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Uber die falschen Nullstellen der Eigenwerte der S-Matrix

von Res Jost.
(20. 1. 1947.)

§ 1. Einleitung.

In mehreren Arbeiten hat W. HeisenBerG!) versucht, einen
Rahmen fiir eine zukiinftige divergenzfreie Theorie der Elementar-
tellchen zu geben. Dazu wéhlt er zunfichst unter den Begriffen der
gewohnlichen Quantentheorie solche aus, die mit grosser Wahr-
scheinlichkeit auch in einer zukiinftigen Theorie ithren Sinn behalten.
Die entsprechenden Grissen nennt er ,,beobachtbar®. Beobachtbar
sind Streuquerschnitte (im allgemeinsten Sinn) und die Energie-
werte stationdrer Zustinde von Systemen. Weiter glaubt HEISEN-
BERG In der Streumatriz S eine Grosse gefunden zu haben, aus
der sich einerseits nach einfachen Vorschriften die beobachtbaren
Grossen herleiten lassen und die andererseits in einer zukiinftigen
Theorie eine dhnliche Rolle spielen kiénnte, wie der Hamiltonope-
rator in der bisherigen Theorie. Eine allgemeine Vorschrift, um
fiir ein bestimmtes System die Streumatrix anzageben, ist bisher
unbekannt.

In der vorliegenden Note beschéftigen wir uns mit der Vorschrift
HrisexBERGS zur Bestimmung der stationdren Zustédnde.

Es 1st naheliegend, den Heisenbergschen Formalismus zunéchst
auf einfache Probleme der gewohnliche nichtrelativistischen
Quantenmechanik anzuwenden. Die neuen Vorschriften sollen dann
genau dasselbe liefern, wie die alte Theorie, da kein Grund besteht,
an der Richtigkeit der letzteren zu zweifeln. Ma2) hat zuerst gezeigt,
dass sich dabei fiir die Anwendung der Heisenbergschen Vorschrift
zur Bestimmung der stationdren Zustinde Schwierigkeiten ergeben.
Diese Schwierigkeiten sollen hier weiter untersucht werden.

Wir Jegen unseren Uberlegungen ein Zweiteilchensystem zu-
grunde. Die Teilchenzahl soll erhalten bleiben. Zwischen den Teil-
chen wirke eine Zentralkraft mit dem Potential V(r). Die Schwer-
punktsbewegung wird separiert. Im Raum der Relativkoordinaten
fithrt man Polarkoordinaten ein und separiert die Kugelfunktionen.

') W. HEISENBERG, Z. S. f. Phys. 120, 513 und 673 (1943); C. MeLLER, Kgl.
Danske Vidensk. Selskab XXIII, Nr.1 (1945) und XXIV, Nr. 19 (1946).

%) S.T.Ma, Phys. Rev. 69, 668 (1946); 71, 195 (1947); D. TER Haar, Physica 12,
501 (1946); R. Jost, Physica 12, 509 (1946).
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Der Radialanteil der Wellenfunktion set mit 1/r ¢ (r) bezeichnet.
Beschrankt man sich auf Zustinde mit dem Impulsmoment [ = 0,
so lautet die Schrodingergleichung (in einem geeigneten Mallsystem) :

o+ kg =V()g. (1)

Hierbei ist | k| der Betrag des Radialimpulses und %2 die Energie.
-Weiter soll V (r) fiir grosse r mindestens wie 1/r% verschwinden.

Die im Nullpunkt verschwindende Losung von (1) zeigt fiir
reelles, positives k das asymptotische Verhalten:

¢(r) ~Cem™7— S(k)-e'*7) (2)

wo C eine uninteressante Konstante ist. e=7*#7 stellt (bei geeigneter
Verfigung tiber den Zeitfaktor) eine einlaufende Kugelwelle,
— S (k)e'® die ihr entsprechende auslaufende Streuwelle dar. S(k)
1st eindeutig bestimmt und von der Gestalt e2'7, wobei % (k) die
Streuphase bedeutet.

Bezieht man in unserem Problem die S-Matrix auf Kugelwellen,
so 1st sie diagonal und das oben definierte S(k) ist der Eigenwert
zu | =0. Nach Huisenserc-Kramers hat man sich S(k) als ana-
lytische Funktion von k zu denken. Fiir nicht reelle & wird S (k)
durch analytische Fortsetzung gewonnen. Offenbar wird Gleichung
(2) fur komplexe k sinnlos, weil die eine Exponentialfunktion gegen
die andere asymptotisch verschwindet?).

Die Vorschrift lautet nun: man suche die Nullstellen von S(k)
auf der —i-Axe. Die Quadrate der zugehérigen k-Werte sind die
Energiewerte der stationiren Zustdnde. Diese Vorschrift ist nicht
hinreichend. Es gibt im allgemeinen Nullstellen von S(k) auf der
—1-Axe, denen keine Eigenwerte von (1) entsprechen, denen also
keine stationdren Zustinde zugeordnet werden kinnen. Solche Null-
stellen bezeichnen wir mit dem Attribut ,,falsch’, die tbrigen
heissen richtige Nullstellen. Nach Kramers?) gilt in den richtigen

Nullstellen k,:
. dS(k) ~
dk |z =r,

> 0. (3)

Wir nehmen jedoch diese Beziehung nur ernst, wenn die Nullstelle
ko nicht mit einer Singularitit der im nichsten Paragraphen defi-
nierten Funktion f(— k, ) zusammenfallt.

An den folgenden Beispielen erkennt man leicht, dass (3) zur
Unterscheidung der falschen und richtigen Nullstellen nicht ver-
wendet werden kann.

1) WHITTAKER-WATSON, Modern Analysis, § 8.32.
2) H A. Kramers, Hand- und Jahrbuch der chemischen Physik 1, 312 (1938)

17
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§ 2. Die Funktion f (k, ), Beispiele.

Ich moéchte in diesem Paragraphen zeigen, dass das Auftreten
falscher Nullstellen keineswegs als eine Seltenheit betrachtet werden
darf.

Bevor wir zur Behandlung des Exponentialpotentials Viry=a-e,
an welchem Ma die falschen Nullstellen gefunden hat, tibergehen,
erweist es sich als zweckmaissig, eine Losung f(k, r) von (1) zu defi-
nieren, die sich durch ein einfaches asymptotisches Verhalten aus-
zelichnet. f(k, r) sel asymptotlsch eine auf die Amplitude 1 normlerte
,,einlaufende Kugelwelle®.

fk,r) ~ e~ikr, (4)

Durch (4) 1st f(k, r) in der Halbebene J[k] = 0 der komplexen
k-Ebene eindeutig bestimmt und stellt dort fiir festes r eine ana-
lytische Funktion von k& dar. In der oberen Halbebene gewinnen
wir f(k,r) durch analytische Fortsetzung nach k. Unter einem
Regularitatspunkt k von f(k, r) wollen wir einen Punkt verstehen,
in welchem f(k, r) tir alle r, die nicht Singularititen von (1) sind,
regulir 1st. Wir werden in § 3 sehen, dass es dazu geniigt, dass fiir
ewnryf(k,ro)und f'(k, ro) regulér sind. In jedem Regularitéatspunkt
18t f(k, r) eine Losung von (1). f(k, r) und f(— &, r) bilden ein Fun-
damentalsystem, es seil denn, k oder —k seien Singularitéten. Natiir-
lich kann f(k, 0) im allgemeinen nicht verschwinden, da der Null-
punkt eine Senke ist. Diejenige Lisung, die sich asymptotisch wie
e~t#7— S (k) - e'*" verhélt (und daher im Nullpunkt verschwindet),
bezeichnen wir mit ¢ (k, r). Es gilt:

k
@l 7) = ik, 1) — S0 - f(— k1) (5)
wobel der Kiirze halber f(k, 0) = f(k) gesetzt 1st. Weiter ist

_ &) .
st = 0. (6)
In dieser Darstellung sind richtige und falsche Nullstellen leicht zu
trennen. Richtige Nullstellen sind Nullstellen des Zihlers, falsche
Nullstellen Unendlichkeitsstellen des Nenners (diese brauchen nicht
Pole zu sein) auf der —-Axel).

1) Falls f(—ip) = 0, p > 0 ist, ist f(— ¢p, 7) nach (4) eine Eigenfunktion von
(1), und umgekehrt: Jede Elgenfunktmn von (1) ist ein Multiplum von f(—¢p’, 7),
p" >0 mit f(—ep’) = 0.
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Von nun an wollen wir, sofern nichts anderes gesagt wird, voraus-
setzen, dass die richtigen Nullstellen nicht zufélligerweise Singu-
laritdten von f(— k, r) sind.

Um die Losung f(k, r) von

¢ '+ kg =ae"g (7)
zu finden, setzen wir eine Reihe an'):
f(k,r) = e~%r 3'C, (k) e, L == 1 (8)
v=0
was tir Cp auf die Rekursion fiihrt:
aC,_, (k)
Cuv(k) = @ikt : (9)
oder
a’  I2ik+1)
Cvlk) =57 TRkt o 1. 10
woraus man erkennt, dass die Punkte k =— (u/2) 1, u =1,2... Pole

von f(—k, r) und f(— k) sind, also zu falschen Nullstellen fiihren.
Die Rethe (8) lisst sich aufsummieren und ergibt fiir f(k, r):

Fk, 1) = e~ k108 () [(2ik +1)-J,,, {2 /ae . (1)

Daraus ersieht man nebenbei, dass eine richtige Nullstelle sehr wohl
mit einer Singularitdt von f(— k, r) zusammenfallen kann. Man hat
nur ¢ so zu wéhlen, dass fiir ganzzahliges n J,(2 J/—a) = 0 ist.

In den falschen Nullstellen wird zwar f(— k, r) unendlich, aber

@ (k, r) aus (5) verschwindet identisch. Dies ist typisch fiir falsche
Nullstellen,

Weiter verifiziert man ohne Miihe, dass fiir ¢ > 0 in der Halfte
der falschen Nullstellen (3) erfiillt ist, wodurch die dort gemachte
Bemerkung gerechtfertlgt 1st.

Entsprechend wie beim Exponentialpotential hegen die Ver-
héltnisse bei

=D ay e VT | (12)
v=1
(konvergent fiir Re[r] > 0).
Den Ansatz (8) iibernimmt man. An die Stelle von (9) tritt eine
etwas verwickeltere Rekursion. Das Typische aber, die Nenner

v(21k + »), bleiben und erzeugen im allgemeinen falsche Nullstellen
in den Punkten k= —(p/2)i, 0 =1,2,8....

1) INcE, Ordinary Differential Equations. New York 1944, S. 381.
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Zwel elementar behandelbare Beispiele lauten:

Vi) =a- 1oy
mit
— 12+ 2 ikn+ o
f(k) :7-7,l=]1- n (2 1k+n) (13)
und
2o-e” "
V(T) = WF, o < 1,
2a 1
flk) =14 3=0 " 351 (14)
- 1 2o "
f(k, 1) =e~* [1+ 2kt 1l 1—oc-e_"]

Das letzte Beispiel zeigt, dass bei passender Wahl der a, in (12)
sehr wohl nur endlich viele falsche Nullstellen auftreten kénnen.

Auch fir ,,quasiperiodische Potentiale’* kommt man mit Reihen-
entwicklungen zum Ziel. Es sei z. B.

V(r) =oag-e " + agree (15)
o+ 0 Ay/29 Irrational .

In diesem Fall setzt man als Losung von (1) an:

f(k, ,r) — e~ ikr Z:) 200.[11 ﬂg(k) -8—(#1114‘.‘12’:2)7 (16)
H1=U fe=
Cog =1

was zur Rekursion:

0, C, 1 ,+%C _1
G k — H1 s Ha i Yy, Ha 17
Hr ”2( ) (f1 A+ pa Ag) (2 T4 py At e ) ( )

mit den Randbedingungen:
C =C 0, Coo =1 (17"

fiihrt. Die Rekursion i1st losbar und fithrt auf eine stark konver-
gente Reihe tir f(k, ), sofern in (17) keiner der Nenner verschwindet.
Falsche Nullstellen treten auf in

=1, ue =1

= — 5 (ur dyt s o), iy, e =0,1,2..05  p24ul>0.

Setzt man etwa a =1, 4; =1; g =¢, 43 = )2, so ersieht man
durch Vergleich mit Beispiel (7), dass die falschen Nullstellen durch
das asymptotische Verhalten von V(r) nicht bestimmt sind, denn
es 1st ja

—Var

e ~e "+ e fiir r > co
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Weiter werden wir im nichsten Paragraphen ein Verfahren der
sukzessiven Approximation angeben, mit welchem man f(k, r) z. B.
auch fir Potentiale der Gestalt
V(r) = Pu(r)-e”,  B,(r): Polynom n-ten Grades  (18)

bestimmen kann. Es treten in k = —(4/2) #, u =1, 2... falsche Null-
stellen hoherer Ordnung auf.

Desgleichen ldsst sich fiir das Yuhawapotential plausibel machen,
dass f(k, r) in diesem Fall logarithmische Singularitédten besitzt.

Schliesslich sei noch darauf hingewiesen, dass die Gleichung (1)
fiir jedes k, auch fiir solche in welchen f(k, r) singulér ist, eine
Losung besitzt, die sich asymptotisch wie e~**" verhalt!). Diese
Verhiltnisse sind im Beispiel (7) wohlbekannt. Fiir k = (x/2) 1 treten

an Stelle von f(k, r) im wesentlichen Besselsche Funktionen zweiter
Art. '

'§ 3. Allgemeine Eigehschaften der Funktionen fk,r).

In diesem Paragraphen machen wir der Bequemlichkeit halber
die Voraussetzung, dass V(r) der Ungleichung geniige:
yr M
‘ T/(’I)I £ (T+8)2+6 ’
Das Auftreten von Singularititen in r = 0 in (1) hingt ja mit
den falschen Nullstellen in keiner Weise zusammen?). Man verifi-
ziert aber leicht, dass z. B. die Losung der Gleichung (I) (siehe
unten) durch sukzessive Approximation auch noch anwendbar ist,
i . M
wenn fiir V(r)} nur gilt: | V()| < o
f(k, r) noch ein neues Fundamentalsystem wie folgt ein:
wo(k, 7) 1st bestimmt durch: y,(k, 0) =0, y,'(k, 0) =1
py (k, 7) 1st bestimmt durch: y,(k, 0) =1, v, (k,0) =0.
Fir die verschiedenen Funktionen verifiziert man leicht folgende
Integralgleichungen:

e, 0 >0, (19)

5. Wir fithren nun neben

| f(k, r) = ei*" + %j sin k(fr'—.r) V') flk, v)dr" | (1)

polle, ) =7+ [ — ) [V0) =k ol )dr’ (D)

wll,r) =1+ [ r—r) (V) =k pu(k, ) dr (1)

1) Dies gilt unter der Voraussetzung, dass sich V (r) asymptotisch in eine Reihe
nach 1/r entwickeln lisst. W. STERNBERG, Math. Ann. 81, 119 (1920).
%) Vgl. die Folgerungen aus dem Satz.
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Alle 8 Integralgleichungen lassen sich in bestimmten k-Gebieten
durch sukzessive Approximation lésen, und zwar:

(I) in J[k] <0, indem man setzt:

f(k,r) =1§; f,,(k, AT fo (e, ¥) = e~ikr

1 00- ' ' ’
foyr(ksm) =— [sm k(r’—uvf) Vr'y fo(k, »") dr

(II) und (III) in |k| < oo durch: i
yi (e, 1) = g;%,v(k, oF
wg,.o(k; r)=r ’Pl,o(k, r) =1

r

%,v+1(ka r) = f(T — Y[V (') — k2] y, (K, ") dr'.

0

Mit (19) weist man leicht nach, dass die Reihen und die daraus
durch einmalige und zweimalige Ableitung nach r entstehenden
Reihen in jedem endlichen r-Bereich und in jedem abgeschlossenen
k-Bereich in den Gebieten: J[k] < O fir I und |k| < oo fir II
und IIT gleichmassig konvergieren.

Daraus folgt die Losungseigenschaft der eben konstruierten Lo-
sungen und weiter, dass f(k,r) mn J[k] < 0 fiir festes r regular
analytisch in k ist und auf der reellen Axe endliche Randwerte
annimmt und dass y, (k, r) und w;(k,r) in k ganze Funktionen
sind.

Aus der letzten Aussage wollen wir noch eine Folgerung ziehen.
Zunichst ist es klar, dass die Auszeichnung des Punktes r = 0 in
den Anfangsbedingungen zu (II) und (III) zufillig ist. Ebenso ist
an den Anfangsbedingungen nur typisch, dass sie nicht von k ab-
hangen. Wir haben so den

Satz1): Ist x(k, r) eine Losung von (1) und ist in einem Punkt 7,
x2(k, o) und x’'(k, 7o), unabhéngig von k, so ist fiir jedes r
% (k, r) elne ganze Funktion von k.

Zusatz: Falls y (k, ro) und x' (k, o) In einem Gebiet G der komplexen
k-Ebene regulér sind, so i1st y(k, r) fir jedes r in G regulér
in k.

1) H. POINCARE, Acta Math. 4, 215 (1884).
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Zum Beweis des Zusatzes beachten wir, dass ein Fundamental-
system )
(kyr), Co(k,r)  mit  Lo(k, 7g) = &y (K, 7g) = 0;
Lo (ks o) = & (B, 7o) =1

aus 1n k ganzen Funktionen besteht. Nun ist

x(, 1) = 2k, 10) Calky ) + 7 (e ) ok, )
woraus die Behauptung folgt.

Falls aber 1n k, fiir ewn beliebiges festes r, entweder y(k, ro) oder
%' (k, 7o) singuldr ist, so ist in jedem Punkt r entweder yx(k, r) oder
x (k,r) mn k, singulér.

Wenn wir nun wissen, dass f(k, ) und f'(k, r,) fiir ein beliebig
grosses 7, in der Umgebung der +i-Axe regulir sind, so kénnen
keine falschen Nullstellen auftreten, da dann auch f(k) in dens
Umgebung der -+i-Axe regular ist. Ist aber fiir ein k, auf der
+1-Axe f(k, r,) oder f'(k,r,) singuldr, so gilt dies auch fir f(k)
oder f'(k)=/f(k,0). Es tritt dann im allgemeinen in —k, emne
falsche Nullstelle auf. Eine Ausnahme tritt nur dann auf, wenn
— ko zutallig mit einer richtigen Nullstelle koinzidiert, d. h. wenn
f(— ko) = 0 1st. (Vergleiche (21)). Fiir das Auftreten falscher Null-
stellen ist von V(r) nur das Verhalten fiir » > r,, wo r, beliebig
gross ist, massgebend. [Mit dem asymptotischen Verhalten von
V(r) aber haben die falschen Nullstellen nichts zu tun (Beispiel
(15) § 2.)]

Daraus erklirt sich der Erfolg von Abschneideverfahren: wenn
man {ir r > r, das Potential durch Null ersetzt konnen keine
falschen Nullstellen auftreten.

Es lasst sich sogar zeigen, dass keine falschen Nullstellen auf-
treten, wenn fir » > r, V(r) eine rationale Funktion der Gestalt

n—=2 n
a, T»/sz, P b0
r=() =0

ist. Mit irgend etwas Physikalischem haben aber derartige Mani-
pulationen nichts zu tun. Deshalb iibergehe ich auch den etwas
umstédndlichen Bewels fir die letzte Behauptung.

Wesentliche Aussagen ergeben sich aus dem Zusammenhang
zwischen f(k, r) und den v, (k, r).

Aus (1) folgt, dass die Wronskysche Determinante fiir irgendein
Paar von Losungen von r unabhéngig ist. Dies gilt im besonderen
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von f(k, r) und f(— k, r) und man schliesst aus dem asymptotischen
Verhalten leicht, dass:

]((k’T) f’(_k’ 'r)_ff(k:fr) f(—k,’r)"—:2’bk (20)

Daraus aber: ) - _

; F) (=T, n) — F(—=F) FlIe, 7) = 2 ik vy (K, ) (21)
un :

['(— k) flk,r) —f (k) f(—k, ) =20k py (K, 7) (22)

wie man durch Ableiten nach r mit (20) und der Definition von
o, und v, leicht erkennt. Nach (5) ist
21k

ok, 1) =— 7 g7 volki 1) (28)
und das verschwindet wegen der Regularitit von v, (K, }“) i k,
falls f (— k) unendlich wird. Dies ist aber in den falschen Nullstellen
der Fall und umgekehrt: wenn ¢ (k, r) fiir ein k auf der —1i-Axe
identisch in r verschwindet, so liegt fiir dieses k eine falsche Null-
stelle vor.

- Die falschen Nullstellen sind also gleichwertig mit dem iden-
tischen Verschwinden von ¢(k, r) fiir gewisse k auf der negativ-
- imagindren Axe.

In einer falschen Nullstelle k, wird zwar f(— k,, r) unendlich,

aber es 1st

1' f(‘f'ksr) zf(k():?‘) -
' PSR 00 Ry TTN (2]

falls nicht gerade f(k,) = 0 ist. Dieses Zusammenfallen einer rich-
tigen Nullstelle mit einer Singularitat von f(— k, r) haben wir aber
ausgenomimen.

Ist ndamlich f(ky) =0, k, aber eine Singularitdt von f(— K, r),
so hat man (22) heranzuziehen. Sicher ist f' (ko) + 0 da f(ky, r)
nicht identisch verschwinden kann. Weiter ist f'(— k,) unendlich
da sonst f(— k, r) in k, regulér wire. Demnach folgt:

li f("ks?)z i (kg 1) ,
el e T TN (25)

Zu einer eindeutigen Charakterisierung der richtigen Nullstellen
durch das asymptotische Verhalten einer im Nullpunkt verschwin-
denden Lésung von (1): ¢(k,r), kann man nur gelangen, falls
‘sicher ¢ (k,r) auf der —i-Axe in r nicht identisch verschwinden
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“kann. Man spaltet fiir reelle k & (k, ) auf in einlaufende und aus-
laufende Kugelwellen: |

P, 1) ~ alk)-e~itr —b(k)-eitr

b (k)
a (k)

b(k) setzt man analytisch fort. Die Nullstellen von b(k) auf der
—1-Achse geben Anlass zu stationdren Zustanden. Das Nichtver-
schwinden von ¢ (k, r) lisst sich aber nicht durch allgemeine For-
derungen iiber das asymptotische Verhalten von ¢ (k, r) fir reelle
k. erzwingen.

Ich méchte zum Schluss noch kurz auf einige elementare Eigen-
schaften der Funktion f(k) zu sprechen kommen, die sich einfach
aus (1) und (I) ergeben.

Es se1 J[k] =< 0, dann gilt:

a) f*(—k*) =7 (k); | |

b) wegen der Realitdt von V(r) hat (1) nur reelle Eigenwerte, also
f(k) nur Nullstellen auf der —1-Axe. In einer solchen Nullstelle
ko + 0 gilt: |

S(k) = (26)

f k) g, == 2T [ | flko 1) |2 dr

Die Nullstellen sind demnach einfach, da f' (ko) + 0 ist;

c) es 1st lim f(k) = 1.
. FL

Durch (6) und die Eigenschaften a) bis ¢) 1st bei bekannten S (k)
f (k) nicht eindeutig bestimmt. |

Dagegen ldsst sich leicht zeigen, dass durch die Kenntnis der
Nullstellen von f(k) in J[k] =< 0 f(k) eindeutig bestimmt ist (dabel
1st die Kenntnis einer ev. Nullstelle ein & = 0 samt ihrer ,,Vielfach-
heit*!) auch erforderlich). Wegen a) bestimmt S (k) namlich auf
der reellen Axe nur die Phase von f(k) resp. den Imaginérteil von
log (k). Es soll nun neben dem f(k) noch eine zweite Funktion
f1(k) geben, die (6), a), b), ¢) erfiillt und dieselben Nullstellen hat,
wie f(k). Dann ist f; (k)/f (k) in J [k] = 0 beschrinkt und nirgends
Null. J{log f;(k)/f(k)] ist also in J[k] < 0 eine regulire Potential-
tunktion und in J[h] =< 0 beschriéinkt. Ausserdem verschwindet sie
auf der reellen Axe. Nach einem bekannten Satz verschwindet sie
also in der ganzen untern Halbebene. Daraus aber folgt, dass
Re [log f,(k)/f(k)] konstant ist und, nach ¢) den Wert Null hat.
Es 1st also f, (k) = f (k).

1) Eine Nullstelle in k = 0 kann ein Verzweigungspunkt sein.
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Es stellt sich hier nun die folgende, bisher ungeloste Frage: Man
leite aus einem Potential V(r) ein S (k) her. Gibt es dann ein anderes
Potential Vy(r) == V(r), das zu andern stationéren Zustédnden fiihrt
als V(r), zu dem ‘Lber dasselbe S (k) gehort ? Nach dem oben Ge-
sagten, wiirden sich die Funktionen f(k) und f, (k) unterscheiden.

Es ist moglich, dass eine solche Vieldeutigkeit nicht besteht,
dass also S (k) die stationdren Zustinde eindeutig bestimmt. Nichts
deutet aber darauf, dass die Bestimmung der stationéren Zustande
aus S (k) auf einfache Weise erfolgt.

Zum Schluss mochte ich den Herren Professoren W. Pauri in
Zirich, C. MorLLErR und Herrn D. Ter Haar in Kopenhagen fiir
das freundliche Interesse danken das sie dieser Arbeit entgegen-
~ gebracht haben.

Zirich, Physikalisches Institut der ETH.
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