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Zwei Bemerkungen zur Theorie der Streumatrix

von G. Wentzel.
(1. XI1.1947.)

I. Beim Problem der Streuung an mehreren Streuzentren ist die HEITLER’sche
Integralgleichung, da sie auf akausale Vorginge im Sinne von STUECKELBERG fiihrt,
nicht anwendbar. Fiir den Fall, dass der Abstand der Streuer gross ist, wird eine
abgeénderte Integralgleichung fiir die Streumatrix angegeben.

I1. Die Methode der analytischen Fortsetzung in die komplexe Energie-Ebene,
auf die der KrRamMERs-HEISENBERG schen Dispersionsformel entsprechende Streu-
matrix angewendet, fiihrt zu einer Beschreibung der spontanen Emission von Licht.

L.

Wir betrachten die Streuung einer Partikel durch ein System,
das aus zwel Streukorpern besteht. Wenn die Streumatrizen der
einzelnen Korper gegeben sind, wie wird die Streumatrix des zu-
sammengesetzten Streuers beschaffen sein? Diese Frage ldsst sich
rein ,,wellenoptisch® beantworten, wenn der Abstand der beiden
einzelnen Streuer voneinander so gross ist, dass sie in ihren gegen-
seitigen Wellenzonen liegen. _

Wird die Streumatrix unkorrekt konstruiert, so kann sie, wie
STUECKELBERG!) betont hat, Matrixelemente fiir ,,akausale Vor-
ginge’* enthalten. In unserem Problem besteht ein akausales Ereig-
nis darin, dass die Partikel vom einen Streuer absorbiert und vom
anderen emittiert wird derart, dass die Emission zeitlich vor der
Absorption stattfindet, mit einer Zeitdifferenz = df¢, wo d, der
Abstand der beiden Streuer, beliebig gross sein kann. Die Energie-
Erhaltung wiirde erfordern, dass in der Zeit zwischen Emission und
Absorption ein Teilchen negativer Energie vorhanden wére. Wellen-
optisch interpretiert, beruht eine Akausalitit immer auf einer Ver-
wechslung von auslaufenden und einlaufenden Kugelwellen: wenn
bei einem kausalen Vorgang etwa eine vom ersten Streuer aus-
gehende Kugelwelle auftritt (Streuung vom ersten zum zweilten
Korper), so erscheint filschlich an Stelle der auslaufenden eine
einlaufende Welle. Das Verbot akausaler Ereignisse, wenigstens
fir ,,makroskopische'* Absténde d, wird von STUECKELBERG als ein
oberstes Postulat zur Bestimmung der S-Matrix in einer relativi-
stischen Theorie der Wechselwirkungen von Elementarteilchen
herangezogen. Es mag daher von Interesse sein, an einem einfachen
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50 G. Wentzel.

Beispiel, wo die korrekte S-Matrix elementar berechnet werden
kann, zu untersuchen, welche Ziige fiir eine ,kausale” S-Matrix
charakteristisch sind.

Die einzelnen Streuer seien einfachheitshalber als isotrop ange-
nommen. Das heisst, denken wir den n-ten Streuer (allein) an den
Koordinatenursprung gesetzt, und schreiben wir mit HrisENBERG
far die Wellenfunktion im Impulsraum (f° f = Impulse des Teil-
chens im Anfangs- und Endzustand):

(Elp[T%) = (E|1[1%) + ([ B.[1°) 6, (B — E), (1)

so ist das Matrixelement (f| B,|1% nur von den Betrigen |£°| = k°,
|£| = k abhingig, und zwar ist nur der Wert fiir £ = k% massgebend
fir das asymptotische Verhalten in der Wellenzone. Wir setzen
deshalb 1

(G = Periodizititsvolumen fir die Wellen €t¥). Die Wellenfunktion
im Ortsraum wird dann asymptotisch:

;’eifr (E| 9|19 — et + R’ (k) - 9,,2@, , (1a)

1 dk
o(k) = 5 K 45 -

WO

Die Matrix
(E[S 120 = (£] 1]10)+(F| B 1) = (£ 1|1%)+(F| R|1°) &(K°—E)

muss bekanntlich unitér sein; dies bedeutet fiir (2) die Forderung

R, +R,/*+oR,/*R, =0. (3)
Um diese Bedingung zu erfiillen, geniigt es, E,” in der Form
; 2mi K’ :

anzusetzen, wo K, eine beliebige reelle Funktion von k ist (genauer
gesagt: fur reelle k-Werte soll K, reell sein). Der Ansatz (4) 1st
dquivalent der HErTLER schen Integralgleichung fiir die Matrix B, :

B,—miK, B,=2mK,, (4a)

wenn die hermitische Matrix
! 1 r N 17 n
(K1) — o K, (1) 6 (B —E)

als wellenmechanisch gegeben betrachtet wird, wie etwa in Herr-
LER's Strahlungsdampfungstheorie?). Fir das Folgende ist es aber
gleichgiiltig, welche der beiden Matrizen K, oder R, als die priméar
gegebene angesehen wird ; durch (4) bzw. (4a) (mit reellem K, bzw.
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hermitischem K,) wird dann lediglich die Unitaritat der Matrix S,
ausgedriickt.

Nun seien die beiden Streuer an die Orte vy, v, gesetzt; ihr Ab-
stand d = |r;— 15| sei so gross, dass jeder Streuer in der Wellenzone
des andern liegt. Die Matrix R, die dann in (1) an die Stelle von R,,
tritt, kann elementar wellenoptisch berechnet werden, wobei zu
beriicksichtigen ist, dass die gestreute Partikel beliebig oft zwischen
den Einzelstreuern hin und her laufen kann. Das Ergebnis lautet:

(F|R|[t% = —Clr,—{Rl’ =t R’ gi®-Dr
ikd

Qeikd cEor —ikra 1 pillr,—i ' ([ 0€ 211
gk (€Tt "“‘)}' [1 — B/ R, (m)] G

Entwickelt man ndmlich den letzten Faktor in eine geometrische
Reihe, so entspricht jeder Summenterm von R in leicht erkennbarer
Weise einem bestimmten Streuweg (vgl. (1a)). Die direkte Aus-
rechnung lehrt, dass die Matrix S = 1 + R unitér ist, wenn alle S,
unitér sind, d. h. wenn die Relationen (3) gelten.

Wir fragen nun, ob die Matrix (5) einer Integralgleichung vom
Typus der HritLer’schen Gleichung (4a) geniigt. Dabei ist von
vornherein zu erwarten, dass die massgebende K-Matrix folgende
Struktur hat:

(flKIff) . %2 Kn, (k) Gi —Dr, . (6)

ol er Rz’

Bildet man aber, geméss der Regel
(k|F|¥) = (f|F|¥) 6(E'— E), (6a)

die Matrizen B und K mit (5) und (6), so zeigt sich, dass die der
HeirLer’schen Gleichung (4a) entsprechende Integralgleichung
(ohne Indices n) micht erfiillt ist. Zwar wére sie erfiillt, wenn man
in B (5) e**?jeweils durch } (e*? — e—%*9) ersetzen wiirde3); diese
teilweise Vertauschung von auslaufenden und einlaufenden Wellen
wiirde aber akausalen Streuvorgéngen im Sinne von STUECKELBERG
entsprechen und ist deshalb unzuldssig. Hier zeigt sich klar, dass
die Anwendung der HerrLer’schen Integralgleichung auf cin
System von mehreren Streuern zu Akausalitdten fithren muss.

Indessen liasst sich eine abgeiinderte Integralgleichung angeben,
der die korrekte R-Matrix geniigt. Wir schreiben sie:

R—naiK-R=2miK; (7)
dabe1 1st ‘
(i|K|f') — (]| K|F)-2 6 (H'— E), (8)

wo K gemiss (6) definiert ist, und wo & einen Operator bedeutet,
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der der Dirac’schen oder HErsEnBERG schen d_-Funktion verwandt,
wenn auch nicht damit identisch ist: Sei f(k) eine l&ngsam vari-

ierende Funktion, und Fkr> 1, so soll fur §(k'— k) = 5 (k—k')
gelten:

/ Ak’ o (k' —k) erik'r f (k') = k7 (k) (9a)
Jaw sk — k) e=ivr (') = 0, (9h)
Jak sk — k) flk') = % (k). (9¢)
Die Gleichungen (9a, b) — sie sollen natiirlich nur asymptotisch

gelten (kr > 1) — werden auch durch die Dirac’sche und die
HuiseNBERG 'sche d_-Funktion erfiillt, wahrend in (9¢), im Falle der
Dirac’schen d_-Funktion, rechterhand noch der Hauptwert des

Integrals

hinzuzufiigen wire. Delartlge Terme, welche Uberg'angen > 1
ohne Energie- Erhaltung entsprechen wiirden, miissen in (7) — im

\/,[cxtrlxprodukt K-R — ausgeschlossen werden, schon damit (7)
im Ialle eines ewnzigen Streuers in die Herrurr’sche Integral-
gleichung (4a) iibergeht (K = K). Mit anderen Worten: die Matrix-
multiplikation darf nur Zustinde auf der gleichen ,,Energieschale®
koppeln; dieser Forderung entsprechen die Definitionsformeln (9).
Um dies hervorzuheben, mag man auch schreiben:

O(k'— k) = S(k — k) =1, (k) }6(k —k), (10)

wo I, (k') ein Operator ist, der auslaufende Wellen (e*##'7) ver-
doppelt, einlaufende Wellen (e~ ?*7) zu Null macht, wahrend er
langsam varnierende Funktionen unveréndert lasst.

Freilich gibt weder (9) noch (10) eine vollstindige Definition
der in Frage stehenden Operatoren. Ndahert man die beiden Streuer
eimnander so weit, dass der eine nicht mehr in der Wellenzone des
andern liegt, so ist die Streumatrix nicht mehr durch (5) gegeben,
und wenn iiberhaupt noch eine Gleichung vom Typus (7) gilt, so
wird die Art und Weise, wie das Streufeld aus der Wellenzone in
die Nahzone iibergeht, fiir die Struktur der K-Matrix massgebend
sein missen. Ohne korrespondenzmissige Anleithen bei speziellen
Feldtheorien wird sich diese Liicke kaum ausfiillen lassen.

STUECKELBERG') gelangt in seinen auf relativistischen Feldtheo-
rien beruhenden Uberlegungen dazu, fir die Streumatrix den An-
satz zu machen:

L g Lix (11)
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dabel wird « nach emmem Kopplungsparameter entwickelt, und die
hoheren Terme dieser Entwicklung werden so bestimmt, dass keine
makroskopischen Akausalititen auftreten. Der Ansatz (11) ist for-
mal dquivalent den Ansitzen (4), (4a), d.h. der Hgrrner’schen
Integralgleichung (mit o = = K). Da wir gesehen haben, dass diese
Gleichung im Falle mehrerer Streuer nicht mehr gilt, wenigstens
sofern K gemiss (6), (6a) gebildet wird, erscheint es fraglich, ob
der Ansatz (11) wirklich durch Einfachheit ausgezeichnet ist, d. h.,
ob er allgemein auf ein einfaches Bildungsgesetz fiir die Matrix «
fihrt. Durch Vergleich von (11) mit (7) findet man:

o« =[1—i-1(K — K)]-*»K, (12)

wo K aus K durch Vertauschung der auslaufenden und einlaufenden

Wellen hervorgeht: I+{ + K =2 K. Im Vergleich zu (11), (12)
schemt es jedoch einfacher, gemiss (7)

R =[1—-aiK]"*-2aiK (7a)

anzusetzen?) und nach dem allgemeinen Bildungsgesetz von K und
K zu fragen.

Bei Beschrankung des Problems auf die Streuung eines Teilchens
(beliebiger Art) durch mehrere ruhende (nicht notwendig 1sotrope)
Streuer wird zweifellos (7) mit (8) gelten, wobei die K-Matrix sich
additiv aus den K ,-Matrizen der einzelnen Streuer zusammensetzt.
Aber auch bei weitergehenden Fragestellungen (bewegte Streuer,
Prozesse mit Anderung der Teilchenzahl) mag die Gleichung (7)
dienlich sein.

Schliesslich se1 daran erinnert, dass nach Kramers und HEIsEN-
BERG®) die analytische Fortsetzung der F-Matrix (genauer gesagt:
ithrer Eigenwerte) in die komplexe k-Ebene und die Aufsuchung
threr Pole auf der positiv-imagindren Halbachse zur Bestimmung
stationdrer Zustinde dienen kann, in denen das Teilchen an das
Streuzentrum gebunden ist. Im Falle des einzelnen isotropen
Streuers fithrt dies nach (4) auf die Gleichung

1 1 1

R G " 2wiR, Gy 2 @) =0

Fiir zwei solche Streuer im Abstand d hat man statt dessen nach (5):

I S 1 u)e““d)z_
Ry (ip) Ry (ip) ( 2ud (13)

Die Losungen u dieser Gleichung gehen im Limes d - co gegen
#y oder u,, und es ist leicht, u — u, fir grosse Werte von d asymp-
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totisch zu bestimmen. FE(ig) gibt das Potential der statischen
Krifte, welche die beiden Streuer durch Vermittlung des gebunde-
nen Teilchens aufeinander ausiiben. In der HeirLer'schen Theorie
der Mesonstreuung (mit Berticksichtigung der Strahlungsdampfung)
ergeben sich so die Kriifte zwischen ,,Nukleon-Isobaren®¢) und
,,nackten Nukleonen. Die Hurrrer’sche Integralgleichung wiirde
hier, da in (18) e~#¢ durch 1 (e~ ¢ — et#?) ersetzt wire, zu unsinni-
gen Ergebnissen fithren. Wir wollen aber auf diese Fragen hier
nicht ndher eingehen.

I1.

Die Herrrer’sche Integralgleichung kann in sehr einfacher Weise
dazu dienen, die Strahlungsddmpfung beim Problem der Streuung
von Licht an atomaren Systemen, speziell bei der Resonanzfluores-
zenz, zu beriicksichtigen. In der E-Matrix treten die bekannten
Resonanznenner »® — vy + 1y auf, wo der imaginire Term 1y den
Dampfungseffekt darstellt. Als analytische Funktionen von »° be-
sitzen daher die B-Eigenwerte Pole an den Stellen »y, — 1. Diese
Pole, bzw. die entsprechenden Residuen der Matrix B-96, (£° — E),
entsprechen — wie wir zeigen wollen — den spontanen FEmissions-
prozessen des betrachteten Systems.

Betrachten wir nur Zusténde, in denen das Strahlungsfeld ein
einziges Lichtquant enthiilt, so ist ein Zustand des Gesamtsystems
charakterisiert durch den Wellenzahlvektor ¥ des Lichtquants (|f|=
v/c), dessen Polarisationsvektor e (|e|=1), und durch die Nummer
n des Atomzustandes (Energie E,). Der HrrrLer’schen Theorie
entspricht es, wenn wir die K-Matrix, welche die Lichtstreuung
beschreiben soll, als durch die Kramers-HeisENBERG sche Disper-
sionsformel gegeben annehmen. In Dipolstrahlungsnédherung:

i ; L (. Py) (€° (e°Pyy) (€ P;0)
(Fen|K[10e00) = G oo X [P ) 4 (udl el
O(hv" + Ey—hv — H,). (14)

(G = Periodizititsvolumen, hw,, = B, — E,, p = Matrix des elek-
trischen Moments). Der Anfangszustand (0) des Atoms sel immer
der Grundzustand, so dass nur die Terme mit den Nennern w;,— »%
zu Resonanzen Anlass geben konnen,

Nehmen wir einfachheitshalber zundchst an, dass der Grund-
zustand nicht-entartet ist, und dass die eingestrahlte Frequenz »°
so klem sei, dass — wegen Energie-Erhaltung und Auswahlregeln
— kein Ramansprung moglich sei, d.h. dass als Endzustand =
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wieder nur der Grundzustand in Betracht komme (elastische Streu-
ung), so reduziert sich K auf

(£e0|K|10e00) = 27 (ce9) o (3) 8(r0— ),

wo «(») die Polarisierbarkeit des Grundzustandes bedeutet. Das
Eigenwertproblem dieser Matrix

D (£e0|K|£9e90) % (%% — B(v)-u(fe)
free
fihrt, mit den Eigenfunktionen u(fe) = (e-a) [a = konstanter Vek-
tor], zu den Eigenwerten
293

B(v) = 52 (7).

Beachtet man, dass K2 = f(»%)- K, so findet man als Losung der

Herruer’schen Integralgleichung (vgl. (4a)) die Streumatrix:
B o= a—r (15)

Wird ferner angenommen, dass in dem betrachteten Frequenz-
bereich (»* < w,,, n +0) eine Resonanzfrequenz w;, liegt, so wird
dort «(»°) wie const. (w;q— #°)~! unendlich. In der Umgebung der
Resonanzstelle kann man daher fiir den Nenner in (15) niherungs-
weise schreiben:

i
. R | ¥ — @y ‘f‘gAzo
Lm0 sl

e e N ()
wo A;, den Einstrin’schen Koeffizienten (Ubergangswahrschein-
lichkeit pro Zeiteinheit) des spontanen Emissionsprozesses [ =0
darstellt. Folglich varuert R in der Resonanznéhe wie
A 1 ’
o) o Gons, ———————, (16a)

1-mif(»°) W0 — g + "23"‘4'10

was der wohlbekannten Theorie der Resonanzfluoreszenz ent-
spricht?). ‘
1 —mif (9, als analytische Funktion von »% hat Nullstellen

. (] . . . 54
bel ' >~w;g—5 A;4; dies sind die oben erwdhnten Pole des

R-Eigenwerts. Die zugehorige ,,Energie” des Gesamtsystems ist
E,— —@wgwAIO; ihr Imaginérteil entspricht nach MeLLER®) elner zeit-
lich-exp onentiellen Abklingung des Zustandes mit der Wahrschein-
lichkeit 4,, pro Zeiteinheit. Dass es sich hier um die spontane Emis-
sion (Ubergang [->0) handelt, wird auch durch die Struktur des zu-
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gehorigen Strahlungsfeldes belegt. Um diese zu bestimmen, hat
man nach den Regeln der S-Matrixtheorie folgendermassen zu ver-
fahren: Aus den fiir reelle »°-Werte erhaltenen Liosungen

(e|p|t0e0) = (te|1]10e9) + (e|R|e?) b, (HO—H)

bilde man durch Superposition Eigenfunktionen von S, d.h. von
K, was hier durch Multiplikation mit (e a) und Mittelung iiber die
Orientierungen von e°, £° bei festem »° geschehen kann. Dann fithre
man die analytische Fortsetzung in die komplexe % oder »°-Ebene
aus und betrachte die Residuen der Eigenfunktion in den Polen von
R. Da hier nicht ein stationiirer, sondern ein zeitlich abklingender
Zustand betrachtet wird, ist man genotigt, fiir die d,-FFunktion eine
Darstellung zu verwenden, welche die Zeit t noch enthilt; als
natiirlichster Ansatz bietet sich die aus der Stérungstheorie fol-
gende Darstellung '

¢
1 ' R
(5,‘[ (1)0 s V) _ ﬂ/ dt,'e_t(p;L)t,
0

wo also t zwar beliebig gross aber endlich sem soll. Hiermit lasst
sich die analytische Fortsetzung in die komplexe »%-Ebene ohne
welteres durchfithren (wobei » eine reelle Variable bleibt), und
man erkennt leicht, dass das Residuum der Figenfunktion im Pol

(3 . . . - ¥
¥ = a)“,-——_ZAm dem Emissionsfeld eines gedampften Oszillators

(Frequenz w,; 4, Dampfung 4,,, Schwingungsrichtung a) entspricht.
Die raumliche Struktur des Feldes kann man durch Anwendung der
Feldoperatoren auf die Eigenfunktion bestimmen. Das Ergebnis
deckt sich vollig mit der Wrisskorr-WieNER-Theorie der Déamp-
fung beim spontanen Emissionsvorgang?).

Es se1 daran erinnert, dass wir bei dieser Betrachtung von der
Kramrrs-HerseNBeERrG schen Dispersionsformel ausgegangen sind,
also von einer K-Matrix, die priméar nur Streuprozesse darstellt.
Trotzdem sind wir, durch die Methode der analytischen Fortsetzung,
auch zu einer Beschreibung der sponfanen Emission gelangt. Wah -
rend in der iblichen stérungsméssigen Behandlung der Strahlungs-
prozesse die Kramers-HrisENBERG-Formel aus den Matrixele-
menten fir Emission und Absorption abgeleitet wird, ergibt sich
hier der Zusammenhang auch in der umgekehrten Richtung. Sieht
man mit HeisexnBErG die S-Theorie als den Rahmen fiir eine zu-
kiinftige allgemeine Theorie an, so mochte man vermuten, dass
einen solchen Zusammenhang eine mehr als nur formale Bedeutung
zukommt.
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Zu den obigen Formeln (16), (16a) ist noch zu bemerken, dass
in ihnen Terme der Ordnung A4,,/w;, vernachlassigt sind. Fir die
analytische Fortsetzung in die unmittelbare Umgebung der reellen
»%-Achse 1st dies unbedenklich. In der nidchsten Niherung werden

die Pole von R: v = w;, — é— A, ,+ ¢, wo e reell und von der Grossen-
ordnung 42/w;, ist. Die hierdurch gegebene Linienverschiebung i1st
klein gegen die natiirliche Linienbreite und deshalb uninteressant.
Eine durch Selbstenergien (Bindungsabhiangigkeit der Selbstener-
gie) bedingte Linienverschiebung?) steht hier nicht zur Diskussion ;
in der Tat ist es ja fir die Hrrrier’sche Strahlungsdampfungs-
theorie charakteristisch, dass die Selbstenergie (durch die Weg-
lassung der entsprechenden Terme in der K-Matrix) subtrahiert
wird.

Bisher haben wir »% so klein angenommen, dass keine Raman-
springe 0 = n auftreten konnen (v° < w,,). Iir hohere Fre-
quenzen ldsst sich immerhin die Resonanzstreuung noch in einfacher
Weise behandeln, indem man in der K-Matrix nur die Terme mit
kleinen Nennern (w;, =2 »° beriicksichtigt. Allerdings ist die ein-
fache Losbarkeit der HErTLER schen Integralgleichung, dhnlich wie
dies aus der Wrisskopr’schen Arbeit?) bekannt ist, noch an die
Bedingung gebunden, dass

Z (pln-pni') =) fl'il" [ + l’, E; = El' o= EO =+ h‘VO, (17)
(n)
wo die Summe iiber die Endzustinde (n) in einem schmalen Ener-

gie-Intervall lduft. Im Falle einer Richtungsentartung ist (17) er-
fullt. Dann erhilt man die R-Matrix aus der Matrix 2 ¢ K, indem

o i ,
man die Resonanznenner w,;,—»°durch o,q——4 I',— »% ersetzt, wo

Iy = 2 Ain. (18)
"
(Ep~<Ep)

. : ; L
Die Pole bei #° = w;y— - I, entsprechen den spontanen Knussions-

prozessen ! - 0, mit den richtigen Abklingungskonstanten I7.
Hierbei ist aber folgendes zu beachten. Wenn man die reelle Va-
riable »° anwachsen und dabei einen Wert w, , tiberschreiten lisst,
so dass ein neuer Ramansprung moglich wird, so dndert sich R als
Funktion von »° in nichi-analytischer Weise. Von verschiedenen
Abschnitten der reellen »°-Achse aus gelangt man daher zu ver-
schiedenen analytischen Fortsetzungen, und die den spontanen

Emissionen entsprechenden Pole werden — mit dem richtigen
Imaginirteil (18) — nur dann erhalten, wenn man jeweils von dem
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ndchst benachbarten Abschnitt der reellen »°-Achse aus analytisch
fortsetzt.

Wird schliesslich #° so gross gewiihlt, dass hv° die Bindungs-
energie des Grundzustandes iibersteigt, so liegen die Resonanz-
niveaus F; im kontinuierlichen Spektrum; die Resonanzabsorption
0 — 1 entspricht dem photoelektrischen Effekt. Durch analytische
Fortsetzung sollte man nun auch die Emissionsprozesse [ - n er-
halten kénnen, die der Bremsstrahlung entsprechen. Die Losung der
Hzrruer’schen Integralgleichung fiir diesen Fall wird aber dadurch
erschwert, dass die Bedingung (17) nicht erfillt ist fiir zwei Zustinde
l, I’ im kontinuierlichen Spektrum, die die gleichen Drehimpuls-
quantenzahlen aber verschiedene Energie besitzen. Dies diirfte eine
besondere Untersuchung nétig machen, auf die aber hier nicht ein-
getreten werden soll.
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