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Allgemeine Eigenschaften
der paraxialen elektronenoptischen Abbildung*)
von F.Borgnis. .
(24. IX. 1948.)

Die allgemeinen Eigenschaften der paraxialen elektronenoptischen Abbildung
in axialsymmetrischen Potentialfeldern werden aus der Differentialgleichung der
achsennahen Bahnen hergeleitet. Neben dem bisher iiblicherweise behandelten Fall,
dass Objekt und (reelles) Bild ausserhalb des wirksamen Bereiches der Potential-
felder liegen, wird insbesondere der Fall betrachtet, dass die Abbildung ganz oder
teilweise innerhalb des Feldes zustande kommt. Unter anderem ergibt sich dabei ein
allgemeiner geometrischer Beweis des Satzes von Lagrange-Helmholtz fiir die
Elektronenoptik.

1. Die paraxiale Bewegung von Elektronen (Ladung e, Masse m)
im axialsymmetrischen elektrischen und magnetischen Potential-
teld (Zylinderkoordinaten r, ¢, 2) wird, wie bekannt, durch folgende
Differentialgleichungen beschrieben?):

d = e C?
dg ¢ B e C
rri s_aﬁﬁ+]/mr—2 @)
mit
e B 1 &o
P(z) ~ 7 8m V/a - 41/5 dz2 (3)

@ und B bedeuten das elektrische Potential bzw. die magnetische
Induktion auf der z-Achse; die Gleichungen sind im praktischen
Massystem angeschrieben. Die Konstante € ist dabei durch die
Bedingungen am Ausgangspunkt einer Bahn (2 = a, r(a)=r,) ge-
geben zu ; o
m @ a

| 0=7gﬁiw?m. (4)

Fiir alle Bahnen, die von der Achse ausgehen bezw. die Achse
schneiden, hat ¢ den Wert Null (r, = 0); fiir andere Bahnen ver-
schwindet C, wenn am Ausgangspunkt kein magnetisches Feld B,

*) Referiert in einem Kurzvortrag am 7.9.1948 am int. Fernsehkongress in
Ziirich.
1) Vgl. z. B. BRUCHE-SCHERZER, Geometrische Elektronenoptik (1934), S. 116.
V. K. ZWORYKIN u. a., Electron optics and the electron microscope (1946) S. 505.
B ®
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vorhanden i1st und die Anfangstangente der Bahn in einer die Zy-
linderachse enthaltenden Ebene liegt. Wir werden die folgenden
Betrachtungen unter der Voraussetzung C = 0 durchfiithren und im
Abschnitt 8 einige ergéinzende Bemerkungen iiber den Fall C + 0
anfiigen. .
Wir richten, wie iiblich, unser Interesse auf den Verlauf der
Bahnkurven r(2), wie sie durch (1) beschrieben werden. Unter Ab-
anderung der Bezeichnungen schreiben wir (1) mit € = 0 in der

Form
[n(2) - 7') = P(e) - 7 (5)

wobeil wir mit @ = n(2) in Analogie zur Lichtoptik an einen
langs der z-Achse variablen Brechungsindex n denken. Die Absicht
1st, aus der Differentialgleichung (5) eine Anzahl allgemeiner Eigen-
schaften der elektronenoptischen Abbildung herzuleiten, insbeson-
dere auch fiir den Fall, dass die Abbildung innerhalb des wirksamen
Bereiches der Potentialfelder zustande kommt.

2. Die Bahngleichung (5) besitzt als lineare, homogene Differen-
tialgleichung 2. Ordnung allgemeine Losungen der Form

r(e) = e f1(2) + ca f2(2) . (6)

f1 und f, bedeuten zwei linear unabhéngige Integrale von (5); die
Integrationskonstanten ¢; und ¢, sind eindeutig bestimmt, wenn
fir einen Punkt in einer Ebene z=a der Anfangswert r, und die

Anfangstangente r,” vorgegeben werden und die Funktionaldeter-
minante i
1 /2

h 1
1st. Falls f; und f, oszillatorischen Charakter haben, so trennen sich

Nullstellen von f, und f, gegenseitig. Nach (5) und (6) gilt fir die
partikuléren Integrale
(nfy)" = P-f (8)

(nfy)" = P-f.. (9)

Multipliziert man (8) mit f, und (9) mit f; und subtrahiert, so folgt
nach kurzer Umformung

(n(fife’ =1 /,)] =0

oder die allgemeine Beziehung

A(2)=11(2) f2 (@) — (@) f (8) = =22 (10)

n(z)

A =

+ 0 (7)

Die Integrale f; und f, in (6) wihlen wir nun in spezieller Weise:
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Wir bezeichnen sie mit r; und 7, und geben an einer Stelle z = a
folgende Anfangswerte und Anfangstangenten fiir sie vor:

Ze=@y ¥y (@) =1 re (@) =0
ry (a) =0 ry (@) = 1.

Damit lasst sich eine Losung 7 (2) nach (6) mit dem Anfangswert r(a)
und der Anfangstangente »'(a) darstellen durch

r(2) = r(a) ry (2) + 1" (a) 15 (2)
r'(z) = r(a) 1 (2) + 1" (a) 15’ (2)

wie man durch Einsetzen von (11) an der Stelle z = a einsieht.
Wir erinnern uns, dass wir mit (12) paraxiale Bahnen 7(z) be-
schreiben; r(a) und (@) sind daher kleine Grossen, wihrend die
Funktionen r; und r, keinen Beschrinkungen dieser Art unter-
liegen,

3. Die Verhaltnisse bei einer elektronenoptischen Abbildung be-
dingen einen oszllatorischen Charakter von r; und 7,. Zumindest

(11)

(12)

n I
pf p1 t7 5’1 pz ﬁz gz tz

1 Ny (2)

PVLERN \ , /

Pig. 1,
Qualitativer Verlauf der charakteristischen Funktionen r,(z) und ry(z) mit den
Nullstellen p; und b, und den Extremalstellen £, und p;..

soll r, ausser an der Stelle z = a eine weitere Nullstelle an einer
Stelle z = b aufweisen; dort entsteht dann, wie wir sehen werden,
ein (reelles) Bild von einem Objekt in der Ebene 2 = a. Fig. 1 zeigt
den qualitativen Verlauf von r; und r,!). Wie man sieht, lassen sich

1) Die Bewegungsrichtung der Elektronen wird in allen Abbildungen von links
nach rechts angenommen.
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einer Ebene # = a jeweils Gruppen von 4 charakteristischen Ebenen
zuordnen, die mit p, p, ¢ und b bezeichnet sind und aus folgenden
Gleichungen hervorgehen:

ri(px) =0 s (br) =0
ry (t) = 0 s’ (pr) = 0

Wir wollen der Reihe nach die Abbildungsverhiltnisse in diesen
4 Ebenen feststellen:

I) 2= by; ry(by) = 0.
Aus (12) folgt:

k=12...). (13)

7(bx) = r(a) - ry(b), (14)

d. h. die Werte r(b;) sind unabhiingig von der Anfangstangente r,’.
Ein Strahlenbiischel durch einen Punkt 7, = r(a) in der Ebene
z = a geht daher durch ein und denselben Punkt r(b:) (Fig. 2).

. 1\}1
3 “. | »7
1 —f—
2.7 |
, 4
;—<>a o—>Z

3
_7(%' P2

Fig. 2.

Reelles Bild in einer Ebene z = b, von einem Objekt in der Ebene z = a.

In einer Ebene z = b, entsteht ein reelles :Bild eines in der Ebene
z = a gelegenen Objektes. Die Lateralvergrisserung V folgt aus
(14) zu

V=" _ 0 (). (15)

r(a)

IT) 2 = pi; 7y (pe) = 0.

Aus (12) folot: .
b r(pe) = 7 (a) - 7a(p). | (16)
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Der Wert r(p;) ist, unabhéingig von r,, eine Funktion von 7', allein,
d. h. alle parallelen Bahnen mit der Neigung 7', durch die Ebene
¢ = 6 vereinigen sich im gleichen Punkt 7(p;) der Ebene z = p;
(Fig. 8). Eine Ebene z = p;, lisst sich daher als eine der Ebene 2z = a
zugeordnete Brennebene auffassen.

Jk}l

-
TR (P

3

Fig. 3.

Parallele Bahnen durch die Ebene z = a vereinigen sich in einer Ebene z = p;,.

Definiert man eine (vordere) Brennweite f nach Gavuss durch das
Verhaltnis der Ordinate 7 (py) zum Neigungswinkel 7, des parallelen
Biindels, so erhélt man mit (16)

i = Lo = ra(py). S
IT0) 2 = Py; 7' () = O.
Ros B ) = r@) B (19)

Der Wert ' (p;) ist, unabhingig von r,’, allein eine Funktion von
rq, d.h. parallele Bahnen durch die Ebene z = p; kommen vom
gleichen Punkt der Ebene z = a her, die man daher als eine den
Ebenen z = p, zugeordnete Brennebene ansehen kann (Fig.4).
Eine (hintere) Gauss’sche Bremnweite f lisst sich mit (18) de-
finieren zu '

T rla) 1
fie = r(pr) () : e

IV) 2 =ty; 7' (te) = 0.
Aus (12) folgt:

v () = 7' (a) - 7y (F). | (20)
30
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Die mit einer Neigung r,” die Ebene z = a durchsetzenden Bahnen
passieren die Ebenen z = t, unter der konstanten Neigung " (t)
(Fig. 5). Zwischen den beiden Ebenen bei a und t, besteht eine
teleskopische Abbildung mit der Angularvergrosserung A:

Ay =" gy (21)

(@)

Wie in Abschnitt 8 gezeigt wird, behalten die Abbildungsver-
héltnisse fiir den Fall I (reelles Bild) auch fur C+0 Giltigkeit;
die Fille IT bis IV gelten nur fir C=0.

~
~
~
Rl 1\
\& y S o .z
Ty
\ 2
-oo.... 1
00..‘. 5
Fig. 4.
Parallele Bahnen durch eine Ebene z = p;, kommen vom gleichen Punkt der Ebene
z == g her,
\x
. =
{=° e —
¢ ~—~T
S e 5 > y.4
1 / Q” ------
& [T 3
/”
27
Fig. 5.

Teleskopische Abbildung zwischen einer Ebene z = ¢, und der Ebene z = a.
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4. Wir wenden nun die allgemeine Beziehung (10) auf die unter
3. I) bis IV) beschriebenen Fille an. Setzen wir in (10) fir f; und f,
speziell die Funktionen r; und r, ein, so folgt unter Beachtung, dass
dann die linke Seite von (10) an der Stelle 2 = a wegen (11) den
Wert Eins annimmt,

r1(2) 12’ (2) —1a(2) 7' (2) =

(22)
N

/’a | P~

Fig. 6.
Zur Beziehung zwischen Offnungswinkel » und Vergrosserung V = r(b;)/r(a) bei
der Abbildung durch reelle Bilder (Lagrange-Helmholtz’scher Satz).

Betrachten wir eine Ebene z = b; nach I) mit r,(b;) = 0, in wel-
cher ein reelles Bild der Ebene z = a entsteht, so gilt wegen ry = 0
mit (22) i

y n(a
r1(bs) 2 (be) = 55 (23)
Nach (15) ist 7;(by) = r(by)/r(a) gleich der Vergrosserung V. Fir

eine Bahn, welche durch die beiden Achsenpunkte z = a, r(a) = 0
und z = by, 7(bx) = 0 geht, gilt nach (12) mit r(a) =0

¥ (ba) = 7' (@) - 7y’ (by) odder 73/ (be) = | " (by) ]ra;o (24)

r(a)

Bezeichnen wir den Winkel der Bahntangente bei @ mit der Achse
durch %, und bei b, durch %, (Fig. 6), so folgt durch Einsetzen von
(24) und (15) in (23) mit r," = tg u, und r, = tg up,

n(a) r(a) tg ug = n(b) r(be) tg uy, (25)
oder auch mit Einfithrung des elektrischen Potentials @ auf der
Achse L S

l/@ﬁ! 'ra tg uﬂ S V@f:k ’rbk tg {u’bk‘ (25&)

Diese Beziehung wird in Analogie zu einem bekannten Satz der
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geometrischen Optik als der ,,Lagrange-Helmholiz’sche Satz** der
Elektronenoptik bezeichnet!). Unserer Herleitung liegt, wie in 1. er-
wahnt, die Voraussetzung C = 0 zugrunde, d. h. sie gilt noch nicht
fir Bahnen mit zur Achse ,,schiefer” Anfangstangente oder falls
am Ausgangspunkt ein magnetisches Feld wirksam 1st. Wir werden
jedoch in Abschnitt 8 zeigen, dass die Beziehungen (25) auch im
Fall C = 0 bestehen, womit der Lagrange-Helmholtz’sche Satz fir
die Elektronenoptik in voller Allgemeinheit gilt?).

In Anwendung auf die nach 3. IV) zwischen den Ebenen z = a
und 2 = t;, bestehende teleskopische Abbildung erhilt man aus (22)
fiiit 7 () = 0

n(a)

ry (tk) Tzf(tk) = n(ty) (26)

(.

__.{____. \ X

Na

)

/va ﬂ,t1 =

Fig. 7.
Zur Beziehung zwischen teleskopischer Vergrosserung Vyp = r(t,,)/r (@) und Angular-
vergrosserung 4.

ry' (t) gibt nach (21) die Angularvergrosserung 4. Fiir sich gegen-
seitig entsprechende bei @ und t, achsenparallele Bahnen folgt aus
(12) mit r'(a) = 0

rlt) = (@) - ry(t) oder ry(6) = [FE] . =V, @)

r(a)

wobel wir unter V, die Lateralvergrosserung bei teleskopischer Ab-
bildung verstehen (Fig. 7). Mit (27) und (21) folgt aus (26)

_nl@) 7/ P,
A.I‘"’ VTIc Ton(t,) ]/ Dy, ’ (28)
1) Der hier gegebene ,,geometrische’* Beweis des Lagrange-Helmholtz’schen
Satzes scheint dem Verfasser den Vorzug gegeniiber den bisher iiblichen, auf
energetischen (thermodynamischen) Uberlegungen beruhenden Beweisen zu verdie-

nen, die bei naherem Zusehen im elektronen optischen Fall nicht sehr befriedigen.
2) Uber die Giiltigkeit auch bei virtuellen Bildern siehe Abschnitt 6.
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d. h. die Giiltigkeit der auch in der Gauvss’schen Dioptrik bestehen-
den Beziehung zwischen teleskopischer Vergriosserung V, und
Angularvergrosserung 4 fiir die Elektronenoptik.

Fir die unter 8. II) und III) behandelten Falle, welche einer
Ebene 2z = a (eine oder mehrere) Brennebenen bel 2 = p; und an-
dererseits die Ebene z = a als Brennebene den Ebenen z =p,
zuordnen, lasst sich fiir die mit (17) und (19) definierten Gauss’schen
Brennweiten f und f eine in der Gauss’schen Dioptrik bekannte
Brennweitenbeziehung nur fiir den speziellen Fall aufstellen, dass
die Ebenen z = p; und z = p; zusammenfallen. Mit p, = pr = Por
und den Bedingungen nach II) und ILI): 7 (pgr) = 75 (Pox) =0
folgt aus (22) \

11 (Pox) 72 (Por) = — 7 (Por)
und mit (17) und (19)
,fzc_zw_”(fl___,]/_@_a = —
](_;C n(pﬂk) o Qp()k (pk pk pOk)' (29)

5. In der Lichtoptik liegen normalerweise Objekt und Bild in
Medien mit konstantem (und meist gleichem) Brechungsindex n;
die Lichtstrahlen in Objekt- und Bildraum verlaufen daher gerad-
linig. Zwischen den Koordinaten zugeordneter Bild- und Objekt-
punkte bestehen kollineare Beziehungen, welche die Eigenschaften
der Gauss’schen Dioptrik enthalten. In der Elektronenoptik ent-
spricht dies dem Fall, dass Bild und Objekt in Gebieten konstanten
Potentials (n = )@ = konst.), d. h. im feldfreien Raum liegen; be-
kanntlich gelten dann auch in der Elektronenoptik die Gesetze der
Gauss’schen Dioptrik (siehe Abschnitt 7). Kommt die elektronen-
optische Abbildung jedoch ganz oder teilweise innerhalb des wirk-
samen Potentialfeldes zustande, so besteht nattirlich zwischen
Objekt- und Bildkoordinaten kein kollinearer Zusammenhang. Die
Abbildungs verhéltnisse lassen sich hier aus dem spezifischen Ver-
lauf unserer in (11) eingefiihrten Funktionen 7, und r,, d. h. insbe-
sondere deren Nullstellen, Extremalstellen und den zugehérigen
Funktionswerteu entnehmen.

Einem Objekt in der Ebene z = @ ist nach 3. I) durch r,(b;) =0
ein reelles Bild in einer Ebene z = b; zugeordnet. Zufolge der fiir
r, mit (11) vorgegebenen Anfangsbedingungen enthilt die Funktion
73(2) a als Parameter. Die Abhingigkeit zwischen den Koordinaten
von Bildebene (b;) und Objektebene (a) ist daher durch r,(2,a) mit
2 = by, durch

re(by, @) = 0 (30)
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gegeben; ist 7, (2,a) bekannt, so findet man daraus b, (a). Es geniigt,
r, (2,a0*) und ry(2,a*) fir einen bestimmten Wert von a* zu kennen,
um daraus fiir irgendeinen Wert von a die analogen Funktionen
r1(2,a) und 7,(2,a) herzuleiten. Man kann dazu die folgenden Be-
ziehungen verwenden, von deren Giiltigkeit man sich mit (6), (10)
und (11) sofort iberzeugt:

n@= 29 (fa (@) F1(2) — f1' (@) £2(2))

(31)
T, (2) = — (@) (Z))
ry (2) = — (@) f, (2) — f1(@) f2(2))
n(a) (32)
7o' (2) = (fz(a ) ' (2) — f1(a) fzf(z)) .

Diese Beziehungen geben eine Darstellung von 7, und r, durch zwei
beliebige andere linear unabhéngige Integrale f, und f,; sie gelten
daher auch fir f, = r;(2,a%), f; = r5(2,a%) 1).

Der funktionale Zusammenhang zwischen den Koordinaten by
und @ von Bild- und Objektebene ergibt sich nach (30) mit (32)
auch aus fy(a) f;(bx) — f1(a) f2(bx) = 0 oder

f2(@) . f2(b)
H(a) n fr(by) * (33)

Das Verhiltnis der Anderung von b, bei einer kleinen Anderung von
a bezeichnen wir wie in der Lichtoptik als 4Axialvergrosserung G-

db
Gic = ‘aa—k‘ . (34)

Aus (33) ergibt sich durch Differentiation

f1@) f @~ fa@) /(@) o HOW 1 )~ HBD K b
7 (a) £2(6,) &

Unter Verwendung von (10) erhdlt man daraus nach (34) und mit
Einfiihrung von r; und 7, fiir f; und f,:

by) 73 (b
G — dby, _ n (by) r1(by) _ n(by) 2 (by)

da n(a)r:(a) n(a)
und mit (15) '

&c_: n(bk) _ E
v; nla) V ?, ’ Ve

a

1 Die Konstante ¢ hat nach (10) den Wert A(z)-n(z); also z. B.
= d(a)- n(a) = (f1(a) f' (a) = fa(a) f, (@) - n(a).
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d. h. die auch in der Gauss’schen Dioptrik giiltige Beziehung
zwischen Lateral- und Axialvergrésserung. Aus (85) erhellt unmit-
telbar das positive Vorzeichen von @, d.h. die Abbildung durch
reelle Bilder ist rechtslaufig. Mit (15) (25) und (35) folgt unmittel-
bar auch die Beziehung

Ay

v = 1, (35a)

wenn A, =tgu, [tgu, die Angularvergrosserung fiir die Bild-
ebene z=1b, bezelchnet Wie der folgende Abschnitt zeigt. gel-
ten (35) und (35a) auch fir v1rtuelle Bilder.

6. Wir wollen noch die Frage nach der Existenz virtueller Bilder
beantworten, die Objektpunkten in einer Ebene z = a entsprechen.
Durch Elimination von r'(a) aus den beiden Gleichungen (12) und
Verwendung von (22) erhilt man nach kurzer Rechnung

1

ne n@ 1
r(g) = 7w T (2) + r(a) @ 1@ (36)
A
4”‘ //
”’:‘P:’ "‘-—_——_—__—
-.!.EE‘::—"'"'—-

gg m}a S

Fig. 8.

Zu einer Ebene z (z { p, und b,  z { P;,;) gehort ein virtueller Bildpunkt £y, 7,
von einem Objektpunkt in der Ebene z = a.

In jeder Ebene z sind also die Ordinate 7 (2) des Durchstosspunktes
der Bahn durch die Ebene und die zugehérige Bahntangente 7’ (2)
nach (36) verkniipft und fiir ein gegebenes z nur noch abhingig
von 7,, nicht aber von r,’. Denkt man sich die zu einem festen 7,
gehorigen Bahntangenten bei 2z von den zugehorigen Durchstoss-
punkten aus geradlinig verlingert, so schneiden sie sich in einem
Punkte £, 7, (Fig. 8) mit den Werten

75(2)
b=z — 122 (37)

(@) 1 o, 1
to=1(0) 2 2= r(@) )R (39
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nachdem das Geradenbiischel durch £, , der Gleichung

r(2) = mo +1'(2) (¢ — Co)

geniigt. In Bereichen r,(2)/ry (2) > 0 1st £y < 2, d. h. zu jeder Ebene
z in einem solchen Bereich gibt es zu einem Objektpunkt 7, in der
Ebene z = a einen virtuellen Bildpunkt. Eine Betrachtung von
Fig. 1 zeigt, dass die virtuellen Bilder von 2 = @ aus ins Unendliche
nach links wandern, wenn bei festem a die Ebene z nach rechts bis
zu 2z = p; wandert. Zwischen p; und b; existiert kein virtuelles
Bild ; solche sind in Bereichen 2z < p; und b; {2z { P4y vorhanden,
In Bereichen P, <z <b; geben (37) und (38) die Koordinaten eines
reellen Bildpunktes fiir den Fall, dass sich rechts der Ebene z ein
teldfreler Raum anschliesst. Die Lateralvergrosserung gibt (38)
mit V = go/r(a).

Fir die Axialvergrosserung G = d{,/da bel z = const. folgt aus
(37) unter Verwendung von (32), (10) und (88) nach kurzer Rech-
nung ebenfalls die Beziehung (35). Die Abbildung 1st daher auch fiir
virtuelle Bilder rechtslédufig. Ebenso folgt die Giiltigkeit des Satzes
von LAcrANGE-HELMHOLTZ 1n bezug auf die in einer Ebene z = {,
nach (37) und (38) entstehende Abbildung unmittelbar aus (38)
durch Einsetzen der aus (12) fiir r(a) = 0 folgenden Beziehung
ry' (2) = r'(2)/r' (a).

Eliminiert man aus den Gleichungen (12) r(a), so folgt unter
Verwendung von (22)

r(z) =22 () — o (a)

I (89)

n(z) n'(2)

Dies bedeutet, dass alle die Ebene 2z = a unter gleicher Neigung
r’(a) durchsetzenden Bahnen bei geradliniger Fortsetzung in Rich-
tung der Bahntangente von einer Ebene z aus sich in einem Punkt
mit den Koordinaten

A (40)
3 n(@) 1 r /@, 1
i R ) (#1)

vereinigen. In Bereichen, wo r(¢)/r,"(¢) positive Werte besitzt,
entsteht daher von einer Ebene z aus betrachtet ein virtueller
Bildpunkt Z;,%; von den die Ebene z = a mit der Neigung r’(a)
durchsetzenden Parallelen, die sich in einer der Ebene z zugeordneten
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virtuellen Brennebene bei z = {; vereinigen (Fig. 9). Mit (41) lésst
sich fiir jedes 2z eine Gauss’sche Brennweite definieren zu

_ N _ _ nA _ ‘I/Ej—i 1
= vw =" wm we - Ve, w@ (42)
Aus Fig. 1 ersieht man, dass solche virtuelle Brennebenen in Be-
reichen p; < z < t; existieren,

Fir 2 <p; und t, <2 {pryq 8t r,(2)/ry" (2) <0; s und 7, geben in
diesen Bereichen die Koordinaten eines den Parallelen bei z = a
zugeordneten reellen Bildpunktes in einer reellen Brennebene

2 = {; tir den Fall, dass sich rechts der Ebene z ein feldfreier Raum
anschliesst.

Wir bemerken noch, dass die Betrachtungen dieses Abschnittes 6
an die Voraussetzung C = 0 nach (4) gebunden sind.

an
"//
£
= -O-
]
Fig. 9.

Zu einer Ebene z (p; { 2z { ;) gehort eine virtuelle Brennebene z = {;, in der sich
Bahnen gleicher Neigung durch die Ebene z = a in einem Punkte {y, 7, vereinigen.

7. Wirkt das Potentialfeld nur innerhalb eines beschréankten Be-
reiches der (r,z)-Ebene, d. h. setzen wir voraus, dass das Potential
etwa ausserhalb der Ebenen z = o« und z = g (Fig. 10) als konstant
betrachtet werden kann (2 <a, m =mn, = const.,, P(2) =0; 2> B,
n = ng = const., P(z) = 0), so verlaufen die Bahnen ausserhalb des
Feldbereichs geradlinig. Wir betrachten 1im feldfreien Raum 2z < «
einen Punkt ¢,# und ein von ihm ausgehendes paraxiales Strahlen-
biischel ; setzen wir jede Gerade dieses Biischels von threm Durch-
stosspunkt mit der Ebene 2 = « an in einer Bahnkurve mit gleicher
Tangente bei z = a durch den Feldbereich bis zur Ebene z = § fort
und von 2z = B an in einer Geraden, welche die betreffende Bahn-
kurve im Durchstosspunkt durch die Ebene z = f beriihrt, so zeigt
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sich, dass sich die Gesamtheit aller solcher Geraden wieder in einem
Punkt ,n vereinigt, welcher als (reeller oder virtueller) Bildpunkt
des Objektpunktes £, anzusehen ist. Weiterhin zeigt sich, dass
zwischen den Koordinaten des Objekt- und des Bildpunktes kol-
lineare Beziehungen bestehen; daher haben in diesem Fall alle be-
kannten Satze und Eigenschaften der Gauss’schen Dioptrik Gel-
tung, wie sie aus der Lichtoptik fiir Linsensysteme bekannt sind.

Ein von {,#n ausgehendes Geradenbiischel gentigt der Gleichung
r(@) =n-+r(x)(z—0).
An der Stelle z = a gilt daher

r(@) =n+ra)(x—7). (43)
M
n:=n n=ng
— N
- ~
O q e - fi »7Z
¢ o A le
Fig. 10.

Abbildung durch eine zwischen den Ebenen z = o und z = f§ wirksame Elektronen-
linse, wenn sich Objekt und Bild im feldfreien Raum befinden.

Fir « <z ¢ B gelten die Bahngleichungen nach (12) mit a = a:

r(e) = r(x) ri(2) + ' () r2(2)

v (2) = r(a) ry (2) + 7" () 7'5(2) . )
An der Stelle z = 8 folgt daraus
r(8) = r(a) 1 (6) + 7' (a) ra(B) i

' (B) = r(a) 1" (B) + 7' (o) 75" (F) .

Soll sich das Biischel der geradlinigen Fortsetzungen der Bahn-
kurven iiber die Ebene 2z = $ hinaus in einem Punkt 7, % vereinigen,
so bedingt dies analog (43)

r(B)=mn+r()B—10). (46)
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Aus (48), (45) und (46) gewinnt man nach kurzer Rechnung

= (B +n(p) (=)
p—i= rd (B)+ry (B) (x—0) i)
n=n[r(B)—r'(B) (B—2C)], (48)

d. h. eine kollineare Beziehung zwischen ¢, und {,#. Fiihrt man
in bekannter Weise an Stelle von £, ¢ als neue Koordinaten die Ab-
stinde z und z von den ,,Brennpunkten” (p und [ ein durch
t=(—C(pund T =7—7Cp wobei der ,Brennpunkt® ¢z das Bild
von { = oo bzw. {p das Bild von { = oo ist, so folgt aus (47)

L oL R
und damit aus (47) und (48) nach kurzer Rechnung mit (22)
17w 2B B -nf)n'f) @ 1
[/ (B)]? n(B) [r'(B))?

Die bekannten Abbildungsgleichungen der Gauss’schen Dioptrik

g1 3 : n_ i _2&
xx =ff und Tz T (50)

ergeben sich daher mit Einfiihrung der ,,Brennweiten f und f

durch?)
_m_n(fx) 1 . @Qg 1
f==%e wo ~— Ve vl (51)

(52)

i na) Dy
7:“n(ﬂ>_“]/¢ﬁ' (58]

Die Lage der Hauptebengn 2=1{g bzw. 2= ¢z folgt mit
Ty = CH'— {p = f bzw. E“H“ = Cl_ir_ CF = f aus (49), (51) und (52) zu

mit der Beziehung

ta— o = g (1 (B) — /)
Ta— B = o (L—n(B)).

1) Man beachte, dass hier fiir r, bzw. 7, die Anfangsbedingungen (11) mit @ = «
gelten.

(54)
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Die Lage der Knotenebenen ({, (%) folgt nach Definition fiir
ein Angularverhiltnis 1 mit (25&) und (50) aus

A — tg uz _ D

zu

z;K—~a=,—}@ (r' (B)—1)

=k (Vo —n ).

Fir @,=®; fallen Hauptebenen und Knotenebenen paarweise
zusammen.

Da das Objekt bei den obigen Betrachtungen im feldfreien Raum
(B, = 0) angenommen wird, ist die Bedingung C = 0 nach (4) fir
Bahnen, die nicht windschief zur Achse verlaufen, erfiillt.

Es versteht sich daraus, dass alle von der Lichtoptik her bekann-
ten Eigenschaften der Gauss’schen Dioptrik in der Elektronen-
optik Geltung haben, wenn Objekt- und (reelle) Bildpunkte in
Réumen konstanten Potentials liegen. Wir bemerken noch, dass
aus (51) unter Beachtung der Fig. 1 anschaulich hervorgeht, dass
bei einem solchen Verlauf von r; ,,kurze* Linsen stets eine positive
Brennweite haben, da r;"(8) im Bereich a <z <t; negativ ist. Ist die
Linse ,,Janger* als (t; — a), so wirkt sie als Linse negativer Brenn-
weite f im Bereich {; <z (t, usw., unter der Voraussetzung natiirlich,
dass das Objekt ausserhalb des Feldbereiches liegt.

(95)

8. Alle bisherigen Betrachtungen galten, wie unter 1. erwéhnt,
fiir den Fall ¢ =0, d.h. dass die Anfangstangente der Bahn in
einer die Achse enthaltenden Ebene liegt und am Ausgangspunkt
der Bahn das magnetische Feld verschwindet, wobei als ,,Ausgangs-
punkt® natiirlich irgendein Punkt der Bahn angesehen werden kann.
Ohne Einschrinkung galten die Betrachtungen fiir Achsenstrahlen
wegen C =0 fir r, = 0. Wir kommen nun auf den Fall C + 0
zurtick und wollen zusehen, welcher Teil der oben erhaltenen Ergeb-
nisse auch ohne die durch C = 0 bedingten Einschrankungen gilt.
Fihrt man in (1) und (2) neue Variable ¢ und y an Stelle von #

und ¢ ein durch?)
o=rer (56)

v oV | L 7

) Vgl. BRUCHE-SCHERZER, Geometrische Elektronenoptik (1934), S. 117.



Allgemeine Eigenschaften der paraxialen elektronenoptischen Abbildung. 477

50 erhélt man nach kurzer Rechnung folgende Differentialgleichun-

gen fir o und y:
dy . e C i
R‘?—V;Tp?é g (58)

’dd?(l/g_b %‘S‘) =P(2) e, (59)

Die Dafferentialgleichung (59) fiir ¢ besitzt die gleiche Form, wie die
urspriingliche Differentialgleichung (1) fiir » mit € = 0; wahlt man
daher analog zu (12) zur Darstellung von ¢ die (reellen) Integrale o, -
und g, mit folgenden Anfangswerten an der Stelle z = a:

Z=q: o:(a) =1 0a(a) =0
| o'y (a) =0 g’ (a) =1, )
so gilt :
0(2) = p(a) o, (2) + o' (a) 0,(2) (61)

0'(¢) = ela) 0,"(2) + ¢'(a) €2 ().

Liegt der Ausgangspunkt der Bahn in der Ebene z = a, so ist mit |
(57) (@) = @(a) = 0 und damit nach (56) ¢ (a) = r(a). Mit (57) und
(58) erhélt man o’ (a) und damit nach (61)

B

@) = (@) e+ [ (@ ir(@) (v (= 55 )| . 62

Die Nullstellen von g, (2) seien durch z = b, gegeben. Dann gilt dort

o(by) = (@) @u(bs) . - (63)
Da o, (bz) reell ist, wird o(b,) reell und daher y(b;) = 0. Es folgt
aus (63)

(be) = (@) - 0y (b) BT

In den Ebenen z = b, entsteht nach analogen Uberlegungen wie
unter 3. I) ein reelles Bild auch im Fall €'+ 0. Damit bleiben die
Uberlegungen von 8. I) erhalten, nicht dagegen von 3. IT) bis IV),
Die letzteren gelten daher nur bei C = 0, d. h. jedenfalls in rein
elektrischen Linsen fiir Bahnen, die nicht windschief zur Achse
verlaufen.

Der Lagrange-Helmholiz’sche Satz (25) gilt nach Vorstehendem
in voller Allgemeinheit: Aus (59) folgt ndmlich in Analogie zur (22):

e1(52) 02/ (b2) — 0a(b4) &2’ (b8) = /- (65)

*
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Mit p,(bz) = 0 am Ort eines reellen Bildes in der Ebene z = b, ist
nach (64)

und fiir einen Achsenstrahl (r(a) = 0) mit (62) und y =0 (C = 0):

o' (bx) = 1'(a) 05" (bx) = 1" (bs)
d. h.:

, _r(by) _ tgup,
0z (bz) = rla) | tgu, ’

womit nach (65) mit g, (b;) = 0 wieder der Lagrange-Helmholtz’sche
Satz __ _
auch im allgemeinen Fall C' + 0 resultiert.

9. Alle vorstehenden Uberlegungen folgen im wesentlichen aus
der Differentialgleichung (5). Sie gelten daher ausser im axial-
symmetrischen Fall, den wir hier zugrunde gelegt haben, auch in
allen jenen Fillen, in denen sich die Bahngleichungen in der Um-
gebung einer ausgezeichneten Bezugsbahn in die Form einer linea-
ren, homogenen Differentialgleichung zweiter Ordnung bringen
lassen!). An die Stelle der Koordinate » tritt dann die Koordinate
der Abweichung von der Bezugsbahn und an Stelle von dz das
Bahnelement ds lings der Bezugsbahn.

Der entsprechende lichtoptische Fall ware fiir die paraxiale
Lichtausbreitung in einem isotropen Medium gegeben, dessen
Brechungsindex N in der Umgebung der z-Achse durch die Ent-
wicklung

N(zr) = n(@) + P(2) - 5 +---

dargestellt wird. Aus der Euler’schen Differentialgleichung des

Variationsproblems 6 f N ds=0 ergibt sich fiir achsennahe geome-
trisch-optische Bahnen die Differentialgleichung (5) 2).

Die behandelte Dioptrik der Elektronenbahnen setzt stillschwei-
gend iiberall positive Werte des Potentials @ (2) bzw. n(z) voraus;
an einer Nullstelle des Potentials wird die Elektronengeschwindig-
keit Null, und es findet (wenn die Nullstelle nicht gerade mit einem
Sattelpunkt zusammenfillt) eine Bahnumkehr zu riicklaufiger Be-
wegung statt. Die der Differentialgleichung (5) zugrundeliegende

1) z. B. Kreisbahn im Magnetfeld.

2) Uber die Abweichung von den ,,wellenoptischen Bahnen vgl. z. B. R. Gaxns,
Ann. d. Phys. 47, 709 (1915).
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Voraussetzung r'2 €1 1st in der Umgebung des Umkehrpunktes
(7" = oo) ungiiltig, weshalb die Anwendung auf die Katoptrik
(Elektronenspiegel) zundchst unzulissig erscheint. Aus einer ge-
naueren Untersuchung von RecknaceLl) geht jedoch hervor, dass
die Differenrnialgleichung (1) als brauchbare Beschreibung der para-
xialen Bahnbewegung beim Elektronenspiegel (B = 0) angesehen
werden kann. Sieht man von diesem Standpunkt aus die Bahnen
beim Elektronenspiegel als durch den Umkehrpunkt stetig hindurch-
gehende Losungen von (5) an, so lassen sich die obigen Betrach-
tungen sinngeméss auch zur Beschreibung der “Abbildungsverhalt-
nisse beim Elektronenspiegel heranziehen.

1) A. RECKNAGEL, Z. f, Phys, 104, S. 381 (1937).
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