, 0),e!“*T(0) = N (z, 0)

Décomposons ces fonctions D¢ selon:

D°=Ds 4 Dt (10.8)
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Considérons pour commencer les intégrales doubles: elles donnent
naissance a 4 types d’intégrales, ayant pour noyaux:

DD} (x'/z); DiDL(«'[x); DLDE(x'/x); DLDL(z'/x)
Nous allons montrer que celles dont les noyaux sont D; D? ou

D, D] se réduisent identiquement & zéro.

En effet, décomposons & leur tour:

Do (a' fx) = (2’ —a%) DO (@' |2) = — o (2" — a4) l

2
[D+(z' /) —D-(x'[z)] { (10.4)

D53 = —;,l)? [D+(2'/x) + D~ (2" /)]

Mais on a (comme on le vérifie facilement en passant dans ’espace
.de FOURIER):

[ (@a)* M(z,0) D («' [x) D} (a/a’) = 0

v

] s1%,¥%, T=+1 (10.5)
../ (dz)* N'(z, 0)- D} (" z) D;" (z/2') = 0
* quels que soient x,, #,+0
Donc les intégrales:
[(@w) M D; (' [2) D} (' a) ~ ]
T f (dz)* MD (' [z) DO (' [x) = 0 (10,6)

f (dz)* MD (2 [x) DL (' [2) = 0wy %%, l

(car la masse du neutron x, est toujours différente de celle du méson
#,) sont toujoursidentiquement nulles. N’entrent donc en considé-
ration que les intégrales doubles des deux types:

[ (day [ (da)* M(2,0) Di(«'|x) Dy (&' [0
ot:
[ (@) [ (dz)* M(x,0)- DL (' |z) DE(2'[a). (10.7)

o L%

Passons maintenant aux intégrales friples. La méme décomposi-
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tion des noyaux selon (10,3) montre qu’il faut considérer les 8 types
d’'intégrales avec noyaux:

(1) D:(a'/a') Di (2’ [z) D2 (afa’) )
2+ Di(«'/a') Di(«' ) D} (a/z')
(8) < Di(a'[a") DL(a’ |z) D} (afz)
(4) < Di(a'[x') Di(«"[2) D (/%)
. (10.8)
(5) - Di(a"/z') D}(a|z) D (x/x)
(6) - Di(a'[a’) Dy (a" ) D} (afa’)
() -5 DL(«'[a") DL (' ) D§ (v
(8) -4 Di(a"fa') DL(x'[z) D} (afz’) |

et ceux que 'on obtient par échange de u et ¢.

En vertu des relations (10.5), les trois derniers noyaux (6), (7) et
(8) appartiennent a des intégrales qui s’évanouissent identiquement.

Nous allons montrer maintenant que la somme des intégrales:
- / (dx")4 (da; e W (x, 0)

: [Dj (x"[x") D} (¢ |x) D (x]z' ) _% o (%" [a") DL (2" [)Dy(x/x") |(10.9)

s’évanoult aussi identiquement.

Pour cela remarquons que:

D} (2" [x') Dy (2 |2) DE (afa’) = + & (a[2') & (2" [z) & (/)
Dy (2" [2") D (2" [x) DY (/) (10.10y
Mais I'identité:

e(x’[a') e (2" ]|x) e (z]n)) = —e (2" ]2)) + & (2" [2) +e(x/x’) (10.11)

nous permet d’écrire:
— D (2" [«") Dy (2" [2) Dy (/')
+ DY (o' a') DY (") D2 (')
+ DY (' ') DO (" [z) D (/")
(10.12)

*

D;(a"[2') Dy(a'|z) Dy (afa') =
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et pour le noyau de 'intégrale L (10.9):

[ 1= —-L{Di(2"[2) [D} (+']2) D (w/a’) + D; (2’ [x) D} (a2
+ Di(«"[x) DS (2" [x") DD (z/x")
+ D? (x)x') D% («" ") DO (&' )} (10.18)

Or, toutes les intégrales correspondant & ces noyaux s’annulent
1dentiquement, en vertu de (10.5).

En résumé, nous avons a calculer les intégrales ayant pour no-
yvaux les fonctions suivantes:

Intégrales doubles:
- Di(@'[z) DL(¢'ja); - Dl («'[x) D}, (' [2)
Intégrales triples:
—;;Dj (2" (2" D (2" [2) Di(x/2") ; % Dt (z'[«") D}, (2" [x) D), (/") R
LDy’ |2 D" [2) Di(a/’); -+ D (a'[2') DL (o [x) Dy (x/a’) | (10.14)

5 Di(a" 2"\ Diy (' [)Dia/a’) ;5 Dy (a’ [«) Di(a’ ) Dy (/) |

11. La méthode pour éliminer la présence d’expressions divergentes.

Nous avons défini la fonction D?(x) par:

D} (z) = 5 ¢ (24) DS () (11.1)
elle s’écrit aussi:
D; (z) = [8.(1%) — L0+ (T3) %, (xT)] (11.2)

Or, comme nous ’avons déja remarqué, cette définition n’a vrai-

ment de sens que sous le signe f (dx)*, cela du fait de la présence
de la fonction de Dirac 6(1'%) dans (11.2).

Cela dit, calculons, pour ¢ réel > 0.
+e?

4n-fd(T2)D“ ——/d (T [ 2 04T 7 J, (1)

+£"- nT = xe

—1——/d (1) % Jy (2 T) ﬂ—fd/xT/Jl(xT)
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Nous obtenons, avec:

Jdedi@) ==, ()
4n ﬁz (T2) D (T) =1 — (_JO (&) + Jy (0)) —J,(xe) (11.8)

‘Faisons tendre alors » vers I'infini; on a, quel que soit ¢ > 0:

+s
lim ]d 72) D% (T) = 0;

comme D:(T) = 0 pour T2< 0, nous pouvons écrire:

&2

lim /md(Tz) Di(T) =0 quelque soite >0.  (11.4)

On en déduit alors:

Lim D (x) =0 pour T2%=— R? fini. (11.5)

Cette propriété de la fonction D:(x) nous permet d’écrire pour
celle-c1:

D: (z) = D (x )+L1ch D;. (x) (11.6)

M —> 00

puisque la partie ajoutée est nulle a la himite; ou aussi:

(le trait dans D?(x) est pour distinguer cette nouvelle deflmtlon
ou les coefficients ¢; sont des nombres scalaires 1nvariants qu
peuvent dépendre par exemple des scalaires invariants x,

Aucune condition particulitre n’a été imposée & ces coefficients
¢;. L'idée de M. STUECKELBERG est d’utiliser I'indétermination de
ces coefficients pour donner de la fonction D¢ () une définition qui
élimine les infinités de la théorie habituelle des champs, infinités
provenant précisément de la fonction D2 (x) présente par l'inter-
médiaire des D¢(x) dans les coefficients S,

Il est cependant des conditions que 1'on doit imposer aux coeffi-
cients ¢; avant toute considération de divergence. Ce sont celles
entrainées par la condition pour D:(z) de satisfaire & I’équation

D (2) :Limj—ﬂ{a +$’ci)a(1’2)— TN ey () +Zc s T ( ”
| 1)
)
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d’onde inhomogene, comme la fonction originale D:(x). Cette con-
dition s’écrit:

{13 = 2)53()+5()—( — %% D}, (2) + 6 ()
+L1m20 (O —xf + % — =% D ()

=—0(x leZC +—-6(T2 leZC x: — x?)
I #%(T=
— 8?7"( )leZC, (22 —u2) 2, oy (2T) =0

Hi—> 00

Si ’on remarque que pour »; -> co, & une distance T >x;1:

3

J (% T)~(x, T) %-G(T) G(T) borne,

les ¢, doivent satisfaire aux trois conditions:

Lim 2 g, = 0 (11.8)
leZ & WE = (11.9)

1
leZ (2 —n®) 2, 2 =0 (11.10)

#y —> 00

Cela dit, considérons le nouvel opérateur:
S=1+}'egtsx+b (11.11)
LK

obtenu & partir de § par la substitution de D par D=, Il est essentiel

que S conserve la propriété d'unitarité (cf. § 3). On doit donc
avoir (le trait indique que la substitution a été opérée):

S+ S+=0
S§2+ S ST+ 8§27 =0 (11.12)
S+ SH ST+ 8 =0

semblablement & (6.3). Il est clair que 'on a toujours les identités
(nous renvoyons au § 6 pour les notations):

o(M)=0 M=1.2...

D
o(M)—2Re,,+D*(1)D(2)...D*(M)=0 M=23...
(11.18)

De(1) D¢ (2)... DF(M)—2T,, —D*(1)D(2)...
D*()D*(%)...D
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avec:

I,=3'D'D' DD+ () X' DD DD . D" +|
. (11.14)
EeM=E3Ds....Ds+(2)2DlDle...Ds+....l

Mais il n’y a plus identité entre — 2 I, ou — 2 Re,, d’une part
et I'expression [2 D (1)... D(M)] figurant dans le noyau de 'inté-
grale: '

(n) ’ '
SHE 4 L+ g = [ L [ED)...D(M)]  (11.15)

(On se souvient que cette identité assurerait la validité des rela-
tions (11.12), partant l'unitarité de §.) Cela provient du fait que
dans les contractions §% §" % apparaissent les fonctions D+ et D-
qui ne peuvent se transformer qu’en des combinaisons de fonctions
D1, Ds, et jamais D*.

Mais 1l est facile de voir que 'on a toujours:

(n) 4 {n) !

Si+Sn—t 4, S 1+8 = .. /.../...[ReM] ou/.../. [T, (11.16)

o o

pourvu que dans la substitution:

Di(K) = Di(x) — Di(x) + Lim chf Di (@) (1117)
on précise que xX+xf'; cela résulte immédiatement des relations
du type (10.5) et (10.10). Naturellement, cela suppose que les li-
mites d’intégration pour ¢,¢’... sont — 1" = + 1" =oco. L'unitarité
de l'opérateur S est donc sauvegardée.

Remarque. La substitution générale (11.17) a le grand désavantage
d’introduire dans l'expression des S des termes non linéaires en
cf dés que M > 1. Pour éviter ce qui par la suite complique les cal-
culs, il est indiqué de poser maintenant:

K -0 pour K +1 (11.18)
ce qui revient a ne faire qu’une seule des substitutions D> D¢, dans
notre cas pour Dg (z"/x).

12. Le passage a Uespace de Fourier a quatre dimensions.

Pour pousser plus loin le calcul, nous passons maintenant & 1’es-
pace de FourIEr a quatre dimensions, ce qui revient physiquement
a décomposer les paquets d’ondes générauxv'4,... et ¢_,..., corres-
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pondant au neutron et aux mésons, dans les systémes complets

d’ondes planes:
/ 1 T e (7, x T
0"4(2) = s (6 7) €8 8) = oA (&, )
et i (12.1)
(P’ (.’E) sze HE = ' ('T/k’)

Il est clair que, pour les opérateurs L*#, comme pour les fonc-
tions D, nous utilisons alors les représentations dans l’espace de
Fourier & 4 dimensions (cf. A. I1lc).

On obtient alors pour I'expression du moment magnétique dans
la représentation en ondes planes:

2T (", n"[k',n') =eg?-4- (2n)3- (k" —k') - nf (", n") 7"
@) | (r,p) +i%) 7 24, m) - (k' —p)- (' —p), (K —p),
A (p)- 45 (K" p) A (K —p)—--—[((%k”) p+ix) (7, k') —p-+ix)
v (5w) (F — )" - p,p, A5l — p)- Ak —p)-A5(p) |
e 7| (P R TRAG 1) - 80 ('), Ao(p) 45 (')
A (k'

1 1 3 v Ay ! ’ Te
+ e s (p)ri Tt (o w80 (), A(p):

—eg? 2m)% 1 8('—K) 2L (K'n') v [ @p)* (7. K)—p)
+iR) "y (0, K —p) + i) Tt (B ) P b, 4 (')

-—p)]

A, (K'—p) 45, (p) | (12.2)
avec: B
0% (p) =5, 9 (P)-
Nous avons introduit les notations commodes:
o P = P — P (12.3)

et séparé le dernier terme, purement diagonal en k", k'. Les
autres termes contiennent & cdté d’une contribution diagonale que

nous allons déterminer une partie non diagonale en k”, k’. Pratiquer
cette séparation est le prochain pas du caleul.
Pour cela, nous remarquons d’abord que I’élément de matrice

Mocﬁ (‘Eﬁ 'n”/TC ”I’L,)
n'intervient dans le calcul d’observables physiques que sous le signe
d’intégration f dVy,..., c’est-a-dire dans des intégrales du type:

f (k") s (12.4)
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Or, nous avons:
[@2gG+2 B[ G +i%;z'>6@-(*é)

B ‘0f(%’+?;i?)1[6
fdz (42 k) [ EECEE

(3)] (12.5)

=
" ’
le ]{:L %kt

qul nous permet de séparer les parties diagonale et non-diagonale
en (k'/k"), d’expressions contenant les dérivées partielles de la fone-
tion d(2).

En remplagant dans (12.2) les dérivées partielles de la fonction
0 (k" — k') par les expressions:

27 >

ai (kﬂ_kt) _ _2; 61: (’CII . ch)
(12.6)
" ’ 27 k4 2 "'r
b —K) = 55 MW ()

ce qui conduit naturellement a séparer dés maintenant les compo-
santes du moment magnétique proprement dit:

wEE R W) ik —1,2,3
et celles du moment électrique:
Hi-i (T{:”, n”/k’, n:)

Nous obtenons pour la premiére de ces grandeurs, dont seule nous
NOUS 0CCUPOnS:

ik o w3y A ﬁﬁn()
wEE, 0" [k, n') = + eg? (4:1:)2{5(19 =5 iy )[()z[a "'k]L*:D
— & (B — %) [ M...]) (12.7)

13. L’wnterprétation des contributions diagonale et non dfiagohale.

Considérons maintenant l'expression du moment magnétique
p#*f du neutron telle que nous I’avons obtenue en (6.15), pour la
comparer & la valeur de la méme grandeur pour une particule de
M. Dirac de charge ¢ et de moment magnétique interne A:

TRy AR (_2%2 + A) S b (18.1)

telle que nous ’avions obtenue en (8.21).



304 D. Rivier.

Afin de pouvoir comparer les résultats, faisons apparaitre dans
(12.7) les opérateurs L*f et §*f qui sont en (13.1) et cela sans nous
préoccuper des coefficients figurant devant ces opérateurs (ce sera
notre tdche tout a 'heure). L

Dans la partie diagonale (terme en é (k" — k’)) ne peuvent figurer
que les opérateurs antisymétriques tensoriels du 2e ordre:

(v, Y1 =41 8% ot [y* R'P; (18.2)

en effet, I'opérateur x* ne peut 8’y trouver, caractéristique qu’il
est de la contribution non diagonale en k.

Dans la partie non diagonale, par contre, nous avons les opéra-
teurs possibles:

[x*, y#] et [x* R'F]=L* (13.3)
Or, nous avons déja utilisé I'identité, pour les espérances mathé-
matiques:
x ] . 1 (poeb o
[x*, yf] = (L* + 2 §). (13.4)

en outre, on a aussi (pour les espérances mathématiques):
[y &%) = 0. (13.5)

Nous pouvons done écrire le résultat obtenu en (12.7) pour le
moment magnétique du neutron sous la forme opératorielle

1= 0, 8 + by 0 + cq (L + 2 8°0) + dg L = (c, + dg) L
+ (ag + 2 ¢4) ¥ (13:5)

ag, by; ¢4, dg désignant les coefficients numériques multipliant les
opérateurs dans (12.7).

La comparaison avec (13.1) est maintenant facile; elle nous
montre que le neutron se comporte vis-a-vis d'un champ électroma-
gnétique uniforme de la méme maniére qu’une particule de M. Dirac
(c’est-a-dire une particule qui est décrite par 1’équation de M.
Drrac) possédant une charge:

e =2un, (¢, + da) (13.8)

et un «moment magnétique ntrinsequer:

2 — ad_—ézd_ - (18.9)
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Or, par définition le neutron n’a pas de charge. Nous devons
donc avoir:

Cq+dy =0 (18.10)

ce qui revient & dire que la somme des coefficients de [x*, y#] et de
L*#, partie non diagonale dans I’expression du moment magnétique,
doit s’annuler.

Laissant pour I'instant cette question, sur laquelle nous revien-
drons dans notre conclusion, poursuivons I’évaluation de la seule
partie diagonale du moment magnétique.

14. La valeur du moment magnétique mise sous la forme d’une somme
d’intégrales simples avec coefficients indéterminés.

Considérons maintenant la partie diagonale du moment magné-
tique p** (kK"n"/k'n’), que nous écrivons, d’apres (12.2 et 7):
fE &0 k') = e g (dm)26- (B" k") M*(n"[n')  (14.1)
avec:
1

M (0 [n') = s {0‘; 7y G+ 2o [(ap)s
(@ ) + i) Tt @) (= ) (42— p), - (K'— ),
A5 (p) A5+ 2 —p)- A5, (W—p) — - [( ' +2—p) +i%)
(v k' —p) + i) T2t (K —p)" - p,p, A5 (K +2—p) A5 (k' —p)
A (0) + g e | (2 D) i) T4 (B (6 2 —p),
A +2—p) + 8 - (k—p) , 45 (¥ —p)) 2, (p)|
— o L) o [ (@) (. —p) + i) 7 (. K —p)
+in)etat (6, n) p,p, A5 (K —p) 4, (K —p) - 45,(p)].. (14.2)

Nous effectuons les dérivations par rapport a 2%, en tenant compte
des 1dentités du type:

0 i /i . n”
ol (K 2 = b+ e v (14.3)

Nous faisons ensuite z =0, conformément & (12.7), puis afin de
simplifier nous passons au systéme de repos du neutron, défini par

k= 0. k't = 2, (14.4)

20
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Nous introduisons le quadrivecteur p” par:

p' = (k'—p) = (=P, % — p*) (14.5)

Nous sortons alors de dessous le signe d’intégration les facteurs
constants, en particulier les matrices du quatriéme ordre v, 7, etc.,
de maniére & donner aux intégrales la forme la plus simple possible.
Pour obtenir ce résultat, il faut naturellement effectuer les multipli-
cations, ce qui multiplie aussi le nombre des termes.

Enfin, dans chaque intégrale triple, nous remplagons les seuls pro-

duits: _ _
45 (p) (45 (p"))* ou 45 (p') -4y (p) - 45 (p)

par les sommes des termes:

(4. (p) (45 (p))2 + 24, (p) 4, (p)) 45, (p")] 0w [4,(p") 4, (") 45 (p)
+ 45, (p) 45, (p') 45, (p) + 45, (") A, (p) 45, ()] ; (14.6)

dans les intégrales simples, nous substituons de méme la somme des

deux termes: B
A3 (p) 4, (p') + 4, (p) 45 () (14.7)

au produit des deux fonctions causales:

A.(p) 45(0")
Cela en accord avec nos conclusions du § 11.

Nous obtenons alors pour M une expression de la forme (nous
ne donnons que les 4 types de noyaux):

; Wit 1 * . L2 v [ .4 8 (' A8 ('
M (n” [n”) =%—u{ﬂy[ vy e [ (dp)* o™ o[ AL(p) 4 (0) 45 (')
+ 245, (p) 45 (p) 45, (p')]
T rem e n
1 L v " ’ ’ ’ P ’ s
5 TV [ (@) PP p, p AL ) A (') 4, (D)

+ 45, (") 45, (p) A3, (p) + A5, (p') 45, (p) 45, (p)]
& PP

4 f;? 1li )2 gh] 'f(dp)d‘ - p, [ AL (p) 45 (p") + A%, (p) 45 (p")]

(43, (p) 45 () + 45, (p) 45 (p")]
(14.8)

’l:xu . ’ pk]
_— H li /(dp)4 P —

4
Hy— D

(il y a en tout 18 termes).
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Le calcul se poursuit de la maniére suivante:

1. On substitue & /° la série qui la définit: 4 chaque terme con-
tenant A¢ correspond alors une série contenant N + 1 termes: N
termes de structure i1dentique, différant par un coefficient ¢; et par
un parameétre x;, et un terme, celui donné par A4°.

2. Grace a la présence sous le signe / (dp)* de la fonction

d (22 + (pp)) = e +p; [6 (pt—)/n2+ p2+ 0 (p*+)x+ p?)] (14.9)

on raméne les intégrales a une extension tridimensionnelle f (dp)3.*)

3. On effectue ensuite 'intégration sur les variables angulaires
de I'espace p; tenant alors compte des relations du type:

f:ip)3g(p) =4nfoodp'p2~g(p);f(odp)3p "g(p)=0

p =[P/ p=(p'p%p?

qui annulent une grande partie des composantes des tenseurs en
gendrés par les termes de (14.8), on est ramené au type général d’in-
tégrale simple:

r ip 2
) f Tt ) (14.10)

ou % = x,, %, et P > oo, avec:

Ef (35 %0 267 ) P2

: 2y —
f(p ) (pz + %Z)a (pz— b ("us %(p))ﬁ (p2_ d (%i’ %2}5 %3)?

compte tenu des remarques suivantes:
a, B,y =0,1 0<d<4;
le degré de f(p2) en p est inférieur ou égal & 4.

*) Dans le second groupe de termes de (14.8), apparait ’expression 6(27,)

que

nous remplagons par — &’ (p), annulant sans autre la constante arbitraire A
dans la relation (A.II. 10) appliqués ici. On pourrait utiliser cette constante
pour eliminer certaines divergences.
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4. On effectue enfin les sommes sur les indices muets, on met en
évidence les combinaisons tensorielles antisymétriques ... y*. ..
qui se réduisent finalement au tenseur: |

o't (n"[n') = 2 S (n"[n’)

Il vient alors:

M (' [n') = o' (n[n’) Lim Lim Y[I® (x,, %, P)

P—> »u;—>00 (a)

N
+ 306, T (2, %, 4% P — o (') A (%, %), (14.11)
1

ou («) dénombre le nombre des intégrales provenant des termes de
(14.8), dont I') et J® représentent les N+-1 sous-termes engendrés
par 4,.
(’est-a-dire pour le moment magnétique:
pEER" R n) = (dm)2eg2- 6 (k" [E") - o (" /n) A (,,%,) (14.12)
En introduisant le facteur G par I'égalité:
wE 0 R n) =G (,, %,)- Tiu S (" n [k m') (14.13)
nous avons pour son expression: 4
G (s 72,) = B2+ 72 50, g2+ A (3 %), (14.14)

avec, comme 1l se doit[G] =[1], car, comme le montrent (14.1 et 11),

(A} = [

15. Intégration et détermination des coefficients. La valewr du moment
magnétique.

Le but de ce paragraphe est de montrer la possibilité du choix
des coefficients ¢, ... ¢y définissant la fonction D, () de maniére
que le nombre:

®
A (g, x,) = Lim Lim 3 '[T® (x, - %, P) + 3 6, J® (3, %, %%, P)]
P—>00 x;j—00 (&) 1
soit fini, c’est-a-dire de maniére que le moment magnétique du
neutron soit fini. Pour y parvenir, nous allons d’abord calculer les
intégrales I et J@ (... %?) en fonction de la limite supérieure P.

Puis nous ordonnons le résultat ainsi obtenu pour A (x,, »,) par
rapport aux puissances de:

§= () (15.1)
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eh Introduisant simultanément les nouvelles variables:

(2 152

oy

Alors seulement, nous montrons qu’il est possible de choisir les
coefficients ¢;,... ¢y comme fonctions des paramétres x,, x, 1, de
sorte que:

A (g, 2,) = Ag (#y, 2,)

ou Ay(»,, %,) est un nombre fini mais arbitraire.
Le calcul de I'®(%x,, x,, P) et de J® (x,, %, %7, P) se falt sans

difficultés en prenant pour wvariable d’intégration -4 — —

(voyez (14.10)). On obtient alors en sommant sur («) et en ordon-
nant par rapport a P: |

A (%4, 2,) = Lim Lim Jé’[an (%us 22,) + leciﬁn(xu, Koo M5)] §°

§—00 7, —00 ]n 0

N
+ ]:OCL (%’W %(p) +Z]_'GL ﬂL (%us %qﬁ T/‘@)J LOg E

+Zj’ [t (s 224) + Zl‘ e, By (s 2 )] &7 (15.8)

ou les coefficients 8,(xu, #,, n,) sont donnés par:

a(n)
B (s 25 1) = Y Baalttus #)(0)E =281, L,—1,—2,....

a(0) o
Bo Gt s 1) = 3 Bose s %) + By oo ) Logm) (0)* (15.4

avec
1=a(n) =2a (6= a,,, =5)

On vérifie bien que si I’on pose tous les ¢; identiquement nuls, le
nombre A est infini.
Pour rendre fini A (2,, #,) nous choisissons alors les coefficients
¢; comme des fonctions:
: ¢ = € (%> % 1) (15.5)
satisfaisant idenfiquement, avant le passage a la limite 7; = oco.
1) a la condition:

N N
Zci Hi = %5 (”ua %(p) +EC@- B (%us P 7:) =0
1 1

oy (24, %,) = 05 B (%, B n;) = ;. (15.6a)
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'une des trois conditions nécessaires pour que D? (z) soit solution
de I’équation d’onde inhomogene définissant D$(x) (voyez (§11)).
Nous verrons plus tard que les deux autres conditions se trouveront
vérifiées automatiquement aprés passage a la limite.

2) Aux 4 conditions:

s % +ZC ﬁ’n %wxq;;n@)io ’n:L, 1,2

% (xu, %(p) +Zci ﬁo (%m Zps 771’) = AU (%w %(p) (156 b)
1

soit en tout 5 équations linéaires dans les ¢;. On peut donc faire
N = 5, et déterminer les 5 coefficients:

A = || Bx (ur 24 )| (15.7)
€ = avec { .
A Minf = Min pr. rap. & By (%, %, ;).

en substituant les indices 3 & L et 4 4 0, avec ay=a; K =1,2,3
et oy = g — Ag; oz = 0.

Il est clair que la liberté dont nous disposons pour les parametres
1; permet toujours de rendre le déterminant caractéristique diffé-
rent de zéro.

Cela fait, définissons le passage a la limite #; > oo, en posant:

4
s 7 K
%‘aK(xu,x(p) - Min;

N, =1; 2
avec:
7y fini 2 — oo (15.8)

Compte tenu de (15.4), on voit que le déterminant et les diffé-
rents mineurs tendent vers l'infini avec 2 de la maniére suivante:

A — 2’ Logz; Minf — 2 ~¢®.Loge, K=1,2,8.
4
Min} — 2°~*% avec 6 =1+ 3 a(l) (15.9)

=1
Ce qui montre que les ¢;, pour 2> oo, tendent vers zéro selon:

a> v>1 (15.10)

Cela nous assure premiérement que les relations:

C; — 27

Lim 2 e =10
7~ 00
et
= | ‘
Lim ] ¢;(n, % —n,~") =0 (15.11)
r],':—)-oo 1
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(qui permettent & D de vérifier I’équation d’onde) sont vérifiées.
Secondement, cela nous montre que:

A (s #,) = Ay Ot ) (15.12)
pourvu que l'on définisse le passage a la limite &> oco par (cf. 15.4):
§=¢§,2 ou §&,fini. (15.13)

Alors en effet, on a, quel que soit n > 1:
N _
[m_n (%u: xtp) + anﬁ-—-n (%us %q;: 77,)] 5——7@ —> Zw(n)— vea s ()
1

et (15.8) se réduit bien & (15.12). Notons que les passages a la limite
§ =00 et 7;,— oo définis par (15.8 et 13) satisfont a la condition:

&
i

— T > o0 (15.14)

nécessaire pour que I'espace d’'intégration en (14.2) soit infini méme
pour les particules de masses infinie x, mtervenant dans la défini-
tion de DS

Remarquons qu’il est possible de supprimer une part d’arbitraire
du moment magnétique en posant & la place de la relation:

N
o (tus2,) + D)€, Bo (s 2y 1) = Ag (s 2,) (15.6)
1 «
plus simplement:
N
an i80 (%u: ) "7;) =0 (1516)

1

Cela a l'avantage de ne pas introduire la fonction arbitraire

Ay (4, 2,) dans Pexpression des ¢;, et de donner au moment magné-
tique la valeur:

) = (82 w2 g (o ) 5, 5% (B[R ) (15.15)

qui est parfaitement définie avant la substitution de D2 (x) par D (x):
c¢’est simplement le terme indépendant de P (ou &) dans le dévelop-
pement de u** analogue & (15.3). Les ¢, sont encore donnés par
(15.7), mais avec « (#,, x,) = 0.
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16. Remarques et conclusion.

La premiére observation que nous voulons faire a pour objet
I'invariance du procédé d’évaluation des coefficients c;(nx), 1n-
variance par rapport & la méthode de calcul employée. Précisons:
aux paragraphes 12 et 13, nous avons montré que le moment
magnétique du neutron peut s’écrire:

.u'?:k (TCII,”’”/E Inl) S@k (kll ”/k ’n'). : (161)

€
m = G (%n, %(p) —2'%“—

Dans cette expression, le facteur m est scalaire invariant par rap-
port au groupe de LoreEnTz. C’est ce facteur scalaire m qui s’écrit

sous la forme d’une somme d’intégrales quadridimensionnelles:

mo= Y G G = Lim f(dp Nt 24 ¢, ;) (16.2)
(at)

?“%-OQ

fonctions linéaires des coefficients ¢;, eux-mémes constants par rap-
port a l'intégration.
Pour calculer ces intégrales, nous avons écrit:

+00 2¢ +1 P
dp)t...=Tim  [dp* [dg, [dc[ap- pe....
/@p) im ‘q/o pnj %ﬁlf Of

—> 00
P P

— B S = (pL B2 53 .5 — P s P
avec P |p| P (p ’p »P ) arctg P C@ V(p1)'2':|_(p2)2' (163)
puis choisi les ¢;(x,, #,, ;) de maniére que I'expression reste finie,
en précisant les passages a la limite P - oo et 5, > oo par (15.8)
et (15.13).

Ce sont ces derniéres conditions qui assurent l'indépendance
(vis-a-vis du choix des variables (16.3) pour calculer les intégrales)
du résultat trouvé pour les ¢; (x%,. %,, 7;), puisque le facteur m
s’exprime alors comme le résultat d’'un passage & la limite unique:

f(z)
m—Lim [dpF (p,2) §() = &a

2—>00 ¢

0

expression dont les coefficients du développement dans les puis-
sances de z s’annulent pour les puissances positives de ¢, et Log 2.%)

Revenons maintenant & la question soulevée au § 13 par I'exis-
tence d'une contribution non diagonale dans ’expression du mo-
ment magnétique. Nous avons vu que pour conserver au neutron

*) Mais il est clair que le résultat dépend des relations (15.8) et (15.13).
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sa propriété d’étre dépourvu de charge électrique, il fallait satisfaire
a la condition:

¢, +d,=0 (18.9)

¢q et d, étant les coefficients numériques des opérateurs L*f + 2 S“ﬁ
et L*# intervenant dans le terme non diagonal. ,

Si 'on calcule ces coefficients par la méme méthode que nous
avons utilisée pour la partie diagonale, on voit qu'il faut, pour satis-
faire & (18.9) imposer de nouvelles conditions pour les coefficients

. Cy, analogues & celles que nous avions en (15.4).

La condition d’annulation de la charge du neutron peut donc
toujours étre remplie pour autant que les nouvelles conditions pour
les coefficients ¢;... ¢y sont compatibles avec les anciennes.

Mais cela doit étre le cas. Au lieu de résoudre le systéme (15.6),
pour trouver les fonctions c¢; = ¢;(%y, #,... %%...) nous résolvons
maintenant le systéme formé du systéme initial (15.6) auquel on
joint les conditions nouvelles entrainant (13.9). La compatibilité de
toutes les équations (linéaires dans les ¢;... ¢y) que ’on obtient ainsi
est assurée d’une part par le nombre N arbitrairement grand (mais
fini) des coefficients ¢;... ¢y et d’autre part par la liberté relative
dans le choix des constantes #;

Voicl maintenant une remarque sur le procédé d’élimination des
divergences. Pour respecter la causalité avant le passage & la limite
Yy, > oo, 1l est clair qu’il faut poser:

D; () =D° (x) + Lim Zc s (

yt-—>00

au lieu de (11.6). Mais alors nous modifierions non seulement la
fonction D (z), mais encore la fonction homogeéne D.(z) et par elle
toutes les autres, en particulier D} (z). Autrement dit, nous porterions
atteinte & la relation de saturation des paquets d’ondes (1.18), ce
qui est trés discutable. En effet cela pourrait s’interpréter de deux
maniéres: ou bien on modifie les lois de commutation (ce que 1'expé-
rience ne justifie pas), ou bien on introduit des champs auxiliaires
& masse infinie », avec des coefficients de couplage )¢, g, ce qui n’a
de sens physique que sil’on peut montrer que ces coefficients peuvent
étre choisis positifs; or cela ne parait pas possible. C’est d’ailleurs
cette derniére raison qui exclut la possibilité de rendre finies les
grandeurs divergentes en introduisant des champs auxiliaires de mas-
ses fintes : ceux-cine sont plus causals siles coefficients ¢; sont négatifs,
car 1l devrait, pour les masses #; correspondantes, exister des états
d’énergie négative.
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Il est d’ailleurs intéressant de noter 1’analogie existant a ce point
de vue entre nos résultats et ceux obtenus par M. STUECKELBERG?2)
en théorie classique, et aussi avec ceux de M. Pavs8) acquis par
I'introduction d'un champ f".

En guise de conclusion, relative en particulier 4 I'indétermination
a laquelle nous aboutissons pour les grandeurs caractérisant les
particules élémentaires (il est clair que la méthode est générale, et
s’applique au calcul d’autres grandeurs) nous dirons:

La théorie des champs quantifiés constitue un cadre cohérent
dans lequel vient se placer la description des phénomeénes liés aux
particules élémentaires. Mais ce cadre, essentiellement constitué par
les principes de covariance relativiste et de causalité d'une part, et
par le principe d’incertitude d’autre part, ce cadre semble trop
vaste, ou plutdt incomplet. Que l'indétermination soit liée a la
fonction inhomogéne D}(x), et non aux fonctions homogenes D'd(x),
semble montrer bien que c¢'est la notion méme de particule élémen-
taire qu’il faut préciser*).

En terminant ce travail, je tiens particuliérement & exprimer ma
grande reconnaissance & M. STUECKELBERG, mon maitre, ['auteur
de la méthode suivie; ses conseils, ses critiques et ses encourage-
ments furent mappréciables.

MM. W. Pavri, M. Fierz, A. Hourier, A. KinDp et J. PIRENNE
ont bien voulu, & divers degrés, s’intéresser a ce travail; j’al parfois
largement tenu compte de leurs critiques et suggestions; qu’ils
veuillent bien accepter ici mes remerciements.

Enfin, ma gratitude va & la Commission Suisse pour ’Energie
Atomique qui s’est matériellement intéressée & mes recherches.

Geneve, Institut de Physique de 1'Université.
Lausanne, Laboratoire de Physique de I'Université.
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APPENDICE.

Notations, formules et définitions.

I. Groupe de Lorentz continu.
0 .
0a*’

Notations: #*= (T, 2t =1) (2, 4) = 8, ¥* =g,,2"y*; 0, =
0* = g** 0,.

Tenseur fondamental: g*¥ =gl =¢22=¢33=—g¥=1; ¢’ =0a=f.

Transformations de coordonnées:

identique: gt =0 2"=p0)z"=12"

infinitésimale: z** = da® -+ (6%, — dy") &’ =@ (6a*, dy") ' = ¢ ()

finie: ¥ =a" +a ' = (a" p") 2.

Opérateurs correspondants:

identique: ®0) =1
infinitésimal: @ (579 =1— Z P, 0t =@ (da", dy") =1

—ip,da*— §M;6tp "

fini : @ (v') = @ (a,, v4); v, = —a’, + 0.

Relations de Lie entre les générateurs

i[pPnp]=0 (L.1)
i[M,, M, ] = 9;,, M, + g, M}, —g,, M,,—9g,, M, (1.2)

i[P» M,,] = ¢, P,— g;wpy (1.3)

Autres commutateurs:
q;[pa’ xﬁ] = gocﬁ 1

1 [Mp X,] = g, Xy — Gy X (1.5)
Expressions des générateurs
P.= ;0 (L.6)
Mg,=L,+S,; avecL,=X,p;—X;P, (I.7)
Représentations de S,
appliqué sur un scalaire S,; % = 0 (L.8)
un vecteur S ;¢ =S, 0, S 4 % (9,0 05— 95, 0%) (1.9)

un spineur S, ud = 8,4, u®; SaﬁAB=_-;i[ya,yﬁ]_AB (1.10)
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II. Fonctions particuliéres.

1z2>1

67 (2) = {03<1 (IL.1)
6- (2) = 0+ (— 2). (11.2)
6+ (2) + 6~ (2) = 1 , (IL3)
e (2) m{ii zii ee) =L =0+ () —0- () (IL.4)
0(2) =—5 0%(2) (11.5)
6()—0p0urz:t0 fdz 26(2) = 0 (IL.6)
(= L[00F L | 00+ o (=00 (IL7)

—TT5 (&); (IL.8)
4, (x) =0, 0 (z) | (IL.9)
5'(5) =2 6() = — 2P 1 46(z); A arbitraire (11.10)

II1. Les fonctions D, ().
a) Dans Uespace temps .
Notations 0O = 0%0,, (z, z) = B2 = — T2 = r2—¢2; r = |z | (IIL.1)

2 _D(a'[e)=D. . (z"|z); _O"— D (2"[2') = D, . (' [x');
A

ox

D (2'[z") = D (2" — ") (IT1.2)
Fonctions homogénes D*™:  D° DY, D+, D-;
Equation différentielle (] — »2) D™™ = 0 (ITL.8)

Définitions et propriétés:

DO (x) = — DO (— 2); / do* 0, D° (z) =1 7 (x) hypersurface telle

qs =0 @ (IT1.4)

0 pour B2 > 0

DO (x) =T ¢ (t)%% (r—1¢}) pour R2= 0
e(t) o ody (xT)  pour R? <0 (ITL.5)
DO()cS(zc’*):O,()D(a: o) = 0 (&) (IT1.6)

DO () = 2[1) (z) — D~(x)] - (IIL.7)
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D! (z) = D1 (— ). 4= de-Rz D (z) =1 (IIL.8)
0
[MQ% HU(xR) pour B* >0
D! (z) =1—o0 pour R2 = 0 (111.9)
1 2 '
l+ETN(xT) pour R2 < 0
D1 () = 2 [D* (z) + D~ ()] (I11.10)
D+ (x) = D* (z) + + D° (2) = D~(— x) = (D~(a))* (I11.11)
D~ (z) = D1 (2) —+ D° (z) = D*(— z) = (D*{z))* (IT1.12)
Fonctions potentielles D*: Ds, D', D* D¢, D® ,
Equation différentielle (O — »2) D = — ¢ (=) (I11.18)
Définitions et propriétés:
Dt (z) = 5 & (1) D° (a) (I11.14)
1 1 %
D (2) =4 [8 (%) — 5 0+ (T%) 5 Jy ()] (II1.15)
Dt (— z) = D* () (IIL.16)
D™ (z) = D (2) + 4 DO (&) = 6+ (t) D° () (I11.17)
D (z) = D* (a) mgz)o (z) = — 6~ (t) DO (x) I11.18)

D*(x) = D* () + & D* (z) = 5 [0*(2#) D* (2) + 6~ (%) D~ ()] (I1L.19)

(
) = 1(
De(x) = D¢ (x )—~D1( )=~~[0+( ) D~ (z) + 6~ (%) D* (z)] (111.20)
Df () — i DY (z) — Do (z) = (TT1.21)
(
(

D (—x) =D (x); D* (—a) = D“(«‘L); (D (2))* = Do (x)  (111.22)
D?a(w) :E"“— [6+ (%) D, (2) + 0~ (2%) D (2)]; I11.23)
DF 5 (2) = 5 [0+ (a%) Dy () -+ 0= (a#) DT,y (1)] + 6583 6(2) (ITL.24)
b) Représentation dans Uespace de Fourier & 3 dimensions.
DO (z) = 2m)-2 " de [+ ilka) _ g~ ilka) (I1L.25)
D! (z) = 2m)-? de(k o Tilha) | =itk )] (I1L.26)

D+ () = (2n)- /dV B etitia) (I11.27)
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D- (z) = 2n)-3 / av (i) eit® (IT1.28)
(o] +oc
5. (¢) = @)t [dkexite 5(:)=@m)™" [dle™™ (IIL29)
] —%0
¢) Représentation dans U'espace de Fourier a 4 dimensions.
D () = @)% [ (dp)*ei®™ 4 (p) (I11.30)
A% (p) = 5—¢ (p*) 8 ((p, ) + #?) (I11.31)
1
A% (p) = -8 (p, p) + #?) (II1.32)
oy 1 1
4 (P) = 5w o (I11.883)
+ 6= (p 2
4= (p) = —— 0 ((p, p) + %7 (I111.34)
ret .
A% (p) =% & (p!) 5, 0. [¢ () (P p) + #¥)] (IIL.35)
44 (p) = £ 5= 85 (p, p) + #?) (I11.36)
d) Les fonctions D(x) spinorielles.
Les matrices (") a =1, 2, 3, 4
A A4,B=1,28,4
%Y L=y P =207 ()T =" (ITL.37)
représentation réelle de Majorana (5) (y*)* = (%)~ (I11.38)
Ep= &0 =— 4y (I11.39)
yra8 =24, gt Y = Sau ?’QA’B (111.40)
D4, (2" [x') = (p, 0" —x) 4", D° (2" [z"); (y, 0") = 90y *

6 =0,1,4 509 (I11.41)
D=4 (¢! [¢) = — DY 44" (/[ (ITL.42)
D" (g [3') = — DI4'4" (g’ [2") | (I11.43)
DOAHAI (mﬂ/m,) — DOAIAH (mf/x”) (111.44)
(y,0 +%)4, DM B () =0 (y,0 + %)z DP 5, (z) =

—d (z) 64, (I111.45)
Ds A" 47 (.’E”/J}’) — — sd’4” (m’/m”) (11146)

(DcAHA’ (éU”/.’B'))"'" — DaA"A’ (.’E’/il}”) (11147)
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