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Zur Theorie der Elektronen-Plasmaschwingungren
von F. Borgnis.

(3. I. 1947.)

Die Theorie der kurzwelligen Elektronenschwingungen in einem Gasentladungs-
Plasma wird von einem verallgemeinerten Standpunkt aus behandelt. Es zeigt
sich, dass die von Langmuir und Tonks herrührende Behandlung des ebenen
Problems, die zu dem Begriff der „Langmuirfrequenz" geführt hat, erweitert
werden muss, um das selbständige Auftreten stationärer Schwingungen in einem
Plasma zu beschreiben und dass die Frequenz solcher Schwingungen, die sich
zwischen den Begrenzungen einer Entladungsstrecke erregen können, im
allgemeinen nicht mit der Langmuirfrequenz identisch ist.

1. Einleitung.

Das Auftreten sehr kurzwelliger Elektronenschwingungen in
Gasentladungen ist seit langem bekannt. Die Natur der Gasentladungen
bringt es mit sich, dass die Physik dieser „Plasmaschwingungen"
eine recht komplizierte ist; sowohl die theoretischen als auch die
experimentellen Untersuchungen über diesen Gegenstand lassen
daher noch eine Menge ungeklärter Fragen offen.

Unter den theoretischen Betrachtungen spielt die von Langmuir
und Tonks1) zuerst aufgestellte Theorie eine besondere Rolle, die
zum Begriff der „Langmuirfrequenz" geführt hatte. Diese Theorie
sowie spätere Erweiterungen betrachten ein quasineutrales Plasma,
bei dem die Elektronen aus ihrer mittleren „Ruhelage" heraus
kleine Verschiebungen erleiden, worauf sie um diese Ruhelage
periodische Bewegungen mit der „Langmuirfrequenz" ausführen.
Solche Betrachtungen sind jedoch nicht geeignet, die Anfachung
solcher Schwingungen zu beschreiben. Das Problem der Erzeugung
der Schwingungen in einem Plasma lässt sich durch die Bestimmung

des ohmschen Widerstandes behandeln, den eine Entladungsstrecke

gegenüber einer von aussen aufgeprägten Wechselspannung
darstellt. In Bereichen, in denen dieser Widerstand negativ wird,
kann die Anordnung Wechselstromleistung nach aussen abgeben
und damit Schwingungen anfachen. Die Frequenz dieser Schwingungen

braucht nicht notwendigerweise mit der „Langmuirfrequenz"

zusammenzufallen.
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Die folgenden Betrachtungen bringen zunächst eine verallgemeinerte

Wiedergabe der Langmuirschen Theorie sowie einer von
Linder2) herrührenden Erweiterung, wobei hier etwas genauer auf
die zugrundeliegenden Voraussetzungen geachtet wird. Im folgenden

werden sodann die Elektronen nicht mehr als an eine Ruhelage
gebunden angesehen, sondern bei ihrer Strömung durch das Plasma
hindurch verfolgt, wobei Pendelungen um die mittlere
Gleichstromgeschwindigkeit auftreten. Diese Pendelungen erfolgen, wie sich
zeigt, mit der „Langmuirfrequenz". Für eine vorgegebene
Entladungsstrecke lassen sich dann der elektrische Widerstand und
damit die „Anfachbereiche" bestimmen, wobei sich herausstellt,
dass die Frequenzen, bei denen Anfachung auftritt, im allgemeinen
nicht mit der Langmuirfrequenz identisch sind.

Das Ergebnis der Rechnungen hängt sehr von der Art der
gewählten Randbedingungen der Entladungsstrecke ab, die man
nicht sehr genau kennt. Da in der Hauptsache gezeigt werden soll,
dass die Frequenz der sich anregenden Schwingungen eben nicht
gerade die Langmuirfrequenz sein muss, wird ein bestimmtes
Beispiel mit einer einfachen Randbedingung betrachtet.

Das physikalische Bild der Erscheinungen wird durch das
Zusammenwirken zweier Effekte bestimmt: Die „Laufzeiterschei-
nungen" der Gesamtheit der strömenden Elektronen auf ihrem
Weg durch das Plasma und die Pendelungen um ihre mittlere
Fortpflanzungsgeschwindigkeit, die für das einzelne Elektron mit
der „Langmuirfrequenz" vor sich gehen.

2. Die „klassische" Behandlung der freien Plasmaschwingungen.

Die auf Langmuir und Tonks1) zurückgehende und in der Folge
von weiteren Autoren übernommene theoretische Behandlung der
freien Schwingungen eines Plasmas bedient sich der folgenden
Betrachtungsweise :

Gegeben sei ein homogenes Plasma mit den elektrischen Ladungsdichten

p (positiv) und n (negativ) in Coulomb/cm3; im ungestörten
Plasma ist p0 n0, das Plasma somit feldfrei. Denkt man sich die
positive Ladung festgehalten und die negative Ladung um die
Strecke <5s aus der ursprünglichen Ruhelage verschoben, so
entsteht ein negativer Ladungsüberschuss on, der in der Form

ön — n0 div ós (I)

angesetzt wird. Wir schreiben òn und <5s (häufig wird n und s

verwendet), um anzudeuten, dass (I) nur Geltung besitzt für kleine
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Verrückungen und die dadurch bedingten Ladungsänderungen.
Man erkennt dies, wenn man sich (I) beispielsweise aus der
Kontinuitätsgleichung herleitet:

-^-7divnï=0. (1)

Durch Multiplikation mit dt und Benutzung von v ds/dt folgt

fdt + divnfdt=ö (2)

oder
dn 7 div (ndì) 0. (3)

Mit n n0 + on und Vernachlässigung von Gliedern 2. Ordnung
folgt

ò n 7 n0 div ò s 0 (4)

das ist die Grundgleichung (I). Wir halten also fest, dass (I) nur
für kleine Verrückungen und Dichteänderungen gültig ist.

Im folgenden wollen wir von der Betrachtungsweise Gebrauch
machen, die man in der Hydrodynamik als „Lagrangesche"
bezeichnet. Die Verrückung ós mit den Komponenten f, r/, f wird
als Funktion der Ortskoordinaten x, y, z, und der Zeit t dargestellt ;

x, y, z sind dabei die Koordinaten des Punktes, an dem sich ein
Teilchen ursprünglich, d. h. vor der Verrückung befunden hat. Die
momentane Lage eines Teilchens nach seiner Verrückung sei durch
die Koordination X, Y, Z bestimmt, wobei

X x + i
Y y 7 r/
Z =z+ c

ist.
Betrachten wir der Einfachheit halber vorübergehend eine

Verrückung nur in der X-Richtung, so verlangt die Kontinuitätsbedingung,

dass die gleiche Ladungsmenge, welche ursprünglich
zwischen den Ebenen x und x + dx eingeschlossen war (Fig. 1),
nach der Verrückung zwischen den Ebenen x + £ und x 7 dx 7 f 7
d£ oder x + | + (1 + -—) dx eingeschlossen ist. Es gilt daher

n (1 7 -;—) dx n0dx
oder

dxdn= n — n°~ EL+ dx
14
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ôn bezieht sich dabei auf die Stelle X nach der Verrückung.
Wenn wir | und damit auch dÇ/dx und ón als kleine Grössen
ansehen, so gilt unter Vernachlässigung von Gliedern 2. Ordnung

òn 0 dx

Mit Erweiterung auf den dreidimensionalen Fall folgt Gleichung (I),
die unter der Voraussetzung kleiner Verrückungen demnach in der
Form

ôn(X>Y,Z) -nJ*L + ^- + §) -n0divôï (6)

auch in der Lagrangeschen Betrachtungsweise gültig bleibt, wobei
nun x, y, z die ursprünglichen Koordinaten eines Teilchens vor
seiner Verrückung bedeuten.

/ V
3

/.
A« ¦•>J + dJV7 A/.

x x+dx X X+dX

Fig. 1.

Verschiebung der negativen Ladungsdichte n0.

Eine weitere Grundgleichung verknüpft das durch die
Raumladung ôn entstehende elektrische Feld dE mit der Ladungsdichte;
im praktischen Maßsystem gilt (mit e0 0,886 • 1(U13)

(II)
woraus mit (6) folgt

e0 div ÒE — òn

oder
e0 div ò É n0 div ô s

ò E _ -^- ò s 7 rot A 7 const.

Solange magnetische Wirkungen ausser acht bleiben, was hier
geschehen soll, kann der rot-Anteil von ÒE gleich Null gesetzt werden.
Die Konstante verschwindet zufolge der Bedingung ÔE 0 für
ôs 0. Folglich gilt

ÓE A<l ds (8)
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Gleichung (8) liefert die elektrische Feldstärke an jeder Stelle
des Plasmas als Funktion von x, y, z.

Zur Beschreibung der Bewegung der negativen Raumladung
gegenüber der als fest gedachten positiven Ladung betrachten wir
ein bestimmtes Volumenelement oder, was auf das gleiche
hinauskommt, ein bestimmtes Teilchen, das sich ursprünglich am Ort
x, y, z befand. Für dessen Verschiebung gilt dann

mdL^ -eôÊ. (Ill)
Ein Vorzug der Lagrangeschen Betrachtungsweise besteht darin,

dass auf der linken Seite von (III) die partielle Ableitung nach der
Zeit steht. (Bei der „Eulerschen" Betrachtungsweise, wo die
Grössen Funktionen der augenblicklichen Lagekoordinaten sind,
wäre hier die totale Ableitung d2Hjdt2 dv/dt zu schreiben.) Mit
(8) folgt aus (III)

»TT--?« V»

oder mit Einführung der „Langmuirfrequenz"

coQ ]/-L= (10)
« V me0 '

die Schwingungsgleichung

d2ds
•<ajjäS=0. (IV)

Die Integration von (IV) liefert unmittelbar

ös ((5s)0e'<°°(. (V)

Jedes Volumenelement bzw. Teilchen, das zur Zeit t 0 die
vorgegebene Verrückung (ös)0 erhalten hat, schwingt also mit der
gleichen Frequenz a>0 um seine Ruhelage. Alle Teilchen schwingen
unabhängig voneinander nach Massgabe der zur Zeit t 0

aufgeprägten Verrückung ôs0 (x, y, z).
Es handelt sich dabei um freie Schwingungen, wie etwa die eines

Systems von elastisch an ihre Ruhelage gebundenen Massenpunkten.
Die Energie der Schwingungen entstammt der Arbeit, die bei der
Vornahme der anfänglichen Verrückungen zur Zeit t 0

aufgewendet wurde. Durch Energieverluste verschiedener Art werden
solche Schwingungen nach einer gewissen Zeit wieder abgeklungen
sein. DieFrequenz dieser Schwingungen ist die „Langmuirfrequenz".
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Nimmt man an, dass etwa durch statistische Schwankungen
Störungen des Plasmagleichgewichtes und damit kleine Verrückungen

auftreten, so kann im Frequenzintervall Af günstigstenfalls
Schwingungsenergie von der Grössenordnung kT• Af abgegeben
werden. Eine messbare Abgabe von hochfrequenter Energie nach
aussen ist durch den betrachteten Schwingungsmechanismus jedenfalls

nicht möglich.

3. Berücksichtigung des Elcktronendrucks.

Die Tatsache, dass die einzelnen Volumenelemente des Plasmas
unabhängig voneinander schwingen sollten, erscheint vom
physikalischen Standpunkt aus etwas unbefriedigend. WieE. G. Linder2)
zeigte, tritt eine Kopplung der schwingenden Teilchen
untereinander auf, wenn der Elektronendruck berücksichtigt wird.
Besitzen die Elektronen eine Maxwellsche Geschwindigkeitsverteilung,

so kann man sie als ein Gas betrachten, das der allgemeinen
Zustandsgieichung in der Form

pe nxT (11)

genügt. Die Kraftdichte auf ein Volumenelement ist gegeben durch

K — grad pe — grad n x T. (12)

Mit n n0 + ôn und (I) folgt die Kraftdichte bei Vernachlässigung

von Gliedern 2. Ordnung zu

K — grad x T (n0 — n0 div ds

xn0T gxad div ós. (13)

Die Bewegungsgleichung (III) mit Berücksichtigung des
Elektronendrucks, bezogen auf ein einzelnes Teilchen, lautet dann

m\^=-eôÈ + xT grad div ÒÌ (14)

oder unter Einführung von (8) und (10)

-LA- + o)20ÔÎ ~ grad div ós (VI)

Für das ebene Problem erhält man aus (VI) mit ds | (x, t)

ö2| 2f. *T d2S Mt.s



Zur Theorie der Elektronen-Plasmaschwingungen. 213

Diese Gleichung findet sich bei Linder. Als Lösung ergeben sich
nach rechts oder links fortschreitende Wellen im Plasma von der
Form

!=!oe/(»«±to)_ (16)

Durch Einführung des Elektronendrucks lässt sich also eine
Kopplung der schwingenden Teilchen untereinander erklären. Aus
(15) erhält man mit Einsetzen von (16)

oder

co2=œ20 + ^kL (18)

Die Langmuirfrequenz eu0 tritt hier als unterste Grenzfrequenz
der fortschreitenden Wellen (für fe 2 nfi 0 oder A oo) auf.
An (18) lassen sich die bekannten Betrachtungen über die Phasen-
und Gruppengeschwindigkeit der fortschreitenden Wellen an-
schliessen. Man erhält z. B.

co dia doA xT 2
V. ' üph. X IF A~W AnT ^ ^thermisch ¦

Die kritische Betrachtung der in Abschnitt 2 und 3 zugrundegelegten

Voraussetzungen zeigt, dass hier nur freie Schwingungszustände
des Plasmas beschrieben werden, die durch anfänglich vorgegebene
Verrückungen der negativen Teilchen aus der quasineutralen
Verteilung heraus angeregt werden. Betrachtet werden dabei nur kleine
Verschiebungen, d. h. kleine Schwingungsamplituden der um eine
feste Ruhelage schwingenden Teilchen. Ein stationärer Konvek-
tionsstrom ist demnach nicht vorhanden, da ein solcher eine
endliche Verschiebung der Teilchen aus ihrer Ruhelage mit sich brächte.
Schwingungszustände der geschilderten Art werden nach kurzer
Zeit durch verschiedene Energieverluste abgeklungen sein.

4. Theorie der Plasmaschwingungen bei endlicher Verschiebung
der Ladungsträger.

Das Problem der Erzeugung von Schwingungen mit Hilfe eines
Plasmas lässt sich durch Betrachtungen der vorausgehenden Art
nicht erfassen. Dazu ist vielmehr eine Untersuchung erforderlich,
unter welchen Umständen ein Plasma fähig ist, Wechselstromenergie

dauernd nach aussen abzugeben. Aus energetischen Gründen

muss diese Energie aus einer andern Energieform bezogen
werden können; es liegt nahe, dafür die Gleichstromenergie eines
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durch das Plasma hindurch bewegten Konvektionsstromes
heranzuziehen. Dabei muss aber von einer Betrachtungsweise Gebrauch
gemacht werden, bei der sich die Teilchen durch das Plasma
hindurchbewegen und nicht nur kleine Verschiebungen um eine feste
Ruhelage ausführen. Die Verhältnisse liegen ähnlich wie in der
Kontinuumsmechanik : Die „klassischen" Betrachtungen zur
Plasmatheorie entsprechen den Verhältnissen in der Elastizitätstheorie,
wo ebenfalls kleine Verrückungen aus der Ruhelage betrachtet
werden. Die erweiterte Plasmatheorie muss der hydrodynamischen
Betrachtungsweise entsprechen, bei der die Teilchen endliche
Bewegungen durch die Flüssigkeit hindurch ausführen. Hierbei kann
Gleichung (I) keine Verwendung finden.

Wir bedienen uns hier zum Unterschied gegenüber der
vorangehenden Art der Betrachtung der nach Euler benannten
Methode, bei der alle abhängigen Veränderlichen als Funktionen der
augenblicklichen Ortskoordinaten, die wir X, y, z nennen, auftreten.

Die Kontinuitätsgleichung für die positiven und negativen
Ladungsträger in der Form

dp
~oT

dn
Art

+- div (pvP) 0 (19)

7 div (nvn) 0 (20)

besitzt allgemeine Geltung bei beliebiger Verschiebung der Ladungsträger,

da hier die Verhältnisse an einem festen Ort betrachtet
werden. Voraussetzung für (19) und (20) ist, dass die Geschwindigkeit

v eine eindeutige Ortsfunktion ist ; an einem Ort dürfen daher
nur Teilchen einerlei Geschwindigkeit vorhanden sein. Rückläufige
Bewegungen, die gleichzeitig zu einer fortschreitenden Bewegung
am selben Ort hinzutreten, sind also auszuschliessen.

Die positive Dichte betrachten wir, wie üblich, wieder als ruhend
(vv 0) gegenüber den negativen Trägern, was bei der grossen
Masse der positiven Ionen im Vergleich zur Elektronenmasse mit
genügender Annäherung erlaubt ist. Aus (19) folgt damit die
zeitliche Konstanz von p:

P Po ix> V, «) ¦ (21)

Die Raumladungsgleiclmng lautet

£0 div E p0-n. (22)
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Aus (20) folgt, wenn man n aus (22) einführt

-eodiv^7div(nÌ)=0 (23)

oder

e0-£~nvn F(t)+rotÄ(t). (24)

Der rot-Anteil wird wie oben vernachlässigt, da wir keine Wirbelfelder

betrachten wollen. Die Funktion F(t) stellt, wie man aus
(24) unmittelbar erkennt, den totalen äusseren Strom dar, wir
bezeichnen ihn daher im folgenden mit J (t). Er ist gleich der Summe
aus dem Konvektionsstrom — nvn (das Minuszeichen rührt daher,
dass wir durch (20) die positive Stromrichtung mit der v„-Richtung
identifizierten, ein in der »„-Richtung fliessender Elektronenstrom
liefert daher einen negativ zu zählenden äusseren Strom J) und
dem Verschiebungsstrom e0dE/dt. Wir schreiben also (24)

£()1)l_nr„=J(i). (25)

Für die Bewegungsgleichung eines bestimmten Teilchens schreiben

wir

m^-mdê=-eÈ- (2ß)

Durch nochmalige Differentiation nach der Zeit t folgt

m^=-ef -«[($+ (5.grad)B]. (27)

Mit Einführung von (25) erhält man

m~i^-~e[~J(t) + i;vn + rvng^à)Ê]

und mit Einführung von n aus (22)

m-7F- - e [-^0 + ^%n ~ %n dÌV ®+ (^grad) Ê]
oder

^Aco2Vn - -~J(t) 7 -^vndivÊ-LL(vn grad) Ê, (28)

wobei
col Lî=.. (28a)u <m. f„ K '
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5. Das ebene Problem bei konstanter positiver Dichte.

Eine einfache Lösung von (28) ergibt sich für das ebene Problem
(Ortsabhängigkeit z. B. nur in der a>Richtung), wenn man noch
die positive Raumladung als räumliche Konstante über das ganze
Plasma ansieht. Unter diesen Voraussetzungen ist

a) p0 eine Konstante;

b) J(t)=Jx(t) J(t);
c) vn div Ê vx ~jf ÇVn grad) È

womit sich (28) mit *vn vx v reduziert auf

d2v o

dt2 J (t), (29)

wenn wir noch das Vorzeichen von J(t) umkehren, d. h. den Strom
positiv gegen die Elektronenströmung zählen. Eine analoge
Herleitung von (29) im Fall des ebenen Problems findet sich bei
Seeliger5). Gleichung (29) liefert die Geschwindigkeit eines
bestimmten Teilchens in Abhängigkeit von der Zeit t, wenn wir
dasselbe auf seiner Bahn verfolgen; sie hat die typische Form einer
Schwingungsgleichung.

Für den einfachsten Fall eines zeitlich konstanten äusseren
Stromes J0 lautet die Lösung von (29)

v A sin et>017 Bcos «„( + —• (30)

Die Integrationskonstanten A und B sind dabei noch
Funktionen eines Parameters, der die Anfangsbedingungen kennzeichnet,
unter denen das betrachtete Teilchen zu einem bestimmten
Zeitpunkt gestartet ist. Je nach der Art des zu behandelnden Problems
besitzt der Parameter verschiedene Bedeutungen.

Betrachten wir beispielsweise den Fall, dass zur Zeit t 0

an allen Punkten x0 des Plasmas die Werte der Geschwindigkeit

v=V(x0) und Beschleunigung v V(x0) vorgegeben sind, so
erhält man als Lösung von (29)

V(x J
v (x0, t) — ——^-sin ca0t+V(xQ) cos œ01 H (1 - cos a>01). (31)

(31) beschreibt die Bewegung eines Teilchens, das zur Zeit t 0

vom Ort x0 aus mit vorgegebener Geschwindigkeit V(x0) und
Beschleunigung V(x0) startet. Der Parameter besitzt hier die Dimension

einer Länge (x0).
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Verschwindet der äussere Strom J, so schwingen die Elektronen
mit der Langmuirfrequenz co0 um ihre Ruhelage ; dies führt wieder
auf das Ergebnis von Abschnitt 2. Bei endlichem äusserem Strom
bewegen sich die Elektronen durch das Plasma hindurch, wobei
sie Pendelungen um die mittlere Fortpflanzungsgeschwindigkeit
mit der Frequenz to0 ausführen können. Diese Pendelfrequenz co0

hat den Wert der „Langmuirfrequenz" (10) bezw. (28a). Die
räumliche Periode, auf die eine solche Pendelung der Geschwindigkeit

um die mittlere Geschwindigkeit 7 entfällt, ist
2 31 — V

X v — /n
O)0 c °

wenn A0 die „Langmuirwellenlänge" und c die Lichtgeschwindigkeit
bedeuten.

Eine andere Problemstellung ist z. B. die, dass an einer festen
Stelle x x0 Elektronen mit einer vorgegebenen Geschwindigkeit
in das Plasma eintreten. Die Geschwindigkeit sei dabei eine Funktion

der Startzeit t t0 an der Eintrittstelle x0. In diesem Fall
besitzt der Parameter die Dimension einer Zeit (t0). Für t t0 sei

v V(t0) und v V(t0) bekannt. Als Lösung folgt dann

v Co ' *) ~~^ sin "'o (* ~ *o) + V Co) cos wo (' ~ *o)

+ i(l-cosWo«-y). (32)

(32) beschreibt die Bewegung eines Teilchens, das zur Zeit t t0

an der Stelle x0 gestartet ist, auf seiner Bahn. Den zurückgelegten
Weg erhält man aus t

x(t0,t)~x0= fvdt. (33)
u

Von dieser Art der Problemstellung werden wir anschliessend
Gebrauch machen. (Abschnitt 6.)

Gleichung (29) zeigt, dass bei allen Problemen, die mit der
Erzeugung von Plasmaschwingungen zusammenhängen, die Einführung

eines äusseren Stromes J(t) notwendig ist. Erst damit er-

scheint auf der rechten Seite von (29) das „Störungsglied" — J(t),
aus welchem die Schwingung ihre nach aussen abzugebende Energie
beziehen kann. Der Strom J(t) kann in der Form

J(t) J0 + Je>it (34)

angesetzt werden, d. h. mit einem Gleichstromanteil J0, dem ein

Wechselstromanteil J mit der Kreisfrequenz n überlagert ist.
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Schwingungsenergie kann nach aussen abgegeben werden, wenn
der äussere Plasmawiderstand SR UjJ (Û sei der an der
Entladungsstrecke auftretende Wechselspannungsanteil) negativeWerte
annimmt. Es zeigt sich in der Tat, dass für gewisse Frequenzbereiche

r\ bei vorgegebenem coQ negative Widerstände auftreten.
In solchen Bereichen von r/, die also keineswegs mit der „Langmuirfrequenz"

co0 zusammenfallen müssen, ist das Plasma zur Anfachung
hochfrequenter Schwingungen fähig.

Zum Fall des ebenen Problems seien noch zwei Bemerkungen
angefügt: a) Denken wir uns die positive Raumladung p0 entfernt
und dafür senkrecht zur Elektronenströmung ein homogenes
Magnetfeld mit der Induktion B Bz B wirksam, so lautet (26)

m-~=-eE-e[vB]
oder in Koordinaten

mx — eEx — e By
m'y e Bx.

Für die Bewegung in der x-Richtung folgt mit x vx hieraus

e2

mvx + — B2vx=-eEx

und analog der Rechnung zu (29)

bh* aLj«)- (35>
e'

m2

Ein Vergleich mit (29) zeigt, dass ein homogenes Magnetfeld B
in bezug auf die Bewegung der Elektronen in der x-Bichtung (und
nur darauf!) den nämlichen Einfluss ausübt, wie eine homogene
positive Raumladung p0, wenn die Beziehung besteht

B2. (36)
sn m

Auf eine solche Äquivalenz zwischen Magnetfeld und Raumladung
wurde bereits durch J. Müller6) hingewiesen.

b) Aus (29) folgt bei konstantem äusserem Strom J eine besonders
einfache Lösung für v, nämlich v constans, wenn

2 e Tcoi V Jnu ms. u

oder mit (28a) J0 p0v, d.h. n n0 p0 ist. Das bedeutet, dass
ein mit der Geschwindigkeit v J0/p0 bzw. der Dichte n J0/v in
das Plasma eintretender Elektronenstrom sich ohne Pendelungen
gleichmässig durch das Plasma hindurch bewegt; physikalisch ist
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dies leicht einzusehen, da in diesem Fall das elektrische Feld und
damit die Raumladungskräfte verschwinden. (n p0.)

Für die Betrachtung im äquivalenten Magnetfeld folgt analog,
dass für einen äusseren Strom

(37)Jft — enB2vru m " x

die Bewegung der Elektronen in der x-Richtung unter Beibehaltung
der konstanten Eintrittsgeschwindigkeit vx vor sich geht. Da das
elektrische Feld hier keineswegs Null ist, verschwinden die
Raumladungskräfte nicht, wohl aber werden sie durch die Kraftwirkung
des Magnetfeldes in der x-Richtung gerade kompensiert.

Im Falle p0 n0 ist die Spannung an der Entladungsstrecke
wegen des Verschwindens der elektrischen Feldstärke im Plasma
Null; im äquivalenten Fall des Magnetfeldes ist jedoch eine solche
Spannung vorhanden, welche gerade die zusätzliche Energie der
Elektronen deckt, die sie bei der Bewegung durch die Entladungsstrecke

in der ^/-Richtung erbalten.

6. Bestimmung der Anfachbereiche von Schwingungen
für ein einfaches Beispiel.

Aus einem homogenen Plasma denken wir uns eine Entladungsstrecke

von der Länge d abgegrenzt (Fig. 2), die von einem zeitlich
konstanten Strom J0 durchflössen wird, dem eine kleine Wechsel-

x»0 x-d
Fig. 2.

Ebene Entladungsstrecke.

spannungskomponente mit der Kreisfrequenz ìj überlagert ist (34).
Gesucht sind die Frequenzbereiche rj, in denen der ohmsche Anteil
des äusseren Widerstandes der Entladungsstrecke negative Werte
annimmt. Wir wählen eine einfache Grenzbedingung an der Stelle

x0 — 0, nämlich v0 0 und E0 0, d. h. verschwindende
Eintrittsgeschwindigkeit und Feldstärke an einer „virtuellen" Kathode bei
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x 0. Wie erwähnt, hängt das Ergebnis von der Wahl der
Anfangsbedingungen bei x 0 merklich ab ; es kommt uns aber hier nicht
darauf an, irgendein experimentell realisiertes, aber kompliziertes
Beispiel durchzurechnen, sondern darauf, an einem möglichst
einfachen Beispiel zu zeigen, wie solche Anfachbereiche überhaupt
liegen und dass sie eben nicht mit der Langmuirfrequenz zusammenfallen

müssen.

Die Wiedergabe der Rechnung können wir uns ersparen, da der
Fall einer ebenen Elektronenströmung im Magnetfeld in anderm
Zusammenhang in einer Untersuchung von J. Müller6) bereits
behandelt ist, der wegen der Äquivalenz von Magnetfeld und positiver
Raumladung unserm Beispiel analog ist. Wir können daher von
dort den Wert des ohmschen Widerstandes übernehmen; er folgt
zu*)

R eJ0 4

Wß [
1 —cos(a-/S) l-cos(a+/?) Ohm.

me0 '" 2aß L (oc-/?)2 (« + £)*
Dabei bedeuten:

Tm mittlere Laufzeit eines Elektrons für die Entladungsstrecke der Länge
* V rm

°orm-

(38)

a>„

(38) gibt den Wert von R in erster Näherung für kleine Schwankungen

des Stromes J. Wir interessieren uns hier für die relative

"o^

4TT

27T en471 "Fm

Fig. 3.

Beispiel für die Lage von Anfachbereichen bei Plasmaschwingungen. In den
schraffierten Bereichen besitzt der ohmsche Widerstand der Entladungsstrecke für
kleine aufgeprägte Wechselspannungen der Frequenz rj negative Werte
(Anfachbereiche), auf den Kurvenzügen den Wert Null und ausserhalb positive Werte.
(eo„ Langmuirfrequenz, rm= Elektronenlaufzeit durch die Entladungsstrecke.)

*) Gleichung (46a).
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Lage der Frequenzbereiche rj, in denen R negative Werte annimmt,
zur Langmuirfrequenz co0. Wir zeichnen daher zweckmässig in der
(rj, co0)-Ebene die Kurven auf, auf denen R 0 wird, was in Fig. 3

geschehen ist*). Im (schraffierten) Inneren der „Zopfe" nimmt, wie

man aus (38) feststellt, R negative Werte an, auf den Kurven geht R
durch Null und nimmt sonst überall positive Werte an.

Man sieht, dass gerade in der Umgebung der Langmuirfrequenz
(»/ co0) keine Anfachung möglich ist, wohl aber in Bereichen
rj ^ ca0, wobei es zu jedem co0 ein ganzes Spektrum von Anfach-
bereichen gibt. Wie aus (38) hervorgeht, nehmen die negativen
Werte für R bei festem co0 und damit die Möglichkeit einer
Anfachung schnell mit wachsendem rj ab. Wir schliessen damit die
Diskussion des gewählten Beispiels ab und wollen nochmals
folgendes festhalten:

Der nach aussen wirksame Wechselstromwiderstand einer
Entladungsstrecke in einem Plasma, dessen konstante positive Ladungsdichte

als ruhend und von den Elektronen durchströmt betrachtet
wird, nimmt für gewisse Frequenzbereiche rj einer aufgedrückten
kleinen Wechselspannung negative Werte an; in solchen Bereichen
kann das Plasma nach aussen hochfrequente Energie abgeben.
Diese Bereiche fallen aber nicht notwendigerweise in die unmittelbare

Umgebung der „Langmuirfrequenz". Das physikalische Bild
der Erscheinungen ergibt sich aus dem Zusammenwirken der die
Langmuirfrequenz bestimmenden Raumladungskräfte mit den
Laufzeiterscheinungen der Elektronenströmung in der Entladungsstrecke.
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