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Gravitationstheorie und Elektrodynamik1)

von W. Seherrer.

(21. XII. 1948.)

Einleitung.

Bei der Anwendung der Einsteinschen Gravitationsgleichungen

ist man immer noch auf den phänomenologischen Energietensor

P0P,
71 —

J Q

(2)

fi \/pg pê J

angewiesen, da es bis heute nicht gelungen ist, den Tensor Tea so zu
gestalten, dass er auch die Materiekräfte in befriedigender Weise
zum Ausdruck bringt. Nachdem es in den Jahren 1915-16 Hilbert
gelungen war, die Miesche Theorie der Materie auf die Einsteinsche
Gravitationstheorie zu übertragen, hoffte man auf eine günstige
Entwicklung. Inzwischen hat aber die Skepsis wieder überhand
genommen.

Bei einer neuerlichen Beschäftigung mit diesen Dingen habe ich die
unvermutete Feststellung gemacht, dass in den Grundlagen der
Mieschen Theorie ein Fehler steckt. Die Diskussion über die Miesche
Theorie ist also noch nicht abgeschlossen.

Der Zweck der vorliegenden Arbeit ist nun ein doppelter: Einmal
soll der erwähnte Fehler aufgedeckt werden. Weiter aber werde ich
eine neue Variante der Mieschen Theorie angeben. In derselben lässt
sich das zentralsymmetrische und statische Feld exakt bestimmen
und liefert eine endliche Selbstenergie.

*) Der wesentliche Inhalt dieser Arbeit wurde am 21. Mai 1948 der Mathematischen

Vereinigung in Bern vorgetragen.
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§ 1. Zur Mieschen Theorie.

In der Hilbertschen Fassung kann sie charakterisiert werden
durch das Wirkungsprinzip

ì / (B+ x M) y—Gdx0 dx1 dx2dx3 0 (3)

wobei die materielle Wirkungsfunktion M abhängt von den
elektromagnetischen Potentialen 0„, den zugehörigen Feldstärken

Ena
dxg dXa

und den Komponenten Gga des Masstensors, nicht aber von den
Ableitungen der Gea. Um einen Überblick über die in Betracht
kommenden Wirkungsfunktionen zu erhalten, muss man eine Basis für
das durch die Grössen @g, Fga, Gea bestimmte Invariantensystem
ermitteln. Da die Ableitungen der Gga nicht vorkommen, darf man
diese Grössen in orthogonaler Gestalt Gga òea annehmen.

Jetzt handelt es sich nur noch darum, eine Invariantenbasis für
einen Vektor 0g und einen alternierenden Tensor Fga in einem
Euklidischen Raum gerader Dimensionszahl zu finden. Zu dem
Zweck interpretieren wir Fgo geometrisch als Matrix einer infinitesimalen

orthogonalen Transformation.

i1 oo xa (4)

Diese Interpretation ist orthogonalinvariant. Nun kann man mit
den Methoden der linearen Algebra zeigen, dass ein orthogonales
Koordinatensystem existiert, in welchem nur die Komponenten

^01 — P10> ^23 —^32> ^45 -FM,

von Null verschieden sein können. Fga erhält damit als Matrix die
Gestalt

0 bt

-oi 0

F.Sa

0 b2

-b9 0

0 bn

-K 0

(5)

wobei in allen Leerstellen Nullen einzutragen sind. Die neuen
Komponenten bi resp. 0 sind einzeln invariant gegenüber Drehungen
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in den Ebenen (0, 1), (2, 3), (2 n — 2, 2 n — 1). Also darf man
durch derartige Drehungen dem neuen Vektor 0e noch die Gestalt

(0e) - (av 0; a2, 0; a„, 0)

geben. Nun betrachten wir eine Serie von Vektoren

il/ u/ m11 ;. > r 2 ;. » x s ;. '
und Tensoren

F F Fx U/il x 2/./1' -1 3/./J' * * *

die folgendermassen definiert sind:

^,'-F^0a

(6)

und

Fi ;.„ Fx„
F 2 Aß ~' -T Äa.-? txi-i

FStß FXo,FaßFßß

17)

(8)

Ihre Betragsquadrate sind

^1=^1,^;; ^ 1^;,^;,
J% ~ ^2?. X^2X > F.

2

1 LI lj2 ~~
2 2A/i J 2A,u

(9)

Führt man hier nun die spezialisierten Tensoren (5) und (6) ein
unter Verwendung der Abkürzungen

so findet man

und

a/, Bt bf,

Jx ZAt
J2 EAiBi

F1 IB, |

F2 EBt2 \

F3 27B,.»

(10)

(H)

(12)

Aus den Gleichungen (11) und (12) ist ersichtlich, dass die bis zum
Index n geführten Serien (9) eine unabhängige Basis von 2 n
Invarianten bilden.
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In der Literatur wird als Basis meist das nur für 2 n
System

(JVFV J2, J2)

angegeben. Dabei ist J2 definiert durch

4 definierte

(13)

(14)

wo F*Afl den zu F.A/i dualen Tensor bedeutet.
Bei der obigen Spezialisierung erhält man dann die Tafel

J2 A1 B1 + A2 B2Jx A1 + A2;

Fx B1 + B2; j; A1B2 + A2 B1, (15)

der man ohne weiteres die Identität

J2 + J*2^J1F1 (16)

entnimmt. Das System (13) ist also keine Basis.

Richtige Basen findet man bei Wbyl1) und Born2). Doch bin
ich nirgends auf einen Hinweis gestossen, dass die meist zitierte
Miesche Basis fehlerhaft sei. Da infolge dieses Fehlers die Miesche
Theorie nicht richtig beurteilt wird, habe ich die Sache zur Sprache
gebracht.

Aus (7), (8) und (9) erhalten wir also für 2n 4 die für die Anwendung

in der Physik in Betracht kommende Basis

Jl <*>a ®>.

J* F,x0aF,ß0ß

Fi — F, F,
2 >.ß >-ß

F, Y-F^^f^'-^^ßf

(17)

Schon Mie erkannte, dass nach den Erfahrungen an elektrischen
Feldern diejenigen Wirkungsfunktionen den Vorrang verdienen, die
nicht explizite von den Potentialen abhängen. Mie stand also nur
die eine Funktion F1 zur Verfügung, während die richtige Basis dazu
noch F2 liefert. Hieraus ersieht man den hemmenden Einfluss der
falschen Basis (13).

Raum, Zeit und Materie; 4. Aufl., Berlin 1921, S. 190.

2) Annales de l'Institut Henri Poincaré; Vol. VII, 1937, S. 180.
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§ 2. Eine spezielle Wirkungsfunktion.

Entsprechend der Schlussbemerkung von § 1, beschränken wir
uns auf Wirkungsfunktionen, die aus Fa und F2 allein aufgebaut
sind. Wir verlassen jetzt die orthogonale Schreibweise und kehren
wieder zum allgemeinen Linienelement

ds2 Gga dxg dxa (18)

vom Trägheitsindex 3 zurück.

Fj und F2 sind dann zu schreiben als

Fi=YF*ßF"X (19)

und

F2 {FiaF^Fl,ßF^ (20)

Nebenbei bemerkt wird die Übersicht etwas erleichtert, wenn man
noch die Invariante

F* ~F,IIF*"X (21)

heranzieht. Auf Grund der Definition des dualen Tensors F*ßX ergibt
sich1) ihr expliziter Ausdruck zu

„* J01 ^23 + -F02J,31+-gT03-F12 ,00,F ~ yTïï <22->

Mit Hilfe der Spezialisationen (5) und (6) des vorigen Paragraphen
kann man feststellen, dass die Identität

F2eeF12 + 2F*2 (23)

besteht.
Bekanntlich liefert das Wirkungsprinzip (3) die Maxwellschen

Gleichungen für das Vakuum, wenn man für M die Funktion Fx
wählt. Als naheliegende Verallgemeinerung ergibt sich daher der
Ansatz

M=F1 + eF2 (24)

wo e eine kleine Konstante ist, der zufolge der Einfluss von F2 nur
in der Nähe des Feldzentrums merklich wird.

Durch (3) und (24) ist die zu lösende Aufgabe vollkommen
bestimmt. Der erste in allen Fällen zu empfehlende Schritt zu ihrer

1) Pauli, Relativitätstheorie, Enzyklopädie der math. Wissenschaften, V, 19;
1920, S. 581.
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Lösung besteht darin, dass man die in B ]/— G steckende Divergenz
durch partielle Integration wegschafft und damit (3) auf die
Variationsaufgabe

ô J (Q + xM)\/^Gdx 0 (25)

reduziert, wobei abkürzend

dx dx0 dx1 dx2 dx3 (26)

gesetzt wurde und Q gegeben ist durch

Q^G^(rißri~r^ri). (27)

Nun spezialisieren wir die Aufgabe auf den statischen
zentralsymmetrischen Fall. Wir wählen zu dem Zweck das Schwarz-
schildsche Linienelement

ds2 f2 dx% - g2 dr2 - r2 (d&2 + sin2 & d<p2) (28)

wobei / und g Funktionen des Radius r sind. Für die Potentiale
haben wir zu setzen

h 0. (29)

>, (30)

0o <Z> (r) 01 02

Die Berechnung; liefert

Mf)1; F*

und es folgt aus (23) und (24)

0'2 (p'i
e7v ' (31)

wobei der Strich die Ableitung nach r anzeigt. Für Q ergibt sich
der schon für die klassische Lösung benötigte Wert

9-4(i + -^)- m
Mit

¦/- G fgr2 sin & (33)

geht also (25) nach Weglassung der Winkelvariablen und der Zeit
über in

«5 /{»("¦¦-^h-fë+'w-))''-0- <34>

l) Dabei ist eine für Polarkoordinaten notwendige Ergänzung um 2/r2 schon

beigefügt.
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Die sukzessive Variation der Funktionen /, g, 0 liefert nun die
Differentialgleichungen

4f-2'(i-F)+"'a(¥+!fe^)-0* <36»

Die Kombination

/(35)-g.(36)S-4r.^)l 0

stimmt mit der klassischen Lösung überein und liefert

/3 1, (38)

wo rechts schon die Konstante zu 1 angenommen ist, damit im
Unendlichen das Euklidische Linienelement herauskommt. Die
Gleichung (37) liefert hierauf

0' + 2£<Z>'3 A, (39)

wo ein positives A einer negativen Ladung vom Betrage A
entspricht. Wählen wir

e > 0 (40)

so wird 0' eine monoton fallende Funktion der positiven Distanz r.
Aus (39) ist schon ersichtlich, weshalb eine endliche Totalenergie

resultieren wird. Die Feldstärke 0' wird für grosse r klein von der
Ordnung r~2, wie es der klassischen Lösung entspricht, für kleine r
aber gross von der Ordnung r~213, was der Konvergenz des
Energieintegrals keinen Eintrag tun wird.

Vermittels der Kombination / • (35) + g • (36) erhält man schliesslich

wegen (38)

[r(l-/2)]' *2 (0'2 + oe0'i)r2,
und durch Integration folgt

/•

r(l~f2) C + ~ f (0'2 + oe0'i)Q2dQ. (41)
0

Stellt man sich nun auf den Standpunkt, dass die Energie rein
elektrischer Natur sei, so darf für verschwindende Feldstärken keine
Gravitationswirkung erfolgen. Nach der Form, welche Einstein der
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Gravitationstheorie gegeben hat, folgt daraus weiter, dass dann das
Linienelement Euklidische Gestalt annehmen muss. Auf obige
Gleichung angewendet heisst dies, dass aus 0' 0 muss folgen f2sl,
Somit ergibt sich „ ,in.(7 0. (42)

Führen wir noch die Abkürzung

V 0'2 + 3 s 0'*, (42)
sowie die Konstante

4 m x f W r2dr (44)
o

ein, so erhalten wir schliesslich

2 m- —- / y>Q2do

/2=1-- ~ • (45)

§ 3. Masse und Energie.

Unter der Annahme, dass die Gravitationstheorie auch für die
kleinen Energieknoten des elektromagnetischen Feldes zuständig
sei, muss die Konstante m als Gravitationsradius interpretiert werden.

Die Formel (45) zeigt, dass in grossen Entfernungen vom
Zentrum m allein massgebend ist für die Gestalt des Linienelements, da
dann das Integral beliebig klein wird.

Wir wollen nun direkt berechnen, wie m mit der Totalenergie
2 n n 00

E f ff T°]/~G drd&d<p (46)
0 Ó Ò

des elektromagnetischen Feldes zusammenhängt.
Der Energietensor Tga kann berechnet werden aus der Relation

Ò (M f-7G) \/777g Tga ÒG*° (47)
Setzen wir

d{F1i/=G) ]fC-GAtaòG<" (48)

so folgt mit Hilfe der Formel

Ô]/^G

auf Grund von (24), (23) und (22)

à]/-G ~^\r-GGoaÒG*°

Tga=(1^2eF1)Ag^^sF2GQ0. (49)
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Hier ist Ago offenbar der dem klassischen Falle e 0 entsprechende
Energietensor

A^-F^&'F^-^F^. (50)

In (49) eingesetzt ergibt dies

TQa (1 + 2 e FT) FgX G*» Fßa -±Gga(M-4e F*2). (51)

In dem von uns betrachteten Falle ist nach (29) nur eine Feldstärke
nicht Null, nämlich

Fol -0' (52)

Mit Rücksicht auf (28), (30) und (38) findet man aus (50) vorerst

A — — 0'2 /2

Weiter folgt dann aus (49) unter Beachtung von (23)

Too= 2-(<Z>'2 + 3£0'4)/2,
und somit ist

To°=y(0'2 + 3e0'4). (53)

Mit Rücksicht auf (33) und (38) folgt also schliesslich aus (46)

OO

E 2n f (0'2 + oe0'i)r2dr. (54)
ò

Führen wir dieses Integral in (44) ein, so erhalten wir für den
Gravitationsradius m die Formel

m -£- E (55)

Um von hier zu der dem m entsprechenden Masse fi zu gelangen,
muss man annehmen, dass es ungeladene Teilchen gibt, auf welche
unser Feld nur gravitierend wirkt. Dann treten die Einsteinschen
Beziehungen zwischen x und der Newtonschen Gravitationskonstanten

k, resp. zwischen m und ft in Kraft:

und
* > - fr (56)

m -£fc. (57)

7
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Aus (55) folgt hierauf die Einsteinsche Äquivalenz zwischen Masse
und Energie:

!* -%. (58)

Um nun Auskunft über die Energieverteilung zu erhalten,
berechnen wir diejenige Energie Er, welche in einer Kugel vom
Radius r um das Zentrum enthalten ist :

Er 2 n / (0'2 + 3 s 0'4) q2 dg. (59)

Zu dem Zwecke haben wir die Gleichung (39) heranzuziehen :

0' + 2 e 0's -f2 (39)

Machen wir hier die Substitution

*'(r)= *
(60)

y 2 s

so folgt

r~m-y^' (6i)

und die Berechnung liefert
OO

i<Jr~ 2\YeJ (1 +f2)2|/Ç(l + C2)
'

Für die weitere Berechnung braucht man die elliptischen Integrale
1. Gattung

o

(p= 0,1,2),

zwischen denen die Rekursion

" Tp-2 J"-1 + (2j3-l) (1 + z2f-i K 1 + ä2 • (64)

besteht. Führt man noch die Konstante

K= f -, dJ=- 2 f-^L- 2 ¦ 1,8541 (65)
J ]/z (i + z2) J y\ + u*
0 0
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ein, so findet man

-c n A3^ 18 /T7 T s 10 +11 z2
_, r 2 1 /cc\E^m\^{K~ Jo) + WT^r ]/t^| • (M)

Für r oo d. h. « 0 folgt speziell

E^8^--^. (67)
ó y2e

Der Vergleich mit (58) liefert

„c»--^-.^. (68)

In der Theorie erscheinen alle Ladungswerte als gleichberechtigt,
wie es ja auf klassischer Grundlage kaum anders zu erwarten ist.
Gemäss der Erfahrung setzen wir nun für A die Elementarladung
ein:

A=e. (69)

Da nach dem Sinne unseres Ansatzes e als universelle Konstante
aufgefasst werden muss, ist nun durch (68) die Masse fi bestimmt.
Es folgt also, dass im Rahmen des vorliegenden Ansatzes nur zwei
zentralsymmetrische Teilchen zugelassen werden können. Dieselben
haben entgegengesetzte Ladung und gleiche Masse. Alle übrigen
Teilchen müssten also andere Struktur haben oder zusammengesetzt
sein. Identifizieren wir das berechnete Feld mit einem Elektron,
so ergibt sich aus (68) und (69) der Wert von s:

2 S (- ITi— )4= 2"539 ' 10~" S1'"1 cm sec"2" (7Ü)

Führt man diesen Wert in (66) ein, so folgt

Zum Zwecke der Abschätzung beachte man die leicht zu beweisende
Relation

'•»-/ÄT-v/Ä-^- (72)

0 0

Zieht man jetzt (61) in der Gestalt

j/e |/2t- 8.T. K
_

e-

yz + z* 3 |/z"+ -23 ßci
[Tè)
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heran und setzt z 1, so folgt: 75% der Energie liegen in einer
Kugel vom Radius rx 6 • 10~12 cm. Setzt man aber z 10~2, so

folgt: 98% der Energie liegen in einer Kugel von 8-10-11 cm
Radius.

Hätten wir das Feld mit einem Proton identifiziert, so ergäben
sich für die entsprechenden Radien die Werte 3- 10~15cm und
4 • 10 ~14 cm, die aus empirischen Gründen wohl zu klein sind.

Schlussbemerkung.

In der vorliegenden Variante der Mieschen Theorie ist der
Zusammenhang zwischen Gravitation und Elektrizität ganz einseitig. Legt
man nämlich ein Euklidisches Linienelement / g 1 zugrunde,
so ergibt sich nach (39) genau das gleiche elektrostatische Potential
und nach (59) die gleiche Energieverteilung. Die Struktur des
Teilchens erscheint also im Wesentlichen als eine rein elektrische
Angelegenheit. Die Gravitation dagegen erscheint als passive Reaktion
des metrischen Feldes, die lokal nach (45) wohl bis zur Entartung
des Linienelements / 0, g <x> führt, in grösseren Abständen aber
fast unmerklich ist. Es liegt also ein exaktes Modell für die klassischen

Einsteinschen Gravitationsgleichungen (1) vor.
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