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The Magnetic Exchange Moments for H; and He;
by Felix Villars,
(12. IX.1947.) | ‘

Zusammenfassung. Es wird gezeigt, dass im Grundzustand des 3-Nukleon-
Systemes der Ladungsaustausch einen Beitrag zum magnetischen Moment gibt.
Die Rechnung wird auf Grund der symmetrischen Pseudoskalartheorie -durch-
gefiihrt. Eine rohe Abschatzung ergibt fiir den Betrag des magnetischen Austausch-
momentes ~ 1/, Kernmagneton, ferner positives Vorzeichen fiir H;, negatives fiir
He;. Dieser Befund erlaubt eine Interpretation der Messung von upg, durch Brocu
und ANDERSON.

Summary. Charge exchange is shown to give a contribution to the magnetic
moment of the three-body system in its ground state. A calculation, carried through
for the case of the symmeétrical pseudoscalar meson theory gives a value of ~ 1/,
of a nuclear magneton for this exchange moment. The sign is positive for H;, nega-
tive for He;. This result furnishes an interpretation of the value of up, measured
by BLocH and ANDERSON. , '

§ 1. Introduction.

Recently, the ratio of the magnetic moments of the Hy-nucleus
and the proton has been measured!) by the nuclear induction
method, with the result that

pg, = 1.0666 up,
or, taking a value of 2.789 n. m. for the proton moment:
My, = pp+0.186 n.m..

A value uy, = up was to be expected if the Hj-ground state were
a pure 2S-state. This is not quite true, since the spin-orbit coupling
(tensor force) gives rise to small admixtures of higher states (2P,
4P, 4D). But these admixtures can hardly be made responsible
for the excess pg—mp, on the contrary, as was shown by SacHS
and SocHWINGER?), they even reduce the magnetic moment*).

*) Recently R. G. Sacms3) has discussed the conditions under which the ad-
mixtures would be able to give the correction required by the experiment. This
correction can only be obtained with the help of the 2P — 4P interference term,
but this requires that the 2P and 4P admixtures are relatively strong (20% and
8%, respectively). However, such an assumption can hardly be justified.
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However, ScrwINGER’s phenomenological formalism?) is not
fitted to the description of the charge exchange phenomena connec-
ted with the interactions of nucleons. On the other hand, these
phenomena are known to give rise to exchange moments®). In
the case of the Deuteron, the magnetic exchange moment vanishes
on account of the symmetry properties of the Deuteron ground-
state. It will be shown that this is not the case for the ground
state of the three body system.

The following investigation will be carried through for the case
of the symmetrical pseudoscalar meson theory which, apart from the
fundamental -3 difficulty in the tensor force potential, is known
to give the best qualitative agreement with experiment.®) Below,-
we shall presuppose that the influence of the spin-orbit coupling is
small and does not mix up the ordering of the energy levels as given
by the central force approximation. It may, however, affect to a
certain degree the expectation value of the exchange moment,
- since the diagonal element (28 |M .| 2S) will prove to be rather
small ; but we think that at present our still incomplete knowledge of
the H; and He; ground-state eigenfunction does not justify a more
detailed investigation. The result is therefore merely supposed to
give the sign and the order of magnitude of the effect to be expected.

§ 2. The Magnetic Exchange Moment in the Pseudoscalar Theory.

We start with the well known Hamiltonian of the symmetrical
pseudoscalar theory?):

Hr;2fd3:c{n§ (az)+\grad @, (m)}2+,u2<p§ (a;)}

a=1

+Vdaf AZ vy (04 grad ¢, (4)). (1)

24 1s the position of the nucleon 4, ¢; and ¢, are the charged fields
and the connection with the fields ¢ and ¢* of the charged theory
1s given by

=12 (pr—19))  ¢* =12 (pr+1¢a).

The charge and current densities due to the fields ¢; ¢, are:
oy = ¢ (P2 91— @1 ¥2) : ‘
sy = ¢ { (g2 grad @, - @, grad g,) — Yda [ } /040 (x-2%) (175 - pa71).-

A
In order to satisty the continuity equation

o +divs =0 2)
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we must add to g, and s, the corresponding expressions due to
the charge of the nucleons:

QN_ezd(m_ A)
1+1:
~626 5

Equation (2) is then easily verified with the help of the relation
vy = i[H, vf] = 2 Jfdn f-0* {grad @, (¢*) 7§ —grad @, (24) 7{}.

The magnetic moment operator is given by

1+1:

(3)

M=1 fd@ ) fd@ (X 8y +5y) = My +My. (5)

This expressionis of course not translationly invariant; it can, howe-
ver, be split into an invariant part (viz. a function of the relative
position of the nucleons alone) and a part due to the motion of the
center of mass of the system; this latter part is of no interest to us.
The evaluation of M, is most easily accomplished in the momen-
tum space, where the Hamiltonian (1) reads:

H%Z[dszc{pa(k)-pa(—) LAAORACI)

11/2 fd%zfi (0%-k)-eikzdq, (k); ki=p*+k%:  (6)

A canonical transformation is then performed:
H = ¢!V He '™ — H+if[W, Hl— 5 2 [W[W,H]|+--- (7
which, in a first approximation (up to terms in f2?) gives a sepa-

ration of H into a free-meson part and an interaction energy be-
tween the nucleons. The transformation function W is

_ s, Palk) nod a4,
mﬂw_;,afdk ikl (g4 ). (8)
The transformation (7), (8) will likewise be applied to M,

which is of the form M,=MO+f M®. Arranging M}, according
to powers of f, we have

My = MO+ {i[W, MO+ MW} .+ fZ{ [WLW, MO)|+i[W, M®]]
= MO L f.Mf(l) + 2. M'®, (9)
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M'©® is the contribution of the free mesons and will therefore be
neglected ; the expectation value of M'® is zero since this expression
18 linear in the field variables; M’ is a function of the nucleon coor-
dinates alone and represents the so-called exchange moment. Its
evaluation is straightforward and yields

Mexch - % 2 (TA X TB)3

A<B

__(O‘AXO.B)} ¢ HTaB 412 (74 +2.B><ZAB).V(AB)} ,

1{zAB(zAB,aA>éaB) (1_*__’14)

Bl 5 .
B BTyB

where z4% = 24— 2B r . = |2z4B| and V(4DB) 1s the interaction
energy of the pseudoscalar theory

1 11 1 e “TAB
V(AB) =5 (64-0B)+ (L 4 1 _M_.._>-T 8
(4B) =5 (o4-0%) (3+WAB+WAB)2 A
4. 4B B, _AB
TAB:3E- £ )2(6 ? )—(GA-GB).
TaB

With the help of the expression for the total current Sy;:

-4

Sy=—e(fu)? ) (t4xtB), 248 V(AB) = ¢ 3 4. 38
A<B A =

and with the notation 24=27+ (4, (Z = center of mass of the

system) we can split from M, the part

A4
T3

;w (B5%8,) = —;—é' (Z % &4 ~ (10)*)

*) It may be noted that the expectation value of (10) is cancelled by a contri-
bution from the orbital part of the magnetic moment
1+ 'cgi

2

Mom = 5 3 (* x 24)
A

o, 1 , ;. gl 1474
e (gx g4 3)i 4y pay 11T i( et ).
2(><§’ 5 +2§(C><C) 2+2§2 A xz)

The first term gives, together with 1} (Zx Sy), the expression

2 (axd (zealt)),

dt \'Z 2

whose expectation value vanishes; the second term represents the intrinsic or-
bital moment and the third the moment due to the motion of the center of mass.



480 Felix Villars.

The remainder depends only on the relative positions of the
nucleons and it is this part which will be called exchange moment
below. Thus finally we may write

(f m)2 1 [ z48(;48, (¢? ><0’B)) 1
Moo =— : j;'u) AZ:B(TA X7 {“J{ T?le 7 (1 + ,LLTAB)

— (04 X oF)

e MTaB41/2 (C4 + CszAB)-V(AB)}, (11)
in accordance with MoLLER-ROSENFELD's result™®).

§ 3. The Eigenstates of a System of Nucleons in the Central
Foree Approximation.

In this approximation, the tensor force is entirely neglected ; the
interaction energy takes then the form

V=) (z4-75)-(c4-05)-U(4B), | (12)
A<B
in which, for not too small distances r,; U(AB) 1s YUKAVA's
potential function const. exp(-ur 4 p) -7 2.
We shall first discuss in a somewhat more general manner the

properties of the eigenstates of a system with an interaction given
by (12). The Hamiltonian

1
H =;W*pi+v

of the system 1s invariant under simultaneous rotations of all spin
or all isotopic spin vectors. The quantities

S,=1/2 3 ot Sz = 352
A K

T,=1/2 3 74 T2 = ¥ T
A4 o

are therefore integrals of motion and define the quantum numbers
S, M and T, N, M and N being the eigenvalues of S; and T,
respectively. The corresponding eigenfunctions of S2%, S; and of
T2, T, will be written as

ES’ M

and

and 7% respectively.

*) Note that in MeLLER-ROSENFELD’s paper?) a different definition of § (¢,
@s» @s) and 7 is utilized. Our vectors p and 7 are obtained from M-R’s by a ro-
tation of = around the 1l-axis: @i, @9 @3—> @1, — @, — @3 and 7, Ty T3> 71, — Tos
— 7. Accordingly, in M-R’s paper the'nucleon charge is represented by %. (1 —r‘;).
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As 15 well known?®) there exists for any pair of quantum
numbers S, M or T, N a set of functions &, (x=1...hg) and 7, (4=
1... hy) which are transformed into each other under permutations
of the spin or isotopic variables and which generate an irreducible
representation of the permutation group. Let P be the permutation
which transforms the set of variables 1, 2, ... n into py, Py - .. Py
then we have

PE (L) = &apa p) = X Du(P) &5 (L) (19

and analogously for #. The representations DS and DT are uniquely
determined by S, T and the number n of particles. (Equivalent
representations are considered as equal.)

The hg-h, products &, -, are likewise transformed into each
other under permutations simultaneously applied both to & and #.
The representation D®x D? thus induced is in general a reducible
one. Its decomposition into irreducible parts

DSxD” = ZaP-DF | (14)

1s obtained by means of an orthogonal transformation U[, ., which
in the hg hyp-dimensional vector space of the &, 7, sets up a new

basis
2 Uoc ,ue (15)

The «, give the number of 1rredu01ble representations D contained
in DSx DT and are expressed by the formula

ap=ar 220 270 27 (0 (16)

in which y(c) are the group characters of the representations DS,
DT and D7, ¢ the class of permutations and ¢ the number of elements
in ¢%).

Let I' be the symmetry class reciprocal to I', defined as follows:

D! (P) = 6, DL, (P); = + 1 for [} permutations.

Let then FZ (1...n) be a set of functions transforming under per-
mutations according to D7
PFI(1...n) =Fl (pp..p)= X' DL (P)-FlA...0). (17
&

Then it is easily verified that the sum of products
= ZF" -OI(1...n)

31
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is antisymmetrical under simultaneous permutations of the argu-
ments of F' and 6.

In application to our problem let /' be a function of the space
coordinates alone: F¥ = FT(x, x, ... x,); then

wP=ZFf(:E1 wz. . .r’l?n)'@f

18 antisymmetrical and the most general function satisfying the
exclusion principle is therefore

ﬂntlS Z F w]_ mz. - mn) i @f(l . o .n) - (18)

If we introduce the matrix elements of H with respect to the
variables I" and &:

HOI = Y (I"¢ |H| I'e)- 0!

e
we obtain the following ScHrROEDINGER equation for the F':
Z{ ¢ |H|I'e)— (I"¢' |1| I'e)- E}FL () 5. ..w,) = 0. (19)

The matrix elements (/"¢ | H | ') are easily evaluated with the
help of the relations

(04-0B) =2 P5,—1

(20)

(478 =2 PT, —1
where PS5\ indicates the transposition (1 ... 4 ... B ... n) >
(1...B...4...n),applied to the variables of & (). Employing
(15), we obtain

¢ 1H|Ps):§ ;fa (I"&' | 1| I'e)

+2, U(4B) {ZUMS Ups, e @D5 (Pyp)— 065, 2D, (P p) — 5,,,)}

A<B aBuv

This expression can be simplified into

S (e 1] 1+ X U(4B) {(4D:,‘E<PAB>+ag»f>-(r'|ur

A A< B

APV

—Q{ZUg,u,s ,3,” AB)+2Uoc,us o, & (PAB)H (21)
oafu



The Magnetic Exchange Moments for H, and He,. 483

Provisional information concerning the ordering of the energy
levels may be obtained from (21) by forming the mean values of
the diagonal elements of the potential energy V for a definite class:

(L\V|Iy=1/h,- Y] (I'e | V| I's). We obtain
TV = X U (4B)

p+%xmb«zwwumwﬂmemWPm “(P))).
(22)%)

If by = 1, formula (22) may replace (21) for calculating the diagonal
elements of V.

§ 4. Application to the Three-Body System.

The quantum number S (1) may take the values 1/2 or 3/2. The
corresponding states will be designated as spin (charge) doublets
or quartets. The latter are symmetrical states, viz. invariant under
permutations of the variables, whereas the doublet states induce
the two-dimensional representation of the permutation group &,.
The three irreducible representations of this group will be denoted
as follows:

I: the symmetrical,
A: the antisymmetrical,
A: the two-dimensional representation.

In table I we give a list of the corresponding characters y:11)

Table I.
Class ¢ %I (¢) x4 (c) x4 (c)
¢,: identity . . . 1 1 1 2
cy: (12) (13) (23 3 1 -1 0
cg: (123) (132) . . 2 1 1 -1

*) Another formula for a rough evaluation of (I'| V|I) is obtained from re-
placing U(AB) by U(O). (Long-range approximation, see e.g. FEENBERG and
Pr1LLips1?).) In this case, the formula
2 Dy, (P) = (c)-c/hy
Poc fa ﬁocx
may be applied to (21) with ¢ = ¢, = (P 4p); we thus obtain

(@& Vo T = (1" [1] ey 0 (0) M0 D 1 2000 _p (0] g 2700}
r S T
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The reduction of the product (14) with the help of (16) gives for
S=T=1/2 (DS=DT=A4): AdxA4d=1+A4+ 4. The following

six cases will therefore be considered:

Table II.

Case: ay a, a, l by ; b, c
P 1 4 A ’ 4 | a4 |
r A I A | A A A
s 12 | 12 12 | 12 32 3/2
‘A 1/2 1/2 1/2 ‘ 3/2 | 1/2 3/2

(4 is self-reciprocal, viz. 4 is equivalent to 4.)

Let us now evaluate, for the six cases mentioned in table II,

the mean values (I'[V]I") according to (22):

a): (I|V|1) =+5 5 U(AB)
ay): (4|V] 4) :—3-A§ U(4B)
W) @V[d)=+1- 5 U(4B)
byt AV = —1-‘133 U(A4B)
o: (I|V|D) :+1-j§’zU(AB)

(24)

A more detailed mvestigation requires a special choice of the &
and 7. Expressed in terms of the eigenvectors a(4) and g(4) of
o4 12) and of the rotational invariant a(4B)=a(d4) f(B) — B(4)

a(B), they may be written as follows:

S de ) e )
V2= 1))/8 - [a(1) a(2) B(8) + «(1) B(2) = (3)
+ (1) 2(2) «(3)], ete.
§ - % EVZI2 — 1/1/6 - (a(28) & (1) + a(13) « (2))
S =1/y2-a(12) 2(3)

S = 1)/6 - (a(28) B(1) + @ (13) B(2)
- 12 0 (12) B(3).

The isotopic spin functions # are built quite analogously.

(25)
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The matrix U;, , can now be determined: U is the unit matrix
except for S = T = 1/2. We shall give a list of the new basis vectors
for this special case:

O' = 1/)2 - (& n1 + &3 1) O = 1/Y2-(— & m + & mw) ‘

- (26
A= 1/Y2 (&1 ne — &3 ) Op = 1/y2- (& nz + &5 1) I e

With the help of (26) all matrix elements of V can be determined.
We need not go into the details of this investigation; we wish,
however, to emphasize the following important result: As may
be seen from table I, the character 4 (c,) vanishes, a fact which
immediately follows from the self-reciprocity of 4 (compare (17)).
On account of the orthogonality of the representation matrices
D, s (P), this is equivalent to the statement

Dill (PAB) = ——D;’z (PAB) l

(27)
sz (PAB) % B D§1 (PAB) . '

With the help of (27) we easily verify that the vector @4 (26)
is an eigenvector of the operator (o4-¢8) (z4-15):

(64-08):(v4-18) @4 = — 3 @4,

The antisymmetric state a, is therefore an eigenstate of the
system. According to (18) the corresponding space function F'(z; z,
Z3) 1s symmetrical in 1, 2, 8, Because the kinetic energy takes its
minimum value for space symmetrical states and because of the
low value of the potential energy (24) for a,, we conclude that a,
represents the ground-state of the three body system.

This assumption is strongly supported by the values of the spin
contribution to the magnetic moment of the system: '

M 20‘4 (1/2-(pp + py) +1/2- (pp — py) 75)
(ﬂp+ﬂw) S +1/2(up— py ZU T3 (28)

In order to evaluate the diagonal elements of Mg, with respect
to S and T, we note that

(8 |04] 8)= ([ ¢*(8)| ) §
and (T <4 | 1) = (u| o4 (T) | @)+ Ts *3).
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The matrices p4 are calculated with the help of (26). We then
obtain

(STap |ot T | STo @) — (x| 0* (8) | &)~ (1 | 04 (T) | 1)-
and from this
(STFS’ZO‘AT | ST I's)

*811322[]@;“ wue (STau \Ea‘ir:}lSToc w).

ao’ pu

The results are given in table IIT: (Supposed L =0, N = —1/2))

Table 1II.
Case 24 ‘rg Magn. Moment INumer, valoe
A4 (n. m.)
" 20/3-8 T, — 13 ppt4/3 uy — 3.478
ay —4-87T, “p +2.789
ay 4/3-8 T, 18 up+2/3 puy —0.344
by 4/3-8 T, 1/3 ppt 2/3 ny ~0.344
b, 4/3-8 T, Bpt+ 2ty —1.033
¢ 4/3-8 1T, Bp+ 2y —1.033

From table III we see that all cases besides a, may definitely
be ruled out.

§ 5. The Expectation Value of the Exehange Moment.

The magnetic exchange moment (11) consists of two parts with
different symmetry. If we take into account the results of § 4, we
see that the expectation value of the part containing ({448 x245)-
V (AB) vanishes; we can therefore restrict ourselves to the expres-
sion:

w o elin? 3 (r4x75), 24 8. <zAB,2(aA><aB)) (1 L1 )

exch ‘ r
2p =5 "AB HT4p

— (04 x 0?B) | rras,

Our purpose is first to evaluate the matrix elements of M,
with respect to the variables S, M and T, N:

The vector products (04xo?®) satisfy the relations

[(04 xa®);, 8] = 1 (04 x0P),
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viz. the commutation rules of a vector; their diagonal elements
with respect to S are consequently of the form:13)

(Se | (o4x0B)| Sa’) = (x| A4B(S)| &) - §

The matrix A4 is easily evaluated and becomes, for S = 1/2:

L]A(W)|D=@2]4 (%) 2 =0,
(1[4 (%%)]2) = — (214 (%) 1) = 43/y3,

for each 4B = 12, 23, 31.

(29)

Taking into account the complete symmetry in the description
of the spin and the isotopic spin, we have at once

(Tp|(@AxB)| Tu') = (u|A(T)| )T

The evaluation of 242 (248, (¢4 x0B)) may be carried through in
the followmg manner: We introduce the total orbital angular mo-
mentum L and the total angular momentum J=L+§&. Then
(¢4B, (64 x0¥B)) is evaluated by means of the well known formulas
for the scalar product!4) and finally the diagonal element of the

complete expression with respect to L, S, J 1s formed. We thus
obtain for L=10, J = 8 = 1/2

(TS [247: (42, (04 x ") | JLS ) o = Tin (5| 4 (1) | o) T

and therefore
(o |M'| a' v') =

Pl @l A0 [«) AR Ted X 5 (7

A<B

—Z)eLWAB.
KT 4B

In terms of the new variables I'e, the matrix elements of M’ are:

(e | M| I"e) = X 3] UL, Ugy o (av | M7 ).

ac v

We are interested in the expectation value of M’ for the ground
state of the three body system:

aa’ vy

UﬂvUﬁvl'./dvlFl(lQS)] 2?( b _2>.6“MTAB.
A< B

MY ap

(30)

(M= IO 0T 37 57w 4 ()] &) (v 4 (%) | 1
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From the UZ, as defined in (26) (and from (29)) it follows
%’gU"‘ U (@ | 4 (J2) | @) (v | 4 (%) [ ') = —16/3,

and therefore ()2

{M =+ e ——N 1.7

exchJav 3

I- [dv|F" (129 [2( —2)-emrrn (31)

T12

In order to have {Mexch} in units of nuclear magnetons, let
us introduce the ratio y of the nucleon mass M to the meson
mass u. Then we have

e =2y (1) 55 =27 (1

nuclear magnetons. Consaderlng still J = S =1/2, we obtain for
the exchange moment in nuclear magnetons

Mexen = + ?7’ (fﬂ)z NI | (32)

N takes the values + 1/2 (He,) and — 1/2 (Hg); [ 1s given in (31).

Numerical evaluation

The space function F is supposed to be symmetrical in the argu-
ments z; Z, &3 and to represent an S-State. We are only interested
in the order of magnitude and the sign of the exchange effect; the
choice of the simple trial functlon

F'(128) = const. exp (~ % (8, 422+ rgg))

will be quite sufficient for this purpose. Since nothing precise is
known about the best value for «, we calculate the integral I for
different values of (u2/«). By elementary methods we find

1 I 2 i
1 (ptfo) = ]/f-% = 5‘7—(3+ 3“ ) et eIa (B (u))/6a)) ;
@ is the Gauss error integral. The numerical values of I are:

u?le: 0.5 1.0 2.0 3.0 4.0 5.0 70 100
I: +0.132 -0.142 -0.227 -0.224 -0.205 -0.183 -0.156 —-0.131

As to the values of y and (f )2, the qﬂestion arises whether the
meson mass should be taken from cosmic ray data, which favour
a value near 200 m'%), or the value obtained from proton-
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proton scattering®) , which give u = 327 my, and (fu)2 = 1/4.
This larger value x has again received some interest since the connec-
tion between cosmic ray mesons and the mesons responsible for the
nuclear forces has become somewhat questionable!?). For a meson
mass of 200 m (f )% would be somewhat smaller, say 1/10. y-(f u)?
varies thus from ~ 0.9 for the smallest up to ~ 1.4 for the largest
mass considered. Large meson masses, however, involve larger
values of u?/a, because the “‘radius’ of the Hy-nucleus will be deter-

N Mexchlyt’
03+
02+
041
P
g } + +2
1 5 10
< T

Fig. 1.

mined rather by the binding energy than by the extension of the
potential well, and u%/o may thus vary say from 2 up to 5. A glance
at fig. 1 shows then that the variation in the value of y(fu)? is
nearly compensated by a corresponding diminution of I(u?/a).
According to (32), we finally obtain for Hy (N = — 1/2):

Moxen == + 0.3 nuclear magnetons,

a value which just fills up the gap between Brocm’s value of
2.975 n. m. and the value calculated by Saems and ScEWINGER?)
without charge exchange and for a D-state probability of 49%,: u =
2.71 n. m.

The magnetic moment of He; is expected to have the value
— 1.86 n. m. — | peyen |, viz. — 2.1 n. m. (compare?)).

The author wishes to thank Professor Paurt for suggesting this
problem to him, and also to thank Dr. R. Jost for many stimu-
lating discussions.
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