Zeitschrift: Helvetica Physica Acta

Band: 21 (1948)

Heft: VI

Artikel: Koeffizienten der inneren Konversion für magnetische Multipolstrahlung

Autor: Schafroth, R.

DOI: https://doi.org/10.5169/seals-111926

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Koeffizienten der inneren Konversion für magnetische Multipolstrahlung

von R. Schafroth (ETH., Zürich). (16. X. 1948.)

Uber Koeffizienten der inneren Konversion existieren eine ganze Anzahl theoretischer Berechnungen; insbesondere haben Dancoff und Morrison¹) dieselben für K-Elektronen im Falle von Kernen kleiner Ladung ($Z \leq 40$) und weicher γ -Strahlung ($\hbar \omega \ll m_0 c^2$), d.h. im unrelativistischen Grenzfall, für beliebige Multipolstrahlung berechnet. Dabei ergibt sich in ihrer Näherung für den Konversionskoeffizienten magnetischer Multipolstrahlung exakt Null. Dies beruht darauf, dass eine magnetische 2¹-Pol-Strahlung einen Drehimpuls l und eine Parität $(-1)^{l+1}$ trägt, während Elektronen den Bahnimpuls l mit einer Parität $(-1)^l$ verbinden: Übergänge können also nur bei Ankoppelung des Spins stattfinden. Es dürfte ein gewisses Interesse haben, durch eine bessere Näherung, welche den Spin in Rechnung zieht, einen formelmässigen Ausdruck für diesen Koeffizienten zu gewinnen: das ist das Ziel dieser Arbeit. Es wird erreicht, indem ausgehend von der unrelativistischen Wellenmechanik durch störungsmässige Berücksichtigung der Spinkorrektion ein Anschluss an die Diracsche Theorie hergestellt wird, im Sinne einer Entwicklung nach Potenzen von $Z\alpha$ ($\alpha = e^2/\hbar c =$ 1/137), nach dem bekannten Verfahren von Sommerfeld²)³). Die Dancoffsche Näherung erscheint dann als nulltes Glied dieser Entwicklung, welche hier bis zur zweiten Ordnung getrieben wird.

Grundsätzlich kann unsere Methode nicht nur einen Ausdruck für den Konversionskoeffizienten magnetischer Multipolstrahlung liefern, sondern auch Korrekturen der Grössenordnung $(Z\alpha)^2$ zur Dancoffschen Formel, deren Genauigkeit damit noch bei Z=40 von ca. 10% auf ca. 1% erhöht würde. Leider zeigt es sich jedoch, dass die Berechnung dieser Korrekturen auf hochkomplizierte, nicht explizite auswertbare transzendente Ausdrücke führt, deren numerische Berechnung sich wegen der der Methode innewohnenden Beschränkungen (s. u.) kaum lohnen würde.

Für die Berechnung der Konversionskoeffizienten wird in üblicher Weise der Kern durch einen Multipolstrahler ersetzt. Der Sinn dieser Schematisierung ist der, dass aus den gemessenen

Koeffizienten durch Vergleich mit den auf diese Weise gewonnenen theoretischen Formeln Rückschlüsse auf die Anregungsstärken der verschiedenen Multipolordnungen in der γ -Strahlung gezogen werden können, was wiederum Aussagen über Symmetrien im Kernbau, isomere Zustände usw. gestattet.

Allgemeine Ausdrücke für das Feld eines Multipolstrahlers sind von Heitler²) angegeben worden. Sie enthalten Hankelsche Funktionen, die die explizite Ausrechnung der auftretenden Integrale verunmöglichen. Für weiche γ -Strahlung indessen, für die der Radius der K-Schale klein ist gegen die Wellenlänge, kann man leicht einsehen, dass man von den Potentialen nur den im Ursprung singulärsten Anteil zu berücksichtigen braucht, da die übrigen einen Beitrag geben, der um einen Faktor $\eta = \hbar \omega / m_0 c^2$ kleiner ist. Deshalb beschränken wir unsere Rechnungen auf γ -Linien kleiner Energie, obschon das Sommerfeldsche Verfahren an und für sich gestatten würde, die Massenveränderlichkeit exakt zu berücksichtigen und daher für beliebig hohe Energien gültig bliebe.

In der erwähnten Näherung werden die Potentiale eines magnetischen Multipols (in der für diesen Fall günstigsten Eichung: $\overrightarrow{A} = 0$):

$$\begin{split} \varPhi &= 0 \\ A_z = e^{-i\,\omega\,t}\,\frac{p_l^m\cdot Y_l^m\,(\vartheta,\varphi)}{r^{l+1}} \\ A_x \pm i\,A_y = &-e^{-i\,\omega t}\cdot\frac{1}{m}\cdot\sqrt{(l\mp m)\,\left(l\pm m+1\right)}\cdot\frac{p_l^m\cdot Y_l^{m\pm 1}\,(\vartheta,\varphi)}{r^{l+1}} \end{split} \label{eq:definition}$$
 (1)

Die ausgestrahlte Intensität ist:

$$N = \frac{1}{2\pi \hbar} \cdot (p_l^m)^2 \cdot \left(\frac{\omega}{c}\right)^{2l+1} \frac{2^{2l+1}}{(2l!)^2} \frac{l(l+1)}{m^2} \text{ Quanten/sec.}$$
 (2)

Für die Elektronen verwenden wir die sich aus dem Sommerfeldschen Verfahren ergebenden Eigenfunktionen erster Näherung in Zα unter Vernachlässigung der Wechselwirkung mit den übrigen Elektronen, was für leichte Elemente eine wohl legitime Vernachlässigung ist. Diese Eigenfunktionen sind (vgl. ³)):

$$K$$
-Schale:

$$\begin{aligned}
&\psi_{0} = (\Psi_{0}^{0} + \overrightarrow{\Psi}_{0}^{1} \cdot \overleftarrow{\alpha}) u_{0} \\
&\Psi_{0}^{0} = N_{0} e^{-ar}, \ \overrightarrow{\Psi}_{1}^{0} = \frac{i}{2} N_{0} \cdot Z \alpha \cdot \overleftarrow{r} e^{-ar} \\
&N_{0} = \sqrt{\frac{a^{3}}{\pi}}, \qquad a = Z \alpha \cdot \mu, \qquad \mu = \frac{m_{0} c}{\hbar}
\end{aligned} \tag{3}$$

wo

à der Stromoperator der Diractheorie,

 u_0 ein Spinor zum Impuls Null und positiver Energie.

Kontinuierliches Spektrum: Am einfachsten lässt sich die Eigenfunktion anschreiben, die einer asymptotisch ebenen Welle mit Wellenvektor \bar{k} entspricht:

$$\begin{array}{l} \psi \quad (\vec{k}) = (\mathcal{Y}^{0} \ (\vec{k}) + \overline{\mathcal{Y}}^{1} \ (\vec{k}) \cdot \vec{\alpha}) \ u \ (\vec{k}) \\ \mathcal{Y}^{0} \ (\vec{k}) = N_{k} \ e^{i \, \vec{k} \, \vec{r}} L_{-in} \left[i \ (kr - \vec{k} \, \vec{r}) \right] \\ \overline{\mathcal{Y}}^{1} \ (\vec{k}) = N_{k} \cdot \frac{Z \, \alpha}{2 \, n} \left(\frac{\vec{r}}{r} - \frac{\vec{k}}{k} \right) e^{i \, \vec{k} \, \vec{r}} \cdot L_{-i \, n} \left[i \ (kr - \vec{k} \, \vec{r}) \right] \end{array}$$
 (4)

WO

$$N_{\,k} = rac{1}{2\,\pi}\,\,\sqrt{rac{n}{1-e^{-2\,\pi\,n}}} \;, \qquad n = rac{a}{k}$$

 $u(\vec{k})$ ein Spinor zum Impuls \vec{k} und positiver Energie.

 $L_r(x)$ die überall endliche Lösung der Laguerreschen Differentialgleichung zum Parameter r:

$$L_r(x) = \sum_{\nu=0}^{\infty} (-1)^{\nu} {r \choose \nu} \frac{x^{\nu}}{\nu!}.$$

Für die explizite Ausrechnung ist man allerdings genötigt, zu Drehimpulseigenfunktionen überzugehen; dies geschieht mittels der Entwicklung (vgl. 3)):

$$e^{i\,\overrightarrow{k}\,\overrightarrow{r}}L_{-i\,n}[i\,(k\,r-\overrightarrow{k}\,\overrightarrow{r})]\tag{5}$$

$$= \sum_{\lambda=0}^{\infty} \frac{\Gamma(1+\lambda-in)}{2 \lambda! \Gamma(1-in)} e^{-ikr} (2 ikr)^{\lambda} F(1+\lambda+in, 2 \lambda+2; 2 ikr) \cdot P_{\lambda}(\cos \theta)$$

Mit diesen Hilfsmitteln ist die Übergangswahrscheinlichkeit pro Zeiteinheit des Elektrons aus der K-Schale ins kontinuierliche Spektrum gegeben durch

$$W = \frac{2\pi}{\hbar} \int_{\omega} \sum |\langle 0 | \Omega | \tilde{k} \rangle|^2 d\omega \cdot k^2 \frac{dk}{dE}$$
 (6)

wo die Integration über die Richtungen des \overline{k} -Vektors im Endzustand läuft, Σ die Summation über die Spinrichtungen im Endund im Anfangszustand bedeutet (die K-Schale enthält ja ein Elektron für beide Spinrichtungen!) und für k der aus dem Energiesatz folgende Wert einzusetzen ist. Ferner ist:

$$(0 \mid \Omega \mid \vec{k}) = e \int d^3 r \, (\psi_0^* \, \overleftarrow{\alpha} \, \overrightarrow{A} \, \psi(\vec{k})). \tag{7}$$

Den gesuchten Koeffizienten der inneren Konversion erhalten wir daraus durch Division durch die Anzahl (2) der pro sec emittierten Quanten.

Da für unsern Fall das Matrixelement nullter Näherung verschwindet, wird das niederste Glied proportional $(Z\alpha)^2$ und gegeben durch das Quadrat des Matrixelementes 1. Ordnung:

$$\begin{split} \left(0\left|\Omega_{\mathbf{1}}\right|\,\overleftarrow{k}\right) &= e\int d^{3}r\,\big[u\,(\overleftarrow{k})^{*}\,\varPsi^{0}\,(\overleftarrow{k})^{*}\,(\overleftarrow{\alpha}\overrightarrow{A})\,\,\overleftarrow{\alpha}\,\overrightarrow{\varPsi}_{0}^{1}\,u_{0}\big] \\ &+ e\int d^{3}r\,\big[u\,(\overleftarrow{k})^{*}\,\overleftarrow{\alpha}\,\overrightarrow{\varPsi}^{1*}\,(\overleftarrow{k})\,\,(\overleftarrow{\alpha}\,\overleftarrow{A})\,\,\varPsi_{0}^{0}\,\,u_{0}\big]\,. \end{split}$$

Beachten wir noch, dass $(\vec{a} \ \vec{a}) \ (\vec{a} \ \vec{b}) = (\vec{a} \ \vec{b}) + i \ (\vec{\sigma} \cdot \vec{a} \times \vec{b})$, wo $\vec{\sigma}$ der Spinoperator ist, so wird:

$$\begin{array}{l} \text{mit:} \\ V = \int d^3r \ (\Psi^0(\vec{k})^* \vec{A} \cdot \vec{\Psi}_0^1) \\ W = \int d^3r \ (\vec{\Psi}^1(\vec{k})^* \cdot \vec{A} \cdot \vec{\Psi}_0^1) \\ \vec{V} = \int d^3r \ (\vec{\Psi}^1(\vec{k})^* \cdot \vec{A} \cdot \vec{\Psi}_0^0) \\ \vec{V} = \int d^3r \ (\vec{\Psi}^0(\vec{k})^* \vec{A} \times \vec{\Psi}_0^1) \\ \vec{W} = \int d^3r \ (\vec{\Psi}^1(\vec{k})^* \times \vec{A} \cdot \vec{\Psi}_0^0). \end{array}$$

Damit schliesslich:

$$\sum |(0|\Omega_1|\vec{k})|^2 = e^2 \{|V+W|^2 + |\vec{V}+\vec{W}|^2\}$$
 (8)

Es lässt sich nun relativ leicht zeigen, dass V und W verschwinden, hingegen ist die Berechnung von \overline{V} und \overline{W} sehr langwierig und mühsam. Auf ihre Wiedergabe möge daher verzichtet und nur das Resultat angeschrieben werden:

Der Koeffizient der inneren Konversion für magnetische 2¹-Pol-Strahlung ist:

$$\begin{split} \beta_{l} &= \alpha \cdot (Z\alpha)^{2} \cdot \left[\Gamma \left(l + \frac{1}{2} \right)^{2} \right] \frac{4^{2} \, l}{(2 \, l + 1) \, !^{2}} \cdot W_{l} \cdot \frac{n^{4}}{1 - e^{-2 \, \pi \, n}} \cdot \frac{1}{(1 + n^{2})^{l}} \cdot \left(\frac{2}{\eta} \right)^{l + 1} \times \\ &\times \left\{ \frac{l}{2 \, l + 1} \left[\frac{D_{1}^{2}}{(1 + l)^{2} + n^{2}} + \frac{E_{1}^{2} + F_{1}^{2}}{1 + n^{2}} + 2 \, \frac{D_{1} E_{1} \, (1 + l - n^{2}) + D_{1} F_{1} \, (2 + l) \, n}{[(1 + l)^{2} + n^{2}] \, (1 + n^{2})} \right] + \\ &+ \frac{l + 1}{2 \, l + 1} \left[\frac{D_{2}^{2}}{l^{2} + n^{2}} + \frac{E_{2}^{2} + F_{2}^{2}}{1 + n^{2}} + 2 \, \frac{D_{2} E_{2} \, (l - n^{2}) + D_{2} F_{2} \, (l - 1) \, n}{(l^{2} + n^{2}) \, (1 + n^{2})} \right] \right\}. \end{split} \tag{9}$$

Dabei ist:

$$D_{1} = -\frac{n-1}{2 n^{2}} \left[(2 l+1) - \frac{(2 l+1)!}{4^{l} W_{l}} (1+n^{2}) (1+2 n^{2} (l+2)) G_{l} \right]$$

$$E_{1} = -\frac{1}{n^{2}} \frac{1}{l (l+1)} \left[l^{2} - \frac{2 l!}{4^{l} W_{l}} (l^{2}+n^{2} (2 l^{3}+3 l^{2}+l+1)) (1+n^{2}) G_{l} \right]$$

$$F_{1} = +\frac{1}{2 n} \frac{1}{l+1} \left[(2 l+1) - \frac{(2 l+1)!}{4_{l} W_{l}} (1+2 n^{2} (l+3)) (1+n^{2}) G_{l} \right]$$

$$(10)$$

Koeffizienten der inneren Konversion für magnetische Multipolstrahlung. 503

$$\begin{split} D_{2} &= + \frac{n-1}{n^{2}} \frac{1}{l+1} \left[l^{2} (2\,l+1) - \frac{(2\,l+1)!}{4^{l}\,W_{l}} (l^{2}+n^{2}) \, (1+n^{2}) \, G_{l} \right] \\ E_{2} &= + \frac{1}{n^{2}} \frac{1}{l+1} \Big[2\,\,l^{2} - \frac{2\,l!}{4^{l}\,W_{l}} \left(2\,l^{2}+n^{2} (1-3\,l-2\,l^{2}) \right) (1+n^{2}) \, G_{l} \Big] \\ F_{2} &= + \frac{1}{2\,n} \frac{1}{l+1} \left[(2\,l+1)^{2} - \frac{(2\,l+1)!}{4^{l}\,W_{l}} \left((2\,l+1)\,l+2\,n^{2} \, (1+3\,l+2\,l^{2}) \right) (1+n^{2}) \, G_{l} \right] \end{split} \tag{11}$$

und

$$W_{l} = \left| \frac{\Gamma(1+l+in)}{\Gamma(1+in)} \right|^{2} = (1+n^{2}) (4+n^{2}) \dots (l^{2}+n^{2}) . \tag{13}$$

Die hypergeometrische Reihe in (12) bricht wegen des negativ ganzen Index (-2l) ab, so dass sie elementar auswertbar ist. Es gilt für V_l folgende Rekursionsformel:

$$V_{l+1} = V_l \cdot \frac{l+2}{l+1} (1+n^2) + \frac{2^{2l+1}}{(2l+2)!} \frac{l \cdot W_l}{1+n^2}$$
 (14)

mit

$$V_0 = 0, V_1 = 0$$

(Dieses V_i ist dasselbe wie in der Arbeit von Dancoff)).

Ferner sei nochmals an die Bezeichnungen erinnert:

$$1/a = ext{Radius der } K ext{-Schale: } a = Z lpha \ \mu, \ \mu = rac{m_0 \ c}{\hbar}$$
 $n = a/k = Z lpha/\sqrt{2 \ \eta - (Z \ lpha)^2} \ (ext{Energiesatz})$ $\eta = rac{\hbar \ \omega}{m_0 \ c^2} = rac{\gamma ext{-Energie}}{m_0 \ c^2}.$

Die Formel ist gültig:

- 1. Für kleine bis mittlere Z: der relative Fehler ist $\sim (Z\alpha)^2$, da man sich leicht überlegen kann, dass keine Glieder in $(Z\alpha)^3$ auftreten.
 - 2. Für $\eta \ll 1$: der relative Fehler ist $\sim \eta$.

Für Abschätzungen wird also jedenfalls die Formel brauchbar sein bis $Z \lesssim 60$, $\hbar \omega \lesssim 100$ keV.

Zum Schlusse möchte ich Herrn Prof. Fierz, der diese Arbeit anregte, sowie Herrn Prof. Pauli für ihre Unterstützung und viele wertvolle Ratschläge meinen höflichsten Dank aussprechen.

Zürich, ETH.

LITERATUR:

- 1) Dancoff und Morrison, Phys. Rev. 55, 122 (1939).
- ²) Sommerfeld und Maue, Ann. d. Phys., 5/22/7, 629 (1935).
- 3) Sommerfeld, Wellenmechanik, S. 408ff.
- 3) Heitler, Proc. Camb. Phil. Soc., 32, 112 (1936).