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Die Ausbreitung der gedämpften H0,m-Welle in der
Umgebung der Grenzfrequenz

von A. Käeh.
(Brown, Boveri & Cie., Baden, Schweiz.)

(3. IV. 1947)

Die Fortpflanzung elektromagnetischer Wellen im metallischen Hohlleiter ist
in der Literatur schon umfassend beschrieben worden. Die Angaben sind jedoch
lückenhaft, sobald die Bohrleitungsverluste in die Rechnung einbezogen werden.
In diesem Fall wird das Verhalten lediglich unterhalb und oberhalb der
Grenzfrequenz erklärt, während die Aussagen über die Wellenausbreitung im unmittelbaren

Grenzgebiet durchwegs empirischen Charakter haben*).

Inhalt.

Es erfolgt die ausführliche Berechnung von Ausbreitung und
Dämpfung der H0<m-Welle (elektrisches Querfeld, magnetisches
Längsfeld) im rechteckigen Wellenleiter mit besonderer
Berücksichtigung der Leitungsverluste. Die Rechnung wird in engster
Anlehnung an die Verhältnisse des idealen Wellenleiters (unendliche
Leitfähigkeit) im Sinne einer Störungsrechnung erster Ordnung
durchgeführt. Die hervorgehenden Ausdrücke sind allgemein und
gelten durchgehend im gesamten interessierenden Frequenzgebiet;
insbesondere ergibt sich eine Formel für die Dämpfung bei der
Grenzfrequenz des Wellenleiters. Unterhalb und oberhalb der
Grenzfrequenz sind die erhaltenen Ausdrücke identisch mit den in
der Literatur angegebenen.

Einleitung.

Die Energieverluste im Metall des Wellenleiters verformen die
im Idealfall vorhandene Planwelle zu einer schwach ausgeprägten
Kugelwelle. Eine exakte Berechnung der Feldverteilung (Losung
nach Eigenfunktionen) ist deshalb nicht mehr möglich. Infolge der

grossen Leitfähigkeit des Wellenleiters und der hohen Frequenz
der Rohrwelle (kleine Eindringtiefe) lässt sich jedoch eine sehr

genaue Näherung herleiten. Namentlich bewirkt die ausserordent-

*) Vgl. Abschnitt 9. 14 in S. Ramo and J. R. Whinnery, Fields and Waves in
Modern Radio, New York 1945, S. 373.
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lieh kleine Eindringtiefe eine praktisch vollständige Entkettung
der eindringenden Feldkomponenten. Ferner ist die Feldverzerrung
so klein, dass sie in erster Näherung als linear betrachtet werden
kann.

Bei der H0 m-Welle haben die durch die Leitungsverluste
verursachten Störkomponenten vorwiegend die Eigenschaften einer
kleinen Welle des E-Typus. Wir berücksichtigen diese zusätzlichen
Felder derart, indem wir der H-Welle formal noch eine E-Welle
überlagern. Die Verknüpfung der beiden ist am Rande des Wellenleiters

durch den Zusammenhang der Störkomponenten im Metallinner

n gegeben.

1. Die Feldkomponenten.

Die Herleitung erfolgt, soweit sie mit den üblichen Literaturangaben

übereinstimmt, in kurzgefasster Form.

Zo

~- Z

Fig. 1.

Definierende Koordinaten im Leiterhohlraum.

Für die Wellenausbreitung gelten die MAxwELLSchen Gleichungen

in der allgemeinen Fassung

rot H a E

rot E -
div H 0

div E 0.

dE

äH
VAT (1)

Die Feldstruktur (Planwelle) gestattet in der «-Richtung bei
gleichzeitigem Übergang zum stationären Zustand den allgemeinen
Ansatz

H S< iiot—yx E <&eiat-> (2)
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Mit Bezug auf die in Fig. 1 definierten Koordinaten gelten mithin
für die Feldkomponenten der Rohrwelle die sechs
Differentialgleichungen.

°§>z d$>y I • X rc
—y dT lP + 1<»*)V*

d<Sz dSy _

d<£

(4)

Hierin bedeuten allgemein e £0g,. die Dielektrizitätskonstante
und j« HoHr die Permeabilität, wobei e0 (l/367r)10-11F/cm und
/«o 47fl0~9 H/cm, ferner a die Leitfähigkeit in S/cm, co die
Kreisfrequenz und y die Fortpflanzungskonstante.

Die Auflösung dieses Gleichungssystems führt beim idealen
Wellenleiter bekanntlich auf die Komponenten zweier simultaner
Wellentypen, die H-Welle, charakterisiert durch (£x 0 und die
E-Welle, charakterisiert durch §>x 0. Bei endlicher Leitfähigkeit
entstehen durch die ins Leitermetall eindringenden Felder zusätzlich

noch weitere Komponenten, die bei der H-Welle vorwiegend
die Eigenschaften einer kleinen E-Welle aufweisen, insbesondere
ist (Sa, 7 0 (vgl. Abschnitt 2). Hierin liegt die Möglichkeit zur
Erfassung der Leitungsdämpfung, wozu wir zunächst rein formal der
H-Welle noch eine E-Welle überlagern. In der Rechnung nehmen
wir der Einfachheit halber das Dielektrikum im Leiterhohlraum
als verlustfrei (Luft) an. Im Falle eines verlustbehafteten Dielektrikums

erhalten wir dann die Ausbreitungskonstante unmittelbar
aus der ursprünglichen, indem wir dort an Stelle von jcoe einfach
den Wert jcoe + a jcoe(l—j tg ò) setzen (ô Verlustwinkel).

Zur Ermittlung der Feldkomponenten bestimmen wir zunächst
die Funktionen von %>x und (£x im Leiterhohlraum. Sie haben den
beiden unabhängigen Differentialgleichungen

T^ + at*~ - (r2 + «v 0&. (5)

und

^ + ^'=-V + «V«)ö!. (6)

zu genügen, wie unmittelbar aus (3) und (4) nach Eliminierung
der übrigen Unbekannten hervorgeht.

Die Lösung von (5) findet sich mit Hilfe des Produktansatzes

£* Hp(y)-q(z),
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worin p(y) nur eine Funktion von y und q (z) nur eine Funktion
von z bedeutet. Dieser Forderung genügen die Eigenfunktionen

p(y) ax sin(Axy) +cos (Axy)
q(z) a2 sin(A2z) + cos (A2 z) ;

mithin ist die Lösung von der Art

$>x H^sin (Axy)+cos (^12/)}{a2sin (A2z)+cos (A2z)}, (7)

worin av a2 und Ax, A2 noch näher zu bestimmende Konstanten
bedeuten.

In analoger Weise ergibt sich die Lösung von (6). Wir schreiben
sie in der allgemeinen Form

Ö7 E{bx cos (Bxy) — sin (Bxy)}{b2 cos (B2z) — sin (B2z)} (8)

mit den noch unbestimmten Konstanten bx, b2 und Bv B2.
Unbekannt ist ebenfalls die Feldstärke Ê; sie wird sich später wie
alle andern Konstanten aus den Randbedingungen ergeben.
Vorläufig besteht einzig der Zusammenhang

A\ + A\ B\ + Bi y*+ w* pe, (9)

wie sich durch Einsetzen von (7) in (5) und (8) in (6) unschwer
nachprüfen lässt.

Damit können wir auch die übrigen Komponenten angeben. Sie
finden sich unmittelbar aus den Verknüpfungsgleichungen (3) und
(4) zu

s. —w\yAjf-iMB-jf

wobei

_ 1 dGL d$>x

k2 y2 + co2 pe.

(10)

Setzt man weiter (7) und (8) ein, so erhält man etwas umständliche

Ausdrücke von der Form (z. B. aus der ersten Gleichung
von (10))

£» — j*H Ax{axeos(Axy) — sïn(Axy)}{a2sin(A2z)+cos(A2z)}—

-1^ÊB2{b1cos(Bxy)~sin(Bxy)}{b2sin(B2z)+cos(B2z)}. (11)
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Sie lassen sich aber sofort vereinfachen, indem wir schon hier eine
Bedingung einführen, deren Notwendigkeit erst später aus der
Rechnung hervorgeht. Es wird sich nämlich zeigen (Gl. (35) u. (36)),
dass die Verknüpfung mit den speziellen Randbedingungen der
H0,m~Welle nur dann eindeutig ist, wenn die beiden Summanden
(Gleichung (11)) sowohl nach y wie nach z identische Funktionen
enthalten.

Es muss also sein (aus (11)) :

ax cos (Axy) — sin (Axy) bx cos (Bxy) — sin (Bxy)
und

a2 sin (A2z) + cos (A2z) b2 sin (B2z) 7 cos (B2z).

Wir erhalten somit unter den Konstanten die für alle vier Ausdrücke
von (10) gleich ausfallenden Bedingungsgleichungen

Bx Ax, B2und
h

-A j
a2. \

(12)

Die Einführung von (12) in (8) ergibt nunmehr für die Komponenten
im Leiterhohlraum zusammenfassend die folgende Darstellung:

%x= H{ax sin (Axy) + cos (Axy)}{a2 sin (A2z) 7 cos (A2z)}

C£x E{a1cos (Axy) — sin (Axy)}(a2 cos (A2z) — sin (A2z)}

%y -7Äl"tl'2»t2 E{aiGoe i.Aiy)~sin [Aiy)}{ai sin (A2z)+cos(A2z)}

-, A VT—A,.... A U

œ2

y2 +m2ßs

yAl^+oT^H{a^ sin (Aiy)+(x>s (Aiy)}{a2 cos (A2z)-ain (A2z)}

—
Y yi+i^e1 {aiSin(Axy)+cos(Axy)}{a2cos(A2z)-sin(A2z)}

yA^E + jcùfiA^Ë
y2 + w2fie

Die hierin vorkommenden Konstanten müssen nun durch
Einfügen der Randbedingungen derart bestimmt werden, dass die
Formeln im Falle unendlicher Leitfähigkeit übergehen in die
bekannten Ausdrücke der H0 m-Welle des idealen Wellenleiters zu

[ax cos (Axy) — sin (Axy)}{a2sin(A2z)+<ios (A2z)}.

(13)

%>x
I mn

j co p H

yH m.n

sm
/ mn \

yl + co*/A,e

§« ©*

mn
sm | 2

(14)
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Die Bedingungen dieses Grenzzustandes sind, wie der Vergleich von
Gleichung (13) mit (14) zeigt, somit charakterisiert durch

£ 0;
ax 0,

Ax 0,

0,
m n (15)

Der Problemstellung gemäss können an Stelle von Gleichung (14)
natürlich auch die Komponenten der Hn 0-Welle angesetzt werden ;

dies bedeutet aber lediglich ein Austausch von m durch n und z0

durch y0, was im Prinzip nichts Neues bringt.

2. Die Randbedingungen.

Über die von der Rohrwelle im Leiter induzierten Feldkomponenten

orientiert anschaulich Fig. 2 am Beispiel der 270jl-Welle.
Dabei sind die Systemgrössen im Leiterhohlraum mit dem Index 1,

\7C7^\ I

2t\\S-<\ »*2.
%*i^ 1

»MrrrniS' iTrr-r* T"^

lläibm^iii m nYL^, Mä
'

X
S
NX ^^^NÌfe 7773S

Ï^ÏA êzz7S
-z^WWWWW^

Fig. 2.

Die Feldstruktur der H0ìl-Welle im verlustbehafteten Hohlleiter.

diejenigen im Leitermetall mit dem Index 2 gekennzeichnet. Von
den im Idealfall vorhandenen drei Komponenten §>Xi, §Zi und (£j/i

(Felder strichliert eingezeichnet) erzeugen die beiden ersten in den

Rohrwandungen die Feldstärken QXi, (£y2 und (£Z2, die ihrerseits
entsprechende Feldveränderungen im Leiterhohlraum (punktiert
eingezeichnet) zur Folge haben. Die Komponente CBtfx bewirkt auf
Grund der Kontinuität des Verschiebungsstromes eine elektrische
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Feldstärke senkrecht zur Wandebene, die aber infolge des enormen
Unterschiedes zwischen den dynamischen Leitfähigkeiten der beiden

Medien vernachlässigbar klein ist. S, und <5Z sind die im
Leitermetall absorbierten Energieverluste.

Diese Betrachtung zeigt, dass in der Grenzschicht der beiden
Medien in erster Näherung nur Tangentialkomponenten auftreten.
Im Falle der H0m-Welle sind dies die Primärkomponenten §>Xi und
§Zi und die in den Leiterwandungen induzierten Sekundärkomponenten

<£Xt, (èyi und (£Zj. Über die Grösse §„ lässt sich im obigen
Sinne nichts aussagen; sie existiert erst in zweiter Ordnung und
kann daher vernachlässigt werden.

Beiläufig sei noch erwähnt, dass später, bei der Einführung der
Randbedingungen, der Nullsetzung von &y(&z im Falle der Hn0-
Welle) eine eminente Bedeutung zukommt; erst diese Relation
ermöglicht die eindeutige Bestimmung der früher eingeführten
Konstanten und damit die Lösung des Problems überhaupt.

Die nachstehende Herleitung der Randbedingungen erfolgt ohne
Beschränkung auf eine bestimmte Wellentype.

ii
.X

Ù *y **

4»

V/S//A '/////;/////////">
Wy

- z

Fig. 3.

Auf Grund der Stetigkeitsbedingung der Tangentialkomponenten

an Grenzflächen gelten für die Randkomponenten der
Felder in den beiden Medien die Beziehungen

Si/»^ =WRand
und ®l/Rand

'<&•/
Rand (16)

Der Zusammenhang unter den Randkomponenten im Leitermetall

ist grundsätzlich durch die Gleichungen (3) und (4) gegeben.
Die geschlossene Auswertung des Gleichungssystems ist jedoch aus
den in der Einleitung dargelegten Gründen nicht möglich. Zu einer
sehr genauen Näherung gelangen wir aber imHinblick auf die
ausserordentlich kleine Eindringtiefe der Rohrwellen. Dies besagt
offensichtlich, dass die räumliche Feldänderung in Richtung der Metalltiefe

bedeutend grösser sein muss, als diejenige parallel zur Leiter-
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Oberfläche. Wir dürfen deshalb auf der linken Seite der Gleichungen
(3) und (4) in erster Näherung sämtliche Glieder mit Ableitungen
in Richtung der Metalloberfläche vernachlässigen. Die sechs
Gleichungen reduzieren sich dann auf vier, die sich weiter in zwei
unabhängige Systeme aufteilen lassen.

Wir berechnen zunächst die Feldstruktur in der unteren und
oberen Wand des Wellenleiters. Die Lage der Randkomponenten
ist für y 0 in Fig. 3 dargestellt. Aus Gleichung (3) und (4) ergeben
sich, wenn wir nur Feldänderungen nach y (Richtung Metalltiefe)
berücksichtigen, die folgenden Feldgleichungen (o2 ^> toe2):

d(&z,

dy 2^*2

dy -ff2^2

-=— — J CO ft2$>Xi

-Jy- )COH2$>Zi.

Das Bestehen dieses Gleichungssystems fordert zwangsläufig die
Aufteilung in die beiden unabhängigen Gleichungspaare

°$>z* „ rç 6$>z* „ ct.

««* ¦ R
(19) und à*. • ft

(20)

Zur Auflösung der Systeme (19) und (20) machen wir für die
untere Metallwand den allgemeinen Ansatz (à Ausbreitungskonstante

Richtung Metalltiefe)

Sa-H-o6" und <E, <*,/,_„ e", (21)

wobei y in bezug auf die Lage der Koordinaten (siehe Fig. 1)
negativ zu nehmen ist. Durch Einführen von (21) erhält man aus
(19) die Bestimmungsgleichungen

ô&*Jw-0 a*<SxJ,-0 Und ^H^^'^îWpO (22)

und hieraus nach Eliminierung des Verhältnisses QxJ§>Zi die
Ausbreitungskonstante zu ô Yjco/u2a2- Der gleiche Wert findet sich
auch aus den Bestimmungsgleichungen von (20), wonach

-ô$>*Jy=0 °2®Hly=0 und ô^Jy^ -jco/,2$,xJy=0. (23)

Damit ist der Zusammenhang unter den Randkomponenten in der
unteren Metallwand aus (22) und (23) bestimmt durch

^o W,=0]A™f und ^=0--^U]/^f- (24)
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Das nämliche Vorgehen ergibt aus (19) und (20) die
Randwertgleichungen der oberen Leiterwandung mit Hilfe des Ansatzes (y
positiv)

$•=«./,_»«-" Und ®2=H=,.e"d!/- (25)

Man erhält nach kurzer Zwischenrechnung

©*,/' =—$>zJ l/ Ito Pi und <&,/ =§x2/ l/I^2. (26)

Berücksichtigen wir in Gleichung (3) und (4) nur Feldänderungen
nach der 2-Richtung, so ergeben sich die Feldgleichungen in den
beiden Seitenwänden, woraus unmittelbar die simultanen
Gleichungspaare

dg' -a2(Stx2

dz jCO/J2$>y2
(27)

dz
d<£ys

dz

cr2(£Vi

jcoß2$)z
(28)

hervorgehen. Fig. 4 zeigt die Lage der Randkomponenten für z 0.

X

A
A
A,

\
/
h
iy//7*

rz '/,

/4
®* A

Fig. 4.

Die Auflösung von (27) und (28) ergibt mit Ansätzen analog (21)
und (25) für die vertikalen Wände des Wellenleiters schliesslich die
Randbedingungen :

e<

Œ;

.u - -**u y^f. «w..«=*^o y^2

¦¦u -**u y1? ' «*u - -**uy^ •

(29)

(30)
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3. Die Einführung der Randbedingungen.

Im Falle der H0m-Welle erhalten wir aus den Gleichungen (24),
(26), (29b) und (30b) mit Berücksichtigung von (16) nunmehr die
folgenden Randbedingungen :

eWz=0 S<=032 (31)

&i/,_„=-W,-ok
Dabei ist zur Abkürzung

«w„ 1/0 "K/,. î/o
32

«w..•*> - Ô*i/f
«o

32

<H= !/o
S>xx/

'¦ly—Vt
32 •

(32)

V' ,COß2
32 (33)

gesetzt, entsprechend dem Wellenwiderstand im Leitermetall. An
Stelle der Gleichungen (29a) und (30a) tritt hier, da £>„ erst in
zweiter Ordnung existiert (siehe Abschnitt 2), die weitere Forde-
mng S„ - 0, (34)

unabhängig von y und z (vgl. den Idealfall Gleichung (14)).
Die in den Gleichungen (31) und (32) auftretenden Randwerte

bestimmen wir nun aus Gleichung (13). Ihre Einführung in (31)
ergibt die Beziehungen*)

yA2H-jcos1A1E _ -32 — — H>ai

yA1E~jcoß1A2H _ -=
y2+co2fi1e1 «2 ^«32

yAïE+) caji^A^H

(35)

H$2>
y i L¦¦'-' /-'-i «-¦i

analog aus (32)

yA,H—jco£, A.E .-,
yl+O,«^ 3a N Sm (^1^ + C0S C^l^o)}

E{ax cos (^ij/o) — sin (^i2/o)}
yA,E—jcou,A2H .vlrHcüViV {°- C0S (^22o) ~~ Sm (^o)j

— H32{«2Sm(^2^o)+COS (^o)}

H32{ai sin (Axy0) 7 cos (A^/o)}-,
*) Hierbei erkennt man nun die Notwendigkeit der Bedingungsgleichung (12)

denn ohne diese würden sich die orthogonalen Funktionen nicht wegheben und
damit eine eindeutige Lösung verunmöglichen; m. a. W., die Bandbedingungen
müssen für jeden Punkt der Metalloberfläche identisch erfüllt sein.

(36)
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Die Bedingung (34) liefert aus (13) unmittelbar den Zusammen-
hang yAxH + jcoexA2E 0. (37)

Zur Ermittlung der Gleichungskonstanten müssen wir noch in
(36) eine Vereinfachung vornehmen.

Entsprechend Gleichung (15) ist im idealen Fall Ax 0 und
A2 mn/za. Bei endlicher Leitfähigkeit muss sich also Ax um einen
sehr kleinen Betrag von 0 unterscheiden, ebenso A2 um einen sehr
kleinen Betrag von mnjz0. Wir machen deshalb den Ansatz

Axy0 tx. und A2z0 mn + ß (m 1, 2, 3...)

wobei oc, ß <Lt.l, womit die trigonometrischen Funktionen in (36)
mit grosser Näherung durch ihre Argumente « und ß ausgedrückt
werden können. Es folgt hiefür

sin (Axy0) sin a ^ oc Axy0

cos (Axy0) cos oc ä 1

sin (A2z0) sin (mn 7 ß) ^ (— l)m ß (— l)m (^o — m7T)

cos (A2z0) cos (mjr 7 ß) g* (— 1)™.

Nach Gleichung (15) sind auch ax und o2 <^ 1, also ist angenähert

1 + axAxy0 ^.1, 1 7 a2 (A2z0 — mn) ^ 1.

Mit diesen Vereinfachungen geht (36) schliesslich über in

yAtH-j0>e1A1W _ _ s

^ + co2^ 32 - Ü l«i ^l2/o)

^+i'T«f'* (a2-'^2^--m7t)} -H32

y2 +cü2(u161
(«l — ^i 2/o) =i?32-

Das scheinbar überbestimmte System der Gleichungen (35), (37)
und (38) muss nach den fünf Unbekannten E, Ax, A2 und ax, a2

nun derart aufgelöst werden, dass bei der Auswertung gleichzeitig
einzelne Gleichungen identisch in einander übergehen und mithin
die Zahl der Gleichungen schneller abnimmt als diejenige der
Unbekannten.

Zunächst ergibt der Vergleich der korrespondierenden Ausdrücke
in (35) und (38) die Beziehungen (womit die beiden Systeme identisch

werden)

ai 7^i2/o und a2 T(A2z0 — mn). (39)
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Führen wir ferner aus (37)

in (35) ein, so reduzieren sich die drei Gleichungen mit
Berücksichtigung von Gleichung (9) auf zwei. Hieraus folgen wegen

y2A\ — co2fixexA2 — (co2 fixex — Af) (y2+co2/uxex) g*
— co2fixex (y2 + co2ßxex)

die weiteren Beziehungen

«i 1^7-32 und a2 -j^i2. (40)

Aus (39) und (40) finden wir endlich die besonders interessierenden
Konstanten Ax und A2 in der Form

^1 232^ und A2= mn

Zo+l3^- (41)

Dies sind die gesuchten Lösungen der Gleichungssysteme (35) und
(38), wie sich zusammen mit (39) und (40) unschwer verifizieren
lässt. Ferner zeigt die Kontrolle, dass im Falle unendlicher
Leitfähigkeit, oder nach Gleichung (33) für 32 -> 0, die gefundenen
Gleichungskonstanten in der Tat in den durch Gleichung (15)
beschriebenen Grenzzustand übergehen.

4. Die Ausbreitungskonstante.

Sie ergibt sich unmittelbar aus (9), wonach

y2 A2+ Al-co2fixex,
2 32durch Einsetzen von Gleichung (41). Schreibt man wegen

1 mn \2
?">.«iZo

<1

_ 2
4 32

2 32 \2 ~ \ Zo 1 \ Jcof*xZo(i+3U\ ?">i"l20/

so folgt hiefür mit 32 aus (33) die Gleichung
to2/i1£1 tmn\2 2

2 (^)2_M2 2^~o'^l^r/ X. (42)

Die Einführung der Grenzfrequenz, definiert durch

fo,m= 7T~,7== YTT7^= (^ 3-1010cm/s), und -,— v
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liefert für die Ausbreitungskonstante der H0 m-Welle im verlustfreien

Dielektrikum schliesslich die Formel

mn
v2 2_

-v2~(l-j)^ JiIl^. (43)

Das additive dritte Glied unter der Wurzel zeigt deutlich den
Einfluss der endlichen Leitfähigkeit. Im besonderen folgt für die
Grenzfrequenz / f0m (v — 1)

Yo.m 1

1/ ^(- + -)
— 1/ (1 — j) !h \jj z°l. (44)

Für o-2 -> oo geht (43) über in die bekannte Formel des idealen
Wellenleiters.

Wir wollen noch den Ausdruck für das verlustbehaftete Dielektrikum

beifügen, wozu wir nach Abschnitt 1 in Gleichung (42) an
Stelle von jcoex einfach den Wert jcoex + ax j co ex(l —j tg ô)
(ô Verlustwinkel) zu setzen haben. Man erhält nach einiger
Zwischenrechnung die vollständige Darstellung

mn
v2 2 { v2 2
— (l-tg<3) + — — (l + tg<5>+ —

/*i ynvf9,m/*tot [ /*i \nvf0,mIH<t%

und im speziellen für / f0>m (v 1)

1 / 1-tg« 2

1/ ^2 2/o %

I l + tg<5 2

j Hg -s + <"2 *• z»
|

^ /"i /n/uBftOj ' T <"* VVo,mj"2ff2 iyo,m i™\ At na—.4°-i M + ^-^#==#f. (46)

5. Die Dämpfungskonstante.

Wir beschränken uns hier auf den praktisch meist vorkommenden
Fall des Dielektrikums aus Luft (er /x.r 1, ô 0). Die Aufteilung

von Gleichung (43) in Real- und Imaginärteil ergibt für die
Leitungsdämpfung der H0 m-Welle den Ausdruck

r-
2 a*2 y» zm n

ß~ P
/*2 HO "-Q i j- M i/0 "13 / i -I _ 2 _ O i/0 ^0

^i^jrv/0,mJu2ffJ |j"i|/jtv/0,m^2CT2| ft ^»/ojm/»«^

Np/cm, (47)
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gültig für 0 < / < oo, wobei /0] m (m/2 z0) v. Bei der Grenzfrequenz
/ f0 (v 1) vereinfacht sich die Formel auf den Wert

ßo, y j/2-1 mn ß2

1 2
— + —
Vo zo

ft Vnfo,mß2a2
Np/cm (48)

Der aus Gleichung (47) hervorgehende Dämpfungsverlauf ist in
Fig. 5 an dem Beispiel der H0 1-Welle eines Kupferrohres von
2000 MHz Grenzfrequenz dargestellt. Darin ist zjy0 3, /x2 fix
4 7t-10~9 H/cm und a2 57-10* S/cm angenommen. Für tiefe
Frequenzen nähert sich die Kurve dem konstanten Wert ß mn/zc,

100

/3

10

Np/m

t'
0,1

0,01

0,001

: sï

~A : zo

/301—
i

^^
i

0,1 1 10 —*1>=_L 100
fo.1

Fig. 5.

Dämpfungsverlauf der i/0,rwelle nach Gl. (47), Näherung nach Gl. (50).

während sie für höhere Frequenzen nach Durchlaufen des
Durchlassbereiches gegen unendlich strebt. In der Umgebung der
Grenzfrequenz ist vor allem der filtertechnisch interessante steile Kurvenabfall

bemerkenswert. Zur Abschätzung dieser Dämpfungsänderung
lässt sich aus Gleichung (47) für / /„_„, (v 1) noch relativ leicht
eine Formel herleiten. Man findet nach längerer Zwischenrechnung
mit grosser Näherung

d_ß

df /=/.,
|/2-l mn2

j/f 20«>A>,r.
1/1/2- r*\ pAVo zo

Np/cm, Hz, (49)

Hieraus folgt wegen /0 m (m/2 z0) v, dass bei steigender Ordnung
m die Kurvensteilheit mit m1/4, die Dämpfung dagegen mit m3/4

zunimmt. Da die letztere für /<^/0,m proportional m ist, so ver-
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bessern sich mithin die Filtereigenschaften mit Sjm; der Gewinn
ist also sehr bescheiden.

Hinsichtlich der Abmessungen des Rohrquerschnittes ergeben
sich umso günstigere Verhältnisse, je grösser y0 gewählt wird, indem
dadurch die Dämpfungsänderung vergrössert und die zugehörige
Dämpfung gleichzeitig verkleinert wird. Bei einem gegebenen y0
ist die Kurvensteilheit für z0 2 y0 ein Optimum.

Für Frequenzen wesentlich unterhalb und oberhalb der Grenz-
frequenz lässt sich Gleichung (47) erheblich vereinfachen. Zu dem
Zweck setzen wir

v2 2
— + —

1 - vt ± p und ßi y° z° - -
ßi ^nvf0,mii2ai

wobei das pos. Vorz. für / <^ /0>m, das neg. Vorz. für / ^> /0m gilt.
Damit folgt aus Gleichung (47)

'-£* -q]/{±P--I)2 + q2±p-

und hieraus durch Reihenentwicklung

ß/f«U,m
mn ,— und ßif»fo,nT

mn
zo 21/7

oder mit Rückgängigmachung der obigen Substitution und einiger
Umstellung :

ß ^]/r^V2 für/</0>m
z0 I

und ?o_„s/2+v-i/2 (50)
-,/2^2 Vm 2y0

_

ß=\/^l^zT V^Ä fur />/„,„.
Der Dämpfungsverlauf der beiden Näherungsformeln ist in Fig. 5

für die Hox-Welle dieses Beispiels gestrichelt eingezeichnet. Die
erste Gleichung stimmt mit der Dämpfungsformel des idealen
Wellenleiters überein ; das Fehlen von a2 zeigt, dass für / <^ /0 m
der Einfluss der Leitungsverluste äusserst gering ist, was auch zu
erwarten war. Der zweite Ausdruck, gültig für /!>/o;m, ist vollständig
identisch mit dem in der Literatur angegebenen. Dort wurde die
Formel jedoch nach anderen Verfahren (Poynting-Methode)
hergeleitet, während sie hier aus der asymptotischen Entwicklung von
Gleichung (47) hervorging. Diese Übereinstimmung beweist mithin
die Richtigkeit der vorstehenden Störungsrechnung.
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Hinsichtlich der Grössenordnung der in der Rechnung
vernachlässigten Glieder zweiter und höherer Ordnung zeigt die numerische
Überprüfung, dass bei Kupferleitern für Frequenzen bis IO4 MHz
die Zahlenwerte der obigen Formeln mit einem Fehler von höchstens
10-4 behaftet sind, welche Genauigkeit praktisch vollauf genügt.

Es liegt in der Art des Verfahrens, dass sich das obige Vorgehen
zur Berechnung der Ausbreitungskonstante nur auf H0 m-Wellen
anwenden lässt. Zur Gewinnung des allgemeinen Ausdruckes der
Hn>m-Welle mussten mehr Freiheitsgrade und damit mehr
Bestimmungsgleichungen eingeführt werden, deren Auflösung aber, wenn
überhaupt möglich, nicht so einfach ausfallen dürfte.

Die vorliegende Arbeit entstand im Hochfrequenzlaboratorium
der Firma Brown, Boveri & Cie., Baden, Schweiz. Den Herren
Dr. H. J. von Baeybr und Dr. F. Lüdi danke ich bestens für die
Überlassung des Themas und die Diskussion des Grundsätzlichen.
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