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Freinage des neutrons rapides dans le graphite
par A. Houriet et A. Kind (Genéve).
(5. IV. 1948.)

Les recherches de ces dix derniéres années — I’étude des niveaux
des noyaux en particulier — ont montré qu’il est du plus haut in-
térét de posséder une source de neutrons dont le spectre soit continu
et s’étende des énergies thermiques (quelques /34, d’électron-volt)
jusqu’a quelques millions d’électrons-volt. Les sources connues —
émission de neutrons lors de réactions nucléaires — fournissent
toutes des neutrons rapides (Energie E, quelques MeV.). Leurs spec-
tres se composent d'une ou de plusieurs raies étroites. Pour les trans-
former en spectres continus et étendus, on ralentit les neutrons par
chocs successifs contre des noyaux. Frrumi utilisa pour cela les
noyaux H des substances hydrogénées (p. ex. parafine); ces subs-
tances offrent I’inconvénient d’absorber fortement les neutrons (par
formation d’hydrogeéne lourd H! +n} =D?). Pour ’éviter, on re-
chercha des modérateurs non absorbants. Les substances les plus
adéquates trouvées jusqu’ici sont ’eau lourde (D,0) et le graphite
(C13), Ce sont elles qui permirent la réalisation des réactions en
chaine dans les piles & uranium.

La théorie du ralentissement des neutrons s’est développée paral-
lélement aux recherches expérimentales. De nombreux travaux ont
étudié I’établissement du régime «lent» (régime pour lequel les neu-
trons possédent une énergie E petite, comparée & 1’énergie d’émis-
sion B, (E/E,<<€1). La répartition des neutrons lents ne dépend
pratiquement pas de la largeur de la raie d’émission, que I’on peut
représenter par une fonction singuliére de Dirac 6 (E — E). Les
calculs sont alors simplifiés. La répartition des neutrons lents que
I’on obtient ainsi est satisfaisante et parait étre en bon accord avec
I’expérience.

Le spectre de ralentissement des neutrons rapides est mal connu.
Les énergies considérées étant voisines de I’énergie d’émission, il est
évident que I’on ne peut plus négliger la largeur des raies d’émission
(quelques 100000 électrons-volt). On pourrait, semble-t-il, utiliser
un spectre 6 (£ — E,) et effectuer ensuite une intégration par rap-
port & E,. Cette méthode conduit & des intégrations doubles, ce qui
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la rend inefficace et inexacte. De plus elle introduit des discontinui-
tés artificielles. Le but de ce travail est d’exposer une technique
exempte de ces difficultés, qui permette de déterminer les spectres
de ralentissement aux environs de la raie d’émission.

Pour développer la méthode, nous ferons les hypothéses suivantes:
1. La source est ponctuelle et isotrope, placée & l'origine.
2. Le modérateur remplit tout ’espace.

3. Le choc entre le neutron et le noyau du modérateur est élastique,
de symétrie sphérique dans le systéme du centre de gravité.

4. Le centre de gravité coincide avec les noyaux de masse M au
repos du modérateur. Cette hypothése, qui n’est légitime que
pour M --oco, constitue une bonne approximation dans le cas ou
M = 12 (graphite).

5. En chaque point du modérateur, la répartition des vitesses est
1sotrope.

Des travaux en cours étudient 'application de la méme méthode
lorsqu’on s’affranchit des hypothéses 2, 4 et 5.
Désignons par
dN=po(r,E)drdE

le nombre des neutrons d’énergie comprise entre E et £ + dF, et
qui se trouvent & la distance r, r + dr de la source. Soit o, (E) la
section de diffusion élastique et o, (E) la section de capture neutron-
carbone. La section totale est

o (E) =0, (E) + o, (E).

S1 n désigne le nombre de noyaux C par cm?, les chemins moyens
valent:
1 1 1

AS(E)=W lc(E)=mc(—E) AE) = m

et l’'on a évidemment:
1 1 1

als
TE) " 1B A&

Un bon modérateur est caractérisé par

o5 (B) > o0, (E) ou encore » = % ~ 1.

Cette condition est réalisée par le graphite pur. L’adjonction de
substances étrangeéres diminue le rapport » et la qualité du modéra-



Freinage des neutrons rapides dans le graphite, 145

teur. Nous prendrons » = 1. Les hypothéses 1—5 conduisent & 1’¢é-
quation de FLrueGr?):

747 £
X il
e E)v _ d “am e(r, B v ﬁe—s L QE)e *
rA(B) — 2 (1 az) E v i2(E) ri(E)
| r—7"|
AI
M—-m M = masse du noyau modérateur
oL = — avec
M+m m = masse du neutron
v = vitesse du neutron @(E) = spectre de la source.
Introduisons
o(rE)v
rA(E) ( E)
.. T
xr = T 5= |
B = E, e 6=—1lna?
0 7 .

E, désigne I'énergie pour laquelle @ est maximum. L’expérience
montre que la variation de A1(E’) dans I'intervalle B < E' < E/a?
est négligeable. L’équation précédente s’écrit alors:

o0 t+a x+

g(z, 1) = fd:x:fdtg(a: t f—wu@()m

|z—a’ |

Dans le cas qui nous intéresse, il est possible de choisir k de telle
sorte que la fonction e~* fournisse une bonne approximation de la
source™). Soient Ey; et E, les valeurs de I’énergie qui correspondent
aux valeurs f=1et t=—1, on a

&AE’T:ek (1 +Aéi£_) — s1 AE91=E01—‘E0

B _ s (1—%}?—2)#-# 5i  AEgp=E,—E,

Ey —Eyp=AEy + AEy = AE, mesure la largeur de la raie d’é-
mission. Pour les sources connues, on a toujours

E
=0 2

AEO

ce qui entraine
2k =~

<£1

*) La source de neutrons (— réaction D‘;’ +D? = He3 +n}— ) avec laquelle nous
comparons nos résultats posséde un spectre d’émission bien représenté par la fonec-
tion e—?* si I'on choisit £ = 0,0636, £, = 2,95 MeV, 4 E, = 0,38 MeV.

10
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Nous développerons la solution suivant les puissances croissantes
de k. Cette méthode de calcul est générale et ne dépend pas de la
fonction () choisie pour la source. Elle s’applique toute les fois

que l’on a ok < 1

Reprenons I’équation intégrale. Si I'on ne considére que la va-
riable z, I’équation intérgrale posséde un noyau K (z, ') symétrique,
dont la seule singularité, en & = ', est logarithmique. Il est donc

possible de la résoudre par une transformation de Fourier. Définis-
sons ' ‘

g (x,1) =fdu(}'(u,t) sin ux G (u, 1) 2—72z—fdmg(a:,t) SIN U T
0 0

ce qui entraine

> [ r i ¢
. , v @ s arctg u
;fdar:smum dx g(w,t)f S e =2—G(u1)
0 0 | z—x’ |
o.¢]
2 : e 2
——fd:,csm‘ua: = —arctg u
T T T
0
k t; e 2 arctg
. arctgu 7 ; arctgu _f2
G, t) = o fdta(u,tw—m—w et
i

L’équation primitive est réduite & une équation intégrale simple.
Pour en trouver la solution, nous diviserons tout d’abord l'inter-
valle — oo <t <{ oo en deux intervalles partiels:

Intervalle I. —b <t < oo
Intervalle II. —oco <t << — 0.

Nous choississons b (ou 1'énergie correspondante E;) de telle sorte
que 'on puisse poser
Q) =0 si —oo <Lt —0
Dans le cas qui nous intéresse, (Q(E) = e~*), le calcul montre qu’il
faut choisir b = 2.
On obtient ainsi deux équations intégrales, valables chacune

dans un des domaines définis
t+a

Intervalle I. G (u,f) — A f dt' G (u, t') + B (u, 1)
[4 ;

t+a

Intervalle II. G (u, 1) = A f at' G (u,t)
4

k arctgu
4= (1—a?)u

2arctgu
7 A2

avec et B = 2
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Si la source est symétrique par rapport a t=0(E = E,), — condi-
tion réalisée par les sources que 'on possede — on aura

Q () =0 pour t>b.

Nous admettrons que tous les neutrons proviennent de la source ).
Pour t> b, ) =~ 0, et en conséquence G (4, f) == 0, puisque G (u, f)
représente ’ensemble des neutrons et qu'un neutron issu de ¢ ne
peut que perdre de I’énergie, c’est-a-dire voir diminuer la variable
t qui lul est associée. Supposons d’autre part que l'on ait

a > 2b.

Il sera possible, dans I'intervalle I, de remplacer la limite supé-
rieure ¢ + a de 'intégrale par co. Sil’on tient compte des définitions
de a, a, k, la condition précédente s’écrit:

m
1___..__
1 E M
0=——Ilna?~—4-2-In >2b. %)
k 4E, m
1+ 37

Cette condition n’est pas réalisée pour de grandes valeurs de M.
Par contre, si 'on prend M = 12 (graphite) et les données expéri-
mentales: B, = 2,95 MeV., 4E, = 0,38 MeV., 1l vient

a = 5,25,

Pour que la condition ¢ ~ e~* ~ 0 soit remplie si |[t] > b, il est
nécessaire de choisir b > 2. Dans le cas qui nous intéresse, on a bie
a > b. '

Appelons G, (u, t) la solution G (u,t) dans le domaine —b>t >o0.
Elle satisfait 1’équation

Gy (u, ) = B (u, t) + A_/dt' Gy (u, 1)
t

Nous déterminons G, (u, t) par la méthode de Neumann
Go (u,) =B (u,t)+Afdt’ B (u, t’)+A2fdt'fdt"B(u, R
i : s

*) 8i lon choisit b = 2, cette condition s’écrit pour de grandes valeurs de M:
oy e 25 1 g

Cette condition est équivalente & celle que nous trouverons,  la page 6 (|0 E| >
A E,), qui assure la convergence rapide de la série représentant la solution.
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Il est facile d’interpréter physiquemment chacun des termes de ce
développement. Le premier

B (u,t) =8, (u, 1)
représente tous les neutrons qui n’ont pas subi de choc, le deu-
xiéme

AfdemJWESﬂmﬂ
; |
ceux qui ont subi un choc; le troisieme
A{[df[dyhB@hW)zsgw,a
i &

ceux qul ont subil deux choes, et ainsi de suite.

Examinons les conditions physiques qui doivent &tre réalisées
pour que cette série converge rapidement. Tout choc entraine une
perte d’énergie moyenne
2mM

OB == Ugmp ' F
ou K représente 1’énergie du neutron avant le choc. Supposons que
I'on a1t 13E| ~ 4 E,

A E, désignant la largeur de la raie d’émission. Le centre de gravité
E. (énergie moyenne) des différents spectres S, (u, t)

So (u, t), Sy (u,t), Sy(u,t),... S, (u,fi

qui se trouve en K, pour S, (u,t) se déplace rapidement vers les
basses énergies. La probabilité que le neutron, aprés n chocs, pos-
séde une énergie supérieure a B, (t > — b) tend vers zéro lorsque
n croit. Dans le cas qui nous intéresse, elle est négligeable pour n > 4.

La somme o
| 2 8 (u, t)

n=>5

représente au plus 1 9, de la somme totale

S (u, 1) = E' S, (u, t).

On peut donc poser
4
S (w, f) = 3 S, (u, t)
n=0

et calculer la répartition des neutrons, dans I’espace et en énergie,
en effectuant la transformation de Fourier de S (u,t) et en rem-
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placant ¢ par 1/k In E/E,. On obtient ainsi la densité des neutrons
d’énergie plus grande que E, (t > — b).

Il reste & déterminer la solution pour les énergies inférieures &
E,. Dans ce but, nous diviserons l'intervalle —oco <t << —b en
une infinité de domaines d’égale longueur a, par les points &, =
—b—a,ty=—b—2a,t{,=— b — 3a, etc.... auxquels correspon-
dent les énergies E,, E;, E,, etc. Nous désignerons par Gy (u, f) la
solution G(u, t) du domaine —b —a <t < —b; Gy (u, f) la solu-
tion G(u, t) du domaine —2a — b < f < — b — a; et généralement
G, (u, t) la solution du domaine —na —b <<t <— (n—1) a —b.

Ga(u, 1) Gy (u, 1) Gy (u, 1)

—

1 1 | ¢
ly=—b-2a to=—b—a t,=->b i =4
E, B, B, E,

Puisque nous avons supposé ¢ ~ B =~ 0 dans l'intervalle
—oo <t < — b,

G (u, t) satisfait I’équation homogéne
t+a
G (u, f) = Afdt'G (u, 1').
i

Ecrivons cette équation pour des valeurs de f telles que #, <t <1,
en utilisant les définitions précédentes
t+a

l
G, (u, 1) = Afdt' G, (u, ') + Afdt' G, (u, t').
t ty

Nous venons de déterminer la fonction G, (%, t). Pour trouver
G, (u, t) dérivons-I’équation précédente par rapport a f.

Gy (u, ) = — AG; (u, §) + AG, (u, t + a).
S1 nous exigeons que l'on ait, en { = §, (B = E,)
Gy (us &) =Go (u, 1)

pour toute valeur de u, 1l est facile de donner la solution G; (%, t)
t
Gy (u, £) =Gy (u, t;) e4 G0 + 4 e—“/dt’ edt Gy (u, t' + a).
A

De facon analogue, on trouve que G, (u, t) satisfait 1’équation
iy I+a

G, (u, 1) = A/dt' G, (, t’)+Afdt' G, (u, )

t t

2
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ou encore
Gy (u, t) = —AGy (u, f) + AGy (u, t + a).
La solution G, (u, t) telle que 1'on ait en t = ¢, (B = E,)

Gy (4, 1) =Gy (‘Uu t)
est

4
Gy (u, 8) = Gy (u, &) e &0+ 4 e‘“[dt’ et Gy (u, t' +a).
A

Plus généralement G, (u, f) satisfait les équations |

t+a

tn
G, (u, f) = Afdt’Gn (w, t’)+fdt’Gn_1 (w, )
t fn

G, (u, t) =—AG, (u, t')+ 4G, (u,t+ a)
et la solution G, (u, t) telle qu'en t =t¢, (£ = KE,)
Gro (U, t,) = Gryg (u, ty)
est .

t
G (14, 8) = Gy (0, 8,) eAln=0 4 4 e—A‘fdt’ AU G L (u,t + a)
b

Définissons enfin les fonctions
9 (2,8) = [ du G, (u, 1) sin uz
o

qul représentent ¢ (z, f) dans le domaine £,,; <t < t,. Elles don-
nent la solution du probleme. On y remplace x par sa valeur /4.
Soit % (r, t) la densité de choes d’un compteur de 1 em?3, dans lequel
chemin moyen des neutrons est égal a 1 cm. On a

1 1 2
M (Tﬁt) = 4nr2 @ (T:t)'v ~%Gn 7 Y (’l‘, t)
n est une quantité directement mesurable qui permet de comparer
les résultats théoriques avec 1'expérience.

Ce travail a été subventionné par la Commission de 1’énergie
atomique suisse que nous tenons & remercier icl.

Geneéve, Institut de Physique de I’Universite.
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