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Freinage des neutrons rapides dans le graphite
par A. Hourlet et A. Kind (Geneve).

(5. IV. 1948.)

Les recherches de ces dix dernieres annees — l'etude des niveaux
des noyaux en particulier — ont montre qu'il est du plus haut in-
teret de posseder une source de neutrons dont le spectre soit continu
et s'etende des energies thermiques (quelques 1/100 d'electron-volt)
jusqu'a quelques millions d'electrons-volt. Les sources connues —
emission de neutrons lors de reactions nucleaires — fournissent
toutes des neutrons rapides (Energie E0 quelques MeV.). Leurs spec-
tres se composent d'une ou de plusieurs raies etroites. Pour les
transformer en spectres Continus et etendus, on ralentit les neutrons par
chocs successifs contre des noyaux. Fermi utilisa pour cela les

noyaux H des substances hydrogenees (p. ex. parafine); ces
substances offrent l'inconvenient d'absorber fortement les neutrons (par
formation d'hydrogene lourd FL[ +n\ =D\). Pour l'eviter, on re-
chercha des moderateurs non absorbants. Les substances les plus
adequates trouvees jusqu'ici sont l'eau lourde (D20) et le graphite
(C]X). Ce sont elles qui permirent la realisation des reactions en
chaine dans les piles a. uranium.

La theorie du ralentissement des neutrons s'est developpee
parallelement aux recherches experimentales. De nombreux travaux ont
etudie l'etablissement du regime «lent» (regime pour lequel les
neutrons possedent une energie E petite, comparee ä l'energie d'emis-
sion E0 (E/E0<^.1). La repartition des neutrons lents ne depend
pratiquement pas de la largeur de la raie d'emission, que l'on peut
representer par une fonction singuliere de Dirac S (E — E0). Les
calculs sont alors simplifies. La repartition des neutrons lents que
l'on obtient ainsi est satisfaisante et parait etre en bon accord avec
l'experience.

Le spectre de ralentissement des neutrons rapides est mal connu.
Les energies considerees etant voisines de l'energie d'emission, il est
evident que l'on ne peut plus negliger la largeur des raies d'emission
(quelques 100000 electrons-volt). On pourrait, semble-t-il, utiliser
un spectre ö (E — E0) et effectuer ensuite une Integration par
rapport ä E0. Cette methode conduit ä des integrations doubles, ce qui
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la rend inefficace et inexacte. De plus eile introduit des discontinui-
tes artificielles. Le but de ce travail est d'exposer une technique
exempte de ces difficultes, qui permette de determiner les spectres
de ralentissement aux environs de la raie d'emission.

Pour developper la methode, nous ferons les hypotheses suivantes:
1. La source est ponctuelle et isotrope, placee ä l'origine.
2. Le moderateur remplit tout l'espace.
3. Le choc entre le neutron et le noyau du moderateur est elastique,

de symetrie spherique dans le Systeme du centre de gravite.
4. Le centre de gravite coincide avec les noyaux de masse M au

repos du moderateur. Cette hypothese, qui n'est legitime que
pour M-r>oo, constitue une bonne approximation dans le cas oü
M 12 (graphite).

5. En chaque point du moderateur, la repartition des vitesses est
isotrope.

Des travaux en cours etudient l'application de la meme methode
lorsqu'on s'affranchit des hypotheses 2, 4 et 5.

Designons par
dN Q(r,E)drdE

le nombre des neutrons d'energie comprise entre E et E + dE, et
qui se trouvent ä la distance r, r + dr de la source. Soit as (E) la
section de diffusion elastique et esc (E) la section de capture neutron-
carbone. La section totale est

a (E) as (E) + ac (E).

Si n designe le nombre de noyaux C par cm3, les chemins moyens
valent:

^ (**¦) J^JM K (E) 77JXW l (E) ^TcTJß)

et l'on a evidemment:
l 1.1X(E) XS(E)

'

Xe(E) '

Un bon moderateur est caracterise par

as (E) > ac (E) ou encore x -yrgr 1-

Cette condition est realisee par le graphite pur. L'adjonction de
substances etrangeres diminue le rapport x et la qualite du modera-
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teur. Nous prendrons x — 1. Les hypotheses 1—5 conduisent ä
l'equation de Flügge1) :

OO .E/o-rr X
q(t,E)v 1 f f dE' Q(r',E')v' f ds _ Q(E)e1 frlr' fdE' eir''E')v' f*±e-

l-a2) J ar J W r'X2(E') J srX(E) 2(l-a2) J "" ./ W r'X2(E') J s
' rX(E)

I r—r" |

a
M—m
M + m

X

M masse du noyau moderateur
avec

m masse du neutron
v ¦ vitesse du neutron Q(E) spectre de la source.

Introduisons
e(r,E)v
rX(E) yV'^J

r r'
X J X=~l

E-- E0ekt a --^lnaa.

E0 designe l'energie pour laquelle Q est maximum. L'experience
montre que la Variation de 7(E') dans l'intervalle E < E' < E/oc2

est negligeable. L'equation precedente s'ecrit alors:

oo t + a x + x'
e~

g(x,t) 2{lh^)fdx'fdt'g(x',t')j ^-e-s + Q(t) xl*

Dans le cas qui nous interesse, il est possible de choisir fe de teile
sorte que la fonction e~* fournisse une bonne approximation de la
source*). Soient E01 et E02 les valeurs de l'energie qui correspondent
aux valeurs t 1 et t — —1, on a

Eit ek (1+Air) ek si aeoi=e0j-e0

Jt e-k {1-AE~)=e~k Si AE02 EI)-E02

E01 — E02= AE01 + AE02 AE0 mesure la largeur de la raie
d'emission. Pour les sources connues, on a toujours

ce qui entraine
4M

2*«^-«!
*) La source de neutrons (— reaction D\ + D\ Hei + no~) avec laquelle nous

comparons nos resultats possede un spectre d'emission bien represente par la fonction

e-t\ si l'on choisit k 0,0636, E„ 2,95 MeV, AE0 0,38 MeV.
10
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Nous developperons la Solution suivant les puissances croissantes
de k. Cette methode de calcul est generale et ne depend pas de la
fonction Q(t) choisie pour la source. Elle s'applique toute les fois
quel'ona 2fe<1_

Reprenons l'equation integrale. Si l'on ne considere que la
variable x, l'equation intergrale possede un noyau K(x, x') symetrique,
dont la seule singularite, en x x', est logarithmique. II est donc
possible de la resoudre par une transformation de Fourier. Definis-
sons

oo oo

g (x,t) duG (u,t) sin ux G(u,t) — / dxg (x, t) sin ux
o o

ce qui entraine
oo oo x + x'

— dx sin ux dx' g (x1, t') / — e~s 2 arc g" G (u, t)

x—x i

e~x 2
d x sin u x — arctg u

X ir.
Ö

t + a

i-, i ,\ Ic arctg u f „ „, 2 arctg u^»-^(l-,.) u Jdt'G(u,t') + -^~e-
t

L'equation primitive est reduite ä une equation integrale simple.
Pour en trouver la Solution, nous diviserons tout d'abord l'intervalle

— oo < t < oo en deux intervalles partiels:
Intervalle I. — b < t < oo
Intervalle II. — oo < t < —- b.

Nous choississons b (ou l'energie correspondante Ej) de teile sorte
que l'on puisse poser

Q (t) q± 0 si — oo < t < — b.

Dans le cas qui nous interesse, (Q(E) e~'2), le calcul montre qu'il
faut choisir b 2.

On obtient ainsi deux equations integrales, valables chacune
dans un des domaines definis

t + a

Intervalle I. G (u, t) Afdt'G (u, t') + B (u, t)

i Ar a

Intervalle II. G (u, t) A fdf G (u, t')
t

k arctg u „ 2 arctg u
avec A -f. ^— et B ~—(l-a2)w n A2

e-<-
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Si la source est symetrique par rapport ä t 0 (E E0), — condition

realisee par les sources que l'on possede — on aura

Q (f) ^ 0 pour t > b.

Nous admettrons que tous les neutrons proviennent de la source Q.
Pour t > b, Q ^ 0, et en consequence G (u, t) ^ 0, puisque G (u, t)

represente l'ensemble des neutrons et qu'un neutron issu de Q ne
peut que perdre de l'energie, c'est-ä-dire voir diminuer la variable
t qui lui est associee. Supposons d'autre part que l'on ait

a > 2b.

II sera possible, dans l'intervalle I, de remplacer la limite
superieure t + a de 1'integrale par oo. Si l'on tient compte des definitions
de a, oc, fc, la condition precedente s'ecrit:

a -^lna2^-4^1n( —) > 2b. *)u - ae0 y1+^j
Cette condition n'est pas realisee pour de grandes valeurs de M.
Par contre, si l'on prend M 12 (graphite) et les donnees
experimentales: E0 2,95 MeV., AE0 0,38 MeV., il vient

a 5,25.

Pour que la condition Q ~ e~(2 ^ 0 soit remplie si \t\ > b, il est
necessaire de choisir b > 2. Dans le cas qui nous interesse, on a bien
a > b.

Appelons G0(u,t) la Solution G(u,t) dans le domaine —6>i>oo.
Elle satisfait l'equation

G0 (u, t) B (u,t) + A di' G0 (u, t').
t

Nous determinons G0 (u, t) par la methode de Neumann

oo oo oo

G0 (u, t) B (u,t)+A[dt' B (u, t')+A*fdt'fdt" B(u,t") +
t t v

*) Si l'on choisit b 2, cette condition s'ecrit pour de grandes valeurs de M%

2^y ¦JL>1.
AE0 M

Cette condition est äquivalente a celle que nous trouverons, ä la page 6 (| dE \ >
A E0), qui assure la convergence rapide de la serie representant la Solution.
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II est facile d'Interpreter physiquemment chaeun des termes de ce

developpement. Le premier

B (u, t) S0 (u, t)

represente tous les neutrons qui n'ont pas subi de choc, le
deuxieme

oo

A [dt' B (u, t') =Sj (u, t)
t

ceux qui ont subi un choc; le troisieme
oo oo

A2fdt'fdt"B(u,t") =S2(u,t)
t v

ceux qui ont subi deux chocs, et ainsi de suite.
Examinons les conditions physiques qui doivent etre realisees

pour que cette serie converge rapidement. Tout choc entraine une
perte d'energie moyenne

(M + m)2

oü E represente l'energie du neutron avant le choc. Supposons que
l'on ait __ ^\ÖE\ ~AEÜ
A E0 designant la largeur de la raie d'emission. Le centre de gravite
E„ (energie moyenne) des differents spectres Sn (u, t)

S0(u,t), Sj(u,t), S2(u,t),... Sn(u,t)

qui se trouve en E0 pour S0 (u, f) se deplace rapidement vers les
basses energies. La probabilite que le neutron, apres n chocs,
possede une energie superieure ä Ex (t > — b) tend vers zero lorsque
n croit. Dans le cas qui nous interesse, eile est negligeable pour n > 4.
La somme ^

S S-n («, t)

represente au plus 1 % de la somme totale
00

S (U, t) E Sn (U, t).
M-r-r-O

On peut donc poser
•t

S (U, t) ÄJ JJ 7>n («, t)
«=0

et calculer la repartition des neutrons, dans l'espace et en energie,
en effectuant la transformation de Fourier de S (u, t) et en rem-
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placant t par 1/fe ln E/E0. On obtient ainsi la densite des neutrons
d'energie plus grande que Ex(t > — b).

II reste ä determiner la Solution pour les energies inferieures ä

Ej. Dans ce but, nous diviserons l'intervalle — oo < £ < — fc en
une infinite de domaines d'egale longueur a, par les points t2

— b —a, t3 — b — 2 a, ti — b — 3 a, etc.... auxquels correspon-
dent les energies E2, E3, Et, etc. Nous designerons par Gj (u, t) la
Solution G(u, t) du domaine — b — a < t < — b; G2(u, t) la Solution

G(u, t) du domaine — 2a — 6 < £ < — b — a; et generalement
Gn (u, t) la Solution du domaine — na — b < t < — (n — 1) a — b.

G2 (u, t) G-, (u, t) G„ (u, t)

s

«3 =-6-2o
E3

U — — b — a

E2

I

t1=-b
E1

t 0
E0

Puisque nous avons suppose Q ~ B ä 0 dans l'intervalle

— oo < t < — b,

G (u, t) satisfait l'equation homogene
t+a

G(u,t) A f dt' G (u, t').
t

Ecrivons cette equation pour des valeurs de t telles que t2 < t < tj
en utilisant les definitions precedentes

t+a

Gj (u,t) A f dt' Gj (u, t') + A J dt'G0 (u, t').
t d

Nous venons de determiner la fonction G0 (u, t). Pour trouver
Gj (u, t) derivonsd'equation precedente par rapport ä t.

GJ (u, t) — AGj (u, t) + AG0 (u, t + a).

Si nous exigeons que l'on ait, en t tx (E EJ)

Gj (U, tj) Gr, (U, tj)

pour toute valeur de u, il est facile de donner la Solution Gj (u, t)

t

Gj (u, t) GQ (u, tj) eA <(*-(> + A e-Atfdt' eÄt' G0 (u, t' + a).
t.

De facon analogue, on trouve que G2 (u, t) satisfait l'equation
ta t+a

G2 (u, t) A fdt' G2 (u, t') + AJ dt' Gx (u, t')
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ou encore
GJ (u, t) —AG2 (u, t) + AGj (u, t + a).

La Solution G2 (u, t) teile que l'on ait en t t2 (E E2

G2 (U, t2) Gj (u, t2)

est

G2 (u, t) Gj (u, t2) e4 <*--<> + A e-AtJ dt' eAt' Gx (u, t' + a).
u

Plus generalement Gn (u, t) satisfait les equations
tn t+a

Gn (u,t) AJdt' Gn (u, t') + f dt' GB_! (u, t')
t tn

GJ (u, t) —A Gn (u, t') + A G„_! (u, t + a)

et la Solution Gn (u, t) teile qu'en t — tn (E EJ)

Gn («-, tX) Gn_j (u, tn)
est

Gn (u,t)=Gn.j (u,tn) eA^-Q + A e-Ät [dt'eAt'Gn-j (u,t' + a)
tn

Definissons enfin les fonctions
CO

gn (x, t) duGn (u, t) sin ux
o

qui representent g (x, t) dans le domaine tn+1 < t < tn. Elles don-
nent la Solution du probleme. On y remplace x par sa valeur r/A.
Soit r\ (r, t) la densite de chocs d'un compteur de 1 cm3, dans lequel
chemin moyen des neutrons est egal ä 1 cm. On a

n (r,t) -^ e (r, t)'* TZT9 ^r' *)

if est une quantite directement mesurable qui permet de comparer
les resultats theoriques avec l'experience.

Ce travail a ete subventionne par la Commission de l'energie
atomique suisse que nous tenons ä remercier ici.

Geneve, Institut de Physique de 1'Universite.
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