Zeitschrift: Helvetica Physica Acta

Band: 20 (1947)

Heft: VI

Artikel: Eine Bemerkung über die Entropie in der Wellenmechanik

Autor: Jost, Res

DOI: https://doi.org/10.5169/seals-111815

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Eine Bemerkung über die Entropie in der Wellenmechanik von Res Jost (ETH. Zürich).

(9. IX. 1947.)

Die Entropie eines Ensembles mit der Dichtematrix P ist definiert als¹)

$$S = -\operatorname{Spur} P \log P$$
.

Dabei ist P eine positive hermitische Matrix, deren Spur gleich 1 ist. Vereinigt man zwei Ensembles P_1 und P_2 mit den nicht verschwindenden Gewichten α_1 und α_2 ($\alpha_1 + \alpha_2 = 1$) zu einem neuen Ensemble $P = \alpha_1 P_1 + \alpha_2 P_2$, so gilt für die resp. Entropieen S_1 , S_2 und S die bekannte Ungleichung

$$S \ge \alpha_1 S_1 + \alpha_2 S_2$$

Das Gleichheitszeichen gilt genau dann, wenn $P_1 = P_2$ ist.

Weniger bekannt scheint zu sein, dass man für S in einfacher Weise auch eine obere Schranke gewinnen kann. Es gilt nämlich:

$$S \leq \alpha_1 S_1 + \alpha_2 S_2 - \alpha_1 \log \alpha_1 - \alpha_2 \log \alpha_2 \tag{I}$$

wobei das Gleichheitszeichen genau dann gilt, wenn $P_1P_2=0$ ist. In dieser Note wird ein Beweis für die Ungleichung (I) gegeben. Da sich (I) unmittelbar auf die Vereinigung beliebig vieler Ensembles verallgemeinern lässt, genügt es, den Beweis für den Fall auszuführen, in welchem P_2 ein reiner Fall ist ($P_2^2=P_2$, $S_2=0$).

Zum Beweis haben wir den folgenden Hilfssatz nötig:

Hilfssatz: Die Funktion $s(x_0, x_1, \ldots, x_n) = -\sum_{k=0}^n x_k \log x_k$ mit $0 \le x_k \le 1$ ist symmetrisch und lässt sich daher als Funktion der symmetrischen Elementarfunktionen

$$\sigma_1 = \sum x_k, \quad \sigma_2 = \sum_{k < l} x_k x_l, \quad \sigma_3 = \sum_{k < l < m} x_k x_l x_m, \dots$$

auffassen. Sie ist, so betrachtet, bei konstantem σ_1 monoton zunehmend in σ_2 , σ_3 ... σ_{n+1} .

¹⁾ Z. B. W. Pauli, Handbuch der Physik, Bd. 24/1, S. 151. Wir haben die Boltzmann'sche Konstante 1 gesetzt.

Wir zeigen dies dadurch, dass wir beweisen $\frac{\partial s}{\partial \sigma_k} > 0$ für k = 2, 3, ... (n+1). Es sei

$$f(x) = \prod_{k=0}^{n} (x - x_k) = x^{n+1} - \sigma_1 x^n + \sigma_2 x^{n-1} \dots + (-1)^{n+1} \sigma_{n+1}$$

das Polynom mit den Nullstellen $x_0, x_1, \ldots x_n$. Leitet man $f(x_0) = 0$ nach σ_k ab, so erhält man¹):

$$\frac{\partial}{\partial \sigma_k} f(x_0) = f'(x_0) \cdot \frac{\partial x_0}{\partial \sigma_k} + (-1)^k \cdot x_0^{n+1-k}.$$

Wegen $f'(x_0) = (x_0 - x_1) (x_0 - x_2) \dots (x_0 - x_n)$ also

$$\frac{\partial x_0}{\partial \sigma_k} = -(-1)^k \frac{x_0^{n-k+1}}{(x_0-x_1)(x_0-x_2)\dots(x_0-x_n)}.$$

Damit wird

$$\frac{\partial s}{\partial \sigma_k} = (-1)^k \sum_{\nu=1}^n \frac{x_{\nu}^{n+1-k} (1 + \log x_{\nu})}{(x_{\nu} - x_{0}) \dots (x_{\nu} - x_{\nu-1}) (x_{\nu} - x_{\nu+1}) \dots (x_{\nu} - x_{n})}.$$

Nun gilt nach einer Verallgemeinerung des Mittelwertsatzes der Differentialrechnung²) für die rechte Seite

$$\frac{\partial s}{\partial \sigma_k} = (-1)^k \cdot \frac{1}{n!} \left[\frac{d^n}{d \, x^n} \, x^{n+1-k} \, \left(1 + \log x \right) \right]_{x=\xi}$$

wo Min $(x_0, \ldots x_n) < \xi < \text{Max } (x_0, \ldots x_n)$. Führt man die Differentiation aus, so ergibt sich:

$$\frac{\partial s}{\partial \sigma_k} = \frac{(n+1-k)!}{n!} \frac{1}{\xi^{k-1}} > \frac{(n-k+1)!}{n!} > 0 \text{ für } k = 2, 3, \dots$$
 (1)

damit ist der Hilfssatz bewiesen.

Im weiteren beziehen wir uns auf eine Darstellung, in welcher P_1 und damit $\Omega_1 = \alpha_1 P_1$ diagonal sind. Die Eigenwerte von Ω_1 mögen r_1, r_2, \ldots heissen. In diesem Koordinatensystem sind P_2 und damit $\Omega_2 = \alpha_2 P_2$ im allgemeinen nicht diagonal, sondern von der Gestalt $\parallel a_m^* a_n \parallel$. Schliesslich bezeichnen wir die Eigenwerte von $P = \Omega_1 + \Omega_2$ mit x_1, x_2, \ldots Es ist weiter zweckmässig, $r_0 = \alpha_2$ und $x_0 = 0$ zu setzen. Dann schreibt sich nämlich die Ungleichung (I) (für $S_2 = 0$) in der Form:

$$-\sum_{k=0}^{\infty} x_k \log x_k \le -\sum_{k=0}^{\infty} r_k \log r_k.$$
 (2)

¹) Die folgende Überlegung gilt nur, wenn die x_k alle verschieden sind und nicht verschwinden. Doch gilt das Schlussresultat (1) aus Stetigkeitsgründen allgemein.

²) Vgl. z. B. G. Polya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Bd. I, S. 54, Aufgabe 97.

Dieser Bezeichnung entsprechend verstehen wir in der Zukunft unter den Matrizen Ω_1 , Ω_2 und P diejenigen, die aus den ursprünglichen Matrizen Ω_1 , Ω_2 und P durch Hinzufügen einer nullten Zeile und Spalte aus lauter Nullen entstehen. Wir setzen auch $a_0 = 0$.

Um unseren Hilfssatz, der sich auf eine endliche Zahl von Variabeln bezieht, anwenden zu können, approximieren wir Ω_2 durch Matrizen derselben Spur, die nur endlich viele nicht verschwindende Elemente besitzen:

 $(m \mid \Omega_2(N) \mid n) = a_m^*(N) a_n(N)$

mit

$$a_{\mathbf{0}}\left(N
ight) = \sqrt{\sum_{\nu=N+1}^{\infty} \left|a_{\nu}\right|^{2}},$$

$$a_{n}\left(N
ight) = a_{n} \text{ für } n=1,2,\ldots N$$

$$a_{n}\left(N
ight) = 0 \text{ für } n=N+1,N+2,\ldots$$

Entsprechend setzen wir $P(N) = \Omega_1 + \Omega_2(N)$ und bezeichnen die zugehörigen Eigenwerte mit $x_0(N), x_1(N), \ldots$

Nun behaupte ich, dass die Folge

$$S\left(N
ight) = -\sum_{k=0}^{\infty} x_k\left(N
ight) \log \, x_k\left(N
ight)$$

monoton nicht abnimmt. Da $x_k(0) = r_k$ und $\lim_{N \to \infty} x_k(N) = x_k$ ist in dieser Behauptung die Ungleichung (2) enthalten.

Zeigen wir also, dass $S(N) \ge S(N+1)$. Die Matrizen P(N) und P(N+1) stimmen nur in den ersten N+2—reihigen Unterkasten nicht überein. Diese Unterkasten werden mit P'(N) und P'(N+1) bezeichnet. Ihre Eigenwerte sind die N+2 ersten Eigenwerte der ungestrichenen Matrizen. Es bleibt nur zu zeigen:

$$s(N) = -\sum_{k=0}^{N+1} x_k(N) \log x_k(N) \ge s(N+1) = -\sum_{k=0}^{N+1} x_k(N+1) \log x_k(N+1).$$
(3)

Das geschieht auf Grund des Hilfssatzes. Es seien $\sigma_k(N)$ und $\sigma_k(N+1)$ die symmetrischen Elementarfunktionen der Eigenwerte von P'(N) und P'(N+1). Es gilt z. B.

$$\sigma_k(N) = \sum k$$
 reihigen Hauptminoren von $P'(N)$

Durch Auswerten der Determinanten nach bekannten Regeln¹) ergibt sich

$$\begin{split} &\sigma_{1}\left(N\right)-\sigma_{1}\left(N+1\right)=0\\ &\sigma_{2}\left(N\right)-\sigma_{2}\left(N+1\right)=r_{N+1}\mid a_{N+1}\mid^{2}\geqq0\\ &\sigma_{3}\left(N\right)-\sigma_{3}\left(N+1\right)=r_{N+1}\sum_{k=1}^{N}r_{k}\left(\mid a_{k}\mid^{2}+\mid a_{N+1}\mid^{2}\right)\geqq0\\ &\sigma_{4}\left(N\right)-\sigma_{4}\left(N+1\right)=r_{N+1}\sum_{0< k< l< N+1}r_{k}r_{l}\left(\mid a_{k}\mid^{2}+\mid a_{l}\mid^{2}+\mid a_{N+1}\mid^{2}\right)\geqq0 \end{split}$$

woraus nach dem Hilfssatz (3) folgt. Weiter erkennt man, dass die S(N) nur dann alle übereinstimmen, wenn für jedes k gilt $r_k \mid a_k \mid^2 = 0$. Das ist aber gleichbedeutend mit $P_1 P_2 = 0$. Damit ist der Beweis der Ungleichung (I) erbracht.

Ich danke Herrn Prof. Fierz dafür, dass er mich auf diese Ungleichung aufmerksam gemacht hat.

¹) Vgl. z. B. A. C. AITKEN, Determinants and Matrices (University Mathematical Texts), S. 87, § 37.