Zeitschrift: Helvetica Physica Acta

Band: 19 (1946)

Heft: VI-VII

Artikel: Zur Theorie singularer Magnetpole
Autor: Banderet, Pierre Paul

DOl: https://doi.org/10.5169/seals-111714

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-111714
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Zur Theorie singulirer Magnetpole
von Pierre Paul Banderet.
(20. VIIL. 1946.)

Zusammenfassung. Im Anschluss an Arbeiten von Dirac und Fierz werden
die singuldren Magnetpole weiter untersucht. Die vorliegende Arbeit behandelt:

1) Die Streuung von geladenen Teilchen im Feld eines singuldren Magnetpols.
Das Problem lisst sich durch eine Reihenentwicklung nach Kugelwellen losen.
Das Resultat ist dhnlich demjenigen, das die klassische Mechanik liefert.

2) Die Eigenfunktionen der Diracschen Gleichung eines elektrisch geladenen
Teilchens im magnetischen Coulomb-Feld. Physikalisch brauchbare Eigenfunk-
tionen gibt es nur im Falle von Elektronen; fiir Teilchen mit anderem magnetischen
Moment ist die Diracsche Gleichung singulir. Die Eigenfunktionen des Elektrons
werden aufgestellt.

Einleitung.

In der klassischen Elektrodynamik ist es moglich, magnetische
Strome und Ladungen einzufithren. Die magnetische Ladung trans-
formiert sich bei Lorentz-Transformationen wie ein Pseudoskalar.
Seien nun m und m die magnetische Strom- bzw. Ladungsdichte,
so Jauten die zugehorigen Maxwellschen Gleichungen: :

1“0t(5¢—55~~—i—1~m div $=4am .

Diese lassen sich im allgemeinen nicht mehr durch Einfihrung
von Potentialen: -

€= —grad V—

%Qi, $H =rot A

integrieren. In den Gleichungen der Wellenmechanik kommen
aber diese Potentiale explicite vor. Nur ein statisches magnemsches
Coulomb-Feld :

S =vrs  Ho=H,=0

r2
kann durch emn Potential
$ =rot A

beschrieben werden. Die zugehorige Ladung ist aber notwendig
eine Punktladung, ein singuldrer Magnetpol.
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Nach dem Satz von Stoxes gilt fiir eine geschlossene Fliche 2
und ein reguldres, eindeutiges Vektorfeld 2:

frot-‘lldcr=0.

2

Andererseits ergibt die Integration iiber eine Kugel um den Null-
punkt:

fg)rd()':pf—jz—dd:élﬂp.

Daher ist das zugehorige Vektorpotential 2 entweder nicht regu-
lar wie:
A=A, —0, AP 50O W

r l+cos 6§

was unendlich wird fir 6 =&, oder nicht eindeutig wie:
AW=A -0, A=—Logsing.

In beiden Féllen gibt es singuldre Linien im Raum; denn auf jeder
Flache um einen einzelnen Magnetpol gibt es mindestens einen
singularen Punkt. Im zweiten Fall ist er solcher Art, dass das Vek-
torpotential seinen Wert dndert, wenn man ihn umfihrt. Diese
singuldren Linien kann man durch Umeichen des Vektorpotentials
im Raume verschieben, aber ihre Endpunkte liegen fest in den
Singularitéiten des Feldes.

Dirac!) ist bel semer Begriindung der Wellenmechanik der
Magnetpole von der Betrachtung der Phase der u-Funktion aus-
gegangen. Die Phase braucht an sich keine eindeutige Ortstunk-
tion zu sein, da ihr keine direkte physikalische Bedeutung zukommt.
Dirac untersuchte, welcher Art die Mehrdeutigkeit sein konne,
ohne den allgemeinen Formalismus der Wellenmechanik zu storen.
Er zeigte, dass es im Raume Kurven gibt, auf denen die -Funktion
verschwindet (Knotenlinien) und auf welchen die Phase von v
singulér sein kann: bel einem Umlauf um eine solche Kurve kann
die Phase von % ihren Wert um einen festen (das heisst nur von
der Kurve abhéngigen )Betrag #ndern. Diese Knotenlinien lassen
sich durch Umeichen der Phase (resp. des Vektorpotentials) im
Raume verschieben. Thre Endpunkte liegen jedoch fest in den
Singularititen des elektromagnetischen Feldes, die sich als singu-
lare, quantisierte Magnetpole erweisen.

Anschliessend an diese Arbeit wurde von J. Tamm?) die Bewegung
eines Elektrons in einem magnetischen Coulomb-Feld untersucht.
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Er bestimmte die Eigenfunktionen der zugehorlgen Schrodlnger-
gleichung:

_h2{02;20'¢p 1o 1 dzL

2m orr " r or +—[092 " sin%0 d¢? |
L 2 g 1—cosl B ‘
" 1+cosh qu ¥ Ctgﬁ kN ]W}—Ew- , (2)

1+ cosf

Hier bedeutet u die dimensionslose Zahl %{—.

Frerz3) hat eine einfachere Form der Losungen von (2) angegeben.
Seine Herleitung stiitzt sich auf die Transformationseigenschaften
des Problems bei Drehungen. Die Eigenfunktionen von (2) haben
die Gestalt:

¥ m (k75 0, @) = const. — V Iy, (kr) €m0 e 1Y, (cos 6). (3)
Dabei ist ik der Betrag des Teilchenimpulses. J; 1, ist die Bessel-

funktion mit dem Index L+ = J/(I+15)2 — p?.
Die #Y, ,, (cos 6) lassen sich wie folgt darstellen (z = cos 0):

_(m—p) MAR g

“Y, = () ¢ (—a) P [ ()t

wobel m, u und [=u zugleich halb- oder ganzzahlig sind¥).

In der vorliegenden Arbeit werden gewisse Besonderheiten dieser
Higenfunktionen an Hand eines speziellen Problems (Streuung an
elnem magnetisch geladenen Zentrum) hervorgehoben. In einem
zweiten Teil werden die Transformationseigenschaften des Pro-
blems dazu bentitzt, um die zugehorige Diracsche Gleichung zu
l16sen.

I. Der magnetische Pol als Streuzentrum.

a) Behandlung nach der Wellenmechanik.

Wir betrachten das Problem der Streuung an einem magnetischen
Teilchen, das wir uns als schwer gegen die gestreuten Partikel vor-
stellen. Die Differentialgleichung des Problems ist (2), wobei ypyp*
die Aufenthaltswahrscheinlichkeit des Teilchens beschreibt, wih-
rend der unendlich schwere Streuer im Nullpunkt ruht. Die Losung,
welche dieses Streuproblem beschreibt, setzt sich linear aus den
Funktionen (8) zusammen. Wir werden die Konstanten so wihlen,
dass durch die Ebene 2z = co ein homogener Teilchenstrom in der

*7) Wihrend ! und m, wie iiblich, dem Gesamtimpulsmoment und seiner z-Kom-
ponente zugeordnet sind, entspricht L dem Impulsmoment der Bewegung des
Teilchens.
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—z-Richtung fliesst (diese Festsetzung ist bei der hier verwendeten
Eichung des Potentials die einfachste). Es wird sich zeigen, dass
diese Randbedingung sich so prizisieren lisst, dass die Konstanten
dadurch véllig bestimmt werden.

Bei den meisten anderen Streuproblemen, bei denen das Poten-
tial nur vom Abstand r abhiéingt, filhrt das Verfahren von Faxix
und Horrsmark (Z.5. f. Ph. 45, 307 (1927)) zum Ziel. Man nimmt
dabei an, dass das Potential mit wachsendem » hinreichend rasch
verschwindet, so dass sich die radialsymmetrischen Losungen
v, (kr, cos 0) asymptotisch wie

1 ; 1
— P, (cos ) sin (kfr-—?nl+5l)

verhalten. Macht man nun den Ansatz

v=2"Cpy (kr,cos 0), (4)
=0

so sind die C, durch die Forderung bestimmt, dass y sich fiir
grosse r wie:

eikr cosﬂ+ %ezkrf(a) 4 .5 (5)

verh#lt; das heisst einer ebenen Welle.soll sich eine Streuwelle

iiberlagern, die nur auslaufende Kugelwellen ~-11;— e'*r enthilt.
Fuar C, findet man bekanntlich:

C,=(21+1) il e,

Dieses Verfahren i1st nun bei unserem Problem nicht anwendbar,
well die Winkelabhéingigkeit der Eigenfunktionen nicht durch
Kugelfunktionen gegeben ist. Vielmehr kommen hier die achsen-
symmetrischen, normierten Funktionen:

! —1/21+1 i I—pt (o 1)+ 0e :
e T (Lo U s VAl B

in Frage. Diese lassen sich jedoch nicht nach den P,(x) entwickeln;
denn sie verschwinden alle fiir x = —1. Es ist auch nicht moglich,
das Feld bei emnem Radius r, abzuschneiden und fiir r>r; nach
den P;(x) zu entwickeln; denn die Randbedingung an der Stelle
r =7, kann dann nicht erfillt werden. Infolgedessen kann man
nicht verlangen, dass die Losung die Form (5) haben solle; denn
(5) ist stets nach den P, (cos 6) entwickelbar. Physikalisch hingt
diese Schwierigkeit mit der Quantelung der Magnetpole zusammen,
die ihrerseits damit zusammenhiingt, dass durch die Uberlagerung
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des elektrischen und des magnetischen Feldes ein quantisiertes
Impulsmoment um die Verbindungsrichtung der beiden Teilchen
entsteht (s. Fierz, 1. c.).

Aus demselben Grunde koénnen wir auch nicht im Sinne einer
Bornschen Niaherung das magnetische Feld als eine Stoérung be-
handeln. Denn die Eigenfunktionen héngen nicht stetig von der
Polstarke p ab.

Gleichwohl kénnen wir mit Hilfe eines Ansatzes der Form (4)
zum Ziel gelangen, wenn wir bemerken, dass die Konstanten C,
in (4) auch durch folgende Bedmgungen eindeutig festgelegt sind:

1. Die Funktionen % sollen im k-Raum normiert sein, wobei %
die Wellenzahl des einfallenden Teilchens bedeutet.

2. Fir r — oo soll die Summe der einlaufenden Wellen sich
als Funktion von 6 wie 6 (1 —cos 0) verhalten, wobei d die
Diracsche singulire Funktion bedeutet. |

Indem wir die bekannte asymptotische Entwicklung der Bessel-
Funktionen verwenden, setzen wir fiir unsere Losung (r — oo)
gemiss (3)

Y ~— 2 C,Y [ez(o $Ln)__ —i(g—%Ln)]

]/2:71: e

Hier haben wir, abkiirzend, Y, fir #Y, _, geschrieben; weiter ist
o=kr und L+1 =) (+}2— u?. Setzt man

‘P:’“foJF‘U’,

so soll u, die Gesamtheit der einlaufenden, w die auslaufenden
Wellen enthalten. Wir berechnen nun die C; mit Hilfe unserer
Forderungen 1 und 2:

Da die Y, auf 1 normiert sind, folgt aus:
Z!Cll Yl = (5(]. —COSB)
2
mit Hilfe von (5):

2= )
| C, | :fé (l—fcos 6) Y;(cos0) sin0db=Y, (1) = 1/2__1;1

Die Phase von C; wird zu:
Arg C, = —%L -

50 dass unser Ansatz die Form annimmt:

- R
V2o
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Die Konstante K ist durch die Normierung bestimmt. Sie lésst
sich aber leichter auf andere Weise bestimmen. Sie ist ein Mass
fiir die Intensitéit des einfallenden Stromes und hangt infolgedessen
nur von einer beliebig kleinen Umgebung von 6 =0 ab. Wir
bestimmen zunéchst in (6) die beiden ersten Terme der Entwick-
lung nach (z—1) = v:

21+1 1 PR o o g, B
Y, = VI i 00 S (2o,

Die eckige Klammer lisst sich schreiben

2l~—,u,vl—’s—,u+ 2l—,u——1 (l—‘u) ,Ul+y+1 ey
woraus:

“Yl’_#:]/z_l:[1+—l®+ ]

In erster Annéherung verhalten sich alle #Y; _, mit verschiedenen u
gleich. Deshalb ist die Konstante K iiberall dieselbe. Fir u =0
15t aber v die ungestorte ebene Welle

o0

gikreost— 3T 4 1) 4! 2}” Jl g (kr) Py (cos 6) (7)

=0
wobel fiir die unnormierten P; gilt

2l+1

OYL 0 — Pt
Darum wihlen wir fir K:
K- ox.
Unser Ansatz wird endlich:
Y= —2]/2l+16_%‘“’ #Y L—i—i (Q)

hl_

und die auslaufende Welle:

u:—ieiQZ]/%l;ile"iL“Y,,_y. (8)
e £,
Fir u = 0 ist e7*L™ = (—1).. Da weiter

Yo (—a) = (1) 0¥, ()

ist die auslaufende Welle asymptotisch ~¢ (m— 6), was zu erwar-
ten war: es gibt keine Streuwelle.
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Die 6-Abhéngigkeit der auslaufenden Welle gemiiss (8) ist un-
tibersichtlich. Die Diskussion des Streuvorganges mit Hilfe der
klassischen Mechanik (s.u.) zeigt aber, dass die Streuung im
wesentlichen durch die Rutherfordsche Streuformel dargestellt
wird. So liegt daher nahe, die auslaufende Welle mit einer Ruther-
fordschen Streuwelle

zu vergleichen. Wir entwickeln letztere nach den Y, und beschrin -
ken uns auf ganzzahlige p.

1
1 chl Y,
. _
+1

21+1 1 _ dlmiqu, B
C,= ]/T E0 f (1_]_33)” 1 dwi+”[(m+1)l H (wml)”"‘] dx (9)
—1

(n—1)-fache partielle Integration ergibt:

27+1 1y#1 1)! s
L o

Dieser Ausdruck verschwindet an der oberen Grenze. Fiir die untere
Grenze schreiben wir (v = z+1):

Cz:{COnSt. dd:t ['Dl__'u (rv_ )Z+H]} ( 1)l+y, ]/2 12‘{‘1 1

i

so dass die auslaufende Welle % sich schreiben lisst:

u="ele_— : —@1/2 2]/2l+16“’5‘“’“’“81n (I—L)n-Y:. (10)

o g

Fir grosse [ 1st:

und deshalb

. M2
Sln o (l ) “é'(m .

Daraus ist ersichtlich, dass bei der Summe in (10) nur die kleinen [
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eine Rolle spielen, denn die Faktoren der Y, nehmen ab wie %*).

Die Streuung ist also auch im wellenmechanischen Falle, ausser
bei grossen Streuwinkeln, eine Rutherford-Streuung.

Dieses Ergebnis kann man besser verstehen, wenn man das
Problem nach der klassischen Mechanik untersucht. Man zeigt
dort leicht, dass die Partikel im Coulomb-Magnetfeld sich auf den
geoditischen Linien eines raumfesten Kegels bewegen. Der Off-
nungswinkel & des Kegels ist durch

p

cos & = ey
Vbzvz + p?

gegeben, wobel p die Polstdrke, b den Minimalabstand des Teil-
chens zum Mittelpunkt und v die konstante Geschwindigkeit dar-
stellen?®) 4).

Wir suchen die Durchstosspunkte der Bahn mit einer grossen
Kugel vor und nach der Streuung. Der feste Kegel se1 lings der
Bahnnormalen S aufgeschnitten (Fig.). Asymptotisch verhilt sich
die Bahn wie die zu ihr parallele Kegelerzeugende. Aus der Figur
entnimmt man die folgenden Beziehungen :

—la_n
® =5 Y
. 2nb
y:2n81n19‘=—::?:7_£;—.

' ]/b2v2+p2

Auf dem Kegel gemessen ist der Winkel dieser zwel Erzeugenden:

2Cl= 1——:&'_;11);- .
]/b2v2+p2

Daraus errechnet man leicht mit Hilfe der sphérischen Trigono-
metrie, dass fiir den Ablenkungswinkel w:

g - 71]/52’024-192
p%+ b2 v? cos . By P (11)

cCos w — —
P24 b2 o2

gilt.

*) Man kann mit Hilfe der DarBouxschen Methode (Journ. math. pures et
appl. série 3, Bd. 4, S. 5—56) zeigen, dass fiir grosse [ die #Y L —u sich wie

]/ 27+1 Z+1 o "
a(l+,u)siﬁcos[( "5) _"Z]

verhalten. Die hierzu notwendige erzeugende Funktion bekommt man nach
PorLyA-SzEGO, Aufgaben und Lehrsatze aus der Analysis, Bd. I, S.127. Die #Y; _,
lassen sich, bis auf einen Faktor (14 z)#, als Jacobische Polynome darstellen
deren erzeugende Funktion 1. c. (8. 303) angegeben ist.
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Wir betrachten nun einen homogenen Teilchenstrom, der durch
die Ebene z = oo in der —z-Richtung fortschreitet. Es sei in dieser
Ebene b der Abstand des Durchstosspunktes der z-Achse vom
betrachteten Teilchen (Stossparameter). Die Ablenkung eines
Teilchens mit Stossparameter b ist durch die Formel (11) gegeben,
denn wegen des Drehimpulssatzes sind Stossparameter und Mini-

Fig. 1.
Die S sind die Bilder derselben Erzeugenden. S ist senkrecht zur Bahn. Im Raum
ist asymptotisch die gestrichene Erzeugende parallel zur Bahn.

malabstand des Teilchens vom Mittelpunkt einander gleich. Fiir
grosse b-Werte ist angeniihert:
T pt-beo?

ba und COoOS o ~ — *ﬁmz“ﬁ'.

Bei der Rutherfordschen Streuung gilt bekanntlich:
ctg % w = b2

wenn Masse und Ladung gleich 1 gesetzt werden; v bedeutet die
Geschwindigkeit fiir r = co. Diese letzte Formel lisst sich auch
schreiben :

1-—5%04

COR O =TT

Also verhalten sich fiir kleine Ablenkungswinkel (cos @ ~1),
v =1 und p = 1 magnetische und elektrische Streuzentren gleich.
*
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Man sieht jetzt die Bedeutung der einzelnen Terme in (10).
Fir klemne Streuwinkel (6 ~7, d.h. @ ~0) hat man ziemlich genau
Rutherfordsche Streuung, der erste Term tiberwiegt. Die Konver-
genz der Reihe (9) ist schlecht, weil die Y, fiir 6 =z verschwinden;
deshalb werden die ¢; gross. Fiir grosse Streuwinkel ist klassisch

d 7 )/ b2 v+ p? .
er Faktor cos —, W wesentlich: fiir b — 0 schwankt cos

p2— b2 v?

unendlich oft zwischen — — und —1. Diese Abweichungen

p2+b2 DZ
der Rutherford-Streuung werden durch den zweiten Summanden
in (10) beschrieben, fiir diesen Teil sind die Y, mit kleinem I,
d.h. die Teilchen mit kleinem Drehimpuls (resp. mit klemem
Stossparameter) massgebend. Es ist aber klar, dass fir diesen
Teil die Wellenmechamk etwas anderes liefern wird als die ,,geo-
metrische Optik™, denn in der Nahe des Mittelpunktes sind die
Bahnen stark gekriimmt. Wir werden jetzt untersuchen, wie genau
die klassische Mechanik in diesem Fall die wellenmechanische
Lésung wiedergibt.

Die allgemeine Methode (W.K.B.-Verfahren) ist folgende?®):
man mache den Ansatz:

J oS
’q) =

. h
und entwickle S nach Potenzen von T

S =Sp+ 28+

Es gilt dann fir S die Hamilton-Jacobische partielle Diffe-
rentialgleichung der Mechanik. Die Gleichung fiir S; erweist sich
als Kontinuitatsgleichung fir die Dichte ¢ = €%, In dieser
Néherung verhalten sich die Wellenpakete genau wie eine Ge-
samtheit von Massenpunkten, die sich auf den klassischen Bahnen
bewegen.

Die Naherung i1st dann gut, wenn in allgemeinen Koordinaten?®)

gilt:
wi [ 0 N o8
g (33, 14)(~-—+A)> 50 0 Ll ’( M+AA). (12)
Das Linienelement hat die Form
d82 - gx& dQn dga )

die g** bilden die zu (g,;) reziproke Matrix und D ist })/[g,.] .
Die Relation (12) bedeutet, dass S,,; klein gegen S, wird.
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08 ; : ' ,
w lassen sich aus den bekannten Integralen bestimmen zu:
k

n 08 V* b
va—a—r—wmw 1-—

¥

Die

_OSg-]/ 379,.2 g 1—cos0
Py= g = Vm* v —p* g sp

Diese Funktionen setzen wir in (12) ein. Nach entsprechenden
Kirzungen erhalt man:

Basll o s COSLQ
N [1+COSO]>>

2 2 (m2b2v2+ p?) cos O
>h lmv - 0 2 :
Vr2—b%  }/m2b2e%sin® 0— p? (1— cos 6)2

Die Darstellung ist offenbar schlecht, wenn + = b, das heisst,
wenn das Teilchen moglichst nahe am Zentrum ist, und wenn:

m2b2v2sin? 6 — p% (1—cos 6)2 =0,
d. h.

cosl=1 und cosb=-"5—7 7.

Diese letzte Bedingung sagt aus, dass die Naherung an den
Stellen schlecht ist, wo o (b) ein Extremum hat. Fiir diese 6-Werte
ist fiir grosse r die Ablenkung gerade die doppelte Kegel6ffnung &.
Dass dort die Néherung schlecht sein muss, ist leicht einzusehen:

der differentielle Streuquerschnitt d @ ist proportional ;—b, wobel
w

iber alle Zweige des mehrdeutigen b (w) zu summieren ist. Wenn
w (b) ein Maximum hat, so hort ein Zweig auf beizutragen, und
d @ als Funktion von b hat eine Ecke, so dass Beugungserschei-
nungen auftreten. Es ist jedoch zu sagen, dass die Stellen, wo (12)
nicht erfullt ist, wegen der Quadratwurzel schmal sind. Das von
der klassischen Mechanik gegebene Bild ist gut, vor allem fiir
kleine Ablenkungswinkel.

33
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II. Die Diracsche und die Paulische Gleichung.

Die bisher behandelte Schrodinger- Gleichung ist unrelativistisch.
Die entsprechende Lorentzinvariante-Gleichung fiir das Einkorper-
problem wurde von Dirac aufgestellt. Dort ist die y-Funktion
~ kein Skalar mehr, sondern ein Spinor mit vier Komponenten,
das heisst, sie geniigt einem bestimmten Transformationsgesetz
bei Lorentz-Transformationen, insbesondere bei Drehungen. Im
letzteren Fall transformieren sich die Komponenten paarweise
unter sich. Bel nicht allzugrossen Geschwindigkeiten i1st ein Paar
gross gegen das andere. Man kann deshalb, bei Vernachldssigung
von Termen mit hoheren Potenzen der Lichtgeschwindigkeit im
‘Nenner, aus der Diracschen Gleichung die Paulische Gleichung ab-
leiten; letztere ist nur noch eine Beziehung zwischen den zwel
grossen Spinorkomponenten.

Wir betrachten wieder ein magnetisches Coulomb-Feld, wobel
das Zentrum im Ursprung liegt, und beschreiben es durch das
Vektorpotential (1). Die Symmetrie des wellenmechanischen Pro-
blems wurde von Fierz3) untersucht. Obwohl ndmlich das Feld
drehinvariant ist, ist es das Vektorpotential nicht: {ibt man eine
Drehung aus, so addiert sich zum Vektorpotential ein Gradient.
Entsprechend wird die Eigenfunktion mit einem Phasenfaktor
multipliziert, der bei der Bildung aller messharen Grossen heraus-
fallt. Die Hamiltonfunktion ist daher invariant gegen Drehung
und anschliessende Umeichung. Entsprechend treten in den Opera-
toren der infinitesimalen Drehungen d,; zu p proportionale Zusétze
auf, die der zur infinitesimalen Drehung gehorigen infinitesimalen
Umeichung entsprechen (Fierz, l. c.).

Die d; erfiillen unter sich die bekannten Vertauschungsrelationen:

d,d,—d,d, —id,, .

Die #Y,,, bilden die zu den d; gehorige Darstellung der Dreh-
gruppe. Insbesondere folgt, dass wir die Y so auf 1 normieren
konnen, dass

(d:c - ?’dy) #Yl, m V(l —m) (.l -—m _“_wlj ‘qu, m+1
(d,—id,) *Y, = VI +m) —m+1)*Y, (14)
dz MYl,m - m MYl,m *) |

Die Diracsche y-Funktion ist in unserem Fall auch eine Dar-
stellung der Drehgruppe®) mit den d; als Operatoren des Dreh-

*) Die der Gleichung (13) zugrundegelegte Normierung der #Y; ,, entspricht
derjenigen bei vAN DER WAERDENS),
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impulses. Die allgemeine Darstellungstheorie gibt uns die Mittel,
einen Ansatz fiir v zu finden, so dass die partielle Differential-
gleichung auf eine ‘gewdhnliche leferentlalglelchunor I 7 zurtick-
gefithrt wird.

Jedes Komponentenpaar der y-Funktion bildet eine halbzahlige
Darstellung der Drehgruppe. Wir kénnen deshalb sofort den Win-
kelteil der Eigenfunktionen angeben.

Das Gesamtimpulsmoment § setzt sich aus dem rdumlichen Teil I,
den wir schon in der mnichtrelativistischen Theorie hatten (er be-
steht aus Bahnimpuls und Feldimpuls), und aus dem Spin zu-
sammen. Zu einem gegebenen 7 gibt es zwel Arten von Darstellun-
gen, je nachdem der Spin parallel oder antiparallel zum rédum-
lichen Impulsmoment steht. Nach vaAx pEr WarrDpEN?) sind die
winkelabhingigen Bestandteile der Eigenfunktionen:

) 1 Vi—m Y,
71
W’”J’%l V"l+1(]/l+m+1 Ylm+1) Wity
(15)
. L (Vi+m ¥,
A e
Wotgim1 ]/2Z+1(|/l—m L 55 ImH) Wothims

und als Ansatz werden wir eine lineare Kombination beider W4
mit Funktionen von r als Faktoren wihlen.

Nun schreiben wir die vollstindige Diracsche Gleichung auf.
Sie lautet (fiir negativ geladene Teilchen):

4 ufl 0 e ; M ko T — ()
2.7 (z omu“c@n)gj“mﬁ’ﬂL?ZM';’FW? y'¥=0.

u=1

Es ist 2t =1ct. Die y# sind vierreihige Matrizen, die den Rela-
tionen:
Y HYT Yt =29,

gentigen. Das Glied mit M beschreibt ein fir das Teilchen charak-
teristisches zusitzliches magnetisches Moment; dieses ist Null fiir
Elektronen. @, , ;ist das Vektorpotential, 1/1 @, das skalare Po-
tential des Feldes F,,. Es gilt also:

0@ 0@,; F Z___I_?

pr 093!“ oy av o <

I;T

In unserem Falle sind (p = Polstirke):

N ey BE . -y -
O =— Mo 0= 0= 0,=0
s B e BT —F,. = PY = J F.,=0.
51 23 13 2 52 31 §3 2 $3 12 = 73 H 14
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Man macht wie tiblich den Ansatz:

wo v =y (z,y,2) von { nicht abhingt. ¢ geniigt sodann der
Gleichung :

. [ E e M y g i
fL(Ty“——mc) Zy (7, P ) ZEFM;)‘;V pe=10},
Wir wahlen fir die y* die Darstellung:

P 0 o . (1 0
4 "'""I'(—au 0#) p=123. 7’4_(0 —I)

wobel I die Einheitsmatrix und die o, die gewohnlichen Pauli-
Matrizen :

0 1 0 —i 1 0
. Baal C" %2=\; o % =10 -1

bedeuten, die die Relationen

o,=1, o0,0;=—0;0;,=10, (1,4, k zyklisch) (16)

7

erfiillen. Daraus folgt weiter

Ay OuGy 0 e Cp 0
e (0 apca)_ fb(O ag)

(e, v,0=1,2,3; u, v, o zyklisch).

. q)-‘)‘\
v={y)
wobel p* und * selbst zwei Komponenten haben. Dann gilt:

E . hoo e . 2M B
(Eome)y— Yo, (Fom—L0,) v ﬁ——Za $, 9" =

u=1

E S (b0 e 23
+(C+mc)w“~20#(7a,—;—~? ) +~4—Za$j”zp

#=1

Wir setzen nun:

(17)

Bei Spiegelungen ist ° symmetrisch und * antisymmetrisch.
Wir fiihren jetzt Polarkoordinaten ein. Dabei gilt fiir den Spin-
vektor:

oy s 0 cos @+ o,8m0sme+ozcosl =0, =¢
oy €08 0 cos ¢ + 0,080 sin ¢ — oz sin 6 =0, (18)
—o sing  + Gy COS @ =0,
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Die Vertauschungsrelationen (16) werden:
i g _ e _ o _ 2 _
6,04=10,, 0,0,=10,, 0,0,=10, 0:=0=0,=1. (19)

Mit & multipliziert nehmen die Gleichungen (17) die folgende
Gestalt an:

P EHmC) s_h[O | 1d, 0 10y 9 Koy l—cosﬂ] a
(c ¥ i[drT r 00 rsin@ 0p  r  sinb
2 M |
+ Ry =0 (20)
cr
'E a RO 1o, 9 6y 9 HOp 1-cosb]
E(TJFW)V"?[WWLT 06 7smb 0p 7 smb ]'P
2Mp .
—— vt =0.

Beachten wir, dass die Drehimpulsoperatoren sich schreiben
lassen :

5 0 , 0 1—cosf
dx—'bsmwﬁ+®ctgﬂees¢w—y g C0S ¢
d, = —icos -0+ ictg 6 sin g2 — u 1229 gin
v Y39 TVC8 quj()qo sin 6 ?
. 0
d,= — iy, T M

so zeigt eine leichte Rechnung mit Hilfe von (18) und (19), dass:

. % § 0 10, 9 nog -
,d)=—10, —4 6 0 1__ .
(o, d) v 30 T 5 g T Sng (1—cos 6) —po,.

Damit wird die Gleichung (20):

s(f ____mc) ws_%[_dm_M] y,a.g_ﬂa_‘rﬁws:o

cr2

E | © 2M
e(i +mc)¢a__i"_[_’?__W] ws——:—;ﬁwEO-

(21)

Wir miissen nur noch wissen, wie die einzelnen Operatoren auf
die W7 wirken.

¢ ist ein Skalar; denn es ist das Produkt des symbolischen Vek- -
tors ¢ mit dem Einheitsvektor. Die W7, ., ,_; und die Wi,13,; bilden
zusammen ein vollstindiges System: jedes Funktionenpaar lasst
sich nach den W’ entwickeln. Das Produkt eW? transformiert
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sich wie W7 selbst, seine Entwicklung enthilt also nur die beiden W,
Es muss demmnach gelten :

W H; z—a’WL+1 z+le+1 11

4 _ (22)
EW;H—%‘ =1 CW:ﬁH% 1t dWl -1

Die Koeffizienten héngen von m und von 0 nicht ab. Wir be-
stimmen sie deshalb aus speziellen Werten der W, indem wir
m=1—1, ¢ =0 und cos 6 = 0 (daher & = o,) setzen.

Nun 15t (z = cos 0)

I—p I+ u
1 21+1 2! —_ Ll i
Y=o 2 (Hﬁﬂ”—”!a+$)2 (1—x) ®
I-n I+u
1 21+1 (21-1) lw+,u
MYZ, -1~ 91-1 2 A+mt(l—-p! 1= (1+ ) (1"'"33) o

Woraus mit

2t 2 (I+w!(l-mw!
#le 0)=B ﬂYzal,z 0)=0
2 (I+u) (-
Y. 1(0) *—”M]/‘” L7 1,1—1(0) “]/254_1( ;;u)( H)B

Durch Einsetzen in (23) bekommt man

a=t b—1— 2

I
S ISP Y

(5, d) lisst sich mit Hilfe der Drehimpulsrelationen angeben:

= 1 w=\2 544 .1 7 ey 3
(d+-2—o) =§({j+1) =1~ =d*+(d,5) + -
Also 1st
(d,s)=1*—1—4d2

*) Die Y, . gehoren zum Spiegelungscharakter (-1)"7#, und die Wﬁi% daher

auch. Der Pseudoskalar u kehrt bei Spiegelungen sein Vorzeichen ebenfalls um.
Man kann deshalb nicht, wie bei der Losung der Diracschen Gleichung eines Elek-
trons im elektrischen Coulomb-Feld:

L
ngf%l kW, 3111

schliessen, weil ¢ schiefsymmetrisch ist, sondern nur
e Wt ﬁszW*%ll+ykWW§l

wo L und %k’ gewdhnliche Konstanten sind.
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Es gilt

EW 1 D

(izW,f;i_,Z::l( 1) +5~ s
Somit 1ist

(G5 d) m+1} 1= ( +1) Wﬂc{z:-%% !

a, d) m+d,1—1= (U~ NWEh

p* und 9 sind Darstellungen der Drehgruppe; der allgemeinste
Ansatz ist deshalb nach dem bisherigen:

=f(NW, —r% 1+ 12 (1) mjl -1

=1 0w, +§ o fa Wi
Diesen setzen wir in die Diracsche Gleichung (21) ein und bringen
in jeder Gleichung den Faktor der verschiedenen W zum Ver-

schwinden. Das bedeutet, dass der symmetrische und der schief-
symmetrische Teil der Gleichung get-rennt verschwindet. Das gibt:

h

af} = (‘* —mc) ( f3+]/1 Hz

_h (Eﬁmc)(]/lmﬂ—z— J[ifz)
— | —p]1— £ f3 l—l—’u—2 fs 25? fa-
ir [ il ( l ) ] cr

Das System (24) hat, wegen der Terme proportional M, fir
r = 0 eme starke Singularitat. Es lasst sich leicht zeigen, dass,
falls M = 0 ist, es keine Losungen der Form:

o0
f@': ,rOtiZ aii) 7
r=0

gibt. Die f; sind daher in diesém Falle nicht quadratintegrierbar.
Das Glied mit M entspricht im unrelativistischen Grenzfall einem
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(winkelabhéngigen) Potential; d.h. es ist formell E durch E — & ﬁp

ersetzt. Das Teilchen besitzt ein zusédtzliches Dipolmoment und
wird vom Zentrum mit einer Kraft proportional 1/r? angezogen
resp. weggestossen, je nach der Richtung dieses Momentes. Dann
15t aber kein stationdrer Zustand mehr moglich ; denn im Falle der
Anziehung fallt das Teilchen in das Zentrum hinein.

Stationdre Zustinde gibt es demnach nur fir M = 0. Dies kann
man als einen Grund betrachten, warum es keine magnetischen
Teilchen gibt. Denn in Wirklichkeit ist fir Protonen M+ 0;
diese haben ein Moment von 2,7 Kernmagnetonen. Sie kénnten
also nicht in ,,stabiler’ Wechselwirkung sein mit den singuliren
Magnetpolen.

Fir M = 0 findet sich aber leicht ein Ansatz. Die beiden Glei-
chungen (21) unterscheiden sich nurim konstanten Faktor E/c +mc.
Es liegt nahe

v=4y dh (7)=4(F)

. E+mc?
4= l/ E—mc?

zu setzen; fir

gilt,
' B2 m2ct
(B =)
2
I+1- 22
’ % = \ 2 Z o 2
f=iVE (L h+ Y1— e f) - h+ 41— 45 h,
-1 2
L /T ¥ 5 1
fo=iVE (Y1 - Soh— 1) + 21— B fr— s

sowle dasselbe System fur f; und f,.
Das System lésst sich durch die Transformation:

' 1
f1 =ﬂ9'1+'§‘l‘92

i 1 . @)
fzzl(]/l—%,——l)gl—}-ﬂ( 1_”&;2’*'%1‘)92
vereinfachen. Es gilt:
Ly gty (1L
9, = 7(1/ — T 91‘1“"2?"/]/ ( — )Y
(26)

g = 21y E (1= 45) g+ (YE—2— 1) g,
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woraus nach kurzer Rechnung:
.2 A 24V~ :
g — 9+ [E £ TV ‘“]glxﬂ

" ; - VB
gy — 2 g5+ [E o “]92=0.

Die g; sind im wesentlichen Bessel-Funktionen:

0= (@
v VQ l/z= VB 14 ¢
%2 VO l/l2-;u2~ Vi—gt +1/4 )
wo o =}Er.
Demnach ist die Losung der Dlracschen Gleichung:
s 1 .
v= [M JV£1+1/4 () + 21 Vi1T (9)] W (27)
S ,u2
(Y- -1)7, (e (V1 +1)J, (9| W,
wobe1

by =P —p2L|12—p?
und die W; durch (15) gegeben sind.
.(Die zweite Losung bekommt man durch Vertauschen von 4,
und 4, und Andern des Vorzeichens von ]/ :_—E_:—) ‘
Weiter 1st

o E— me?
v E+me?

¥

Die eigentiimliche Form der Losung versteht man besser, wenn
man die iterierte Diracsche Gleichung®) l6st. Diese zerféllt in
zwel 1dentische Systeme*) fiir 9* und 9°; denn sie lautet:

3 ) . 1 ) ’
E[WJF;—Z@”T""%“Q“ZZ i V"V v+ By = 0.
uoow

r=1

Sie lasst sich separieren durch
y=R() 60,9

*) In Abwesenheit eines elektrischen Feldes zerfillt die Diracsche Gleichung
immer in zwei identische Gleichungen mit zwei Komponenten. Dann sind die
Diracsche Gleichung und die Paulische Gleichung einander gleich. Man vergleiche
z. B. die Gleichungen (7.10) S. 303 und (8.5) S. 305 im Artikel von H. BETHE
Handbuch der Physik, XXIV,.
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und 4, , ist dann der Eigenwert der Winkelgleichung. Fir E be-
kommt man die Funktionen ¢,, und © ist eine lineare Kombina-
tion der W, so dass in etwas anderer Form wieder die Liosungen (27)
herauskommen. Was die iterierte Gleichung nicht liefern kann.

s
1st der Faktor z“ :

Herzlichen Dank schulde ich Herrn Prof. M. Fierz, unter dessen
Leitung die vorliegende Arbeit entstanden ist.

Basel, Seminar fir theoretische Physik.
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