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Zwei Bemerkungen zur Theorie der Streumatrix
von G. Wentzel.

(1. XII. 1947.)

I. Beim Problem der Streuung an mehreren Streuzentren ist die HElTLEE'sche
Integralgleichung, da sie auf akausale Vorgänge im Sinne von Stiteckelbebg führt,
nicht anwendbar. Für den Fall, dass der Abstand der Streuer gross ist, wird eine
abgeänderte Integralgleichung für die Streumatrix angegeben.

II. Die Methode der analytischen Fortsetzung in die komplexe Energie-Ebene,
auf die der KBAMEBS-HEiSENBERG'schen Dispersionsformel entsprechende
Streumatrix angewendet, führt zu einer Beschreibung der spontanen Emission von Licht.

Wir betrachten die Streuung einer Partikel durch ein System,
das aus zwei Streukörpern besteht. Wenn die Streumatrizen der
einzelnen Körper gegeben sind, wie wird die Streumatrix des

zusammengesetzten Streuers beschaffen sein? Diese Frage lässt sich
rein „wellenoptisch" beantworten, wenn der Abstand der beiden
einzelnen Streuer voneinander so gross ist, dass sie in ihren
gegenseitigen Wellenzonen liegen.

Wird die Streumatrix unkorrekt konstruiert, so kann sie, wie
Stueckelberg1) betont hat, Matrixelemente für ,,akausale
Vorgänge" enthalten. In unserem Problem besteht ein akausales Ereignis

darin, dass die Partikel vom einen Streuer absorbiert und vom
anderen emittiert wird derart, dass die Emission zeitlich vor der
Absorption stattfindet, mit einer Zeitdifferenz S: d/c, wo d, der
Abstand der beiden Streuer, beliebig gross sein kann. Die Energie-
Erhaltung würde erfordern, dass in der Zeit zwischen Emission und
Absorption ein Teilchen negativer Energie vorhanden wäre. Wellenoptisch

interpretiert, beruht eine Akausalität immer auf einer
Verwechslung von auslaufenden und einlaufenden Kugelwellen: wenn
bei einem kausalen Vorgang etwa eine vom ersten Streuer
ausgehende Kugelwelle auftritt (Streuung vom ersten zum zweiten
Körper), so erscheint fälschlich an Stelle der auslaufenden eine
einlaufende Welle. Das Verbot akausaler Ereignisse, wenigstens
für „makroskopische" Abstände d, wird von Stueckelberg als ein
oberstes Postulat zur Bestimmung der »9-Matrix in einer
relativistischen Theorie der Wechselwirkungen von Elementarteilchen
herangezogen. Es mag daher von Interesse sein, an einem einfachen
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Beispiel, wo die korrekte S-Matrix elementar berechnet werden
kann, zu untersuchen, welche Züge für eine „kausale" S-Matrix
charakteristisch sind.

Die einzelnen Streuer seien einfachheitshalber als isotrop
angenommen. Das heisst, denken wir den w-ten Streuer (allein) an den
Koordinatenursprung gesetzt, und schreiben wir mit Heisenberg
für die Wellenfunktion im Impulsraum (f°, I Impulse des
Teilchens im Anfangs- und Endzustand):

(t|vlt°) (f|l|I°) + (I|B.|I°) d+(E°-E), (1)

so ist das Matrixelement (f | Bn \ 1°) nur von den Beträgen 11° [ fc°,
111 k abhängig, und zwar ist nur der Wert für k k° ma ssgebend
für das asymptotische Verhalten in der Wellenzone. Wir setzen
deshalb

(f|E„|I°) G-BJ(k) (2)

(G Periodizitätsvolumen für die Wellen eiU). Die Wellenfunktion
im Ortsraum wird dann asymptotisch:

2Ver (l | w | jo) _>. ea«r + Bn> (/,.) ^ (la)
wo

^. „ ^ bc2' k*JTE-
Die Matrix

(i|S|I°) (l\l\i°) + (i\B\i») =- (t\l\i0)+(i\B\t°) d(E°-E)
muss bekanntlich unitär sein; dies bedeutet für (2) die Forderung

BJ + BJ* + qBJ* BJ 0. (3)

Um diese Bedingung zu erfüllen, genügt es, BJ in der Form

BJ A2ni.Ki- (4)" 1-m qKJ v '

anzusetzen, wo KJ eine beliebige reelle Funktion von k ist (genauer
gesagt: für reelle fe-Werte soll KJ reell sein). Der Ansatz (4) ist
äquivalent der HEiTLER'schen Integralgleichung für die Matrix Bn:

Bn — TiiKn- Bn 2 TtiKn, (4a)

wenn die hermitische Matrix

(t\Kn\l')=A_KJ(k)d(E'-E)
als wellenmechanisch gegeben betrachtet wird, wie etwa in Heit-
ler's Strahlungsdämpfungstheorie2). Für das Folgende ist es aber
gleichgültig, welche der beiden Matrizen Kn oder Bn als die primär
gegebene angesehen wird; durch (4) bzw. (4a) (mit reellem KJ bzw.
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hermitischem KJ) wird dann lediglich die Unitarität der Matrix S„
ausgedrückt.

Nun seien die beiden Streuer an die Orte rx, r2 gesetzt; ihr
Abstand d | tj— x2 [ sei so gross, dass jeder Streuer in der Wellenzone
des andern liegt. Die Matrix B, die dann in (1) an die Stelle von Bn
tritt, kann elementar wellenoptisch berechnet werden, wobei zu
berücksichtigen ist, dass die gestreute Partikel beliebig oft zwischen
den Einzelstreuern hin und her laufen kann. Das Ergebnis lautet:

1

G
Jkd i r nJkd^

(i\B\l°)=-7-\BJ ei(£°-l>r- + B2' el<t0-{>r~

Entwickelt man nämlich den letzten Faktor in eine geometrische
Reihe, so entspricht jeder Summenterm von B in leicht erkennbarer
Weise einem bestimmten Streuweg (vgl. (la)). Die direkte
Ausrechnung lehrt, dass die Matrix 8 1 + B unitär ist, wenn alle 8„
unitär sind, d. h. wenn die Relationen (3) gelten.

Wir fragen nun, ob die Matrix (5) einer Integralgleichung vom
Typus der HEiTLER'schen Gleichung (4a) genügt. Dabei ist von
vornherein zu erwarten, dass die massgebende K-Matrix folgende
Struktur hat:

(i\K\i') ±rZKX(k)e^-^n. (6)

Bildet man aber, gemäss der Regel

(k\F\i') (l\F\i')ö(E'-E), (6a)

die Matrizen E und K mit (5) und (6), so zeigt sich, dass die der
HEiTLER'schen Gleichung (4a) entsprechende Integralgleichung
(ohne Indices n) nicht erfüllt ist. Zwar wäre sie erfüllt, wenn man
in B (5) eika jeweils durch \ (eika — e~ikd) ersetzen würde3); diese
teilweise Vertauschung von auslaufenden und einlaufenden Wellen
würde aber akausalen Streuvorgängen im Sinne von Stueckelberg
entsprechen und ist deshalb unzulässig. Hier zeigt sich klar, dass
die Anwendung der HEiTLER'schen Integralgleichung auf ein
System von mehreren Streuern zu Akausalitäten führen muss.

Indessen lässt sich eine abgeänderte Integralgleichung angeben,
der die korrekte E-Matrix genügt. Wir schreiben sie:

B — TiiK-B 2TziK; (7)
dabei ist

(t\K\i') =- (f |K11') • 2 d(E'- E), (8)

wo K gemäss (6) definiert, ist, und wo d einen Operator bedeutet,
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der der Dirac'sehen oderHEiSENBERG'schen d_-Funktion verwandt,
wenn auch nicht damit identisch ist: Sei f(k) eine langsam vari-

„ -i-

ierende Funktion, und kr ^> 1, so soll für 3(k'—k) d(k — k')
gelten:

J d fe' 6 (fc'- fe) e+ik' >¦ f (fr') - eikr f (fe), (9a)

Jdk' d(k'- fe) e-«-''' /(/,-') 0, (9b)

Jdk' ö(k'~k)f(k') lf(k). (9c)

Die Gleichungen (9a, b) — sie sollen natürlich nur asymptotisch
gelten (kr ^> 1) — werden auch durch die DiRAc'sche und die
HEiSENBERG'sche d_-Funktion erfüllt, während in (9c), im Falle der
DiRAc'schen cL-Funktion, rechterhand noch der Hauptwert des

Integrals x
1 ''dk'-l^l

2 ji i J k' — It
o

hinzuzufügen wäre. Derartige Terme, welche Übergängen f'-> I
ohne Energie-Erhaltung entsprechen würden, müssen in (7) — im

Matrixprodukt K-B — ausgeschlossen werden, schon damit (7)
im Falle eines einzigen Streuers in die HsiTLER'sche
Integralgleichung (4a) übergeht (K K). Mit anderen Worten: die Matrix-
multiplikation darf nur Zustände auf der gleichen „Energieschale''
koppeln; dieser Forderung entsprechen die Dofinitionsformeln (9).
Um dies hervorzuheben, mag man auch schreiben:

d(k'— fe) d(fe - fe') 7+ (fe') • iö(fe'- fe), (10)

wo I+(k') ein Operator ist, der auslaufende Wellen (eJrik'r)
verdoppelt, einlaufende Wellen (e~ik'r) zu Null macht, während er
langsam variierende Funktionen unverändert lässt.

Freilich gibt weder (9) noch (10) eine vollständige Definition
der in Frage stehenden Operatoren. Nähert man die beiden Streuer
einander so weit, dass der eine nicht mehr in der Wellenzone des

andern liegt, so ist die Streumatrix nicht mehr durch (5) gegeben,
und wenn überhaupt noch eine Gleichung vom Typus (7) gilt, so
wird die Art und Weise, wie das Streufeld aus der Wellenzone in
die Nahzone übergeht, für die Struktur der K-Matrix massgebend
sein müssen. Ohne korrespondenzmässige Anleihen bei speziellen
Feldtheorien wird sich diese Lücke kaum ausfüllen lassen.

Stueckelberg1) gelangt in seinen auf relativistischen Feldtheorien

beruhenden Überlegungen dazu, für die Streumatrix den
Ansatz zu machen: 1B-'JJ-. S A±77J. (11)l-jct ' — 1 — iy. '
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dabei wird a nach einem Kopplungsparameter entwickelt, und die
höheren Terme dieser Entwicklung werden so bestimmt, dass keine
makroskopischen Akausalitäten auftreten. Der Ansatz (11) ist formal

äquivalent den Ansätzen (4), (4a), d. h. der HEiTLER'schen
Integralgleichung (mit a nK). Da wir gesehen haben, dass diese
Gleichung im Falle mehrerer Streuer nicht mehr gilt, wenigstens
sofern K gemäss (6), (6a) gebildet wird, erscheint es fraglich, ob
der Ansatz (11) wirklich durch Einfachheit ausgezeichnet ist, d. h.,
ob er allgemein auf ein einfaches Bildungsgesetz für die Matrix a
führt. Durch Vergleich von (11) mit (7) findet man:

a [l-Tii-\(K-k)]-l-7tK, (12)

wo K aus K durch Vertauschung der auslaufenden und einlaufenden

Wellen hervorgeht: K + K 2 K. Im Vergleich zu (11), (12)
scheint es jedoch einfacher, gemäss (7)

B =r[l-7ziK]-1-2 7ciK (7a)

anzusetzen4) und nach dem allgemeinen Bildungsgesetz von K und
K zu fragen.

Bei Beschränkung des Problems auf die Streuung eines Teilchens
(beliebiger Art) durch mehrere ruhende (nicht notwendig isotrope)
Streuer wird zweifellos (7) mit (8) gelten, wobei die K-Matrix sich
additiv aus den K„-Matrizen der einzelnen Streuer zusammensetzt.
Aber auch bei weitergehenden Fragestellungen (bewegte Streuer,
Prozesse mit Änderung der Teilchenzahl) mag die Gleichung (7)
dienlich sein.

Schliesslich sei daran erinnert, dass nach Kramers und Heisenberg5)

die analytische Fortsetzung der E-Matrix (genauer gesagt:
ihrer Eigenwerte) in die komplexe fe-Ebene und die Aufsuchung
ihrer Pole auf der positiv-imaginären Halbachse zur Bestimmung
stationärer Zustände dienen kann, in denen das Teilchen an das
Streuzentrum gebunden ist. Im Falle des einzelnen isotropen
Streuers führt dies nach (4) auf die Gleichung

_
1 l_ _ 1_ v n

RJJfin)
' 2*iK'(ipn) 2 ei*/*»J u*

Für zwei solche Streuer im Abstand d hat man statt dessen nach (5):

_J /g(»m)e~M2. miR1Jiß)ß2Jiß) \ 2ßd j ^°>

Die Lösungen u dieser Gleichung gehen im Limes d -> cc gegen
Pj oder ,«2r und es ist leicht, /« — ,un für grosse Werte von d asymp-
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totisch zu bestimmen. E(i/x) gibt das Potential der statischen
Kräfte, welche die beiden Streuer durch Vermittlung des gebundenen

Teilchens aufeinander ausüben. In der HEiTLER'schen Theorie
der Mesonstreuung (mit Berücksichtigung der Strahlungsdämpfung)
ergeben sich so die Kräfte zwischen „Nukleon-Isobaren"6) und
„nackten Nukleonen". Die HEiTLER'sche Integralgleichung würde
hier, da in (13) e^1"1 durch | (e~'xd — e+-ud) ersetzt wäre, zu unsinnigen

Ergebnissen führen. Wir wollen aber auf diese Fragen hier
nicht näher eingehen.

IL
Die HEiTLER'sche Integralgleichung kann in sehr einfacher Weise

dazu dienen, die Strahlungsdämpfung beim Problem der Streuung
von Licht an atomaren Systemen, speziell bei der Besonanzfluores-
zenz, zu berücksichtigen. In der B-Matrix treten die bekannten
Resonanznenner v° — vSes + iy auf, wo der imaginäre Term iy den
Dämpfungseffekt darstellt. Als analytische Funktionen von v°
besitzen daher die E-Eigenwerte Fole an den Stellen j>Res — iy. Diese
Pole, bzw. die entsprechenden Residuen der Matrix B-6+(E° — JS),

entsprechen — wie wir zeigen wollen — den spontanen Emissions-
prozessen des betrachteten Systems.

Betrachten wir nur Zustände, in denen das Strahlungsfeld ein
einziges Lichtquant enthält, so ist ein Zustand des Gesamtsystems
charakterisiert durch den Wellenzahlvektor I des Lichtquants (11 [

v/c), dessen Polarisationsvektor e (|c| -=1), und durch die Nummer
n des Atomzustandes (Energie En). Der HEiTLER'schen Theorie
entspricht es, wenn wir die K-Matrix, welche die Lichtstreuung
beschreiben soll, als durch die KRAMERS-HEiSENBERG'sche
Dispersionsformel gegeben annehmen. In Dipolstrahlungsnäherung:

(few|2M°e00) MM°27 -_£»_, (e°p„,)(ept0)|
O V" ^ \ cOj0-j.° a>ln + v<> |

¦d(hv° + E0-%v-En). (14)

(G Periodizitätsvolumen, h coln — El — E„, p Matrix des
elektrischen Moments). Der Anfangszustand (0) des Atoms sei immer
der Grundzustand, so dass nur die Terme mit den Nennern mlQ— v°

zu Resonanzen Anlass geben können.
Nehmen wir einfachheitshalber zunächst an, dass der

Grundzustand nicht-entartet ist, und dass die eingestrahlte Frequenz v°
so klein sei, dass — wegen Energie-Erhaltung und Auswahlregeln
— kein Ramansprung möglich sei, d. h. dass als Endzustand n
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wieder nur der Grundzustand in Betracht komme (elastische Streuung),

so reduziert sich K auf

(leO|K|I°e°0) =-^ (ee°) a (v) d(v°- v),

wo a(v) die Polarisierbarkeit des Grundzustandes bedeutet. Das
Eigenwertproblem dieser Matrix

27 (Ie0|K|I°e°0) u(i°t°) ß(v)-u(U)
U pO

führt, mit den Eigenfunktionen u (t e) (e • a) [a konstanter Vektor],

zu den Eigenwerten

^M Til^M*')*

Beachtet man, dass K2 ß(v°)-K, so findet man als Lösung der
HEiTLER'schen Integralgleichung (vgl. (4a)) die Streumatrix:

D 2niK /1K.E r ^tt,- • (1°)

Wird ferner angenommen, dass in dem betrachteten Frequenzbereich

(v° < wn0, n +0) eine Resonanzfrequenz co!0 liegt, so wird
dort a(v°) wie const. (col0— v0)-1 unendlich. In der Umgebung der
Resonanzstelle kann man daher für den Nenner in (15) näherungsweise

schreiben:

l - „ißw a 1 + ±^- —^T2- • (lß)

wo Al0 den EiNSTEiN'schen Koeffizienten (Übergangswahrscheinlichkeit

pro Zeiteinheit) des spontanen Emissionsprozesses l -> 0
darstellt. Folglich variiert E in der Resonanznähe wie

--, „, „, c^ const. ; (loa)

was der wohlbekannten Theorie der Resonanzfluoreszenz
entspricht7).

1 — Tziß(v°), als analytische Funktion von v°, hat Nullstellen

bei v'Mcojo—y Al0; dies sind die oben erwähnten Pole des

E-Eigenwerts. Die zugehörige „Energie" des Gesamtsystems ist

Ex ~-Al0; ihr Imaginärteil entspricht nach Moller8) einer

zeitlich-exp onentiellen Abklingung des Zustandes mit der Wahrscheinlichkeit

At0 pro Zeiteinheit. Dass es sich hier um die spontane Emission

(Übergang £->0) handelt, wird auch durch die Struktur des zu-
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gehörigen Strahlungsfeldes belegt. Um diese zu bestimmen, hat
man nach den Regeln der S-Matrixtheorie folgendermassen zu
verfahren: Aus den für reelle ^°-WTerte erhaltenen Lösungen

(Ic|v|f°c°) (fe|l|f°e°) + (c|E|c°) d+(E°-E)

bilde man durch Superposition Eigenfunktionen von S, d. h. von
K, was hier durch Multiplikation mit (e°-a) und Mittelung über die
Orientierungen von e°, f° bei festem v° geschehen kann. Dann führe
man die analytische Fortsetzung in die komplexe E°- oder v°-Ebene
aus und betrachte die Residuen der Eigenfunktion in den Polen von
B. Da hier nicht ein stationärer, sondern ein zeitlich abklingender
Zustand betrachtet wird, ist man genötigt, für die <5+-Funktion eine
Darstellung zu verwenden, welche die Zeit t noch enthält; als
natürlichster Ansatz bietet sich die aus der Störungstheorie
folgende Darstellung

K(?*-v) bxf df'-e-i<"°-M

wo also t zwar beliebig gross aber endlich sein soll. Hiermit lässt
sich die analytische Fortsetzung in die komplexe j.°-Ebene ohne
weiteres durchführen (wobei v eine reelle Variable bleibt), und
man erkennt leicht, dass das Residuum der Eigenfunktion im Pol

v° ¦= cü10 — ~2~Al0 dem Emissionsfeld eines gedämpften Oszillators

(Frequenz col0, Dämpfung Al0, Schwingungsrichtung et) entspricht.
Die räumliche Struktur des Feldes kann man durch Anwendung der
Feldoperatoren auf die Eigenfunktion bestimmen. Das Ergebnis
deckt sich völlig mit der WEissKOPP-WiGNER-Theorie der Dämpfung

beim spontanen Emissionsvorgang9).
Es sei daran erinnert, dass wir bei dieser Betrachtung von der

KRAMERS-HEiSENBERG'schen Dispersionsformel ausgegangen sind,
also von einer X-Matrix, die primär nur Streuprozesse darstellt.
Trotzdem sind wir, durch die Methode der analytischen Fortsetzung.
auch zu einer Beschreibung der spontanen Emission gelangt. Während

in der üblichen störungsmässigen Behandlung der Strahlungs-
prozesse die KRAMERS-HEiSENBERG-Formel aus den Matrixelementen

für Emission und Absorption abgeleitet wird, ergibt sich
hier der Zusammenhang auch in der umgekehrten Richtung. Sieht
man mit Heisenberg die S-Theorie als den Rahmen für eine
zukünftige allgemeine Theorie an, so möchte man vermuten, dass
einem solchen Zusammenhang eine mehr als nur formale Bedeutung
zukommt.
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Zu den obigen Formeln (16), (16a) ist noch zu bemerken, dass
in ihnen Terme der Ordnung Al0/col0 vernachlässigt sind. Für die
analytische Fortsetzung in die unmittelbare Umgebung der reellen
v°-Achse ist dies unbedenklich. In der nächsten Näherung werden

die Pole von E: v° colr, —^ Alv+ eyvo e reell und von der Grössenordnung

Al20jmlo ist. Die hierdurch gegebene Linienverschiebung ist
klein gegen die natürliche Linienbreite und deshalb uninteressant.
Eine durch Selbstenergien (Bindungsabhängigkeit der Selbstenergie)

bedingte Linienverschiebung10) steht hier nicht zur Diskussion;
in der Tat ist es ja für die HEiTLER'sche Strahlungsdämpfungs-
theorie charakteristisch, dass die Selbstenergie (durch die
Weglassung der entsprechenden Terme in der K-Matrix) subtrahiert
wird.

Bisher haben wir v° so klein angenommen, dass keine Raman-
sprünge 0 -> n auftreten können (v° < ojna). Für höhere
Frequenzen lässt sich immerhin die Besonanzstreuung noch in einfacher
Weise behandeln, indem man in der K-Matrix nur die Terme mit
kleinen Nennern (cvl0 ^ v°) berücksichtigt. Allerdings ist die
einfache Lösbarkeit der HEiTLER'schen Integralgleichung, ähnlich wie
dies aus der Weisskopf'sehen Arbeit7) bekannt ist, noch an die
Bedingung gebunden, dass

27(P.„-P»«')=0 für IJl'.E^Er^Eo + hv», (17)
(n)

wo die Summe über die Endzustände (n) in einem schmalen
Energie-Intervall läuft. Im Falle einer Richtungsentartung ist (17)
erfüllt. Dann erhält man die E-Matrix aus der Matrix 2 TziK, indem

man die Resonanznenner ca,0—v° durch coJ0—— ri— v° ersetzt, wo

M ZAln. (18)
n

Die Pole bei v° cnl0 — y E( entsprechen den spontanen Emissionsprozessen

l -> 0, mit den richtigen Abklingungskonstanten Ft.
Hierbei ist aber folgendes zu beachten. Wenn man die reelle

Variable v° anwachsen und dabei einen Wert con0 überschreiten lässt,
so dass ein neuer Ramansprung möglich wird, so ändert sich E als
Funktion von v° in nicht-analytischer Weise. Von verschiedenen
Abschnitten der reellen i>°-Achse aus gelangt man daher zu
verschiedenen analytischen Fortsetzungen, und die den spontanen
Emissionen entsprechenden Pole werden — mit dem richtigen
Imaginärteil (18) — nur dann erhalten, wenn man jeweils von dem
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nächst benachbarten Abschnitt der reellen v°-Achse aus analytisch
fortsetzt.

Wird schliesslich v° so gross gewählt, dass hv° die Bindungsenergie

des Grundzustandes übersteigt, so liegen die Resonanzniveaus

Ex im kontinuierlichen Spektrum; die Resonanzabsorption
0 -> / entspricht dem photoelektrischen Effekt. Durch analytische
Fortsetzung sollte man nun auch die Emissionsprozesse l -> n
erhalten können, die der Bremsstrahlung entsprechen. Die Lösung der
HEiTLER'schen Integralgleichung für diesen Fall wird aber dadurch
erschwert, dass die Bedingung (17) nicht erfüllt ist für zwei Zustände
l, V im kontinuierlichen Spektrum, die die gleichen Drehimpuls-
quantenzahlen aber verschiedene Energie besitzen. Dies dürfte eine
besondere Untersuchung nötig machen, auf die aber hier nicht
eingetreten werden soll.
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