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Die Ausbreitung der geddimpften H, ,.-Welle in der
Umgebung der Grenzfrequenz

von A.Kieh.
(Brown, Boveri & Cie., Baden, Schweiz.)

(3. IV. 1947)

Die Fortpflanzung elektromagnetischer Wellen im metallischen Hohlleiter ist
in der Literatur schon umfassend beschrieben worden. Die Angaben sind jedoch
liickenhaft, sobald die Rohrleitungsverluste in die Rechnung einbezogen werden.
In diesem Fall wird das Verhalten lediglich unterhalb und oberhalb der Grenz-
frequenz erklart, wihrend die Aussagen iiber die Wellenausbreitung im unmittel-
baren Grenzgebiet durchwegs empirischen Charakter haben*).

Inhalt.

Es erfolgt die ausfiihrliche Berechnung von Ausbreitung und
Dampfung der H, ,-Welle (elektrisches Querfeld, magnetisches
Langsfeld) im rechteckigen Wellenleiter mit besonderer Beriick-
sichtigung der Leitungsverluste. Die Rechnung wird in engster An-
lehnung an die Verhiltnisse des idealen Wellenleiters (unendliche
Leitfahigkeit) im Sinne einer Stoérungsrechnung erster Ordnung
durchgefiihrt. Die hervorgehenden Ausdriicke sind allgemein und
gelten durchgehend im gesamten interessierenden Frequenzgebiet;
insbesondere ergibt sich eine Formel fiir die Dampfung bei der
Grenzfrequenz des Wellenleiters. Unterhalb und oberhalb der
Grénzfrequenz sind die erhaltenen Ausdriicke identisch mit den in
der Literatur angegebenen.

Einleitung.

Die Energieverluste im Metall des Wellenleiters verformen die
im Idealfall vorhandene Planwelle zu einer schwach ausgeprigten
Kugelwelle. Eine exakte Berechnung der Feldverteilung' (Losung
nach Eigenfunktionen) ist deshalb nicht mehr moglich. Infolge der
grossen Leitfdhigkeit -des Wellenleiters und der hohen Frequenz
der Rohrwelle (kleine Eindringtiefe) lasst sich jedoch eine sehr
genaue Niherung herleiten. Namentlich bewirkt die ausserordent-

*) Vgl. Abschnitt 9. 14 in 8. Ramo and J. R. Whinnery, Fields and Waves in
Modern Radio, New York 1945, S. 373.

*



342 A. Kich.

lich kleine Eindringtiefe eine praktisch vollstindige Entkettung
der eindringenden Feldkomponenten. Ferner ist die Feldverzerrung
so klein, dass sie in erster Ndherung als linear betrachtet werden
kann.

Bei der H, ,-Welle haben.die durch die Leitungsverluste ver-
ursachten Storkomponenten vorwiegend die Eigenschaften einer
kleinen Welle des E-Typus. Wir beriicksichtigen diese zusiitzlichen
Felder derart, indem wir der H-Welle formal noch eine E-Welle
tiberlagern. Die Verkniipfung der beiden ist am Rande des Wellen-
leiters durch den Zusammenhang der Storkomponenten im Metall-
Innern gegeben

1. Die Feldkomponenten.

Die Herleitung erfolgt, soweit sie mit den iiblichen Literatur-
angaben iibereinstimmt, in kurzgefasster Form.
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Definierende Koordinaten im Leiterhohlraum.

Fir die Wellenausbreitung gelten die MAXWELLSChen Gleichun-
gen 1n der allgemeinen Fassung

rotH—aE—I-eai]2
0H -
rOtE——M ETh > (1)
divH=0
div i =0

Die Feldstruktur (Planwelle) gestattet in der z-Richtung bei gleich-

zeitigem Ubergang zum stationiren Zustand den allgemeinen An-
satz

H=$eot-va; F=@geot-re, 2)



Die Ausbreitung der gedampften H
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Mit Bezug auf die in Fig. 1 definierten Koordinaten gelten mithin
fiir die Feldkomponenten der Rohrwelle die sechs Differential-
gleichungen.

06, 06,

Ogjz 0 y ]

T o= (ot jue) G, by 0a 10K

09, . 0€, - y '

'_%4“7522(0_[_]0)8)@@ (3) 0z +"V@z=ﬂ_]w'u5y (4)
09, . 0€, ;

~y5y—. dgy =(G+?w8)(§z 7€, + 0y =) ou9,.

Hierin bedeuten allgemein ¢ = ¢,¢, die Dielektrizitatskonstante
und g = p,u, die Permeabilitit, wobei ¢, = (1/36 #) 1021 F/cm und
po=4m-10-% H/cm, ferner o die Leitfahigkeit in S/cm, o die
Kreisfrequenz und y die Fortpflanzungskonstante.

Die Auflosung dieses Gleichungssystems fithrt beim idealen Wel-
lenleiter bekanntlich auf die Komponenten zweier simultaner
Wellentypen, die H-Welle, charakterisiert durch €, = 0 und die
E-Welle, charakterisiert durch $, = 0. Bei endlicher Leitfahigkeit
entstehen durch die ins Leitermetall eindringenden Felder zusétz-
lich noch weitere Komponenten, die bei der H-Welle vorwiegend
die Eigenschaften einer kleinen FE-Welle aufweisen, insbesondere
ist €, + 0 (vgl. Abschnitt 2). Hierin liegt die Moglichkeit zur Er-
fassung der Leitungsdampfung, wozu wir zunéchst rein formal der
H-Welle noch eine E-Welle iiberlagern. In der Rechnung nehmen
wir der Einfachheit halber das Dielektrikum im Leiterhohlraum
als verlustfrei (Luft) an. Im Falle eines verlustbehafteten Dielektri-
kums erhalten wir dann die Ausbreitungskonstante unmittelbar
aus der urspriinglichen, indem wir dort an Stelle von jwe einfach
den Wert jwe+o0 = jwe(l—j tg J) setzen (6 = Verlustwinkel).

Zur Ermittlung der Feldkomponenten bestimmen wir zunéchst
die Funktionen von $, und €, im Leiterhohlraum. Sie haben den
beiden unabhiingigen Differentialgleichungen

02 029,

’o’%+7§?e—=—(y2+wzw)5w (5)
und

02 E 02,

o T om = (Pt etue), - (6)

zu geniigen, wie unmittelbar aus (3) und (4) nach Eliminierung
der tbrigen Unbekannten hervorgeht.

Die Losung von (5) findet sich mit Hilfe des Produktansatzes
9. = Hp(y) q(),

-Welle. 343



344 A. Kach.

worin p(y) nur eine Funktion von y und ¢(z) nur eine Funktion
von z bedeutet. Dieser Forderung gentigen die Eigenfunktionen

p(y) = aysin(4,y) +cos(4,y)
q(2) = aysin(A4,2) +cos(A4y2);
mithin ist die Losung von der Art
Haz = H{a,sin (dyy)+cos (A;y) }{ as sin (4y2)+cos (4p2)},  (7)
worin a;, a, und 4,, 4, noch niher zu bestimmende Konstanten
bedeuten.
In analoger Weise ergibt sich die Losung von (6). Wir schreiben
sie in der allgemeinen Form

€, = E {b; cos (B,y) — sin (B, y) }{b, cos (By2) —sin (B,2)} (8)

mit den noch unbestimmten Konstanten b,, b, und B,, B,. Un-
bekannt ist ebenfalls die Feldstirke F; sie wird sich spiter wie
alle andern Konstanten aus den Randbedingungen ergeben. Vor-
liufig besteht einzig der Zusammenhang

A} + A% = B2 + B} = % + w?pue, (9)
wie sich durch Einsetzen von (7) in (5) und (8) in (6) unschwer

nachpriifen lasst.

Damit konnen wir auch die iibrigen Komponenten angeben. Sie

finden sich unmittelbar aus den Verkniipfungsgleichungen (8) und
{(4) zu

55y~—"1—2~{y %?f —joe %("zi}
nTT ;2 {y "df;” e %%} (10)
552———;‘,1? y 0052”“ +iw6%—?}
€, =—~%{3’~%§£—-9wu 002“},

wobel
k? =92 + w?ue.

Setzt man weiter (7) und (8) ein, so erhédlt man etwas umsténd-
liche Ausdriicke von der Form (z. B. aus der ersten Gleichung
von (10))

$y = — - H A, {a;cos (4, y)—sin (4,y) }{aysin (4,2)+cos (4,42) }—
7‘”‘“3 2 {by cos (By y) —sin (B, y) }{bysin (Byz)+cos (Byz)}. (11)
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Sie lassen sich aber sofort vereinfachen, indem wir schon hier eine
Bedingung einfithren, deren Notwendigkeit erst spdter aus der
Rechnung hervorgeht. Es wird sich ndmlich zeigen (Gl. (35) u. (36)),
dass die Verkniipfung mit den speziellen Randbedingungen der
H, ,-Welle nur dann eindeutig ist, wenn die beiden Summanden
(Gleichung (11)) sowohl nach y wie nach z identische Funktionen
enthalten.
Es muss also sein (aus (11)):

d a, cos (A, y) —sin (A, y) = b cos (B, y) —sin (B, y)

u
@y SIn (Ay2) + cos (Ay2) = by sin (B,y2) + cos (By2).

Wir erhalten somit unter den Konstanten die fiir alle vier Ausdriicke
von (10) gleich ausfallenden Bedingungsgleichungen
Bl = An Bz = Az

12
b]. == al, bz == ar2- ( )

und

Die Einfithrung von (12) in (8) ergibt nunmehr fiir die Komponenten
im Leiterhohlraum zusammenfassend die folgende Darstellung:

$o= H{a;sin (4;y) + cos (4,y)}{a, sin (4,2) + cos (4,2) }

€, = E {a, cos (4,y) —sin (4,y) }{a, cos (4,2) —sin (4,2)}

= ——yA;f:if;fg E{al cos (4, y) —sin (4, y) }{a, sin (4;2)+c0s(4,2)}

€, = yAlJf_:_ f:;’::fzﬁ{al sin (A, y)+cos (A, y) }{a, cos (A32) —sin (4,2)}

§.=—PRET0h B cin (4,y)+o0s (A19)H{ay cos (A7) —sin (4,9)}
- ”Azﬁi f::gflﬁ{al cos (A, y) —sin (4, y) }{asin (4,2)+cos (4,2)}.

Die hierin vorkommenden Konstanten miissen nun durch Ein-
figen der Randbedingungen derart bestimmt werden, dass die
Formeln im Falle unendlicher Leitfihigkeit iibergehen in die be-
kannten Ausdriicke der H, ,-Welle des idealen Wellenleiters zu

—— mm
9. = H cos (T z)

0

jouH mn . (mn )
= s z
€, YE+oiue oz W 20 (14:)
. vH mn . [m%
D= Sionus g, Sm( 2 Z)

E,=9,=C,=0.

, (13)
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Die Bedingungen dieses Grenzzustandes sind, wie der Vergleich von
Gleichung (13) mit (14) zeigt, somit charakterisiert durch

. @y =0, ay, = 0,
E=0 420  a,=77, 5]
0

Der Problemstellung gemiiss kénnen an Stelle von Gleichung (14)
natiirlich auch die Komponenten der H, ,-Welle angesetzt werden;
dies bedeutet aber lediglich ein Austausch von m durch n und z,
durch y,, was im Prinzip nichts Neues bringt.

2. Die Randbedingungen.

Uber die von der Rohrwelle im Leiter induzierten Feldkompo-
nenten orientiert anschaulich Fig.2 am Beispiel der H,;-Welle.
Dabei sind die Systemgrossen im Leiterhohlraum mit dem Index 1,
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Fig. 2. ,
Die Feldstruktur der H,,,-Welle im verlustbehafteten Hohlleiter.

diejenigen im Leitermetall mit dem Index 2 gekennzeichnet. Von
den im Idealfall vorhandenen drei Komponenten $,, $, und €,
(Felder strichliert eingezeichnet) erzeugen die beiden ersten in den
Rohrwandungen die Feldstirken €., €, und €, , die ihrerseits
entsprechende Feldverinderungen im Leiterhohlraum (punktiert
eingezeichnet) zur Folge haben. Die Komponente €, bewirkt auf
Grund der Kontinuitidt des Verschiebungsstromes eine elektrische
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Feldstdrke senkrecht zur Wandebene, die aber infolge des enormen
Unterschiedes zwischen den dynamischen Leitfihigkeiten der bei-
den Medien vernachldssigbar klein ist. S, und &, sind die im
Leitermetall absorbierten Energieverluste.

Diese Betrachtung zeigt, dass in der Grenzschicht der beiden
Medien in erster Naherung nur Tangentialkomponenten auftreten.
Im Falle der H, ,,-Welle sind dies die Primérkomponenten $, und
$, und die in den Leiterwandungen induzierten Sekundirkompo-
nenten €, , €, und €,. Uber die Grosse H, lisst sich im obigen
Sinne nichts aussagen; sie existiert erst in zweiter Ordnung und
kann daher vernachlissigt werden. | |

Beilaufig sei noch erwahnt, dass spater, bei der Einfiihrung der
Randbedingungen, der Nullsetzung von $,(9, im Falle der H, ,-
Welle) eine eminente Bedeutung zukommt; erst diese Relation er-
moglicht die eindeutige Bestimmung der frither eingeftihrten Kon-
stanten und damit die Losung des Problems tiberhaupt.

Die nachstehende Herleitung der Randbedingungen erfolgt ohne
Beschriankung auf eine bestimmte Wellentype.

%x
8z |/ %z
s SIS
: 5
Fig. 3.

-z

Auf Grund der Stetigkeitsbedingung der Tangentialkompo‘-
nenten an Grenzflichen gelten fiir die Randkomponenten der
Felder in den beiden Medien die Beziehungen

Daf St — O i und €,/ Rand €2/ Rana (16)

Der Zusammenhang unter den Randkomponenten im Leiter-
metall ist grundsatzlich durch die Gleichungen (3) und (4) gegeben.
Die geschlossene Auswertung des Gleichungssystems ist jedoch aus
den in der Einleitung dargelegten Griinden nicht méglich. Zu einer
sehr genauen Naherung gelangen wir aber im Hinblick auf die ausser-
ordentlich kleine Eindringtiefe der Rohrwellen. Dies besagt offen-
sichtlich, dass die raumliche Felddnderung in Richtung der Metall-
tiefe bedeutend grosser sein muss, als diejenige parallel zur Leiter-
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oberflache. Wir diirfen deshalb auf der linken Seite der Gleichungen
(8) und (4) in erster Niaherung sdmtliche Glieder mit Ableitungen
in Richtung der Metalloberfliche vernachléssigen. Die sechs Glei-
chungen reduzieren sich dann auf vier, die sich weiter in zwel un-
abhéngige Systeme aufteilen lassen.

Wir berechnen zundchst die Feldstruktur in der unteren und
oberen Wand des Wellenleiters. Die Lage der Randkomponenten
ist fir y = 0in Fig. 3 dargestellt. Aus Gleichung (3) und (4) ergeben
sich, wenn wir nur Feldinderungen nach y (Richtung Metalltiefe)
berticksichtigen, die folgenden Feldgleichungen (o, > we,):

09, 0 €z, 4

0?; = 26%1 0y =—10 l39a,

5 (17) (18)
55-’52 _ G ] ()(Ezz .

oy %2V 0y =129z,

Das Bestehen dieses Gleichungssystems fordert zwangsldufig die
Aufteilung in die beiden unabhingigen Gleichungspaare

0 P 0 Tg
agy = 0g ze l — 0531 = 0y Gzz l
N (19) und ), . (20)
oly =) Uz, I dy =“?w/‘2-‘5x2~l

Zur Auflésung der Systeme (19) und (20) machen wir fiir die
untere Metallwand den allgemeinen Ansatz (6 = Ausbreitungs-
konstante Richtung Metalltiefe)

532=552/y=oe"y und ¢, = @2/y=0 e®y, (21)

wobel y in bezug auf die Lage der Koordinaten (siehe Fig.1)
negativ zu nehmen ist. Durch Einfithren von (21) erhilt man aus
(19) die Bestimmungsgleichungen

6522/1,:0 = 09 G:x2/y=0 und 0 (Exz/y=0 — 70) lu'2522/y=0 (22)

und hieraus nach Eliminierung des Verhéltnisses €, /9, die Aus-
breitungskonstante zu 6 = }/jwu, o, Der gleiche Wert findet sich
auch aus den Bestimmungsgleichungen von (20), wonach

69, =02Csp/ _,  und  8Cy/ _ ——jousal,_,. (28)

Damit ist der Zusammenhang unter den Randkomponenten in der
unteren Metallwand aus (22) und (23) bestimmt durch

_ /ioup, o 11
Cautyo = Barlymg 122 und Gy, = — S, /120 (24
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Das namliche Vorgehen ergibt aus (19) und (20) die Randwert-
gleichungen der oberen Leiterwandung mit Hilfe des Ansatzes (y
positiv)

9y = 532/1’:% e’ und G,= QEzfy e~ (25)

Man erhélt nach kurzer Zwischenrechnung

@m2/'y=ﬂo=—bz2/y=yo I/ 1%2& fjen (gzz/y=yn=5x2/y=vol/%z'u2. (26)

Beriicksichtigen wir in Gleichung (3) und (4) nur Feldénderungen
nach der z-Richtung, so ergeben sich die Feldgleichungen in den
beiden Seitenwinden, woraus unmittelbar die simultanen Glei-
chungspaare

Os—')yz

0 =09y &xz T—= Gg@yz
0Cn (27) 6 \28)
0z = 10 ua 9y, 5 =10 teHa,

hervorgehen. Fig. 4 zeigt die Lage der Randkomponenten fiir z = 0.

i 4

1 X

1% 4,

Aby 4
7z z
Ex 7

Fig. 4.
Die Auflésung von (27) und (28) ergibt mit Ansitzen analog (21)

und (25) fiir die vertikalen Wiande des Wellenlelters schliesslich die
Randbedingungen:

Gy = By |12, G, =Sm),, 12 (@9)

Carf,_, = Susf,_, ]/ N e ]/12& (30)

2 Oy
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3. Die Einfiihrung der Randbedingungen.

Im Falle der H, ,-Welle erhalten wir aus den Gleichungen (24),
(26), (29b) und (30b) mit Berticksichtigung von (16) nunmehr die
folgenden Randbedingungen:

®x1/y —0 = 5531/;:0 32

le'/y=yu= - 521/@!:2}0 32 l
®y1/z=0 - 553;1/2:0 32 (81) Gyl/zzzu - $x1/z=zo 32 (32)
(Ezl/y=0: _gxl/y=032 I (Ezlly=yo: 5wl/y=yo 32 - J

Dabei ist zur Abkiirzung

= Y (33)

Oy

gesetzt, entsprechend dem Wellenwiderstand im Leitermetall. An
Stelle der Gleichungen (29a) und (30a) tritt hier, da $, erst in
zweiter Ordnung existiert (siehe Abschnitt 2), die weitere Forde-

e $, =0, (34)

unabhingig von y und 2z (vgl. den Idealfall Gleichung (14)).

Die in den Gleichungen (31) und (32) auftretenden Randwerte
bestimmen wir nun aus Gleichung (13). Thre Einfihrung in (81)
ergibt die Beziehungen¥)

vA,H—jwe, A, E

V2L gy 32 =— Loy
yAE—jo u, A H —

vi+ wzullsl z 2= H3, (35)
yA4, B+jou 4, H I =

V2_f__ w2ﬂ1 81 a]_ - H 525

analog aus (32)

yA,H—jowe, AJE :
;2+ w21u1181 ~ B {ay sin (A4;y,) + cos (4, Yo)

= E {a; cos (Ayy,) —sin (41y,) }
VA1E—jWM1A2E

Yi+ 0wy, & {0';2 cos (AﬂzO) — sin (AZzO)} (86)
=—H3, {a2 sin (Ay2,) + cos (Aaz,) }

v A E+jou, A H ;
sl (g cos (4, 0) —sin (4190} |
' = H3y {aysin (4,y,) + cos (Al_ Yo) }-
*) Hierbei erkennt man nun die Notwendigkeit der Bedingungsgleichung (12)
. denn ohne diese wiirden sich die orthogonalen Funktionen nicht wegheben und

damit eine eindeutige Losung verunmoglichen; m. a. W., die Randbedingungen
miissen fiir jeden Punkt der Metalloberfliche identisch erfiillt sein.
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Die Bedingung (84) liefert aus (13) unmittelbar den Zusammen-
hang v A H - joe Ay, T = 0. (87)

Zur Ermittlung der Gleichungskonstanten miissen wir noch in
(36) eine Vereinfachung vornehmen.

Entsprechend Gleichung (15) ist im idealen Fall A1 = O und
Ay = mafz,. Bei endlicher Leitfihigkeit muss sich also 4; um einen
sehr kleinen Betrag von 0 unterscheiden, ebenso 4, um einen sehr
kleinen Betrag von ma/z,. Wir machen deshalb den Ansatz

A1y =« und Ayzg=ma+p (m=1,23..),

wobei «, f €1, womit die trigonometrischen Funktionen in (36)
mit grosser Naherung durch ihre Argumente « und B ausgedruckt
werden konnen. Es folgt hiefir

sin (4,y,) =sina ~a = 4.y,
cos (A;y,) =cosa =1
sin (Ayz,) = sin (mmw + f) =~ (— )™ B = (— 1)™ (442, — M)
cos (4y2,) = cos (mmw + f) = (—1)™.
Nach Glelchung (15) sind auch a, und a, << 1, also 1st angenahert
1 +a1A1y0~1 1+ a, (Azzo—mn;) Nl
Mit diesen Vereinfachungen geht (86) schliesslich tber in

yA,H-—jwe A, B =
?/2—!-(1)2;&11811 32 = E (a; — A1)
A E-jou, A, H , - ==
- 9112+w2,u11312 {%_(Azzo—m“)}:—ﬂﬁz (38)

yAy, E+jou, A H / .
- :2 +wz,u1181 = (a’l — Alyo) = H 3gs

Das scheinbar iiberbestimmte System der Gleichungen (35), (37)
und (38) muss nach den fiinf Unbekannten FE, 4,, 4, und a,, a,
nun derart aufgelést werden, dass bei der Auswertung gleichzeitig
einzelne Gleichungen identisch in einander iibergehen und mithin
die Zahl der Gleichungen schneller abnimmt als diejenige der Un-
bekannten.

Zunichst ergibt der Velglelch der korrespondierenden Ausdriicke
in (35) und (38) die Beziehungen (womit die beiden Systeme iden-

tisch werden)

1 L ‘
By = A1y0 und g = 5 (A220 - mn)_ . 7 (39)
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Fithren wir ferner aus (37)
m=___ v Ay
BE=—7u% 4,

in (35) ein, so reduzieren sich die drer Gleichungen mit Beriick-
sichtigung von Gleichung (9) auf zwei. Hieraus folgen wegen

y2A} — 0y 8, A5 = — (0P py&y — A (YP+ 0P pyey) >~
— 0?8 (2 + 0®py 8
die welteren Beziehungen

jow g
4,

A4,
jw/h 32 . (40)

Aus (39) und (40) finden wir endlich die besonders interessierenden
Konstanten 4, und 4, in der Form
jw e mam

A2 = By = und A, = 3, (41)
Jopy
Dies sind die gesuchten Losungen der Gleichungssysteme (85) und
(88), wie sich zusammen mit (39) und (40) unschwer verifizieren
lasst. Ferner zeigt die Kontrolle, dass im Falle unendlicher Leit-
fahigkeit, oder nach Gleichung (33) fir 3, > 0, die gefundenen
Gleichungskonstanten in der Tat in den durch Gleichung (15) be-
schriebenen Grenzzustand iibergehen.

a, = 32 und @, = —

£

4. Die Ausbreitungskonstante.

Sie ergibt sich unmittelbar aus (9), wonach

y? = A} + A3 — 0’ p, ¢y,

durch Einsetzen von Gleichung (41). Schreibt man wegen ‘jj‘j;a <1
(M)z
> _ Zo . = mn)2 43
A2 (1+ —232_)2 _( 2 (1 jw#lzo)’
J @ phy 2o
so folgt hiefiiv mit 3, aus (33) die Gleichung
L (mﬂfi
o _ (Mmm 2_ 9 _Qﬁz- Yo %o 29 49
e e (42)
Die Einfilhrung der Grenzfrequenz, definiert durch
"™ ™ ¥  (»—8.1010 I _
fo.m sV 2% T (v=38-101° ¢m/s), und Tom v
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liefert fiir die Ausbreitungskonstante der H, ,-Welle im verlust-
freien Dielektrikum schliesslich die Formel

Lol
y="TE Y1l B (48)

1 |/~7t Y foum M0z

Das additive dritte Glied unter der Wurzel zeigt deutlich den Ein-
fluss der endlichen Leitfahigkeit Im besonderen folgt fir die
Grenzfrequenz f = f, ,, (v = 1)

TRy
L 44
Vﬂfﬂ mnu'40'2 ( )

Fir o, > oo geht (43) iiber in die bekannte Formel des idealen
Wellenleiters.

Wir wollen noch den Ausdruck fiir das verlustbehaftete Dielektri-
kum beiftigen, wozu wir nach Abschnitt 1 in Gleichung (42) an
Stelle von jwe; einfach den Wert jwe, + o, = jwe; (1 —j tg )
(0 = Verlustwinkel) zu setzen haben. Man erhdlt nach einiger
Ziwischenrechnung die vollstindige Darstellung

» (1-tgo) +3 | —(1+tg6)+£—

- .5 Ma Yo & 2 45
Y %o 1= ! Vm’fo,mﬁz% +]lv tg6+ =( )

Vn"’fo m M2 03
und im speziellen fir f = f, ,, (v = 1)

l/ 1—tg6+_2_ l 1+tg6+_2_J

. M7 M2 Yo zo Yo %o .
b — & S tod 2 S0 for 46
Yo,m ! %o ! ano mﬂzf’z 7 ] & 'u'l Vtfo,mba 02 ( )

5. Die Dimpfungskonstante.

Wir beschrianken uns hier auf den praktisch meist vorkommenden
Fall des Dielektrikums aus Luft (¢, = u, = 1, 6 = 0). Die Auftei-
lung von Gleichung (43) in Real- und Imaginarteil ergibt fiir die
Leitungsdampfung der H, ,-Welle den Ausdruck

] v: 2 12 v: 2 )2 v: 2

— — I —+

B= mu 1_p2_H2 Y Z B2 Yo A [ +1—p2_He Yo %o
9 V2 l Ha V?F Vo, mMe 02' PaY 7y fo,m e Oy H l/ﬂ*’fo,m P20
Np/em, (47)
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giiltig fiir 0 < f < oo, wobei f, ,, = (m/22,) v. Bei der Grenzfrequenz
= fom (v =1) Veremfacht sich die Formel auf den Wert

l/2 I i’ii”]/
ﬂ() m o Uy Vﬂfo s 0_2 Np/C’m (48)

Der aus Gleichung (47) hervorgehende Dampfungsverlauf 1st in
Fig. 5 an dem Beispiel der H, ,-Welle eines Kupferrohres von
2000 MHz Grenzfrequenz dargestellt. Darin ist 2,/y, = 3, ua = pq =
4 7-10-? H/em und g, = 57-10¢ S/cm angenommen. Fir tiefe Fre-
quenzen nihert sich die Kurve dem konstanten Wert g = majz,

100
s
B ﬁ: Zo
3 H
10 f
]
Np/m i
1 : :
! :
Boy—} |
04 g ,
|
[
0,01 ! —]
: —
1
0001 f )
7704 1 10 —a=p=_f 100
04
Fig. 5.

Déampfungsverlauf der H,,,-welle — nach Gl. (47), --- Naherung nach GL (50).

wahrend sie fiir héhere Frequenzen nach Durchlaufen des Durch:-
lassbereiches gegen unendlich strebt. In der Umgebung der Grenz-
frequenz ist vor allem der filtertechnisch interessante steile Kurven-
abfall bemerkenswert. Zur Abschitzung dieser Dampfungsénderung
ldsst sich aus Gleichung (47) fiir f = f, ,, (v = 1) noch relativ leicht
eine Formel herleiten. Man findet nach lingerer Zwischenrechnung
mit grosser Naherung

ap Va1 mar V]/Q_;[_}l/ifl/—r_*‘z"z Npjom, Hz. (49)

df f=fom 1/2_ zuvﬁﬂam &i_’__
M1\ Yo %o

Hieraus folgt wegen f;, ,, = (m/2 z,) v, dass bei steigender Ordnung
m die Kurvensteilheit mit m!*, die Diampfung dagegen mit m34
zunimmt. Da die letztere fir f < f, ,, proportional m ist, so ver-
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bessern sich mithin die Filtereigenschaften mit ym; der Gewinn
15t also sehr bescheiden.

Hinsichtlich der Abmessungen des Rohrquerschnittes ergeben
sich umso giinstigere Verhiltnisse, je grosser y, gewihlt wird, indem
dadurch die Dampfungséinderung vergréssert und die zugehorige
Démpfung gleichzeitig verkleinert wird. Bei einem gegebenen Us
ist die Kurvensteilheit fiir z, = 2 y, ein Optimum.

Fiir Frequenzen wesentlich unterhalb und oberhalb der Grenz-
frequenz lasst sich Gleichung (47) erheblich vereinfachen. Zu dem

Ziweck setzen wir
p2 2
1—~p*=ip und L. L
‘ ! Vﬂ”fo,mﬂzaz

wobei das pos. Vorz. fiir f < f, ,,, das neg. Vorz. fiir F> fom gilt.
Damit folgt aus Gleichung (47)

m T
p= ﬁVV(ip“q)z +q° :tp—q
und hieraus durch Reihehentwicklung

m7

_mn = _mn g
ﬁ/f«fo,vm_ % Vp und ﬂ/f»fo,m ) 2]@’

oder mit Rﬁokgﬁngigmachuhg der obigen Substitution und einiger
Umstellung :

fir f <f0,m ‘ .
und 812 y—1/2 (50)
Ty m 2?/0 .
B ]/ o b=t (> fy ]

Der Dampfungsverlauf der beiden Néaherungsformeln ist in Fig.5
fir die H,,-Welle dieses Beispiels gestrichelt eingezeichnet. Die
erste Gleichung stimmt mit der Dampfungsformel des idealen
Wellenleiters tiberein; das Fehlen von o, zeigt, dass fir f <,
der Einfluss der Leitungsverluste &usserst gering ist, was auch zu
erwarten war. Der zweite Ausdruck, giiltig fiir /> f, ,,, 15t vollstindig
identisch mit dem in der Literatur angegebenen. Dort wurde die
Formel jedoch nach anderen Verfahren (Poynting-Methode) her-
geleitet, wihrend sie hier aus der asymptotischen Entwicklung von
Gleichung (47) hervorging. Diese Ubereinstimmung beweist mithin
die Richtigkeit der vorstehenden Storungsrechnung.
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Hinsichtlich der Grossenordnung der in der Rechnung vernach-
lassigten Glieder zweiter und hoherer Ordnung zeigt die numerische
Uberpriifung, dass bei Kupferleitern fiir Frequenzen bis 10¢ MHz
die Zahlenwerte der obigen Formeln mit einem Fehler von hochstens
10-* behaftet sind, welche Genauigkeit praktisch vollauf geniigt.

Es liegt in der Art des Verfahrens, dass sich das obige Vorgehen
zur Berechnung der Ausbreitungskonstante nur auf H, ,-Wellen
anwenden ldsst. Zur Gewinnung des allgemeinen Ausdruckes der
H, ,-Welle miissten mehr Freiheitsgrade und damit mehr Bestim-
mungsgleichungen eingefiihrt werden, deren Auflésung aber, wenn
tiberhaupt moglich, nicht so einfach ausfallen diirfte.

Die vorliegende Arbeit entstand im Hochfrequenzlaboratorium
der Firma Brown, Boveri & Cie., Baden, Schweiz. Den Herren
Dr. H. J. von Barver und Dr. F. Ltp1 danke ich bestens fiir die
Uberlassung des Themas und die Diskussion des Grundsitzlichen.
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