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Über die falschen Nullstellen der Eigenwerte der .S-Matrix
von Res Jost.

(20.1.1947.)

§ 1. Einleitung.

In mehreren Arbeiten hat W. Heisenberg1) versucht, einen
Rahmen für eine zukünftige divergenzfreie Theorie der Elementarteilchen

zu geben. Dazu wählt er zunächst unter den Begriffen der
gewöhnlichen Quantentheorie solche aus, die mit grosser
Wahrscheinlichkeit auch in einer zukünftigen Theorie ihren Sinn behalten.
Die entsprechenden Grössen nennt er „beobachtbar". Beobachtbar
sind Streuquerschnitte (im allgemeinsten Sinn) und die Energiewerte

stationärer Zustände von Systemen. Weiter glaubt Heisenberg

in der Streumatrix S eine Grösse gefunden zu haben, aus
der sich einerseits nach einfachen Vorschriften die beobachtbaren
Grössen herleiten lassen und die andererseits in einer zukünftigen
Theorie eine ähnliche Rolle spielen könnte, wie der Hamiltonope-
rator in der bisherigen Theorie. Eine allgemeine Vorschrift, um
für ein bestimmtes System die Streumatrix anzugeben, ist bisher
unbekannt.

In der vorliegenden Note beschäftigen wir uns mit der Vorschrift
Heisenbergs zur Bestimmung der stationären Zustände.

Es ist naheliegend, den Heisenbergschen Formalismus zunächst
auf einfache Probleme der gewöhnliche nichtrelativistischen
Quantenmechanik anzuwenden. Die neuen Vorschriften sollen dann
genau dasselbe liefern, wie die alte Theorie, da kein Grund besteht,
an der Richtigkeit der letzteren zu zweifeln. Ma2) hat zuerst gezeigt,
dass sich dabei für die Anwendung der Heisenbergschen Vorschrift
zur Bestimmung der stationären Zustände Schwierigkeiten ergeben.
Diese Schwierigkeiten sollen hier weiter untersucht werden.

Wir legen unseren Überlegungen ein Zweiteilchensystem
zugrunde. Die Teilchenzahl soll erhalten bleiben. Zwischen den
Teilchen wirke eine Zentralkraft mit dem Potential V(r). Die
Schwerpunktsbewegung wird separiert. Im Raum der Relativkoordinaten
führt man Polarkoordinaten ein und separiert die Kugelfunktionen.

W.Heisenberg, Z. S. f. Phys. 120, 513 und 673 (1943); C. Moller, Kgl.
Danske Vidensk. Selskab XXIII, Nr. 1 (1945) und XXIV, Nr. 19 (1946).

2) S.T.Ma, Phys. Rev. 69, 668 (1946); 71,195 (1947); D. ter Haar, Physica 12,
501 (1946); R. Jost, Physica 12, 509 (1946).
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Der Radialanteil der Wellenfunktion sei mit 1/r 93(f) bezeichnet.
Beschränkt man sich auf Zustände mit dem Impulsmoment l 0,

so lautet die Schrödingergleichung (in einem geeigneten Maßsystem) :

cp" + k2cp V(r) cp (1)

Hierbei ist [ h | der Betrag des Radialimpulses und k2 die Energie.
Weiter soll V(r) für grosse r mindestens wie 1/r2 verschwinden.

Die im Nullpunkt verschwindende Lösung von (1) zeigt für
reelles, positives k das asymptotische Verhalten:

cp(r) ~C(e-ikr-S(k)-eihr) (2)

wo C eine uninteressante Konstante ist. e~ihr stellt (bei geeigneter
Verfügung über den Zeitfaktor) eine einlaufende Kugelwelle,
— S(k)eikr die ihr entsprechende auslaufende Streuwelle dar. S(k)
ist eindeutig bestimmt und von der Gestalt e2iv, wobei n(k) die
Streuphase bedeutet.

Bezieht man in unserem Problem die S-Matrix auf Kugelwellen,
so ist sie diagonal und das oben definierte S(k) ist der Eigenwert
zu 1 0. Nach Heisenberg-Kramers hat man sich S(k) als
analytische Funktion von k zu denken. Für nicht reelle k wird S(k)
durch analytische Fortsetzung gewonnen. Offenbar wird Gleichung
(2) für komplexe fc sinnlos, weil die eine Exponentialfunktion gegen
die andere asymptotisch verschwindet1).

Die Vorschrift lautet nun: man suche die Nullstellen von S(k)
auf der —ï-Axe. Die Quadrate der zugehörigen k-Werte sind die
Energiewerte der stationären Zustände. Diese Vorschrift ist nicht
hinreichend. Es gibt im allgemeinen Nullstellen von S(k) auf der
— -i-Axe, denen keine Eigenwerte von (1) entsprechen, denen also
keine stationären Zustände zugeordnet werden können. Solche
Nullstellen bezeichnen wir mit dem Attribut „falsch", die übrigen
heissen richtige Nullstellen. Nach Kramers2) gilt in den richtigen
Nullstellen k0:

dS(k)
dk ,„>0- (3)

Wir nehmen jedoch diese Beziehung nur ernst, wenn die Nullstelle
k0 nicht mit einer Singularität der im nächsten Paragraphen
definierten Funktion /(— k, r) zusammenfällt.

An den folgenden Beispielen erkennt man leicht, dass (3) zur
Unterscheidung der falschen und richtigen Nullstellen nicht
verwendet werden kann.

*) Whittaker-Watson, Modern Analysis, § 8.32.
2) H. A. Kramers, Hand- und Jahrbuch der chemischen Physik I, 312 (1938).

17
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§ 2, Die Funktion f(k, r), Beispiele.

Ich möchte in diesem Paragraphen zeigen, dass das Auftreten
falscher Nullstellen keineswegs als eine Seltenheit betrachtet werden
darf.

Bevor wir zur Behandlung des Exponentialpotentials V(r) =a-e~r,
an welchem Ma die falschen Nullstellen gefunden hat, übergehen,
erweist es sich als zweckmässig, eine Lösung f(k, r) von (1) zu
definieren, die sich durch ein einfaches asymptotisches Verhalten
auszeichnet. f(k, r) sei asymptotisch eine auf die Amplitude 1 normierte
„einlaufende Kugelwelle".

f(k,r) ~e--ikr. (4)

Durch (4) ist f(k,r) in der Halbebene J[fe] Jj 0 der komplexen
fc-Ebene eindeutig bestimmt und stellt dort für festes r eine
analytische Funktion von k dar. In der oberen Halbebene gewinnen
wir f(k, r) durch analytische Fortsetzung nach k. Unter einem
Regularitätspunkt k von f(k, r) wollen wir einen Punkt verstehen,
in welchem f(k, r) für alle r, die nicht Singularitäten von (1) sind,
regulär ist. Wir werden in § 3 sehen, dass es dazu genügt, dass für
ein r0 f (k, r0) und /' (k, r0) regulär sind. In jedem Regularitätspunkt k
ist f(k, r) eine Lösung von (1). f(k, r) und /(— k, r) bilden ein
Fundamentalsystem, es sei denn, k oder — k seien Singularitäten. Natürlich

kann f(k, 0) im allgemeinen nicht verschwinden, da der
Nullpunkt eine Senke ist. Diejenige Lösung, die sich asymptotisch wie
e~ikr — S (k) ¦ eikr verhält (und daher im Nullpunkt verschwindet),
bezeichnen wir mit cp(k, r). Es gilt:

<p(k,r)=f(k,r)-1^-f(-k,r) (5)

wobei der Kürze halber f(k, 0) f(k) gesetzt ist. Weiter ist

m-^. (6)

In dieser Darstellung sind richtige und falsche Nullstellen leicht zu
trennen. Richtige Nullstellen sind Nullstellen des Zählers, falsche
Nullstellen Unendlichkeitsstellen des Nenners (diese brauchen nicht
Pole zu sein) auf der — i-Axe1).

*) Falls /(— ip) 0, p > 0 ist, ist /(— ip, r) nach (4) eine Eigenfunktion von
(1), und umgekehrt: Jede Eigenfunktion von (1) ist ein Multiplum von /(— ip', r),
p' > 0 mit f(—ip') 0.
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Von nun an wollen wir, sofern nichts anderes gesagt wird, voraussetzen,

dass die richtigen Nullstellen nicht zufälligerweise
Singularitäten von /(— k, r) sind.

Um die Lösung f(k, r) von

cp" + k2 cp a-e~r-cp (7)

zu finden, setzen wir eine Reihe an1) :

oo

f(lc,r) e-*'£C,(k)-e-", C0 l (8)

was für Cv auf die Rekursion führt :

oder

a-Cv_1(k)
Cv(® v(2ik+v) (9)

C^)=^7^Ä). CIO)

woraus man erkennt, dass die Punkte k — (fij2) i, fi 1,2... Pole
von /(— k, r) und /(— k) sind, also zu falschen Nullstellen führen.

Die Reihe (8) lässt sich aufsummieren und ergibt für / (k, r) :

f(k,r) e-^iog(-«) r(2ik + l)-J2ik[2]/^-e~J}. (11)

Daraus ersieht man nebenbei, dass eine richtige Nullstelle sehr wohl
mit einer Singularität von /(— k, r) zusammenfallen kann. Man hat
nur a so zu wählen, dass für ganzzahliges n Jn(2 (/— a) 0 ist.

In den falschen Nullstellen wird zwar /(—k, r) unendlich, aber
cp(k, r) aus (5) verschwindet identisch. Dies ist typisch für falsche
Nullstellen.

Weiter verifiziert man ohne Mühe, dass für a > 0 in der Hälfte
der falschen Nullstellen (3) erfüllt ist, wodurch die dort gemachte
Bemerkung gerechtfertigt ist.

Entsprechend wie beim Exponentialpotential liegen die
Verhältnisse bei

V(r) =2Jave~vï (12)
v l

(konvergent für Re [r] > 0).
Den Ansatz (8) übernimmt man. An die Stelle von (9) tritt eine

etwas verwickeitere Rekursion. Das Typische aber, die Nenner
v(2ik 7 v), bleiben und erzeugen im allgemeinen falsche Nullstellen
in den Punkten k — (jtfi) i, ft 1,2, S

x) Ince, Ordinary Differential Equations. New York 1944, S. 381.
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Zwei elementar behandelbare Beispiele lauten:

mit

und
n=l x '

F(r) [l-â'-a-V' a<1)

/ fe, r) =e-**r 1 + „.,,.
Das letzte Beispiel zeigt, dass bei passender Wahl der av in (12)
sehr wohl nur endlich viele falsche Nullstellen auftreten können.

Auch für „quasiperiodische Potentiale" kommt man mit
Reihenentwicklungen zum Ziel. Es sei z. B.

V(r) aj/e-^7 <x2-e-*»r (15)

<Xj=f= 0 ^ißi irrational.

In diesem Fall setzt man als Lösung von (1) an:
OO OO

f(k,r) e-«' Z E C^ye-lK^«1*' (16)

was zur Rekursion:
Coo

"'ftW ((MlA1+i«222)(2j-fc+^l;.1+/i2A2) ^
mit den Randbedingungen:

CL^-C^-i-O, C00 l (17')

führt. Die Rekursion ist lösbar und führt auf eine stark konvergente

Reihe für f(k, r), sofern in (17) keiner der Nenner verschwindet.
Falsche Nullstellen treten auf in

k — yCwi^ + ^a A2), ^1; ,m2 0, 1, 2...; ,«][+/*!>().
Setzt man etwa « 1, Ax 1; a2 e, A2 j/2, so ersieht man
durch Vergleich mit Beispiel (7), dass die falschen Nullstellen durch
das asymptotische Verhalten von V(r) nicht bestimmt sind, denn
es ist ja j/j-

e~r ~ e~r 7 e -e ' für r -> oo
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Weiter werden wir im nächsten Paragraphen ein Verfahren der
sukzessiven Approximation angeben, mit welchem man f(k, r) z. B.
auch für Potentiale der Gestalt

V(r) =ys„(r)-e-r, ^n(r) : Polynom «-ten Grades (18)

bestimmen kann. Es treten in k - (t/2) fi, fi 1,2... falsche
Nullstellen höherer Ordnung auf.

Desgleichen lässt sich für das Yuhawapotential plausibel machen,
dass f(k, r) in diesem Fall logarithmische Singularitäten besitzt.

Schliesslich sei noch darauf hingewiesen, dass die Gleichung (1)
für jedes k, auch für solche in welchen f(k, r) singular ist, eine
Lösung besitzt, die sich asymptotisch wie e~ikr verhält1). Diese
Verhältnisse sind im Beispiel (7) wohlbekannt. Für k (fij2) i treten
an Stelle von f(k, r) im wesentlichen Besselsche Funktionen zweiter
Art.

§3. Allgemeine Eigenschaften der Funktionen / (Jt, r).

In diesem Paragraphen machen wir der Bequemlichkeit halber
die Voraussetzung, dass V(r) der Ungleichung genüge:

M
I V(r)\< {r+sf+» ' e>ä>0- (19)

Das Auftreten von Singularitäten in r 0 in (1) hängt ja mit
den falschen Nullstellen in keiner Weise zusammen2). Man verifiziert

aber leicht, dass z. B. die Lösung der Gleichung (I) (siehe
unten) durch sukzessive Approximation auch noch anwendbar ist,

M
wenn für V(r) nur gilt: I V(r) I < Wir führen nun nebenW 5 I Wl r{r+£)l+ó
f (k, r) noch ein neues Fundamentalsystem wie folgt ein :

y>0 (k, r) ist bestimmt durch : ip0 (k, 0) 0, ip0' (k, 0) 1

y>x(fe, r) ist bestimmt durch: fi(k, 0) 1, fi(k, 0) 0.
Für die verschiedenen Funktionen verifiziert man leicht folgende
Integralgleichungen :

oo

f(k, r) e-{kr + y / sin k(r' — r) V(r') f(k, r')dr' (1)

r
r

ip0(k, r) r+f(r — r') [V(r') — fe2] ip0(k, r')dr' (II)
o

r

xpx(k, r) 1 7 j (r-r') [V(r') - fe2] Vl(k, r') dr' (III)
o

x) Dies gilt unter der Voraussetzung, dass sich V{r) asymptotisch in eine Reihe
nach I/»- entwickeln lässt. W. Sternberg, Math. Ann. 81, 119 (1920).

2) Vgl. die Folgerungen aus dem Satz.
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Alle 3 Integralgleichungen lassen sich in bestimmten fe-Gebieten
durch sukzessive Approximation lösen, und zwar:

(I) in J[fc] ^ 0, indem man setzt :

oo

/CM-27MM; fo(Kr) e-ik'
v o

oo

/„ +i(fc, r) — —- / sin k(r' — r) F(r') fv(k, r') dr'
r

(II) und (III) in \k\ < oo durch: \

oo

fi {Kr) =27Vi,v(M,
v 0

Wo,o{Kr)=r Vi,o(M) "= 1

r

Vi»+ i(k> r) J (r — r') [y(r') — fe2] Vi,-(fc> O dr'.
o

Mit (19) weist man leicht nach, dass die Reihen und die daraus
durch einmalige und zweimalige Ableitung nach r entstehenden
Reihen in jedem endlichen r-Bereich und in jedem abgeschlossenen
fe-Bereich in den Gebieten: J[fe] < 0 für I und \k\ < oo für II
und III gleichmässig konvergieren.

Daraus folgt die Lösungseigenschaft der eben konstruierten
Lösungen und weiter, dass / (fe, r) in J[fe] < 0 für festes r regulär
analytisch in fe ist und auf der reellen Axe endliche Randwerte
annimmt und dass y>0 (fe, r) und tp1 (fe, r) in fe ganze Funktionen
sind.

Aus der letzten Aussage wollen wir noch eine Folgerung ziehen.
Zunächst ist es klar, dass die Auszeichnung des Punktes r 0 in
den Anfangsbedingungen zu (II) und (III) zufällig ist. Ebenso ist
an den Anfangsbedingungen nur typisch, dass sie nicht von fe

abhängen. Wir haben so den

Satz1) : Ist x(k, r) eine Lösung von (1) und ist in einem Punkt r0
x(k, r0) und %'(k, r0), unabhängig von fe, so ist für jedes r
X (fe, r) eine ganze Funktion von fe.

Zusatz: Falls %(fe, r0) und %'(fe, r0) in einem Gebiet G der komplexen
fe-Ebene regulär sind, so ist #(fe, r) für jedes r in G regulär
in fe.

H. Poincaré, Acta Math. 4, 215 (1884).
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Zum Beweis des Zusatzes beachten wir, dass ein Fundamentalsystem

Co (K r), Ci(fc, r) mit £0(fe, r0) Ci (K r0) 0;

Co {K r0) A (K r0) 1

aus in fe ganzen Funktionen besteht. Nun ist

X(k, r) x(K r0) d(fe, r) 7 #'(&, r„) C0(K r)

woraus die Behauptung folgt.

Falls aber in fe0 für ein beliebiges festes r0 entweder x (K r0) oder
% (k, r0) singular ist, so ist in jedem Punkt r entweder #(fc, r) oder
X (fe, r) in fe0 singular.

Wenn wir nun wissen, dass /(fe, r0) und /'(fe, r0) für ein beliebig
grosses r0 in der Umgebung der 7i-Axe regulär sind, so können
keine falschen Nullstellen auftreten, da dann auch /(fe) in dei»

Umgebung der 7i-Axe regulär ist. Ist aber für ein fe0 auf der
+ t-Axe /(fe, rQ) oder /'(fe, r0) singular, so gilt dies auch für /(fe)
oder /'(fe) =/'(fe,0). Es tritt dann im allgemeinen in — fe0 eine
falsche Nullstelle auf. Eine Ausnahme tritt nur dann auf, wenn
— fe0 zufällig mit einer richtigen Nullstelle koinzidiert, d. h. wenn
/(— Ki) 0 ist. (Vergleiche (21)). Für das Auftreten falscher
Nullstellen ist von V (r) nur das Verhalten für r > r0, wo r0 beliebig
gross ist, massgebend. [Mit dem asymptotischen Verhalten von
V(r) aber haben die falschen Nullstellen nichts zu tun (Beispiel
(15) § 2.)]

Daraus erklärt sich der Erfolg von Abschneideverfahren: wenn
man für r > r0 das Potential durch Null ersetzt, können keine
falschen Nullstellen auftreten.

Es lässt sich sogar zeigen, dass keine falschen Nullstellen
auftreten, wenn für r > r0 V(r) eine rationale Funktion der Gestalt

n — 2 / v

Za,*' /27M, b^°
i>=0 / » 0

ist. Mit irgend etwas Physikalischem haben aber derartige
Manipulationen nichts zu tun. Deshalb übergehe ich auch den etwas
umständlichen Beweis für die letzte Behauptung.

Wesentliche Aussagen ergeben sich aus dem Zusammenhang
zwischen / (fe, r) und den y>{ (fe, r).

Aus (1) folgt, dass die Wronskysche Determinante für irgendein
Paar von Lösungen von r unabhängig ist. Dies gilt im besonderen
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von / (fe, r) und / (— fe, r) und man schliesst aus dem asymptotischen
Verhalten leicht, dass :

/{K r) f (- fe, r) - /'(fe, r)f(-k,r) 2ik (20)

Daraus aber:

/ (fe) / (- fe, r) - / (- fe) / (fe, r) 2 i k Wo (fe, r) (21)
und

/' (- k) f (fe, r) - /' (fe) / (- fe, r) 2 i k fl (fe, r) (22)

wie man durch Ableiten nach r mit (20) und der Definition von
ip0 und tpx leicht erkennt. Nach (5) ist

cp (fe, r) - ~jy yj0 (fe, r) (23)

und das verschwindet wegen der Regularität von y0(k, r) in fe,

falls /(— fe) unendlich wird. Dies ist aber in den falschen Nullstellen
der Fall und umgekehrt: wenn cp (fe, r) für ein fe auf der —ï-Axe
identisch in r verschwindet, so liegt für dieses fe eine falsche
Nullstelle vor.

Die falschen Nullstellen sind also gleichwertig mit dem
identischen Verschwinden von cp (fe, r) für gewisse fe auf der
negativimaginären Axe.

In einer falschen Nullstelle fe0 wird zwar / (— fe0, r) unendlich,
aber es ist

lim ttzizLl - f&Vli (9A\[™-iT^W - TA) (24)

falls nicht gerade /(fc0) 0 ist. Dieses Zusammenfallen einer
richtigen Nullstelle mit einer Singularität von / (— fe, r) haben wir aber

ausgenommen.
Ist nämlich /(fe0) =0, fe0 aber eine Singularität von f(—k,r),

so hat man (22) heranzuziehen. Sicher ist /' (fe0) 4= 0 da / (fe0, r)
nicht identisch verschwinden kann. Weiter ist /' (— fe0) unendlich
da sonst /(— fe, r) in fe0 regulär wäre. Demnach folgt:

lim f(-k,r) f(k0,r
k- l /'(-*) /-(*.) • <25)

Zu einer eindeutigen Charakterisierung der richtigen Nullstellen
durch das asymptotische Verhalten einer im Nullpunkt verschwindenden

Lösung von (1) : <p (k, r), kann man nur gelangen, falls
sicher cp (fe, r) auf der —i-Axe in r nicht identisch verschwinden
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kann. Man spaltet für reelle fe <j> (fe, r) auf in einlaufende und
auslaufende Kugelwellen:

q>(k,r) ~a(k)-e-ikr — b(k)-eikr

S {*)=*$ (26)

b(k) setzt man analytisch fort. Die Nullstellen von 6(fe) auf der
— t-Achse geben Anlass zu stationären Zuständen. Das Nichtver-
schwinden von ç> (fe, r) lässt sich aber nicht durch allgemeine
Forderungen über das asymptotische Verhalten von cp (fe, r) für reelle
fe erzwingen.

Ich möchte zum Schluss noch kurz auf einige elementare
Eigenschaften der Funktion /(fe) zu sprechen kommen, die sich einfach
aus (1) und (I) ergeben.

Es sei J[fe] ^ 0, dann gilt :

a) f*(-k*)=f(k);
b) wegen der Realität von V(r) hat (1) nur reelle Eigenwerte, also

/(fe) nur Nullstellen auf der —ï-Axe. In einer solchen Nullstelle
feo + Ogilt:

/'W-l[,^r-2fe„/|/(fe„,r)|2dr.
o

Die Nullstellen sind demnach einfach, da /'(fe0) 4= 0 ist;
c) es ist lim /(fe) 1.

Durch (6) und die Eigenschaften a) bis c) ist bei bekannten S(k)
/(fe) nicht eindeutig bestimmt.

Dagegen lässt sich leicht zeigen, dass durch die Kenntnis der
Nullstellen von /(fe) in J[fe] ^ 0 /(fe) eindeutig bestimmt ist (dabei
ist die Kenntnis einer ev. Nullstelle ein fe 0 samt ihrer „Vielfachheit"1)

auch erforderlich). Wegen a) bestimmt S(k) nämlich auf
der reellen Axe nur die Phase von /(fe) resp. den Imaginärteil von
log /(fe). Es soll nun neben dem /(fe) noch eine zweite Funktion
/x(fc) geben, die (6), a), b), c) erfüllt und dieselben Nullstellen hat,
wie /(fe). Dann ist f1(k)/f(k) in J[fe] sS 0 beschränkt und nirgends
Null. J[log /i(fe)//(fe)] ist also in J[fc] < 0 eine reguläre Potentialfunktion

und in J[h] ^ 0 beschränkt. Ausserdem verschwindet sie
auf der reellen Axe. Nach einem bekannten Satz verschwindet sie
also in der ganzen untern Halbebene. Daraus aber folgt, dass
Re [log /i(fe)//(fe)] konstant ist und, nach c) den Wert Null hat.
Es ist also /x(fe) =/(fe).

x) Eine Nullstelle in k 0 kann ein Verzweigungspunkt sein.
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Es stellt sich hier nun die folgende, bisher ungelöste Frage : Man
leite aus einem Potential V(r) ein S(k) her. Gibt es dann ein anderes
Potential V^r) i\= V(r), das zu andern stationären Zuständen führt
als V(r), zu dem aber dasselbe <S'(fe) gehört? Nach dem oben
Gesagten, würden sich die Funktionen /(fe) und f1(k) unterscheiden.

Es ist möglich, dass eine solche Vieldeutigkeit nicht besteht,
dass also S (fe) die stationären Zustände eindeutig bestimmt. Nichts
deutet aber darauf, dass die Bestimmung der stationären Zustände
aus S(k) auf einfache Weise erfolgt.

Zum Schluss möchte ich den Herren Professoren W. Pauli in
Zürich, C. M0LLBK und Herrn D. ter Haar in Kopenhagen für
das freundliche Interesse danken, das sie dieser Arbeit entgegengebracht

haben.
Zürich, Physikalisches Institut der ETH.
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