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On the Magnetic Moments of the Neutron and Proton
by J. M. Luttinger!), ETH., Ziirich.
(14. X.1948.)

Zusammenfassung: In dieser Arbeit wird das magnetische Moment eines Nu-
kleons berechnet fiir die neutrale, geladene und symmetrische pseudoskalare
Mesonentheorie. Die Nukleonen werden durch die Lochertheorie beschrieben, so
dass die Rechnung vollstindig relativistisch ist. Die iiblichen Divergenzen werden
durch eine vom Verfasser angegebene Methode?) vermieden und — wie beim
Electron — werden alle Resultate endlich. Die magnetischen Momente der Nukleo-
nen lassen sich, in der ¢g2-Niherung, durch geschlossene Formeln darstellen.

A 1. Introduetion.

Is 1s the purpose of this paper to show that a method previously
developed?) for calculating the radiative correction to the g-factor
of the electron may be extended to calculation of the g-factors
of the neutron and proton in meson theory. For concreteness we
have choosen the case of pseudoscalar mesons. Within the frame-
work of this theory there are still two types of coupling possible?):
that in which a pseudovector is constructed out of the meson
field, and that in which a pseudoscalar i1s constructed. It may be
shown, however, by simple generalization and correction of a proof
due to Dyson?) that the two theories will yield identical results
for all the magnetic moments calculated in this paper. We shall
thersfore only give the calculation for the pseudoscalar type of

1) National Research Fellow.

%) J. M. LurTiNGER, Phys. Rev., 74, 893 (1948). Henceforth cited as L

8} N. KEmMMER, Proc. Roy. Soc., A 166, 127 (1938). .

Y) F. J. Dyson, Phys. Rev., 73, 929 (1948). Dyson drops the terms quadratic
in the coupling constant on the grounds that they are without physical signifi-
cance. Actually these terms play an essential role in making the two types of
coupling equivalent. The same proof shows that the nuclear forces are identical
in the ¢g® approximation. Direct calculation verifies this and shows that the inter-
action terms quadratic in the coupling constant remove the 1/r® singularity in
the forces, and thus possibly allow a ground state for the deuteron. These forces,
however, are not at all static in nature and cannot be applied to calculate the
ground state of the deuteron. Similar conclusions have heen reached independ-
ently by Dr. L. vax Hove (unpublished). I am grateful to Dr. vax Hove for
a valuable correspondence on this point.
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coupling, as it is considerably simpler in structure. As a check on
the algebraic work we have also carried out the calculations for the
pseudovector coupling, and of course obtained the same results.
It may be mentioned that it is the pseudovector type of coupling
which has usually been discussed in connection With the meson
theory of nuclear forces.

In handling the heavy particles we have used hole theory throug-
hout, as it represents the only consistent relativistic theory for
particles of spin one half. That i¢, we have taken the neutron
and the proton to be quantized fields which obey Fermi-Dirac
commutation relations and the Dirac equation without the pre-
sence of “Pauli terms” —1it is just the hope of meson theory that
it will account for the existence of such terms.

Three types of pseudoscalar meson field have been considered:
neutral, charged and symmetric. From the point of view of com-
parison with the experimental facts perhaps only the latter is of
interest, the nuclear forces generally being assumed to be charge
independent?). However, for completeness the other two cases are
included.

IL. Neutral Theory.

For this case the meson field will only yield an additional magne-
tic moment for the proton—the magnetic moment of the neutron
remaining zero. The Lagrangian density is given by?).

L =L, +Ly+L +L" (1)
1 0 .
Ly~ — v (For + o7 —iedy) + MB)y,

1 0P
L= ((5¢) = 7 @) — 2 9?)
L' =—1V4nig ("P; B vs Pw,)
L = —2mg? 2[y} 0 y) - (W0 95) — (¥ 75 ¥5) (V575 90)]

In these equations 4, is the vector potential of an external homo-
geneous magnetic field, y, the (quantized) proton wave function,
«, # the well known Dirac matrices®), ¢ the (four rowed) spin ma-

1) This charge independence has recently been questioned. See J. M. Brarr,
Phys. Rev., 74, 92 (1948). Blatt’s results may, however, be dependent on his
special assumptions concerning the potential.

) We have used natural units, » = ¢ = 1. M is the nucleon mass, u the meson
mass,

3) The specific representation which we use, however, has the usual representa-
tions of «, and «, interchanged. Cf. I, appendix.



On the Magnetic Moments of the Neutron and Proton. 485

trices, y5 = 1o, %, o, and g the coupling constant. The number 4
which appears in L'" is an arbitrary constant. The presence of this
term corresponds to the fact that one may get different versions
of the pseudoscalar theory by adding an invariant term quadratic
In the coupling constant (see Kemmer, op. cit.). The value of A
cannot be fixed a priori, but we shall see that L' gives no contri-
bution to the magnetic moment and therefore this arbitrariness is
in no way disturbing for our calculations.

Using this Lagrangian density it is an easy matter to find the
Hamiltonian density. |

H=H,+H,+H + H" (2)
Where

H, = (-7 —iedy) + MB) v,

Hy =5 (a2 + (¥ 9)? + p? &9

H' =yamig (y, Bys Dy,)

H" =27 g2 2[(v,0v5) (¥ 0 ¥5) — (¥5 V5 ¥5) (Y375 ¥0)]-

To carry out the quantization!) we write?):

Yr :Za’n Yr

The p, are the solutions corresponding to the energy £, of the Dirac
equation in the presence of an homogeneous external field (cf. I,
appendix). The quantities a, and «, satisfy the commutation rules
of Fermi-Dirac and EinsTrIN-Bose particles respectively, i.e. all

* *
Ay Qp + Qpr Qp = Oy
&

p; am == 51?1,1

*
oy &

p &

other commutators being zero. w, represents the energy of a free
meson, , = )/ u2+ p2.
+

1) As a general reference for the methods of quantization used here, see G. WENT-
ZEL, Einf. in die Quant. Theorie der Wellenfelder, Franz Deuticke, Wien (1943).

%) Our solutions are normalized in a large box of volume V. However, since
in all end results the quantity V drops out, we simply put it equal to 1.
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Substituting in the Hamiltonian we obtain:
=2 anan B,
= 2 Oy Oy Wy

(p)

= V4 m g ZZ& a, VQ + C. C.

nn P 2 w,
7 * *
H" =2=n 92 A 2 Ay Ay Oy, Ay -

m, m’
where

D= [ % (yk Bys va) e

Ry = [ 43 2[(90 0 90) (450 9o) — (0F¥5 ) (075 9)].

Proceeding exactly as in the case of the electron, we calculate
the energy of one proton in a state “m’ (and no mesons present),
to terms proportional to the square of the coupling constant. This
means calculating the mean value of H" for this state, and perfor-
ming second order perturbation theory with respect to H’. The
method is strdightforward and proceeds exactly as in I. The results
are:

E=E +E" (3)

1 2

L PR PR

En>0

]Q;}:M l Q p) + Q(p)*Q(p)

- +
E,<0 wp+JEnf+Em[ pr (up

E'" tzngzl( ZMZ)RmmerQngz/l Z - N

\Ep>0 En,<0 Ep,<0

The characteristic minus signs which arise in the summations over
negative energies come from the use of hole theory, and the defini-
tion of the true energy as the energy of the particle plus vacuum,
minus the energy of the vacuum.

To make use of the method of I, it is now necessary to specialize
the state ““m’’. As was there shown, if we take ““m” to be tha
solution of the Dirac equation in which the energy 1s simply M,
then any infinities in the mass or charge of the electron will not
effect the magnetic moment. This means that simply by developing
the quantity E in a power series in H, (external field) the linear
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- term in H, will converge and will give us directly the change in the
magnetic moment of the nucleon. This expectation is borne out
by the detailed calculation, from which one may conclude that
in the pseudoscalar theory 1) all the infinities are simply mass and
charge infinities, just as in electrodynamics.

With this choice of state the evaluation of the matrix elements
simple, and we shall only quote the results?):

slmmen)  (ma )]
—_ 2 i il T M) En(En+M) _E_n_ =&
EQZ 2;:,[ B,to,—M | Btw,~M |wl?

<ss (M = sl | (4)
where

E,=1M2+p2+2e Hyn
+

£ iflir Pe®
2eH,

and (M — — M) means that the same function of — M is to be
constructed.

,mﬂggzzz( ﬂ+1+M) +En+M_E’ﬂ—M)

E z,
Tz, Ps =0 n
— M — M) (5)
Simplification gives
1| & 1 ¢
B=—ag X 3 - 2ol -2 (6)
re > 1 1
B =(2M)(8H0)lg222(ﬁ+'+E). (7)
Dy n=0 n+1 n

In (7) we have replaced the summation over p, by 2H° , which
corresponds to keeping the particles present within the normali-

1) VILLARS (in unpublished calculations) has shown that even with this special
state the magnetic moment of the nucleons diverges for the vector theory—with
tensor coupling—which seems to indicate that in this version of the vector meson
theory there are infinities in addition to the mass and charge terms. This result,
incidently, prevents the calculation of the magnetic moments on the basis of a
MpLLER-ROSENFELD mixture.

The other version of vector meson theory (vector coupling, similar to coupling
of electron to the electromagnetic field) has been investigated and found to give
convergent magnetic moments.

%) The calculation involves an integration over Hermite polynomials which has
been carried through in I.
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zation volumel). Let us first calculate E’’. To terms linear in H,

we have
B’ —=2MeHyAg? 22(“,"'50)

The EvLER sum formula

Zf(n [f do + L2 ..

provides an expansion in powers of H,. Keeping only the linear
terms one obtalns

E" =2 M (¢H,) Agzz{fwd”(;“ )+ ]"F"};
Ps 0 " "’

n

The first term is independent of H,, and represents an infinite self
energy. Dropping this, we get for the terms linear in Hj:

E" = 2M (eHy) 1g? ¥ ([El]n=0_ ¢H, /:1 dn) :
Ds " 0 &

However,
’ 1
[ansto-[2)..

E" = 0. (8)

and therefore

Returning now to the discussion of E’, we make use of the iden-
tity

BN 1
(wﬂ wp+En— JI/I)

” 1 1 £r

Defining a quantity (Cf. I)

1 1
) =, om0
(n—&)?

=fE+(n—& (&) +—5—F"(&+ -

1) BETHE-SOMMERFELD, Hand. der Phys., XXIV, 2, page 478, Julius Springer,
Berlin (1933).
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B=ag X 3 (10 +m—8 7+ 5521+ ) e
! — (M ——M)

%ﬂgzj( )45 1)+ — (M= M),

The first term of this expression is independent of H, and repre-
sents a self energy of the proton. We shall therefore drop it along
with the remainder terms in the expansion, the latter representing
higher powers of H, than the first. Therefore, for the purpose of
calculating the magnetic moment we have

B =mng 25 " (8) — (M —— M). (10)

Carrying through the indicated differentiations one obtains

) mg? (el (eH e 3 = -
B = - E(Pﬁ- P LQZ(QM T e@re—me T (gm}@
o — (M ——M). (11)

ere

Q=yYM2+p?, o=)u+p?.
+ +

Noting the fact that the factor multiplying p2 4 p? in (11) is a
function of p2 only, so that we may replace p2 +p2 by (%) p3,
we get

ol ;‘%ﬂtﬂ (M) X p? 1
P

3 1 6 (w+ Q) 2(3 (w+ Q)%+ )]
Q(w+2)2-M2) " Qo+ 2)2—M22 ' (0+2)2-M2)3 |°

Finally, we replace the sum by an integral

(Z (=) fa2)

and carry out the angle integration:

, PeH)M [ p
E —*ﬁa—f’—fdpb—
0

[ - B 6 (w+ Q) _3_2(3(w+!2)3+M2)]. 12)

£2° ((w+Q)2_M2) + 0 (o + 2)2 —M?)2 ((w+_Q)2_M2)3
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The integral in (12) is elementary, as may be seen by introducing
the new variable 2z, defined by 2 + w = )/z. The result is

. g% (e Hy) 2 6% (3— 62)
E,- 7 ﬁ-(uzaz V_(______ cos™1 5 —2 (1 —8%) 62 log 5)
where ¢ 1s the ration of meson to proton (or neutron) mass.
0B, g (1 & %(3-6%cos 12 (1 52) :
M _—bgfz: B n (4 T 2|/4‘T52 | log 6) (13)

in units of the nuclear magneton.

ITI. Charged Theory.

The Lagrangian density is given by

Li=L,+ Ly+ Lyc+ L, + L, (14)
Here L, is defined as above, while
Ly =—vk (*%%JF%M'V + Mﬁ)w
Lyo=—(%5:-) (52) — (P®* +ie A, @%)- (7 D—ie A D) — p2@* b
L/ =—V8aigl(y; Bys D yy) + (¥ Bvs P* y,)]

L) =47 g®>i[(y,0 vy) (vy 0o vo) — (v, ¥s ¥x) (¥Wy Vs ¥)
+ (vx 0 o) (vp 0 vx) — (i V5 o) (W5 Vs ¥a)]

py 1s the (quantized) wave function of the neutron, @ the char-
ged meson field. The term L, gives a contribution (— L") in the
Hamiltonian density. Just as in the case of neutral mesons this
term will give no contribution to the magnetic moment, and in
what follows we shall drop it entirely. We then obtain for the
Hamiltonian density

H, =H,+Hy+ Hyo+ H,/
Hy =y iV +MB) yy (15)
Hyo= n* nt(F D*+ie A, ®%)- (P D — ie Ay D)+ u? D* &

H' =—L,.
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We now carry through the quantlzatlon by means of the relation-
ships

Y= 2 bn L2

== 2 Uy Wy

b = %t ﬁz
;’ 2 @, (16)

n* 2*1;2 ]/é( — B)) ..

. 7
v, are solutions of the Dirac equation in the presence of an
homogeneous magnetic field, v, are solutions of the field free Dirac

equation (corresponding to the energy E,), and the @; are solutions
of the KLEIN-GorDON equation in the magnetic field. The quanti-
ties ¢; are the corresponding (positive) frequencies, 1e

(7 —iedy)?— u?) &, = 2 B, (17)

The solutions of (17) are well known?). One finds that I is given by
an integer N = 0 and two momenta ks, ky:

i e (eH )1./4 e k
D, = ¢t ¥ k) g=s H (1) U4 2N(;2 YNt 1 = VeH, (‘B —H )
= Vp2+ k2 +2e Hy (N + 15) .

The quantities Hy are the ordinary Hermite polynomials.

The quantities a,, b, satisfy Frrmi-Dirac commutation rules,
the quantities «;, f; EinsTEIN-BoSE ones. Using (16) we obtain

ZZa:anEn
Hy = >'b; b, B,
HMO—Z(“I o + B B) &

H, ~_|/4mgg_a b T, (a4 B7) +c. c. (18)

Efd%(%’iﬁys@ﬂ?)m)-

It is now necessary to calculate the energy of a neutron or proton
in the state “m”, where ““m’ is again the special state which avoids
the divergencies in the mass and charge. This choice is necessary

1) BETHE-SOMMERFELD, Hand. der Phys., XXIV, 2, page 478, Julius Springer,
Berlin (1933).
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here only in the case of the proton: for the neutron (since its energy
1s always independent of H,) any state would do. We calculate
with the state “m”, however, because 1t 1s mathematically the
simplest state to handle. Straightforward second order perturbation
theory then leads to the result (K¢, K% being the corrections to the
energy of the neutron and proton respectively):

e 2 1 IT l . lTnmE
By=—dag2ry LZE +e— O EZ B rera) Y

=1 >0

1 70,2 | B :
By = —dag ¥ — 2_-__% - mml 4 (20
NP S R atm L
Calculation of the matrix elements gives
EG=—2ag® )] Z
{ 2e H,(n+1) 7 i e Py® }
n+3f2En+1 (E'n-q-l_f'M) (Fn+1+€n+3 2_‘M) 8n+1/2E'n (En+M) (En+6n+1/2_ M)
— (M — —M). (21)
Ep=-2mg 3 3
p N=0
Pt ps? Ps* es &N _
{(Q+£N+1/2~—M) +(Q+£N+1/2—M)}Q(Q+M) N! (M ——M). (22)
E,=YM?+p2+2eH,n
+
en=)pt+p2+2eHyn
+
Q- yIEEp
P12+}"2
§ = 2eH, -
Let us first calculate EY,.

_ 2€H p3 +2€H n . Z\/I— __le
E“ 2?[9 22{n+1’2 E ntM)(E, tEpi1a— M)} ( i ).
E M
H,) M — M).
g (e 237”_20{ Ens1/2 B (B +8n+1/2"M)} (M —~ M)

oo

*eHy) 3 3 5 E+en+1,2—M) — (M — — M),

P3 n=240 n

1 1 e H
=g (QHo)Z Z{Eﬂ (B, +e,—~ M) E,(E,+&,— M)? 28:}

Pa n=20

+0H) — (M — — Mp).

2
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Using once more the EULER sum formula used in the evaluation
of (7), and dropping self energy terms and those which are propor-
tional to the square of the field strength, we get

Ey=¢? (GHO)Z{_;_ [En(Eﬂjsan) ]n=0

Vs

el ~ 1
- fd" Enen(En+san)2}"(M_>“M)'

e H 1 1
=9 5, fdp3{'2‘[En(En+sn M)]n=o
el - 1 \
- —2"p'f o By (Byte,—ME| (M — — M).
0

The second integral may be considerably simplified. Let #? = 2 eH n
w=VuTEpt, @Vt +p%, pP=pd+r?, then

r F e H ~ ~ 1
f dp3fdn Ensn(En+z‘n—M)2 zfdpsf'rdrgw(mgqmz
— 00 0 —oo

p2
fd3 +Q M)? Zfdp w2 (w+ 2-M)?2

p*
%_/dp 2(w+2-M)2°

Thex:efore
SN ATy S R Y S
By ="4x fdp{ﬁ(w+Q—M') .Qw(w+Q—M)2} (M — —M)
(e Hy) g® [ ot (23)

= ‘““n“moj P{Q((w.(ls)z_Mz)“ 5.29 (+ Q)2 M2)? }

The integral in (23) is elementary, and may be reduced to known
form by the same substition that was used in (12). The result is

EY = (e Ho) g %(l a|/(§—6') cos~ +f§2 log —(13«)

2
P= — -’; (1 (—SV(—Z_—_Q) cos—1 -é——{—(52 log —%—) | (24)

®
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Proceeding to Ej, we may write (22) as

- 1 EN'
ES=+2ng2 ) Z{Q(Q+8N+%—M)} — (M — - M)

_ = 1 eH, 1 A
—2“92%1 2{_3(Q+3N—M) e (Q+8N—M)2} w°
—(M—>—M)+O(H02).
Define a function

IN)= g =IO+ N -85 O+ 555" O+

Then, after dropping the self energy terms and terms in HZ, we get

L{& . eH, 1
=2ﬂgzzp*b.{.2—g () o (w+Q_M)2}—(M—>—M).

Carrying out the z differentiation yields:

e P2+ pg? 1 2
E ““9 eHO)Z {2(w+9 JT!) ( +w+Q—M) (w+ 02— M}
— (M — — M)
B 1 7 1 2 1 1
_ngz(eH°)§9{3(w+Q M)za)z( +w+.Q M) m2}
— (M — —M)
_gMeHy) [4 7 (2 o 1 LB
- 2:rz0 d Qo |3 o(wt+2-M)3 T (w+Q"—M)2(3 w? 1)]
0 — (M — — M)
2L(e_1g_.,_)j°d P [l P o+ 2244 (2+w) (1 1 32)]
7 Q13 o((w+02)2-M23 (w+ 2)2— M?)? 3 p?
- (25)

Just as in (12) and (23) the integral of (25) is elementary. One
obtains

c g% (eH,) (1 5(2-462+0%) . 0 * 1
EP:—“z_ﬁ“(?_éz— Vi cos 1?+62(2—62)10g—6—)

up= (g -0t A ot g 0t (2-0%)log ). (26)
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IV. The Pseudovector Coupling.

With this coupling the interactions L’ and L/ are replaced by
L’ (pseudovector coupling) = — 4 f (1,1); (cr° Vo —y, %—?)w,,)

L;(pseudovector coupling) =— )8z f{(w; [0" (V-1edy)D- yE(Z)—df] y)N)
+(i[o (7 + o do) @ —ps 257 [y,

When the coupling constants are related by g2 = (2 Mf)?, then
the two types of coupling give identical results. The values usually
given In the literature!) are (fM)% ~ 9, for the meson mass equal
to either 200 or 325 electron masses. These values are extremely
tentative, however, and possibly should be subject to suspicion even
in so far as order of magnitude goes.

V. Summary of Results2).
Neutral Mesons.

py =0
92(1 82 83 (3-62)

Mp = -

o 62 1
T =5 (1—09log 5).

— e e A 1

Charged Mesons.

] g2 8(2-6) .6 1
II’N:__;(]'_ ]/47—? COS 1?+6210g"3‘).

2 /1 0(2—4 62462 é 1
A __i(?_az_ (l/4—52 ) cos—1?+62(2——62)log§).

Symmetrical Theory.
Uy = Uy
pp=ptp+ p.
The units are those of the nuclear magneton, and ¢ 1s the ratio

of meson to proton mass, When the above numerical values for the
coupling constant and meson mass are used, one obtains:

A) p ~ 325 m (electron).

up~—28  po ~2.5 ut, ~—3.

1) F. ViLLags, Helv. Phys. Acta, XX, 476 (1947).

?) These results satisfy the relationship u% +u% =2 ,u,g, which has a general
validity in the g2-approximation. (The factor 2 appears because we have choosen
the coupling constant differently for charged and neutral theory.)
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B) u ~ 200 m (electron).
=0 .ujv~—9.3 P ~—9.3
pp~—28 u ~3.6 us ~ 8.

uy (experimental) = — 1.9103
up (experimental) =  1.7896

It 1s clear that none of the theories give agreement with exper-
1ment. More disturbing than the incorrectness of the absolute values
15 that of the ratio of the two moments. This is independent of the
value of the coupling constant, and depends only on the ratio 4.
It seems impossible to fit the data with any value of 6. Whether
the error lies in the model (pseudoscalar mesons) or in the use of
perturbation theory remains an open question.

In conclusion I should like to thank Dr. F. Virnrars for suggesting
this problem, and for much help in its solution. I am also indebted
to Prof. W.Paurnt and Dr. Res Jost for many stimulating and
helpful discussions.
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