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Allg-emeine Eigenschaften
der paraxialen elektronenoptischen Abbildung1*)

von F. Borgnis.
(24. IX. 1948.)

Die allgemeinen Eigenschaften der paraxialen elektronenoptischen Abbildung
in axialsymmetrischen Potentialfeldern werden aus der Differentialgleichung der
achsennahen Bahnen hergeleitet. Neben dem bisher üblicherweise behandelten Fall,
dass Objekt und (reelles) Bild ausserhalb des wirksamen Bereiches der Potentialfelder

liegen, wird insbesondere der Fall betrachtet, dass die Abbildung ganz oder
teilweise innerhalb des Feldes zustande kommt. Unter anderem ergibt sich dabei ein
allgemeiner geometrischer Beweis des Satzes von Lagrange-Helmholtz für die
Elektronenoptik.

1. Die paraxiale Bewegung von Elektronen (Ladung e, Masse m)
im axialsymmetrischen elektrischen und magnetischen Potentialfeld

(Zylinderkoordinaten r, cp, z) wird, wie bekannt, durch folgende
Differentialgleichungen beschrieben1):

dz\V dzj W 2mX<t> r

V Sm Xj7f>
V 2mCP J* ' '

mit
dz

PM__ J_J^_ 1 d*0 ,q.r" "" ~8m y$ 4j/0 dz* ¦ W

0 und B bedeuten das elektrische Potential bzw. die magnetische
Induktion auf der z-Achse; die Gleichungen sind im praktischen
Massystem angeschrieben. Die Konstante C ist dabei durch die
Bedingungen am Ausgangspunkt einer Bahn (z a, r(a) rj)
gegeben zu 3r-M,2^LM (4}

Für alle Bahnen, die von der Achse ausgehen bezw. die Achse
schneiden, hat C den Wert Null (ra 0); für andere Bahnen
verschwindet C, wenn am Ausgangspunkt kein magnetisches Feld Ba

*) Referiert in einem KurzVortrag am 7. 9.1948 am int. Fernsehkongress in
Zürich.

i) Vgl. z. B. Brüche-Scherzer, Geometrische Elektronenoptik (1934), S. 116.
V. K. Zworykin u. a., Electron optics and the electron microscope (1946) S. 505.
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vorhanden ist und die Anfangstangente der Bahn in einer die
Zylinderachse enthaltenden Ebene liegt. Wir werden die folgenden
Betrachtungen unter der Voraussetzung (7 0 durchführen und im
Abschnitt 8 einige ergänzende Bemerkungen über den Fall C #¦ 0

anfügen.
Wir richten, wie üblich, unser Interesse auf den Verlauf der

Bahnkurven r(z), wie sie durch (1) beschrieben werden. Unter
Abänderung der Bezeichnungen schreiben wir (1) mit C 0 in der
Form

[n(z) -r']' P(z)-r (5)

wobei wir mit "/$ n(z) in Analogie zur Lichtoptik an einen
längs der z-Achse variablen Brechungsindex n denken. Die Absicht
ist, aus der Differentialgleichung (5) eine Anzahl allgemeiner
Eigenschaften der elektronenoptischen Abbildung herzuleiten, insbesondere

auch für den Fall, dass die Abbildung innerhalb des wirksamen
Bereiches der Potentialfelder zustande kommt.

2. Die Bahngleichung (5) besitzt als lineare, homogene
Differentialgleichung 2. Ordnung allgemeine Lösungen der Form

r(z)=c1f1(z)+c2f2(z). (6)

fx und /2 bedeuten zwei linear unabhängige Integrale von (5); die
Integrationskonstanten c1 und c2 sind eindeutig bestimmt, wenn
für einen Punkt in einer Ebene z a der Anfangswert ra und die
Anfangstangente rJ vorgegeben werden und die Funktionaldeterminante

A fl f*
fX fX + 0 (7)

ist. Falls f1 und f2 oszillatorischen Charakter haben, so trennen sich
Nullstellen von fx und f2 gegenseitig. Nach (5) und (6) gilt für die
partikulären Integrale

(nfXY-P-h (8)

(nh'Y P-k. (9)

Multipliziert man (8) mit f2 und (9) mit /x und subtrahiert, so folgt
nach kurzer Umformung

[n(hf2'-f2fX)]' 0

oder die allgemeine Beziehung

7^^) f1(z)fX(z)--f2(z)fX(z)=^-. (10)

Die Integrale fx und /2 in (6) wählen wir nun in spezieller Weise:
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Wir bezeichnen sie mit rx und r2 und geben an einer Stelle z

folgende Anfangswerte und Anfangstangenten für sie vor:

rx (a) 1

rj(a) 0
r2 (a) 0

r'{a) l.
(11)

Damit lässt sich eine Lösung r (z) nach (6) mit dem Anfangswert r (a)
und der Anfangstangente r' (a) darstellen durch

r (z) r (a) rx (z) + r' (a) r2 (z)

r' (z) r (a) rX (z) + r' (a) r2' (z)
(12)

wie man durch Einsetzen von (11) an der Stelle z =¦ a einsieht.
Wir erinnern uns, dass wir mit (12) paraxiale Bahnen r(z)
beschreiben; r(a) und r'(a) sind daher kleine Grössen, während die
Funktionen rx und r2 keinen Beschränkungen dieser Art
unterliegen.

3. Die Verhältnisse bei einer elektronenoptischen Abbildung
bedingen einen oszillatorischen Charakter von rx und r2. Zumindest

4t, hPiP PS P2

njz

n,(z
~z

Fig. 1.

Qualitativer Verlauf der charakteristischen Funktionen rjz) und r2(z) mit den
Nullstellen pk und bk und den Extremalsteilen tk und pk.

soll r2 ausser an der Stelle z a eine weitere Nullstelle an einer
Stelle z b aufweisen; dort entsteht dann, wie wir sehen werden,
ein (reelles) Bild von einem Objekt in der Ebene z a. Fig. 1 zeigt
den qualitativen Verlauf von rx und r^). Wie man sieht, lassen sich

i) Die Bewegungsrichtung der Elektronen wird in allen Abbildungen von links
nach rechts angenommen.
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einer Ebene z a jeweils Gruppen von 4 charakteristischen Ebenen
zuordnen, die mit p, p, t und b bezeichnet sind und aus folgenden
Gleichungen hervorgehen:

»"i(Pt) o

rj(tk)=0
r2 (bk) 0

(fc l,2...) (13)

Wir wollen der Reihe nach die Abbildungsverhältnisse in diesen
4 Ebenen feststellen:

I) z bk; r2(bk) 0.

Aus (12) folgt:
r(bk) r(a) ¦ rx(bk), (14)

d. h. die Werte r(bk) sind unabhängig von der Anfangstangente rj.
Ein Strahlenbüschel durch einen Punkt ra r(a) in der Ebene
z a geht daher durch ein und denselben Punkt r(bk) (Fig. 2).

3-..
1—#

71

2/ tri
a

?—*£

4
Fig. 2.

Reelles Bild in einer Ebene z bk von einem Objekt in der Ebene z a.

In einer Ebene z bk entsteht ein reelles Bild eines in der Ebene
z a gelegenen Objektes. Die Lateralvergrösserung V folgt aus
(14) zu

V^IM- r1(bk). (15)

II) z pk; rx(pk) 0

Aus (12) folgt:
r{vX) f'(a) -r2(pk). (16)
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Der Wert r(pk) ist, unabhängig von ra, eine Funktion von r'a allein,
d. h. alle parallelen Bahnen mit der Neigung r'a durch die Ebene
z a vereinigen sich im gleichen Punkt r(pk) der Ebene z pk
(Fig. 3). Eine Ebene z pk lässt sich daher als eine der Ebene z a
zugeordnete Brennebene auffassen.

JI

-^2
2-

Pi

Fig. 3.

Parallele Bahnen durch die Ebene z a vereinigen sich in einer Ebene z pk.

Definiert man eine (vordere) Brennweite f nach Gauss durch das
Verhältnis der Ordinate r(pk) zum Neigungswinkel r'a des parallelen
Bündels, so erhält man mit (16)

/. r(Pk)
r'(a)

III) z pk; r2'(pk) 0.

Aus (12) folgt:

="f2(pk).

r'(pk) r(a) -rX(pk).

(17)

(18)

Der Wert r'(pk) ist, unabhängig von rj, allein eine Funktion von
ra, d. h. parallele Bahnen durch die Ebene z pk kommen vom
gleichen Punkt der Ebene z a her, die man daher als eine den
Ebenen z pk zugeordnete Brennebene ansehen kann (Fig. 4).

Eine (hintere) GAUSs'sche Brennweite f lässt sich mit (18)
definieren zu

/-=4£L M_. (19)

IV) z tk; rX(tk) 0.

Aus (12) folgt:
r'(tk)=r'(a)-r2'(tk). (20)

30
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Die mit einer Neigung rj die Ebene z a durchsetzenden Bahnen
passieren die Ebenen z tk unter der konstanten Neigung r' (tk)

(Fig. 5). Zwischen den beiden Ebenen bei a und tk besteht eine

teleskopische Abbildung mit der Angularvergrösserung A:

A ^*
v fc' ' /4. \Ak JJX7X ra "">¦ (21)

Wie in Abschnitt 8 gezeigt wird, behalten die Abbildungsverhältnisse

für den Fall I (reelles Bild) auch für CjO Gültigkeit;
die Fälle II bis IV gelten nur für (7 0.

TL

3\

a 2

M3

£ ^ n > £

Fig. 4.

Parallele Bahnen durch eine Ebene z pk kommen vom gleichen Punkt der Ebene

z a her.

X

OL,

t.

2''

— 2
1

**¦ Z

3

Fig. 5.

Teleskopische Abbildung zwischen einer Ebene z tk und der Ebene z a.
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4. Wir wenden nun die allgemeine Beziehung (10) auf die unter
3. I) bis IV) beschriebenen Fälle an. Setzen wir in (10) für fx und f2

speziell die Funktionen rx und r2 ein, so folgt unter Beachtung, dass
dann die linke Seite von (10) an der Stelle z a wegen (11) den
Wert Eins annimmt,

rx(z)r.J(z)-r2(z)rX(z)=7^A-. (22)

^

('

*[ N <*, isSui2/ y h

Fig. 6.

Zur Beziehung zwischen Öffnungswinkel u und Vergrösserung V r(bk)/r(a) bei

der Abbildung durch reelle Bilder (Lagrange-Helmholtz'scher Satz).

Betrachten wir eine Ebene z bk nach I) mit r2 (bk) 0, in
welcher ein reelles Bild der Ebene z o entsteht, so gilt wegen r2 0

mit (22)

'i (**W (&»)-vis-Sr (23)

Nach (15) ist rx(bk) r(bk)/r(a) gleich der Vergrösserung V. Für
eine Bahn, welche durch die beiden Achsenpunkte z a, r(a) 0

und z bk, r(bk) 0 geht, gilt nach (12) mit r (a) 0

r'ih) r'(a) • r2'(bk) oder r2'(bk) [^-]fa'=0 (24)

Bezeichnen wir den Winkel der Bahntangente bei a mit der Achse
durch ua und bei bk durch ub (Fig. 6), so folgt durch Einsetzen von

~ """ ' ' tg%
(25)

(24) und (15) in (23) mit rj tg ua und rb'k

n(a) r(a) tg ua n(b) r(bk) tg %

oder auch mit Einführung des elektrischen Potentials 0 auf der
Achse

Y0~a Ta tg Ua 1/0, r„ tg % (25a)

Diese Beziehung wird in Analogie zu einem bekannten Satz der
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geometrischen Optik als der „Lagrange-Helmholtz'sche Satz" der
Elektronenoptik bezeichnet1). Unserer Herleitung liegt, wie in 1.

erwähnt, die Voraussetzung (7 0 zugrunde, d. h. sie gilt noch nicht
für Bahnen mit zur Achse „schiefer" Anfangstangente oder falls
am Ausgangspunkt ein magnetisches Feld wirksam ist. Wir werden
jedoch in Abschnitt 8 zeigen, dass die Beziehungen (25) auch im
Fall C 4= 0 bestehen, womit der Lagrange-Helmholtz'sche Satz für
die Elektronenoptik in voller Allgemeinheit gilt2).

In Anwendung auf die nach 3. IV) zwischen den Ebenen z a
und z tk bestehende teleskopische Abbildung erhält man aus (22)
mit rx'{tk) 0

rAMMM^- (26)

K.

Xa
Ua

a

"t,
zfr

*t_

Fig. 7.

Zur Beziehung zwischen teleskopischer Vergrösserung VT r(tk)J(a) und Angular-
vergrösserung A.

r2'(tk) gibt nach (21) die Angularvergrösserung A. Für sich gegenseitig

entsprechende bei a und tk achsenparallele Bahnen folgt aus
(12) mit r'(a) 0

r(tk) r(a)-rx(tk) oder rx(tk) [''(y
r(a) W 0

=y„ (27)

wobei wir unter VT die Eateralvergrösserung bei teleskopischer
Abbildung verstehen (Fig. 7). Mit (27) und (21) folgt aus (26)

AyV,, n(a)
n(tk) y/_*.

•*¦*
(28)

i) Der hier gegebene „geometrische" Beweis des Lagrange-Helmholtz'schen
Satzes scheint dem Verfasser den Vorzug gegenüber den bisher üblichen, auf
energetischen (thermodynamischen) Überlegungen beruhenden Beweisen zu verdienen,

die bei näherem Zusehen im elektronen optischen Fall nicht, sehr befriedigen.
2) Über die Gültigkeit auch bei virtuellen Bildern siehe Abschnitt 6.
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d. h. die Gültigkeit der auch in der GAuss'schen Dioptrik bestehenden

Beziehung zwischen teleskopischer Vergrösserung VT und
Angularvergrösserung Ä für die Elektronenoptik.

Für die unter 3. II) und III) behandelten Fälle, welche einer
Ebene z a (eine oder mehrere) Brennebenen bei z pk und
andererseits die Ebene z a als Brennebene den Ebenen z pk
zuordnen, lässt sich für die mit (17) und (19) definierten GAuss'schen
Brennweiten / und f eine in der GAuss'schen Dioptrik bekannte
Brennweitenbeziehung nur für den speziellen Fall aufstellen, dass
die Ebenen z pk und z =^pk zusammenfallen. Mit pk pk pok
und den Bedingungen nach II) und III): rx(pok) rz'(pok) =0
folgt aus (22)

rX(PoX) r2(pok) -
n(a)

MPok)

und mit (17) und (19)

h_ MaJ_ t / 9,

h WM-) - l/-^2- (P* P* Po*)- (29)
V Pole

5. In der Lichtoptik liegen normalerweise Objekt und Bild in
Medien mit konstantem (und meist gleichem) Brechungsindex n;
die Lichtstrahlen in Objekt- und Bildraum verlaufen daher geradlinig.

Zwischen den Koordinaten zugeordneter Bild- und Objektpunkte

bestehen kollineare Beziehungen, welche die Eigenschaften
der GAuss'schen Dioptrik enthalten. In der Elektronenoptik
entspricht dies dem Fall, dass Bild und Objekt in Gebieten konstanten
Potentials (n */•*£ konst.), d. h. im feldfreien Raum liegen;
bekanntlich gelten dann auch in der Elektronenoptik die Gesetze der
GAuss'schen Dioptrik (siehe Abschnitt 7). Kommt die elektronenoptische

Abbildung jedoch ganz oder teilweise innerhalb des
wirksamen Potentialfeldes zustande, so besteht natürlich zwischen
Objekt- und Bildkoordinaten kein kollinearer Zusammenhang. Die
Abbildungs Verhältnisse lassen sich hier aus dem spezifischen Verlauf

unserer in (11) eingeführten Funktionen rx und r2, d. h.
insbesondere deren Nullstellen, Extremalstellen und den zugehörigen
Funktionswerteu entnehmen.

Einem Objekt in der Ebene z a ist nach 3. I) durch r2 (bk) 0

ein reelles Bild in einer Ebene z bk zugeordnet. Zufolge der für
r2 mit (11) vorgegebenen Anfangsbedingungen enthält die Funktion
r2 (z) a als Parameter. Die Abhängigkeit zwischen den Koordinaten
von Bildebene (bk) und Objektebene (a) ist daher durch r2(z,a) mit
z bk durch

r2(bk,a) 0 (30)
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gegeben; ist r2(z,a) bekannt, so findet man daraus bk(a). Es genügt,
rx(z,a*) und r2(z,a*) für einen bestimmten Wert von a* zu kennen,
um daraus für irgendeinen Wert von a die analogen Funktionen
rx(z,a) und r2(z,a) herzuleiten. Man kann dazu die folgenden
Beziehungen verwenden, von deren Gültigkeit man sich mit (6), (10)
und (11) sofort überzeugt:

ri(z)= ~r(fX(a)fi(z)-fX(a)f2(z))c

n(a)
c (/.'(o)/i'W-/i'(o)/.'W)

r2(z) -^(f2(a)fx(z)-fx(a)f2(z))

r2'{z)=-^(f2(a)fx'(z)-fx(a)f2'(z))

(31)

(32)

Diese Beziehungen geben eine Darstellung von rx und r2 durch zwei
beliebige andere linear unabhängige Integrale fx und f2; sie gelten
daher auch für fx rx(z,a*), f2 r2(z,a*) *).

Der funktionale Zusammenhang zwischen den Koordinaten bk

und a von Bild- und Objektebene ergibt sich nach (30) mit (32)
auch aus f2 (a) fx (bk) — fx (a) f2 (bk) 0 oder

h(a) _ fi(K) /qq\
M«) h(K) ' { '

Das Verhältnis der Änderung von bk bei einer kleinen Änderung von
a bezeichnen wir wie in der Lichtoptik als Axialvergrösserung G:

Aus (33) ergibt sich durch Differentiation

fJa)U(a)-f2(a)fJ(a) ^ffl fjb)k) f2 (bk)-fJbk)hJbk) ^/?(«) fjK) *"

Unter Verwendung von (10) erhält man daraus nach (34) und mit
Einführung von rx und r2 für fx und /2:

Gk _
dbk
da

n(bk)rx(bk) n(bk)

n(a)r\(a) n(a)

und mit (15)
Gk

__
n{bk)

__ -,/0bk
n(a) Y 0a 'n

r\(b.kl

(35)

i Die Konstante c hat nach (10) den Wert A(z)-n(z); also z.B.
c /!(«)• n(a) (f1(a)f2Ja)-f2(a)//(«)) -n(a).
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d. h. die auch in der GAuss'schen Dioptrik gültige Beziehung
zwischen Lateral- und Axialvergrösserung. Aus (35) erhellt unmittelbar

das positive Vorzeichen von G, d. h. die Abbildung durch
reelle Bilder ist reehtsläufig. Mit (15), (25) und (35) folgt unmittelbar

auch die Beziehung

-kfi- 1, (35a)
'Ic

wenn Ak= tg utk/tg ua die Angularvergrösserung für die
Bildebene z=bk bezeichnet. Wie der folgende Abschnitt zeigt, gelten

(35) und (35a) auch für virtuelle Bilder.
6. Wir wollen noch die Frage nach der Existenz virtueller Bilder

beantworten, die Objektpunkten in einer Ebene z a entsprechen.
Durch Elimination von r'(a) aus den beiden Gleichungen (12) und
Verwendung von (22) erhält man nach kurzer Rechnung

r(z) rJz) n(a) 1M r (z) + r(a) -~ —rrvr2(z) *< i v I n(z) r2 (z)

JI

(36)

7
io

Ha

a
z

z
Fig. 8.

Zu einer Ebene z (z < px und bk(z( pk+1) gehört ein virtueller Bildpunkt £„, rj0

von einem Objektpunkt in der Ebene z a.

In jeder Ebene z sind also die Ordinate r(z) des Durchstosspunktes
der Bahn durch die Ebene und die zugehörige Bahntangente r'(z)
nach (36) verknüpft und für ein gegebenes z nur noch abhängig
von ra, nicht aber von rj. Denkt man sich die zu einem festen ra
gehörigen Bahntangenten bei z von den zugehörigen Durchstoss-
punkten aus geradlinig verlängert, so schneiden sie sich in einem
Punkte Co, Vo (Fig. 8) mit den Werten

Vo r(a)

Co •?-

n(a) 1

n(z) r2Jz)

rj(z)

r(a) X 0 1

0Z r2(z)

(37)

(38)
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nachdem das Geradenbüschel durch Co, Vo der Gleichung

r(z) r)0 + r'(z) (z — C0)

genügt. In Bereichen f2(z)jr2' (z) > 0 ist C0 < z, d. h. zu jeder Ebene
z in einem solchen Bereich gibt es zu einem Objektpunkt ra in der
Ebene z a einen virtuellen Bildpunkt. Eine Betrachtung von
Fig. 1 zeigt, dass die virtuellen Bilder von z a aus ins Unendliche
nach links wandern, wenn bei festem a die Ebene z nach rechts bis
zu z px wandert. Zwischen px und bx existiert kein virtuelles
Bild; solche sind in Bereichen z < px und bk <. z < pk+x vorhanden.
In Bereichen pk<z<bk geben (37) und (38) die Koordinaten eines
reellen Bildpunktes für den Fall, dass sich rechts der Ebene z ein
feldfreier Raum anschliesst. Die Lateralvergrösserung gibt (38)
mit V rj0/r(a).

Für die Axialvergrösserung G d^0/da bei z const. folgt aus
(37) unter Verwendung von (32), (10) und (38) nach kurzer Rechnung

ebenfalls die Beziehung (35). Die Abbildung ist daher auch für
virtuelle Bilder rechtsläufig. Ebenso folgt die Gültigkeit des Satzes
von Lagrange-Helmholtz in bezug auf die in einer Ebene z Co

nach (37) und (38) entstehende Abbildung unmittelbar aus (38)
durch Einsetzen der aus (12) für r(a) — 0 folgenden Beziehung
r.J(z) r'(e)fr'(a).

Eliminiert man aus den Gleichungen (12) r(a), so folgt unter
Verwendung von (22)

/ \ ri(z) ii \ \ n(a) 1 ,on,r (7) M *" (z) — r (a) -J-J —rj-r (39)v ' rx (z) x ' "•'»(«) rx (z) v '

Dies bedeutet, dass alle die Ebene z a unter gleicher Neigung
r' (a) durchsetzenden Bahnen bei geradliniger Fortsetzung in Richtung

der Bahntangente von einer Ebene z aus sich in einem Punkt
mit den Koordinaten

^--^,(«)^vW--'''^yi:vW ^)
vereinigen. In Bereichen, wo rx(z)jrx'(z) positive Werte besitzt,
entsteht daher von einer Ebene z aus betrachtet ein virtueller
Bildpunkt Cy, Vf YOn den die Ebene z a mit der Neigung r' (a)
durchsetzenden Parallelen, die sich in einer der Ebene z zugeordneten
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virtuellen Brennebene bei z £f vereinigen (Fig. 9). Mit (41) lässt
sich für jedes z eine GAUss'sche Brennweite definieren zu

/.= r'(a)
1n(a)

n{z) rjtz) tt0Z rj(z) (42)

Aus Fig. 1 ersieht man, dass solche virtuelle Brennebenen in
Bereichen pk < 0 < tk existieren.

Für z <[px und tk<.zipk+x ist rx(z)lrx'(z) < 0; C/ und rjf geben in
diesen Bereichen die Koordinaten eines den Parallelen bei z a
zugeordneten reellen Bildpunktes in einer reellen Brennebene
z Cf für den Fall, dass sich rechts der Ebene z ein feldfreier Raum
anschliesst.

Wir bemerken noch, dass die Betrachtungen dieses Abschnittes 6

an die Voraussetzung (7 0 nach (4) gebunden sind.

71

OÄsr

n*

*TTt Z ^Z

Fig. 9.

Zu einer Ebene z (pk < z < tk) gehört eine virtuelle Brennebene z £y, in der sich
Bahnen gleicher Neigung durch die Ebene z a in einem Punkte £f, r\f vereinigen.

7. Wirkt das Potentialfeld nur innerhalb eines beschränkten
Bereiches der (r,2)-Ebene, d. h. setzen wir voraus, dass das Potential
etwa ausserhalb der Ebenen z a und z ß (Fig. 10) als konstant
betrachtet werden kann (z < oc, n n^ const., P(z) 0; zy ß,
n nß const., P(z) 0), so verlaufen die Bahnen ausserhalb des
Feldbereichs geradlinig. Wir betrachten im feldfreien Raum z < oc

einen Punkt C, V und ein von ihm ausgehendes paraxiales Strahlenbüschel;

setzen wir jede Gerade dieses Büschels von ihrem Durch-
stosspunkt mit der Ebene z a an in einer Bahnkurve mit gleicher
Tangente bei z a durch den Feldbereich bis zur Ebene z ß fort
und von z ß an in einer Geraden, welche die betreffende Bahnkurve

im Durchstosspunkt durch die Ebene z ß berührt, so zeigt
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sich, dass sich die Gesamtheit aller solcher Geraden wieder in einem
Punkt C, V vereinigt, welcher als (reeller oder virtueller) Bildpunkt
des Objektpunktes C, i] anzusehen ist. Weiterhin zeigt sich, dass
zwischen den Koordinaten des Objekt- und des Bildpunktes
kollineare Beziehungen bestehen; daher haben in diesem Fall alle
bekannten Sätze und Eigenschaften der GAuss'schen Dioptrik
Geltung, wie sie aus der Lichtoptik für Linsensysteme bekannt sind.

Ein von C,»? ausgehendes Geradenbüschel genügt der Gleichung

r(z) n + r' (oc) (z — C)

An der Stelle z oc gilt daher

r (et) n + r' (oc) (oc — C) (43)

n--r\aL

\n

7

cx

n(z)
n np

n zn
Fig. 10.

Abbildung durch eine zwischen den Ebenen z ol und z ß wirksame Elektronen¬
linse, wenn sich Objekt und Bild im feldfreien Raum befinden.

Für oc < z < ß gelten die Bahngleichungen nach (12) mit a oc:

r(z) r(oc) rx(z) + r'(ct) r2(z)

r' (z) r(oc) rx'(z) + r'(oc) r'2(z)
(44)

An der Stelle z ß folgt daraus

r(ß) r{tx)r1{ß) + r'(oc) r2(ß)

r'(ß) r(x)rx'(ß)+r'(c7)r2'(ß).
(45)

Soll sich das Büschel der geradlinigen Fortsetzungen der
Bahnkurven über die Ebene z ß hinaus in einem Punkt f, r) vereinigen,
so bedingt dies analog (43)

r(ß) v + r'(ß)(ß-C) (46)
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Aus (43), (45) und (46) gewinnt man nach kurzer Rechnung

o J r2(ß) + rJß)(cc-Q ,.„9 ** r2Jß) + r1Jß)(ot-C) ^'>

V r,[rx(ß)-rx'(ß)(ß-~£)l (48)

d. h. eine kollineare Beziehung zwischen C>X) und C, n. Führt man
in bekannter Weise an Stelle von C, C als neue Koordinaten die
Abstände x und x von den „Brennpunkten" Cf und Cj ein durch
x C—Cf und x C ~~ Cf> wobei der „Brennpunkt" Cf das Bild
von C °° bzw. Cj das Bild von C °° ist, so folgt aus (47)

«-f*=—$Sr und '-'* w <49>

und damit aus (47) und (48) nach kurzer Rechnung mit (22)

x-=rJß)rJ(ß)-rJß)r2Jß)_ »(«) 1

[V (/»)]« »(j8) [V(,S)]2

} M/?M
Die bekannten Abbildungsgleichungen der GAuss'schen Dioptrik

xx ff und 7L L 7L (50)

ergeben sich daher mit Einführung der „Brennweiten" / und /
durch1)

t- "M 1 *l/3JI 1
(«1*,' ~

n(ß) rj(ß)
' - Y 0ß rj(ß) [-01>

(52)

mit der Beziehung

1 _ Jjjj _ _ l/^ 'KON

Die Lage der Hauptebenen z Ce bzw. z Ca folgt mit
^s £h -— fp ¦"¦"* / bzw. Sg Cg~ Cp / aus (49), (51) und (52) zu

7=
1

'i'(Ä

ra(a)

rAß)\ -,, (54)

fr-*«-^(i-'»(Ä).
i) Man beachte, dass hier für ^ bzw. r2 die Anfangsbedingungen (11) mit o a

gelten.
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Die Lage der Knotenebenen (CK, Ck) folgt nach Definition für
ein Angularverhältnis 1 mit (25a) und (50) aus

A ^L JLl/K^JLl/K^n/J^==l
tgu, tj y 0t f r 0e x \ 0.

zu

C-K-ß -^{ßj{y^-ri(ß)
(55)

Für 0a 0ß fallen Hauptebenen und Knotenebenen paarweise
zusammen.

Da das Objekt bei den obigen Betrachtungen im feldfreien Raum
(Ba 0) angenommen wird, ist die Bedingung C — 0 nach (4) für
Bahnen, die nicht windschief zur Achse verlaufen, erfüllt.

Es versteht sich daraus, dass alle von der Lichtoptik her bekannten

Eigenschaften der GAuss'schen Dioptrik in der Elektronenoptik

Geltung haben, wenn Objekt- und (reelle) Bildpunkte in
Räumen konstanten Potentials liegen. Wir bemerken noch, dass

aus (51) unter Beachtung der Fig. 1 anschaulich hervorgeht, dass
bei einem solchen Verlauf von rx „kurze" Linsen stets eine positive
Brennweite haben, da rj (ß) im Bereich a <z < tx negativ ist. Ist die
Linse „länger" als (tx — o), so wirkt sie als Linse negativer Brennweite

/ im Bereich tx<.z<ti usw., unter der Voraussetzung natürlich,
dass das Objekt ausserhalb des Feldbereiches liegt.

8. Alle bisherigen Betrachtungen galten, wie unter 1. erwähnt,
für den Fall (7 0, d. h. dass die Anfangstangente der Bahn in
einer die Achse enthaltenden Ebene liegt und am Ausgangspunkt
der Bahn das magnetische Feld verschwindet, wobei als „Ausgangspunkt"

natürlich irgendein Punkt der Bahn angesehen werden kann.
Ohne Einschränkung galten die Betrachtungen für Achsenstrahlen
wegen C 0 für ra 0. Wir kommen nun auf den Fall (7+0
zurück und wollen zusehen, welcher Teil der oben erhaltenen Ergebnisse

auch ohne die durch (7 0 bedingten Einschränkungen gilt.
Führt man in (1) und (2) neue Variable q und % an Stelle von z
und cp ein durch1)

q re** (56)

x <p-V^ fjmdz (57)

Vgl. Beuche-Scherzer, Geometrische Elektronenoptik (1934), S. 117.
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so erhält man nach kurzer Rechnung folgende Differentialgleichungen
für q und %:

ity*if)-nz)-<>. (59)

Die Differentialgleichung (59) für q besitzt die gleiche Form, wie die
ursprüngliche Differentialgleichung (1) für r mit (7 0; wählt man
daher analog zu (12) zur Darstellung von q die (reellen) Integrale qx
und q2 mit folgenden Anfangswerten an der Stelle z a:

so gilt

a: Qx(a) l Q2(a) 0

9'x(a) 0 o2'(a) l,
e(z)

e'(z)
e(a) qx(z) + e'(a) q2(z)

?(«)&'(*) + e'(o) qX(z).

(60)

(61)

Liegt der Ausgangspunkt der Bahn in der Ebene z a, so ist mit
(57) %(a) cp(a) 0 und damit nach (56) o(a) r(a). Mit (57) und
(58) erhält man q'(a) und damit nach (61)

q(z) r(a) ex(z)+[r'(a)+ir(a)[cp'(a)- ]/M jyA^ Qz[z) (62)

Die Nullstellen von q2 (z) seien durch z bk gegeben. Dann gilt dort

e(bk) r(a)-Qx(bk). (63)

Da Qx(bk) reell ist, wird Q(bk) reell und daher %(bk) 0. Es folgt
aus (63)

r(bk) r(a)- 6x(bk) (64)

In den Ebenen z bk entsteht nach analogen Überlegungen wie
unter 3. I) ein reelles Bild auch im Fall (7+0. Damit bleiben die
Überlegungen von 3.1) erhalten, nicht dagegen von 3. II) bis IV).
Die letzteren gelten daher nur bei (7 0, d. h. jedenfalls in rein
elektrischen Linsen für Bahnen, die nicht windschief zur Achse
verlaufen.

Der Lagrange-Helmholtz'sche Satz (25) gilt nach Vorstehendem
in voller Allgemeinheit: Aus (59) folgt nämlich in Analogie zur (22):

6i ih) qX ih) — es (bk) qx' (bk) "|/-=f-. (65)
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Mit q2 (bk) 0 am Ort eines reellen Bildes in der Ebene z bk ist
nach (64)

n lh \ r(b7>

und für einen Achsenstrahl (r (a) 0) mit (62) und % 0 (C 0):

q' (bk) r' (a) q2' (bk) r' (bk)

d.h.:
r'(bk) _ tg ubk

QX{bk rja) lgua

womit nach (65) mit q2 (bk) 0 wieder der Lagrange-Helmholtz'sche

V&a ra tg «« X0Xk rbk tg ubk (66)

auch im allgemeinen Fall (7+0 resultiert.
9. Alle vorstehenden Überlegungen folgen im wesentlichen aus

der Differentialgleichung (5). Sie gelten daher ausser im
axialsymmetrischen Fall, den wir hier zugrunde gelegt haben, auch in
allen jenen Fällen, in denen sich die Bahngleichungen in der
Umgebung einer ausgezeichneten Bezugsbahn in die Form einer linearen,

homogenen Differentialgleichung zweiter Ordnung bringen
lassen1). An die Stelle der Koordinate r tritt dann die Koordinate
der Abweichung von der Bezugsbahn und an Stelle von dz das
Bahnelement ds längs der Bezugsbahn.

Der entsprechende lichtoptische Fall wäre für die paraxiale
Lichtausbreitung in einem isotropen Medium gegeben, dessen
Brechungsindex N in der Umgebung der 2-Achse durch die
Entwicklung

N(z,r) n(z) + P(z) ¦ ~ + -..

dargestellt wird. Aus der Euler'schen Differentialgleichung des

Variationsproblems d I N ds=0 ergibt sich für achsennahe
geometrisch-optische Bahnen die Differentialgleichung (5)2).

Die behandelte Dioptrik der Elektronenbahnen setzt stillschweigend

überall positive Werte des Potentials 0 (z) bzw. n(z) voraus;
an einer Nullstelle des Potentials wird die Elektronengeschwindigkeit

Null, und es findet (wenn die Nullstelle nicht gerade mit einem
Sattelpunkt zusammenfällt) eine Bahnumkehr zu rückläufiger
Bewegung statt. Die der Differentialgleichung (5) zugrundeliegende

i) z. B. Kreisbahn im Magnetfeld.
2) Über die Abweichung von den „wellenoptischen Bahnen" vgl. z. B. R. Gans,

Ann. d. Phys. 47, 709 (1915).
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Voraussetzung r'2 <^ 1 ist in der Umgebung des Umkehrpunktes
(r' oo) ungültig, weshalb die Anwendung auf die Katoptrik
(Elektronenspiegel) zunächst unzulässig erscheint. Aus einer
genaueren Untersuchung von Recknagel1) geht jedoch hervor, dass
die Differentialgleichung (1) als brauchbare Beschreibung der
paraxialen Bahnbewegung beim Elektronenspiegel (B 0) angesehen
werden kann. Sieht man von diesem Standpunkt aus die Bahnen
beim Elektronenspiegel als durch den Umkehrpunkt stetig hindurchgehende

Lösungen von (5) an, so lassen sich die obigen Betrachtungen

sinngemäss auch zur Beschreibung der ÄbbildungsVerhältnisse
beim Elektronenspiegel heranziehen.

i) A. Recknagel, Z. f. Phys. 104, S. 381 (1937).
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