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Zur Theorie singulärer Magnetpole
von Pierre Paul Banderet.

(20. VIII. 1946.)

Zusammenfassung. Im Anschluss an Arbeiten von Dirac und Fierz werden
die singulären Magnetpole weiter untersucht. Die vorliegende Arbeit behandelt:

1) Die Streuung von geladenen Teilchen im Feld eines singulären Magnetpols.
Das Problem lässt sich durch eine Reihenentwicklung nach Kugelwellen lösen.
Das Resultat ist ähnlich demjenigen, das die klassische Mechanik liefert.

2) Die Eigenfunktionen der Diracschen Gleichung eines elektrisch geladenen
Teilchens im magnetischen Coulomb-Feld. Physikalisch brauchbare Eigenfunktionen

gibt es nur im Falle von Elektronen ; für Teilchen mit anderem magnetischen
Moment ist die Diracsche Gleichung singular. Die Eigenfunktionen des Elektrons
werden aufgestellt.

Einleitung.

In der klassischen Elektrodynamik ist es möglich, magnetische
Ströme und Ladungen einzuführen. Die magnetische Ladung
transformiert sich bei Lorentz-Transformationen wie ein Pseudoskalar.
Seien nun nt und m die magnetische Strom- bzw. Ladungsdichte,
so lauten die zugehörigen Maxwellschen Gleichungen:

1 ¦ 4.-T
rot (£ 7 —§ — m, div § 4 n m

Diese lassen sich im allgemeinen nicht mehr durch Einführung
von Potentialen:

e — grad V — — 91, $ rotSI

integrieren. In den Gleichungen der Wellenmechanik kommen
aber diese Potentiale explicite vor. Nur ein statisches magnetisches
Coulomb-Feld :

kann durch ein Potential

§ rot 31

beschrieben werden. Die zugehörige Ladung ist aber notwendig
eine Punktladung, ein singulärer Magnetpol.



504 Pierre Paul Banderet.

Nach dem Satz von Stokes gilt für eine geschlossene Fläche T,

und ein reguläres, eindeutiges Vektorfeld 2t:

/'rot 31 da 0

Andererseits ergibt die Integration über eine Kugel urn den
Nullpunkt :

j %rda p J-jàa i n p

Daher ist das zugehörige Vektorpotential 2t entweder nicht regulär
wie:

31, 9L 0, 3L -r^-n (1)r oi f r 1 + cosö >¦ '

was unendlich wird für 6 — n, oder nicht eindeutig wie :

3tf 3t, 0, 3te --f-9>sin0.

In beiden Fällen gibt es singulare Linien im Raum; denn auf jeder
Fläche um einen einzelnen Magnetpol gibt es mindestens einen
singulären Punkt. Im zweiten Fall ist er solcher Art, dass das
Vektorpotential seinen Wert ändert, wenn man ihn umfährt. Diese
singulären Linien kann man durch Umeichen des Vektorpotentials
im Räume verschieben, aber ihre Endpunkte liegen fest in den
Singularitäten des Feldes.

Dirac1) ist bei seiner Begründung der Wellenmechanik der
Magnetpole von der Betrachtung der Phase der ^-Funktion
ausgegangen. Die Phase braucht an sich keine eindeutige Ortsfunktion

zu sein, da ihr keine direkte physikalische Bedeutung zukommt.
Dirac untersuchte, welcher Art die Mehrdeutigkeit sein könne,
ohne den allgemeinen Formalismus der Wellenmechanik zu stören.
Er zeigte, dass es im Räume Kurven gibt, auf denen die ^-Funktion
verschwindet (Knotenlinien) und auf welchen die Phase A'on y>

singular sein kann : bei einem Umlauf um eine solche Kurve kann
die Phase von yi ihren Wert um einen festen (das heisst nur von
der Kurve abhängigen )Betrag ändern. Diese Knotenlinien lassen
sich durch Umeichen der Phase (resp. des Vektorpotentials) im
Räume verschieben. Ihre Endpunkte liegen jedoch fest in den
Singularitäten des elektromagnetischen Feldes, die sich als singulare,

quantisierte Magnetpole erweisen.
Anschliessend an diese Arbeit wurde von J. Tamm2) die Bewegung

eines Elektrons in einem magnetischen Coulomb-Feld untersucht.
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Er bestimmte die Eigenfunktionen der zugehörigen Schrödinger-
gleichung :

2m [dr2 ' T17 l2' [oW ¦ iAaW dip2

2if* ° „+„fl ° ..2 1-oosf
1 + cos 6 d y ?•»•w-^TÏSrM-*»- (2>

Hier bedeutet ^ die dimensionslose Zahl -r—.

Fierz3) hat eine einfachere Form der Lösungen von (2) angegeben.
Seine Herleitung stützt sich auf die Transformationseigenschaften
des Problems bei Drehungen. Die Eigenfunktionen von (2) haben
die Gestalt:

Vi,m(kr, 6, cp) const. j^JL+% (kr) eHm+ß),t »Yl>m(Gos 0). (3)

Dabei ist hk der Betrag des Teilchenimpulses. JL+% ist die Bessel-

funktion mit dem Index L+Yz ^(l+Yz)2 — fi2
Die i'Yj (cos 0) lassen sich wie folgt darstellen (x cos 0):

(m — n) m + fi

~dxl-*Y,m=(l + z)
2 (1-x) 2

-TJ=nT[(l + xy-^(l-xy+"]

wobei m, fi und 1^/a zugleich halb- oder ganzzahlig sind*).
In der vorliegenden Arbeit werden gewisse Besonderheiten dieser

Eigenfunktionen an Hand eines speziellen Problems (Streuung an
einem magnetisch geladenen Zentrum) hervorgehoben. In einem
zweiten Teil werden die Transformationseigenschaften des
Problems dazu benützt, um die zugehörige Diracsche Gleichung zu
lösen.

I. Der magnetische Pol als Streuzentrum.

a) Behandlung nach der Wellenmechanik.

Wir betrachten das Problem der Streuung an einem magnetischen
Teilchen, das wir uns als schwer gegen die gestreuten Partikel
vorstellen. Die Differentialgleichung des Problems ist (2), wobei ip-y*
die Aufenthaltswahrscheinlichkeit des Teilchens beschreibt, während

der unendlich schwere Streuer im Nullpunkt ruht. Die Lösung,
welche dieses Streuproblem beschreibt, setzt sich linear aus den
Funktionen (3) zusammen. Wir werden die Konstanten so wählen,
dass durch die Ebene z oo ein homogener Teilchenstrom in der

*) Während l und m, wie üblich, dem Gesamtimpulsmoment und seiner
«-Komponente zugeordnet sind, entspricht L dem Impulsmoment der Bewegung des
Teilchens.
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—2-Richtung fliesst (diese Festsetzung ist bei der hier verwendeten
Eichung des Potentials die einfachste). Es wird sich zeigen, dass
diese Randbedingung sich so präzisieren lässt, dass die Konstanten
dadurch völlig bestimmt werden.

Bei den meisten anderen Streuproblemen, bei denen das Potential

nur vom Abstand r abhängt, führt das Verfahren von Faxen
und Holtsmark (Z.S. f. Ph. 45, 307 (1927)) zum Ziel. Man nimmt
dabei an, dass das Potential mit wachsendem r hinreichend rasch
verschwindet, so dass sich die radialsymmetrischen Lösungen
y>i (kr, cos 0) asymptotisch wie

j-- Pl (cos0) sin (kr — y nl+ò^j

verhalten. Macht man nun den Ansatz

V=ZClWl{kr,co*6), (4)
1=0

so sind die Ct durch die Forderung bestimmt, dass ip sich für
grosse r wie:

eikrmse + —eikrf(6) + --- (5)

verhält; das heisst einer ebenen Welle.soll sich eine Streuwelle

überlagern, die nur auslaufende Kugelwellen ~—eikr enthält.
Für Cx findet man bekanntlich :

Ct=(2l+l)ileidi.
Dieses Verfahren ist nun bei unserem Problem nicht anwendbar,

weü die Winkelabhängigkeit der Eigenfunktionen nicht durch
Kugelfunktionen gegeben ist. Vielmehr kommen hier die achsen-
symmetrischen, normierten Funktionen:

T, _ =-l/Utì 1 11 +xY dl+" [(x+iy-^x-iy+n (6)''" V 2 2i(l+fi)l[1 + X> dxl+KlX ' V ' J V

in Frage. Diese lassen sich jedoch nicht nach den Pi(x) entwickeln ;

denn sie verschwinden alle für x —1. Es ist auch nicht möglich,
das Feld bei einem Radius r0 abzuschneiden und für r>rQ nach
den Pi(x) zu entwickeln; denn die Randbedingung an der Stelle
r r0 kann dann nicht erfüllt werden. Infolgedessen kann man
nicht verlangen, dass die Lösung die Form (5) haben solle; denn
(5) ist stets nach den Pt (cos 0) entwickelbar. Physikalisch hängt
diese Schwierigkeit mit der Quantelung der Magnetpole zusammen,
die ihrerseits damit zusammenhängt, dass durch die Überlagerung
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des elektrischen und des magnetischen Feldes ein quantisiertes
Impulsmoment um die Verbindungsrichtung der beiden Teilchen
entsteht (s. Fierz, 1. c).

Aus demselben Grunde können wir auch nicht im Sinne einer
Bornschen Näherung das magnetische Feld als eine Störung
behandeln. Denn die Eigenfunktionen hängen nicht stetig von der
Polstärke p ab.

Gleichwohl können wir mit Hilfe eines Ansatzes der Form (4)

zum Ziel gelangen, wenn wir bemerken, dass die Konstanten C%

in (4) auch durch folgende Bedingungen eindeutig festgelegt sind:
1. Die Funktionen rp sollen im fe-Raum normiert sein, wobei k

die Wellenzahl des einfallenden Teilchens bedeutet.
2. Für r -> oo soll die Summe der einlaufenden Wellen sich

als Funktion von 0 wie ô (1 — cos 0) verhalten, wobei à die
Diracsche singulare Funktion bedeutet.

Indem wir die bekannte asymptotische Entwicklung der Bessel-
Funktionen verwenden, setzen wir für unsere Lösung (r -> oo)

gemäss (3)

w !_JL yc,Y1ïei{e-iLn) — e-i(Q-iLn)~\.
]/2n e Y

Hier haben wir, abkürzend, Yt für ''Y;,-^ geschrieben; weiter ist

g= kr und L7f ]/(l+j)2 — fi2 Setzt man

ip u0 + u

so soll u0 die Gesamtheit der einlaufenden, u die auslaufenden
Wellen enthalten. Wir berechnen nun die Cz mit Hilfe unserer
Forderungen 1 und 2:

Da die Yt auf 1 normiert sind, folgt aus:

2710,1^ 0(1-008 0)
i «

mit Hilfe von (5) :

In
Cl\ f 0(1 —cos 0) Y,(cos0) sin0d0 Yi(l) "|/:2/+1

o

Die Phase von Ct wird zu :

Arg Cl —^L n

so dass unser Ansatz die Form annimmt:

K
1/9-27i/2*+ie-iiiJIY*<We)



508 Pierre Paul Banderet.

Die Konstante K ist durch die Normierung bestimmt. Sie lässt
sich aber leichter auf andere Weise bestimmen. Sie ist ein Mass
für die Intensität des einfallenden Stromes und hängt infolgedessen
nur von einer beliebig kleinen Umgebung von 0 0 ab. Wir
bestimmen zunächst in (6) die beiden ersten Terme der Entwicklung

nach (x—1) v:

»y l/2l+l 1 (v+2)"
dl+" ï(v+2Y-"vl+f''].Xl,-M V 2 2l (l+fi)\ K > dxl+"V

Die eckige Klammer lässt sich schreiben

2*-/V+" + 2'-"-1 (l—fi)vl+IJ+1 -i

woraus :

In erster Annäherung verhalten sich alle "Ylt _ß mit verschiedenen fi
gleich. Deshalb ist die Konstante K überall dieselbe. Für fi 0

ist aber y die ungestörte ebene Welle

eikr ™e=£{2l + 1) #l/_|_ j {kr) Pi (cos fl) (7)
1=0

wobei für die unnormierten Pi gilt

Darum wählen wir für K:
K ]/2n

Unser Ansatz wird endlich:

v V? Ê y^+ï «"*"" "Yi, -, JL+i (e)

und die auslaufende Welle:

u
1

o»e y-|/2i+l g-i£ji^y
* l=fif

(8)

Für ,« 0 ist e~iLn (—1)'. Da weiter

%„(-*) (-1)' °Y,o(^)

ist die auslaufende Welle asymptotisch ~(5 (tt—0), was zu erwarten

war: es gibt keine Streu welle.
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Die 0-Abhängigkeit der auslaufenden Welle gemäss (8) ist
unübersichtlich. Die Diskussion des Streuvorganges mit Hilfe der
klassischen Mechanik (s.u.) zeigt aber, dass die Streuung im
wesentlichen durch die Rutherfordsche Streuformel dargestellt
wird. So liegt daher nahe, die auslaufende Welle mit einer Ruther-
fordschen Streuwelle

const.
w- r(l + x)

zu vergleichen. Wir entwickeln letztere nach den Yj und beschränken

uns auf ganzzahlige /«.

TT=Ze*Y}x>- i

c> iW^W /(1+*)"-1^ [(-+1)"" (^Y+"i àx (9)

-1

(/a—l)-fache partielle Integration ergibt:

Dieser Ausdruck verschwindet an der oberen Grenze. Für die untere
Grenze schreiben wir (v x 71) :

Cl {const. -£- [+-> (v-2)^l=- (-1)»' l/2-itl LL

so dass die auslaufende Welle u sich schreiben lässt :

u -e'97TT ~* V* ^ 1/27 + 1 e-**(,+i)"sin-|- (l-L) n-Yl. (10)
1= (l

Für grosse l ist:

L=y(i+i)»_,--i~ft+^ x »
2 \ 2/ 2 i+l.

2

und deshalb

sin 1 (l-L) n~ 2(fl+1)

Daraus ist ersichtlich, dass bei der Summe in (10) nur die kleinen l
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eine Rolle spielen, denn die Faktoren der Y{ nehmen ab wie -=*).
Die Streuung ist also auch im wellenmechanischen Falle, ausser
bei grossen Streuwinkeln, eine Rutherford-Streuung.

Dieses Ergebnis kann man besser verstehen, wenn man das
Problem nach der klassischen Mechanik untersucht. Man zeigt
dort leicht, dass die Partikel im Coulomb-Magnetfeld sich auf den
geodätischen Linien eines raumfesten Kegels bewegen. Der
Öffnungswinkel & des Kegels ist durch

cos &
]/b2v2 + p2

gegeben, wobei p die Polstärke, b den Minimalabstand des
Teilchens zum Mittelpunkt und v die konstante Geschwindigkeit
darstellen3)4).

Wir suchen die Durchstosspunkte der Bahn mit einer grossen
Kugel vor und nach der Streuung. Der feste Kegel sei längs der
Bahnnormalen S aufgeschnitten (Fig.). Asymptotisch verhält sich
die Bahn wie die zu ihr parallele Kegelerzeugende. Aus der Figur
entnimmt man die folgenden Beziehungen:

1
oc -j- n — ny

r> • a 2nbv
y 2 n smir

]/b2v2 + p2

Auf dem Kegel gemessen ist der Winkel dieser zwei Erzeugenden:

4wb v2a 1
]/b2v2 + p2

Daraus errechnet man leicht mit Hilfe der sphärischen Trigonometrie,

dass für den Ablenkungswinkel co:

7l]/b2V2+p2
p2+b1vi cos ——; — /,-,,bv (11)

cos co
v ;

p2+b2v2
gilt.

*) Man kann mit Hilfe der DARBOuxschen Methode (Journ. math, pures et
appi, série 3, Bd. 4, S. 5—56) zeigen, dass für grosse l die Tj _ sich wie

V-, 21 + 1 |7, 1

n (1 + ji) sin ô W 2/ 4

verhalten. Die hierzu notwendige erzeugende Funktion bekommt man nach
Polya-Szbgö, Aufgaben und Lehrsätze aus der Analysis, Bd. I, S.127. Die^F;.^
lassen sich, bis auf einen Faktor (1 + x)11, als Jacobische Polynome darstellen
deren erzeugende Funktion 1. c. (S. 303) angegeben ist.
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Wir betrachten nun einen homogenen Teilchens troni, der durch
die Ebene z oo in der —^-Richtung fortschreitet. Es sei in dieser
Ebene b der Abstand des Durchstosspunktes der 2-Achse vom
betrachteten Teilchen (Stossparameter). Die Ablenkung eines
Teilchens mit Stossparameter ò ist durch die Formel (11) gegeben,
denn wegen des Drehimpulssatzes sind Stossparameter und Mini-

Bahn

Mg. 1.
Die 8 sind die Bilder derselben Erzeugenden. S ist senkrecht zur Bahn. Im Raum

ist asymptotisch die gestrichene Erzeugende parallel zur Bahn.

malabstand des Teilchens vom Mittelpunkt einander gleich. Für
grosse ò-Werte ist angenähert:

]/b2v2 + p2 _.
- -- -

und cos co
P*

bv ""^ ^"" ~" p2+b2v2

Bei der Rutherfordschen Streuung gilt bekanntlich:

ctg y <° — bv2

wenn Masse und Ladung gleich 1 gesetzt werden; v bedeutet die
Geschwindigkeit für r oo. Diese letzte Formel lässt sich auch
schreiben :

l-i2«;4
cos co —

1 + iH4

Also verhalten sich für kleine Ablenkungswinkel (cos co ~1),
v 1 und p 1 magnetische und elektrische Streuzentren gleich.
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Man sieht jetzt die Bedeutung der einzelnen Terme in (10).
Für kleine Streuwinkel (6~tc, d.h. co~0) hat man ziemlich genau
Rutherfordsche Streuung, der erste Term überwiegt. Die Konvergenz

der Reihe (9) ist schlecht, weil die Yz für 0 ti verschwinden ;

deshalb werden die ct gross. Für grosse Streuwinkel ist klassisch
TL vii V^ ~f~ 'jO^

der Faktor cos wesentlich : für b —> 0 schwankt cos wbv
'p2 — b2 v2

unendlich oft zwischen 2772^ und —1. Diese Abweichungen
der Rutherford-Streuung werden durch den zweiten Summanden
in (10) beschrieben, für diesen Teil sind die Y; mit kleinem l,
d. h. die Teilchen mit kleinem Drehimpuls (resp. mit kleinem
Stossparameter) massgebend. Es ist aber klar, dass für diesen
Teil die Wellenmechanik etwas anderes liefern wird als die
„geometrische Optik", denn in der Nähe des Mittelpunktes sind die
Bahnen stark gekrümmt. Wir werden jetzt untersuchen, wie genau
die klassische Mechanik in diesem Fall die wellenmechanische
Lösung wiedergibt.

Die allgemeine Methode (W.K.B.-Verfahren) ist folgende5) :

man mache den Ansatz:
À 8

f eh

und entwickle S nach Potenzen von — :
1

S Sn -\—- o, 7 • • ¦ •

Es gilt dann für S die Hamilton-Jacobische partielle
Differentialgleichung der Mechanik. Die Gleichung für Sx erweist sich
als Kontinuitätsgleichung für die Dichte g e2Sl. In dieser
Näherung verhalten sich die Wellenpakete genau wie eine
Gesamtheit von Massenpunkten, die sich auf den klassischen Bahnen
bewegen.

Die Näherung ist dann gut, wenn in allgemeinen Koordinaten5)
gilt:

g Nr+A>)\j€+A)>D-HLDg [-öi;+A*)¦ (12)

Das Linienelement hat die Form

ds2 gxXdqxäqi,

die gfxA bilden die zu (gx>) reziproke Matrix und D ist ]/\gx>.j
Die Relation (12) bedeutet, dass Sn+1 klein gegen Sn wird.
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Die -j— lassen sich aus den bekannten Integralen bestimmen zu :

d à8 -,/-. b2
B„ =— mv /1 _-" dr fr2
n dS i/ l-cos6

" dd Y r l + cos8

p =4^ o.

Diese Funktionen setzen wir in (12') ein. Nach entsprechenden
Kürzungen erhält man:

2rœsô 12
1 [l + cosö J ^m'v

11 + cos a j =-

b
•z-

^>h)mv
2-

r2 p2— (m2 b2v2+p2) cos 9

)72-&2 |/m2J2ü2sin2e-p2(l-cose)2j '

Die Darstellung ist offenbar schlecht, wenn r b, das heisst,
wenn das Teilchen möglichst nahe am Zentrum ist, und wenn:

m2ö2«2 sin2 0 — p2 (1 — cos 0)2 0
d.h.

p2— m2b2 v2
cos 0 1 und cos 0

p2+m2l2v2

Diese letzte Bedingung sagt aus, dass die Näherung an den
Stellen schlecht ist, wo co (b) ein Extremum hat. Für diese 0-Werte
ist für grosse r die Ablenkung gerade die doppelte Kegelöffnung &.
Dass dort die Näherung schlecht sein muss, ist leicht einzusehen:

der différentielle Streuquerschnitt d 0 ist proportional -5—, wobei

über alle Zweige des mehrdeutigen b (co) zu summieren ist. Wenn
co (b) ein Maximum hat, so hört ein Zweig auf beizutragen, und
d& als Funktion von b hat eine Ecke, so dass Beugungserscheinungen

auftreten. Es ist jedoch zu sagen, dass die Stellen, wo (12)
nicht erfüllt ist, wegen der Quadratwurzel schmal sind. Das von
der klassischen Mechanik gegebene Bild ist gut, vor allem für
kleine Ablenkungswinkel.

33
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II. Die Diracsehe und die Paulische Gleichung.

Die bisher behandelte Schrödinger- Gleichung ist unrelativistisch.
Die entsprechende Lorentzinvariante-Gleichung für das Einkörperproblem

wurde von Dirac aufgestellt. Dort ist die ^-Funktion
kein Skalar mehr, sondern ein Spinor mit vier Komponenten,
das heisst, sie genügt einem bestimmten Transformationsgesetz
bei Lorentz-Transformationen, insbesondere bei Drehungen. Im
letzteren Fall transformieren sich die Komponenten paarweise
unter sich. Bei nicht allzugrossen Geschwindigkeiten ist ein Paar
gross gegen das andere. Man kann deshalb, bei Vernachlässigung
von Termen mit höheren Potenzen der Lichtgeschwindigkeit im
Nenner, aus der Diracschen Gleichung die Paulische Gleichung
ableiten; letztere ist nur noch eine Beziehung zwischen den zwei

grossen Spinorkomponenten.
Wir betrachten wieder ein magnetisches Coulomb-Feld, wobei

das Zentrum im Ursprung liegt, und beschreiben es durch das

Vektorpotential (1). Die Symmetrie des wellenmechanischen
Problems wurde von Fierz3) untersucht. Obwohl nämlich das Feld
drehinvariant ist, ist es das Vektorpotential nicht: übt man eine

Drehung aus, so addiert sich zum Vektorpotential ein Gradient.
Entsprechend wird die Eigenfunktion mit einem Phasenfaktor
multipliziert, der bei der Bildung aller messbaren Grössen herausfällt.

Die Hamiltonfunktion ist daher invariant gegen Drehung
und anschliessende Umeichung. Entsprechend treten in den Operatoren

der infinitesimalen Drehungen dt zu /a proportionale Zusätze
auf, die der zur infinitesimalen Drehung gehörigen infinitesimalen
Umeichung entsprechen (Fierz, 1. c).

Die di erfüllen unter sich die bekannten Vertauschungsrelationen :

dxdy — dydx idz,
Die IMYlm bilden die zu den dt gehörige Darstellung der
Drehgruppe. Insbesondere folgt, dass wir die Y so auf 1 normieren
können, dass

(dx-idy) "Yl>m= i(l-m)(l + m + l)»Yhm+1

(dx-idy) "Yhm= #7m)(J-m7l) »Yhm_x (14)

àz %,m= rn"Ylim.*)
Die Diracsehe -^-Funktion ist in unserem Fall auch eine

Darstellung der Drehgruppe6) mit den dt als Operatoren des Dreh-

*) Die der Gleichung (13) zugrundegelegte Normierung der ßYi m entspricht
derjenigen bei van der Waerden6).
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impulses. Die allgemeine Darstellungstheorie gibt uns die Mittel,
einen Ansatz für y> zu finden, so dass die partielle Differentialgleichung

auf eine gewöhnliche Differentialgleichung in r zurückgeführt

wird.
Jedes Komponentenpaar der ^-Funktion bildet eine halbzahlige

Darstellung der Drehgruppe. Wir können deshalb sofort den
Winkelteil der Eigenfunktionen angeben.

Das Gesamtimpulsmoment j setzt sich aus dem räumlichen Teil l,
den wir schon in der nichtrelativistischen Theorie hatten (er
besteht aus Bahnimpuls und Feldimpuls), und aus dem Spin
zusammen. Zu einem gegebenen j gibt es zwei Arten von Darstellungen,

je nachdem der Spin parallel oder antiparallel zum räumlichen

Impulsmoment steht. Nach van der Waerden7) sind die
winkelabhängigen Bestandteile der Eigenfunktionen:

wi __L/-_^i« Yl,m \==Wl-i
"m+i.i ]/2l + l\]/l+m+l Ylm+J m+*>'

w> —-1—/^™ r'-i.» Wl~iWm+U-l ]/2l + l\\/l-m-lYl_Xm+xJ m+<-

(15)

und als Ansatz werden wir eine lineare Kombination beider W*
mit Funktionen von r als Faktoren wählen.

Nun schreiben wir die vollständige Diracsehe Gleichung auf.
Sie lautet (für negativ geladene Teilchen) :

ÈrÌTi^-i0^~imcìF+clZZF^l'r*lF o-
ß l ' ft V

Es ist xi ict. Die y1* sind vierreihige Matrizen, die den
Relationen :

y»f + yy» 2ôflv

genügen. Das Glied mit M beschreibt ein für das Teilchen
charakteristisches zusätzliches magnetisches Moment; dieses ist Null für
Elektronen. <£li2,3 ist das Vektorpotential, lji $4 das skalare
Potential des Feldes FßV. Es gilt also :

F E**—EEjl F =-Fi" dx* dx* ' i1" "v '

In unserem Falle sind (p Polstärke) :

1 r{r+z) ' 2 r(r + z) ' ó *

$1=^23 ^, & Fa %-, §>3=FX2 ^-, Fi4=0.
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Man macht wie üblich den Ansatz:

W=tpe h
=rpe

hc *

wo ip y> (x, y, z) von t nicht abhängt, rp genügt sodann der
Gleichung :

Wir wählen für die y'1 die Darstellung:

y-'(LI") "=^-3- ="=(» -Î)
wobei I die Einheitsmatrix und die 07, die gewöhnlichen Pauli-
Matrizen :

ffl (Î u) ff2 "o) *« (« J)
bedeuten, die die Relationen

al » °;^ - °> CTi » ff* (*> 7. fe zyklisch (16)

erfüllen. Daraus folgt weiter

' r \0 aua») \0 aj
(z«, v, g 1, 2, 3; /*, i>, p zyklisch).

Wir setzen nun:
/ V

wobei yis und ipa selbst zwei Komponenten haben. Dann gilt :

+ ^-mc)v*-Za,(l^-^)r-^£o^=0
y // 1 x ' /1 1

(17)

Bei Spiegelungen ist ^s symmetrisch und y antisymmetrisch.
Wir führen jetzt Polarkoordinaten ein. Dabei gilt für den
Spinvektor :

ax sin 0 cos cp + a2 sin 0 sin cp + a3 cos 0 ff,. e

ff! cos 0 cos 99 7 ff2cos 0 sin 99 — ff3 sin 0 ff „ (18)

— 07 sin 9? 7 ff2 cos cp ay
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Die Vertauschungsrelationen (16) werden:

oroe ia<p, °c,ov iar, alfar ias>, a2r a\ a\ 1. (19)

Mit e multipliziert nehmen die Gleichungen (17) die folgende
Gestalt an:

e
IE \ s h r d iCç, à ioe d iAOe i-cosöl „,mciyf r- Lr— H --=r --=i> =—s— V\c /' i [or r dd rsinô öc> r sin0 JT

+ ^V-0 (20)

\c )r % [dr r dd rsmÖ dcp r sino J r
2MP a n~- wa 0

cri '

Beachten wir, dass die Drehimpulsoperatoren sich schreiben
lassen :

-, à „ à 1-cosöd. % sm cp -r^- 7 % ctg 0 cos cp -r m —^—^— cos »

-, ¦ d „ d l-cos8
d^-icosep-jQ+ictgdsmcp-^-fi gin ß

sin y

_ _ • ô
_

so zeigt eine leichte Rechnung mit Hilfe von (18) und (19), dass:

(a,d)=-%a^w+°JL + lLJL(i-c0S6)-fior.uo smö oçj smö x iii
Damit wird die Gleichung (20) :•

IE \ fero (5, d) + /*el 2iVp n

/£¦ \ „ h \ d (a,d) + fie, 2Jfp n
^ '

Wir müssen nur noch wissen, wie die einzelnen Operatoren auf
die W1' wirken.

e ist ein Skalar ; denn es ist das Produkt des symbolischen Vektors

S mit dem Einheitsvektor. Die Wm+u-i und die Wm+ia bilden
zusammen ein vollständiges System: jedes Funktionenpaar lässt
sich nach den Wj entwickeln. Das Produkt eW> transformiert
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sich wie ~Wj selbst, seine Entwicklung enthält also nur die beiden W'.
Es muss demnach gelten:

«W£Ä,i= <*K+\, i + bWi+V«-i

^M-i-^^ + ^lw*)
Die Koeffizienten hängen von m und von 0 nicht ab. Wir

bestimmen sie deshalb aus speziellen Werten der W, indem wir
m 1 — 1, cp 0 und cos 0 0 (daher e ax) setzen.

Nun ist (x cos 0)
i— p. i+ p

KY - l l/2'+1 (2')! (1<X)~^(1 -X) 2

"Y - 1 l/2i+1 (2t~f)l" }l±iLl\A.x\-tL n x)*-l,l-i- 2i-i\/ 2 (!+«)! (I- u)\ 1-x2 {l+ X> ^ X>

l—ft 1+ fX

._ - 7x77n^
(l+/A)<(l-ß)\

Woraus mit

b - JL 1/2T+Ì. (2iyr

Durch Einsetzen in (23) bekommt man

a JL b ]/l
1/1-7 <<~ï

(ff, d) lässt sich mit Hilfe der Drehimpulsrelationen angeben :

d + ~'af= j(j + l) l*-±=d* + {d,Ò) 3_

4 ™ ' v~'"/ ' 4
Also ist

(d,ff) l2-l-d2.
*) Die ''F; gehören zum Spiegelungscharakter (-1) +7 und die PTj * daher

auch. Der Pseudoskalar /< kehrt bei Spiegelungen sein Vorzeichen ebenfalls um.
Man kann deshalb nicht, wie bei der Lösung der Diracschen Gleichung eines Elek -

trons im elektrischen Coulomb-Feld:

F Wl~i. — h Wl~i,

schliessen, weil e schiefsymmetrisch ist, sondern nur

wo k und k' gewöhnliche Konstanten sind.
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Es gilt

Somit ist

{o,d)w^+\A=-(Wl)Wl7+\tl
{vJ)Wm+iJ_x=(l-l)Wl-+ihl_x.

ips und if sind Darstellungen der Drehgruppe; der allgemeinste
Ansatz ist deshalb nach dem bisherigen:

^s=/i e«+i,+/2 w i^i^i
¥ Uml7+\,i + i^Wl-+\,i-i-

Diesen setzen wir in die Diracsehe Gleichung (21) ein und bringen
in jeder Gleichung den Faktor der verschiedenen W zum
Verschwinden. Das bedeutet, dass der symmetrische und der
schiefsymmetrische Teil der Gleichung getrennt verschwindet. Das gibt :

H-(T+"")(H+-\/^f')
-L[Li-L)f>-*t-Lf>h^t>

l/HT-HdA^-f.)
-£[-*y^M,-x-*M-,-£''«(M>

-LlL'-Df'-^-Lf.LL^ft
t«-(t—«Jd/i^fc-f/.)

Das System (24) hat, wegen der Terme proportional M, für
r 0 eine starke Singularität. Es lässt sich leicht zeigen, dass,
falls M±0 ist, es keine Lösungen der Form :

CO

/.= r«;27«<V
»•=0

gibt. Die fi sind daher in diesem Falle nicht quadratintegrierbar.
Das Glied mit M entspricht im unrelativistischen Grenzfall einem
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2 Mp
(winkelabhängigen) Potential ; d.h. es ist formell E durch E
ersetzt. Das Teilchen besitzt ein zusätzliches Dipolmoment und
wird vom Zentrum mit einer Kraft proportional 1/r3 angezogen
resp. weggestossen, je nach der Richtung dieses Momentes. Dann
ist aber kein stationärer Zustand mehr möglich; denn im Falle der
Anziehung fällt das Teilchen in das Zentrum hinein.

Stationäre Zustände gibt es demnach nur für M 0. Dies kann
man als einen Grund betrachten, warum es keine magnetischen
Teilchen gibt. Denn in Wirklichkeit ist für Protonen M^O;
diese haben ein Moment von 2,7 Kernmagnetonen. Sie könnten
also nicht in „stabiler" Wechselwirkung sein mit den singulären
Magnetpolen.

Für M 0 findet sich aber leicht ein Ansatz. Die beiden
Gleichungen (21) unterscheiden sich nur im konstanten Faktor Efc -yrn, c.
Es liegt nahe

¥ Ay,« d.h. (>;H(>;)
zu setzen; für

y E—me2

gilt
™ E2-m2ci\

h2 e2

l+l-S
/;-^f(^/1+i/i^/2)—-Lfx+JLyYLrjf2

i_i f
f2-ivw(yi^f1-~ih)+JLyi^f1+-~TJ-f2

sowie dasselbe System für /3 und /4.
Das System lässt sich durch die Transformation:

/i Mi + YT^

vereinfachen. Es gilt:

9i -|(l/'¥I^ + l)3i + ^^F(l/l^)g2
g2 -2iyWl2(^l--Ç)gx + \(yW^f72-l)g2

(25)

(26)
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woraus nach kurzer Rechnung:
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ffi ffr

-Sa-

E' —

E'-

Za-/fa + )/fa - m2

•-/<* j/Z2-^2
</2 o.

Die öj sind im wesentlichen Bessel-Funktionen :

0i

^2

~7~ ^7 (g)
K? /P—A»*+yj"—*«* +1/4

J (e)
Yq Vp-p'-Yp-iü+IH

wo 5 ]/E' r
Demnach ist die Lösung der Diracschen Gleichung:

*=[rJYtttà + ^JYumMÌw> (27)

W,.

wobei

\2 ^-A*2±l/«2ZI72
und die ÏFj durch (15) gegeben sind.

(Die zweite Lösung bekommt man durch Vertauschen von lx

und 12 und Ändern des Vorzeichens von "1/1 —-
Weiter ist

v=y--E-mc2,
E+mc2

Die eigentümliche Form der Lösung versteht man besser, wenn
man die iterierte Diracsehe Gleichung8) löst. Diese zerfällt in
zwei identische Systeme*) für y>s und ip"; denn sie lautet:

v l *- J ft V

Sie lässt sich separieren durch

y B (r) 0 (0, cp)

*) In Abwesenheit eines elektrischen Feldes zerfällt die Diracsehe Gleichung
immer in zwei identische Gleichungen mit zwei Komponenten. Dann sind die
Diracsehe Gleichung und die Paulische Gleichung einander gleich. Man vergleiche
z. B. die Gleichungen (7.10) S. 303 und (8. 5) S. 305 im Artikel von H. Bethe
Handbuch der Physik, XXIVr
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und Xx 2 ist dann der Eigenwert der Winkelgleichung. Für B
bekommt man die Funktionen gi; und 0 ist eine lineare Kombination

der W, so dass in etwas anderer Form wieder die Lösungen (27)
herauskommen. Was die iterierte Gleichung nicht liefern kann,

ist der Faktor —--
ipß
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