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_ Zur Theorie der Elektronen-Plasmaschwingungen
von F.Borgnis.
(3. 1. 1947.)

Die Theorie der kurzwelligen Elektronenschwingungen in einem Gasentladungs-
Plasma wird von einem verallgemeinerten Standpunkt aus behandelt. Es zeigt
sich, dass die von LANeMUIR und Towks herrithrende Behandlung des ebenen
Problems, die zu dem Begriff der ,,Langmuirfrequenz‘‘ gefiihrt hat, erweitert
werden muss, um das selbstindige Auftreten stationarer Schwingungen in einem
Plasma zu beschreiben und dass die Frequenz solcher Schwingungen, die sich
zwischen den Begrenzungen einer Entladungsstrecke erregen konnen, im allge-
meinen nicht mit der Langmuirfrequenz identisch ist.

1. Einleitung.

Das Auftreten sehr kurzwelliger Elektronenschwingungen in Gas-
entladungen 1st seit langem bekannt. Die Natur der Gasentladungen
bringt es mit sich, dass die Physik dieser ,,Plasmaschwingungen®
eine recht komplizierte ist; sowohl die theoretischen als auch die
experimentellen Untersuchungen iiber diesen Gegenstand lassen
daher noch eine Menge ungeklarter Fragen offen.

Unter den theoretischen Betrachtungen spielt die von Lanemuir
und Tonxks!) zuerst aufgestellte Theorie eine besondere Rolle, die
zum Begriff der ,,Langmuirfrequenz®* gefithrt hatte. Diese Theorie
sowie spitere Erweiterungen betrachten ein quasineutrales Plasma,
bei dem die Elektronen aus ihrer mittleren ,,Ruhelage heraus
kleine Verschiebungen erleiden, worauf sie um diese Ruhelage pe-
riodische Bewegungen mit der ,,Langmuirfrequenz’’ ausfiihren.
Solche Betrachtungen sind jedoch nicht geeignet, die Anfachung
solcher Schwingungen zu beschreiben. Das Problem der Erzeugung
der Schwingungen in einem Plasma lasst sich durch die Bestim-
mung des ohmschen Widerstandes behandeln, den eine Entladungs-
strecke gegentiber einer von aussen aufgeprigten Wechselspannung
darstellt. In Bereichen, in denen dieser Widerstand negativ wird,
kann die Anordnung Wechselstromleistung nach aussen abgeben
und damit Schwingungen anfachen. Die Frequenz dieser Schwin-
gungen braucht nicht notwendigerweise mit der ,,Langmmr-
frequenz*‘ zusammenzufallen. ‘
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Die folgenden Betrachtungen bringen zunéchst eine verallgemei-
nerte Wiedergabe der Langmuirschen Theorie sowie einer von
LinpEr?) herrithrenden Erweiterung, wobel hier etwas genauer auf
die zugrundeliegenden Voraussetzungen geachtet wird. Im folgen-
den werden sodann die Elektronen nicht mehr als an eine Ruhelage
gebunden angesehen, sondern bei ihrer Strémung durch das Plasma
hindurch verfolgt, wobei Pendelungen um die mittlere Gleichstrom-
geschwindigkeit auftreten. Diese Pendelungen erfolgen, wie sich
zeigt, mit der , Langmuirfrequenz‘. Fiir eine vorgegebene Ent-
ladungsstrecke lassen sich dann der elektrische Widerstand und
damit die ,,Anfachbereiche’ bestimmen, wobel sich herausstellt,
dass die Frequenzen, bei denen Anfachung auftritt, im allgemeinen
nicht mit der Langmuirfrequenz identisch sind. |

Das Ergebnis der Rechnungen hingt sehr von der Art der ge-
wihlten Randbedingungen der Entladungsstrecke ab, die man
nicht sehr genau kennt. Da in der Hauptsache gezeigt werden soll,
dass die Frequenz der sich anregenden Schwingungen eben nicht
gerade die Langmuirfrequenz sein muss, wird ein bestimmtes Bei-
splel mit einer einfachen Randbedingung betrachtet.

Das physikalische Bild der Erscheinungen wird durch das Zu-
sammenwirken zweler Effekte bestimmt: Die ,,Laufzeiterschei-
nungen‘ der Gesamtheit der stromenden Elektronen auf ihrem
Weg durch das Plasma und die Pendelungen um ihre mittlere
Fortpflanzungsgeschwindigkeit, die fiir das einzelne Elektron mit
der ,,Langmuirfrequenz‘ vor sich gehen.

2. Die ,klassische’* Behandlung der freien Plasmaschwingungen.

Die auf Lanemuir und Tonks?!) zuriickgehende und in der Folge
von weiteren Autoren iibernommene theoretische Behandlung der
frelen Schwingungen eines Plasmas bedient sich der folgenden
Betrachtungsweise: |

Gegeben sei ein homogenes Plasma mit den elektrischen Ladungs-
dichten p (positiv) und n (negativ) in Coulomb/ecm3; im ungestirten
Plasma ist p, = n,, das Plasma somit feldfreil. Denkt man sich die
positive Ladung festgehalten und die negative Ladung um die
Strecke 05 aus der urspriinglichen Ruhelage verschoben, so ent-
steht ein negativer Ladungsiiberschuss én, der in der Form

on = — ny div 6% (I)

- angesetzt wird. Wir schreiben dn und ds (hiufig wird » und s
verwendet), um anzudeuten, dass (I) nur Geltung besitzt fir kleine
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Verrtickungen und die dadurch bedingten Ladungsédnderungen.
Man erkennt dies, wenn man sich (I) beispielsweise aus der Konti-

nuitdtsgleichung herleitet:
on

?‘#‘t“"'f“ diV?’L-’E:O. | (1)

‘Durch Multiplikation mit d¢ und Benutzung von » = ds/dt folgt

on : ds
oder ' |
dn + div (nd%) — 0. (3)

Mit n = ny + dn und Vernachlissigung von Gliedern 2. Ordnung
folgt
on + nydiv 6s =0 (4)

das ist die Grundgleichung (I). Wir halten also fest, dass (I) nur
fir kleine Verrtickungen und Dichteinderungen giiltig ist.

Im folgenden wollen wir von der Betrachtungsweise Gebrauch
machen, die man in der Hydrodynamik als , Lagrangesche™ be-
zeichnet. Die Verriickung 65 mit den Komponenten &, n, { wird
als Funktion der Ortskoordinaten z, ¥, 2, und der Zeit ¢t dargestellt; -
x, Y, 2z sind dabei die Koordinaten des Punktes, an dem sich ein
Teilchen urspriinglich, d. h. vor der Verrtickung befunden hat. Die
momentane Lage eines Teilchens nach seiner Verrtickung sei durch
die Koordination X, Y, Z bestimmt, wobei

X=x+¢
Y=y+19
Z =z+¢

1st. - :
Betrachten wir der Einfachheit halber voriibergehend eine Ver-
rickung nur in der X-Richtung, so verlangt die Kontinuitéts-
bedingung, dass die gleiche Ladungsmenge, welche urspriinglich
zwischen den Ebenen z und z + dx eingeschlossen war (Fig. 1),

nach der Verriickung zwischen den Ebenen x + fund z + dz + & +

d€ oder z + & + (1 + -gi—) d x eingeschlossen ist. Es gilt daher

n (11‘—%} drc:wodac
oder

0&
oz

6nxn-fn0=—~no

14
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on bezieht sich dabei auf die Stelle X nach der Verriickung.
Wenn wir § und damit auch 0&/0xz und én als kleine Grossen an-
sehen, so gilt unter Vernachlissigung von Gliedern 2. Ordnung
0§
dn=—mn, TR
Mit Erweiterung auf den dreidimensionalen Fall folgt Gleichung (1),
die unter der Voraussetzung kleiner Verriickungen demnach in der
Form

an(x;1:Z)=._n0(gi. gz +_g§) — g div 8 (6)

auch in der Lagrangeschen Betrachtungsweise giiltig bleibt, wobei
nun #, y, z die urspriinglichen Koordinaten eines Teilchens vor
seiner Verriickung bedeuten.

/

l/j +d
/ % VA
x+dx X X+dX

Fig. 1.
Verschiebung der negativen Ladungsdichte =, .

Eine weitere Grundgleichung verkniipft das durch die Raum-

ladung dn entstehende elektrische Feld 8K mit der Ladungsdichte;
1m praktlschen MaBsystem gilt (mit g, = 0,886 - 10-13)

go div 0F = —on | (IT)
woraus mit (6) folgt R :
go div 0/ = n, div 0%
oder

6[1*;‘:—?&65 + rot A -+ const. (T
0

Solange magnetische Wirkungen ausser acht bleiben, was hier ge-
schehen soll, kann der rot-Anteil von 8 E gleich Null gesetzt werden.

Die Konstante verschwindet zufolge der Bedingung 0F = 0 fiir
05 = 0. Folglich gilt

-

0F =" o5 . (8)

€o
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Gleichung (8) liefert die elektrische Feldstirke an jeder Stelle
des Plasmas als Funktion von z, y, 2.

Zur Beschrelbung der Bewegung der negativen Raumladung
gegeniiber der als fest gedachten positiven Ladung betrachten wir
ein bestimmtes Volumenelement oder, was auf das gleiche hinaus-
kommt, ein bestimmtes Teilchen, das sich urspriinglich am Ort
x, y, 2z befand. Fir dessen Verschiebung gilt dann

0% s

Em Vorzug der Lagrangeschen Betrachtungsweise besteht darin,
- dass auf der linken Seite von (1L1) die partielle Ableitung nach der
Zeit steht. (Bei der ,,Eulerschen” Betrachtungsweise, wo die
Grossen Funktionen der augenblicklichen Lagekoordinaten sind,
wire hier die totale Ableitung d*s/dt? = dp/dt zu schreiben.) Mit
(8) folgt aus (III)

008 o g% (9)

ot? &

oder mit Einfithrung der ,,Langmuirfrequenz*

. € Ny
wO_V m &, ()
die Schwingungseleichung '
028 - : "
—3}—2‘5—4—0)%63:0. ' (IV)

Die Integration von (IV) liefert unmittelbar
05 = (08)gef™t. | V)

Jedes Volumenelement bzw. Teilchen, das zur Zeit t = 0 die
vorgegebene Verrtickung (4%), erhalten hat, schwingt also mit der
gleichen Frequenz w, um seine Ruhelage. Alle Teilchen schwingen
“unabhingig voneinander nach Massgabe der zur Zeit ¢ = 0 auf-’
gepriagten Verriickung 45, (z, y, 2).

Es handelt sich dabei um freie Schwingungen, wie etwa die eines
Systems von elastisch an ihre Ruhelage gebundenen Massenpunkten.
Die Energie der Schwingungen entstammt der Arbeit, die bei der
Vornahme der anfinglichen Verriickungen zur Zeit {= 0 auf-
gewendet wurde. Durch Energieverluste verschiedener Art werden
solche Schwingungen nach einer gewissen Zeit wieder abgeklungen
sein, Die Frequenz dieser Schwingungen ist die ,,Langmuirfrequenz ‘.
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Nimmt man an, dass etwa durch statistische Schwankungen
Storungen des Plasmagleichgewichtes und damit kleine Verriickun-
gen auftreten, so kann im Frequenzintervall Af giinstigstenfalls
Schwingungsenergie von der Grossenordnung kT'-Af abgegeben
werden. Kine messbare Abgabe von hochfrequenter Energie nach
aussen 1st durch den betrachteten Schwingungsmechanismus jeden-
falls nicht moglich.

3. Beriicksichtigung des Elektronendrucks.

Die Tatsache, dass die einzelnen Volumenelemente des Plasmas
unabhéngig voneinander schwingen sollten, erscheint vom physi-
kalischen Standpunkt aus etwas unbefriedigend. Wie E. G. LINDER?)
- zeigte, tritt eine Kopplung der schwingenden Teilchen unter-
einander auf, wenn der Elektronendruck berticksichtigt wird. Be-
sitzen die Elektronen eine Maxwellsche Geschwindigkeitsvertel-
lung, so kann man sie als ein Gas betrachten, das der allgemeinen
Zustandsgleichung in der Form

pe=mnxT (11)
geniigt. Die Kraftdichte auf ein Volumenelement ist gegeben durch
-Iz:—gradpe:wgrad nal. (12)

Mit n = ng + dn und (I) folgt die Kraftdichte bei Vernachléssi-
gung von Gliedern 2. Ordnung zu
K = — grad # T (ny— ng div 65)
= xnyT grad div 45. (18)

Die Bewegungsgleichung (I1I) mit Beriicksichtigung des Elektro-
nendrucks, bezogen auf ein einzelnes Teilchen, lautet dann

m 0208
012

— —edE+ 2T grad div s (14)

oder unter Einfithrung von (8) und (10)

020 - T S
Tzs + 205 = m’:—nm grad div ds . (VD)

Fiir das ebene Problem erhiilt man aus (VI) mit 65 = §(z, f)

02§

‘ T 028
0t2

m  0x* °

TS (15)
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Diese Gleichung findet sich bei Linper. Als Losung ergeben sich
nach rechts oder links fortschreitende Wellen im Plasma wvon der
Form

E= & (W1 Ekn) (16)

Durch Einfiihrung des Elektronendrucks ldsst sich also eine
Kopplung der schwingenden Teilchen untereinander erkliaren. Aus
(15) erhalt man mit Einsetzen von (16)

T
— = L (17)
oder
w®= wi + f; Re. (18)

Die Langmuirfrequenz w, tritt hier als unterste Grenzirequenz
der fortschreitenden Wellen (fiir k = 2#/A = 0 oder 4 = oo) auf.
An (18) lassen sich die bekannten Betrachtungen iiber die Phasen-
und Gruppengeschwindigkeit der fortschreitenden Wellen an-
schliessen. Man erhilt z. B. '

o do do? x T

2
,Ugr. : vph. = &k dk = d L2 = & Vihermisch *

Die kritische Betrachtung der in Abschnitt 2 und 3 zugrundegeleg-
ten Voraussetzungen zeigt, dass hier nur freie Schwingungszustéinde
~des Plasmas beschrieben werden, die durch anfinglich vorgegebene
Verriickungen der negativen Teilchen aus der quasineutralen Ver-
~ tellung heraus angeregt werden. Betrachtet werden dabei nur kleine
Verschiebungen, d. h. kleine Schwingungsamplituden der um eine
feste Ruhelage schwingenden Teilchen. Ein stationdrer Konvek-
tionsstrom 1ist demnach nicht vorhanden, da ein solcher eine end-
liche Verschiebung der Teilchen aus ihrer Ruhelage mit sich bréchte.
Schwingungszustinde der geschilderten Art werden nach kurzer
Zeit durch verschiedene Energieverluste abgeklungen sein.

4. Theorie der Plasmaschwingungen bei endlicher Verschiebung
der Ladungstriger.

Das Problem der Erzeugung von Schwingungen mit Hilfe eines
Plasmas lisst sich durch Betrachtungen der vorausgehenden Art
nicht erfassen. Dazu ist vielmehr eine Untersuchung erforderlich,
unter welchen Umstéinden ein Plasma féhig ist, Wechselstrom-
energie dauernd nach aussen abzugeben. Aus energetischen Griin-
den muss diese Energie aus einer andern Energieform bezogen
werden konnen; es liegt nahe, dafiir die Gleichstromenergie eines
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durch das Plasma hindurch bewegten Konvektionsstromes heran-
zuziehen. Dabel muss aber von einer Betrachtungsweise Gebrauch
gemacht werden, bei der sich die Teilchen durch das Plasma hin-
durchbewegen und nicht nur kleine Verschiebungen um eine feste
Ruhelage ausfithren. Die Verhéltnisse liegen dhnlich wie in der
Kontinuumsmechanik : Die ,klassischen® Betrachtungen zur Plas-
matheorie entsprechen den Verhaltnissen in der Elastizitatstheorie,
wo ebenfalls kleine Verriickungen aus der Ruhelage betrachtet
werden. Die erweiterte Plasmatheorie muss der hydrodynamischen
Betrachtungsweise entsprechen, bei der die Teilchen endliche Be-
wegungen durch die Flissigkeit hindurch ausfihren. Hierbei kann
Gleichung (I) keine Verwendung finden.

Wir bedienen uns hier zum Unterschied gegeniiber der voran-
gehenden Art der Betrachtung der nach Eurner benannten Me-
thode, bei der alle abhingigen Veridnderlichen als Funktionen der
augenblicklichen Ortskoordinaten, die wir #, y, 2 nennen, auftreten.

Die Kontinuitatsgleichung fiir die positiven und negativen La-
dungstriger in der IForm

0 o
% 4 div )= 0 o
0 . -
0—72 + div (nw,) =0 (20)

besitzt allgemeine Geltung bei beliebiger Verschiebung der Ladungs-
trédger, da hier die Verhiltnisse an einem festen Ort betrachtet
werden. Voraussetzung fiir (19) und (20) ist, dass die Geschwindig-
keit ¥ eine eindeutige Ortsfunktion ist; an einem Ort diirfen daher
nur Teilchen einerlei Geschwindigkeit vorhanden sein. Riickldutige
Bewegungen, die gleichzeitig zu einer fortschreitenden Bewegung
am selben Ort hinzutreten, sind also auszuschliessen.

Die positive Dichte betrachten wir, wie iiblich, wieder als ruhend
(v, = 0) gegeniiber den negativen Trigern, was bei der grossen
Masse der positiven Ionen im Vergleich zur Elektronenmasse mit
gentigender Anniaherung erlaubt ist. Aus (19) folgt damit die zeit-
liche Konstanz von p:

P = Po (.’B, Y, Z) : (21)

Die Raumladungsgleichung lautet

=

godiv E = pg—n. (22)
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Aus (20) folgt, wenn man n aus (22) einfiihrt

>

— g, div %’; + div (n,)= 0 (23)
oder
OE e et . >
& ~(Wmn@*n:F(t) +rot A4 (t). (24)

Der rot-Anteil wird wie oben vernachlissigt, da wir keine Wirbel-

felder betrachten wollen. Die Funktion F () stellt, wie man aus
(24) unmittelbar erkennt, den totalen dusseren Strom dar, wir be-
zeichnen ihn daher im folgenden mit J (). Er ist gleich der Summe
aus dem Konvektionsstrom — n, (das Minuszeichen rithrt daher,
‘dass wir durch (20) die positive Stromrichtung mit der v ,-Richtung
identifizierten, ein in der »,-Richtung fliessender Elektronenstrom
liefert daher einen negativ zu zihlenden dusseren Strom j) und

dem Verschiebungsstrom ¢,0 Ef0t. Wir schreiben also (24)

0 Fl. (25)

Fir die Bewegungsgleichung eines bestimmten Teilchens schrei-
ben wir
d?’s a,

'mwzm E{:—eE (26)

Durch nochmalige Differentiation nach der Zeit ¢ folgt

2, dE oF - &
“”WZ‘e"aTZ‘e[(m)*(””gMd)E]' 27)
Mit Einfithrung von (25) erhilt man
2o, -

n 1 7
m—di-é--—z—m[ (t)—[—w—q; +(@ngrad)EJ

und mit Einfihrung von n aus (22)

dz';n 1 = ;no R B . 2 ) - 2=
W™ == — B [E}—J(t) + % Un " Un div B + (;ungrad)E]
oder
dz';;e | 9 = e ¥ i
dez Wy Up= — —”‘Ig J (t) —’U div E S ey ( glad) .E (28)
wobel

; ep
= m—;’n . (28a)
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5. Das ebene Problem hei konstanter positiver Dichte.

Eine einfache Losung von (28) ergibt sich fiir das ebene Problem
(Ortsabhingigkeit z. B. nur in der z-Richtung), wenn man noch
die positive Raumladung als rdumliche Konstante iiber das ganze
Plasma ansieht. Unter diesen Voraussetzungen ist

a) p, eine Konstante;
b) J(t) = J.() = T (0);

c) v, div B =n, %@'— = (v,grad) E

womit sich (28) mit v, = v, = v reduziert auf

J(t), (29)

wenn wir noch das Vorzeichen von J () umkehren, d. h. den Strom
positiv gegen die Elektronenstromung zihlen. Eine analoge Her-
leittung von (29) im Fall des ebenen Problems findet sich bel
SEELIGER?). Gleichung (29) liefert die Geschwindigkeit eines be-
stimmten Teilchens in Abhingigkeit von der Zeit ¢, wenn wir das-
selbe auf seiner Bahn verfolgen; sie hat die typische Form einer
Schwingungsgleichung.

Fiir den einfachsten Fall eines zeitlich konstanten &usseren
Stromes oJ, lautet die Losung von (29)

a2y : C()2’C" e
iz 0  me,

v Asinwyt+ Beos oyt + L. (30)
Die Integrationskonstanten 4 und B sind dabei noch Funk-
tionen eines Parameters, der die Anfangsbedingungen kennzeichnet,
unter denen das betrachtete Teilchen zu einem bestimmten Zeit-
punkt gestartet ist. Je nach der Art des zu behandelnden Problems
besitzt der Parameter verschiedene Bedeutungen.
Betrachten wir beispielsweise den Fall, dass zur Zeit t — 0
an allen Punkten x, des Plasmas die Werte der Geschwindigkeit

-

v=V(x,) und Beschleunigung v = V(z,) vorgegeben sind, so er-
hilt man als Losung von (29)

V(@) i wot+ TV (z4) cos oyt + —;;“— (1—cosmyt).  (31)

Wy o

v (T, t) =

(81) beschreibt die Bewegung eines Teilchens, das zur Zeit t =0
vom Ort x, aus mit vorgegebener Geschwindigkeit ¥ (x;) und Be-

schleunigung V (z,) startet. Der Parameter besitzt hier die Dimen-
sion einer Linge (x,).



Zur Theorie der Elektronen-Plasmaschwingungen. 217

Verschwindet der dussere Strom J, so schwingen die Elektronen
mit der Langmuirfrequenz w, um ihre Ruhelage; dies fiihrt wieder
auf das Ergebnis von Abschnitt 2. Bei endlichem #usserem Strom
bewegen sich die Elektronen durch das Plasma hindurch, wobei
sie Pendelungen um die mittlere Fortpflanzungsgeschwindigkeit
mit der Frequenz w, ausfithren kénnen. Diese Pendelfrequenz w,
hat den Wert der ,Langmuirfrequenz (10) bezw. (28a). Die
rdumliche Periode, auf die eine solche Pendelung der Geschwin-
digkeit um die mittlere Geschwindigkeit » entfillt, 1st

Am——@—~2

wenn 4, die ,,Langmuirwel]enlange“ und ¢ die Lichtgeschwindig-
keit bedeuten.

Eine andere Problemstellung ist z. B. die, dass an einer festen
Stelle « = x, Elektronen mit einer vorgegebenen Geschwindigkeit
in das Plasma eintreten. Die Geschwindigkeit sei dabeil eine Funk-
tion der Startzeit t =t, an der Eintrittstelle z,. In diesem Fall
besitzt der Parameter die Dimension einer Zeit (t,). Fir t = £, se1

v = V(t) und » = V(f) bekannt. Als Losung folgt dann

v (t, 8) =2 sin o (¢~ to) + ¥ (fg) cos g (t — 1)
+ %‘L (1 — cos wy (t—1). . (82)
0

(32) beschreibt die Bewegung eines Teilchens, das zur Zeit ¢ = {,
an der Stelle x, gestartet ist, auf seiner Bahn. Den zuriickgelegten
Weg erhélt man aus -

x(to,t)*momfﬁdt. (38)

Von dieser Art der Problemstellung Werden wir anschliessend Ge-
brauch machen. (Abschnitt 6.)

Gleichung (29) zeigt, dass bei allen Problemen, die mit der Er-
zeugung von Plasmaschwingungen zusammenhingen, die Einfiih-
rung eines #usseren Stromes J(f) notwendig ist. Erst damit er-
scheint auf der rechten Seite von (29) das ,,Storungsglied** nTZ—(, J (1),
aus welchem die Schwingung ihre nach aussen abzugebende Energie
beziehen kann. Der Strom J(f) kann in der Form ;

J(t) = Jy + J eint | (34)
angesetzt werden, d. h. mit einem Gleichstromanteil J,, dem ein

Wechselstromanteil J mit der Kreisfrequenz # iiberlagert ist.
*
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 Schwingungsenergie kann nach aussen abgegeben werden, wenn

der #ussere Plasmawiderstand R = U/J (U sei der an der Ent-
ladungsstrecke auftretende Wechselspannungsanteil) negative Werte
annimmt. Es zeigt sich in der Tat, dass fiir gewisse Frequenz-
bereiche % bel vorgegebenem w, negative Widerstinde auftreten.
In solchen Bereichen von 7, die also keineswegs mit der ,,Langmuir-
frequenz‘* wy zusammenfallen miissen, 1t das Plasma zur Anfachung
hochfrequenter Schwingungen fihig.

Zum Fall des ebenen Problems seien noch zwei Bemerkungen
angefiigt: a) Denken wir uns die positive Raumladung p, entfernt
und dafiir senkrecht zur Elektronenstrémung ein homogenes Ma-
gnetfeld mit der Induktion B = B, = B wirksam, so lautet (26)

m%z =—el —e[vB]
oder in Koordinaten
mx = —elE,—e By
miy = e Bz,
Fir die Bewegung in der z-Richtung folgt mit = v, hieraus

o e2 :
mv,,+ WBz’Ux= —eEm

und analog der Rechnung zu (29)

bot g B, = J (1). (35)

m &,

Ein Vergleich mit (29) zeigt, dass ein homogenes Magnetfeld B
1 bezug auf die Bewegung der Elektronen in der x-Richtung (und
nur darauf!) den nidmlichen Einfluss ausiibt, wie eine homogene
positive Raumladung p,, wenn die Beziehung besteht

%=%B? | (86)

Auf eine solche Aquivalenz zwischen Magnetfeld und Raumladung
wurde bereits durch J. MtLLER®) hingewilesen.

b) Aus (29) folgt bei konstantem #usserem Strom J eine besonders
einfache Losung fir v, namlich v = constans, wenn

) e

Wi v = e Jy
oder mit (28a) J, = pyv, d. h. n = ny = p, ist. Das bedeutet, dass
ein mit der Geschwindigkeit v = Jy/p, bzw. der Dichte n = Jy/v in
das Plasma eintretender Elektronenstrom sich ohne Pendelungen
gleichméssig durch das Plasma hindurch bewegt; physikalisch ist
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dies leicht einzusehen, da in diesem Fall das elektrische Feld und
damit die Raumladungskrifte verschwinden. (n=p,.)

Fir die Betrachtung im &quivalenten Magnetfeld folgt analog,
dass fiir einen Ausseren Strom

Jy = sz— g, B2, (87)

die Bewegung der Elektronen in der z-Richtung unter Beibehaltung
der konstanten Eintrittsgeschwindigkeit v, vor sich geht. Da das
elektrische Feld hier keineswegs Null ist, verschwinden die Raum-
ladungskréfte nicht, wohl aber werden sie durch die Kraftwirkung
des Magnetfeldes in der z-Richtung gerade kompensiert.

Im Falle p, = ny ist die Spannung an der Entladungsstrecke
wegen des Verschwindens der elektrischen Feldstirke im Plasma
Null; im &quivalenten Fall des Magnetfeldes ist jedoch eine solche
Spannung vorhanden, welche gerade die zusatzliche Energie der
Elektronen deckt, die sie bei der Bewegung durch die Entladungs-
strecke 1n der y-Richtung erhalten.

6. Bestimmung der Anfachhereiche von Schwingungen
fiir ein einfaches Beispiel.

Aus einem homogenen Plasma denken wir uns eine Entladungs-
strecke von der Linge d abgegrenzt (Fig. 2), die von einem zeitlich
konstanten Strom J, durchflossen wird, dem eine kleine Wechsel-

d -
- o J +
vﬂ
X=0 x=d
Fig. 2.

Ebene Entladungsstrecke.

spannungskomponente mit der Kreisfrequenz # tberlagert ist (34).
Gesucht sind die Frequenzbereiche 7, in denen der ohmsche Anteil
des #usseren Widerstandes der Entladungsstrecke negative Werte
annimmt. Wir wéhlen eine einfache Grenzbedingung an der Stelle
zo =0, ndmlich v, = 0 und E, = 0, d. h. verschwindende Eintritts-
geschwindigkeit und Feldstirke an einer ,,virtuellen** Kathode beil
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2 = 0. Wie erwiihnt, hiingt das Ergebnis von der Wahl der Anfangs-
bedingungen bei £ = 0 merklich ab; es kommt uns aber hier nicht
darauf an, irgendein experimentell realisiertes, aber kompliziertes
Beispiel durchzurechnen, sondern darauf, an einem moglichst ein-
fachen Beispiel zu zeigen, wie solche Anfachbereiche iiberhaupt
liegen und dass sie eben nicht mit der Langmuirfrequenz zusammen-
fallen miissen.

Die Wiedergabe der Rechnung kénnen wir uns ersparen, da der
Fall einer ebenen Elektronenstromung im Magnetfeld in anderm
Zusammenhang in einer Untersuchung von J. MULLERS) bereits be-
handelt ist, der wegen der Aquivalenz von Magnetfeld und positiver
Raumladung unserm Beispiel analog ist. Wir kénnen daher von
dort den Wert des ohmschen Widerstandes iibernehmen; er folgt
zu¥)

edy 4 1 1—cos (x—f) 1—cos (a+ f) '
ey ™ T | o e | O (88)
Dabei bedeuten:

= mittlere Laufzeit eines Elektrons fiir die Entladungsstrecke der Liange d.

Tm
& =Nty
ﬁ = Wy Ty

(38) gibt den Wert von B in erster Ndherung fiir klevne Schwan-
kungen des Stromes J. Wir interessieren uns hier fiir die relative

Fig. 3.
Beispiel fiir die Lage von Anfachbereichen bei Plasmaschwingungen. In den schraf-
fierten Bereichen besitzt der ohmsche Widerstand der Entladungsstrecke fiir
kleine aufgeprigte Wechselspannungen der Frequenz # negative Werte (Anfach-
bereiche), auf den Kurvenziigen den Wert Null und ausserhalb positive Werte.
(wy = Langmuirfrequenz, 7,, = Elektronenlaufzeit durch die Entladungsstrecke.)

*) Gleichung (46a).
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Lage der Frequenzbereiche #, in denen R negative Werte annimmt,
zur Langmuirfrequenz o, Wir zeichnen daher zweckmaissig in der
(1, wg)-Ebene die Kurven auf, auf denen R = 0 wird, was in Fig.3
geschehen ist*). Im (schraffierten) Inneren der ,,Zopfe” nimmt, wie
man aus (38) feststellt, R negative Werte an, auf den Kurven geht B
durch Null und nimmt sonst iiberall positive Werte an.

Man sieht, dass gerade in der Umgebung der Langmuirfrequenz
(7 = w,) keine Anfachung moglich ist, wohl aber in Bereichen
7 S w,y, wobel es zu jedem w, ein ganzes Spektrum von Anfach-
bereichen gibt. Wie aus (88) hervorgeht, nehmen die negativen
Werte fiir R bei festem w, und damit die Moglichkeit einer An-
fachung schnell mit wachsendem # ab. Wir schliessen damit die
Diskussion des gewihlten Beispiels ab und wollen nochmals fol-
gendes festhalten:

Der nach aussen wirksame Wechselstromwiderstand einer Ent-
ladungsstrecke in einem Plasma, dessen konstante positive Ladungs-
dichte als ruhend und von den Elektronen durchstromt betrachtet
wird, nimmt fir gewisse Frequenzbereiche 7 einer aufgedriickten
kleinen Wechselspannung negative Werte an; in solchen Bereichen
kann das Plasma nach aussen hochfrequente Energie abgeben.
Diese Bereiche fallen aber nicht notwendigerweise in die unmittel-
bare Umgebung der ,,Langmuirfrequenz‘‘. Das physikalische Bild
der Erscheinungen ergibt sich aus dem Zusammenwirken der die
Langmuirfrequenz bestimmenden Raumladungskrifte mit den
Laufzeiterscheinungen der Elektronenstrémung in der Entladungs-
strecke.
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