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Über den Mechanismus der elektrischen Leitfähigkeit
des Siliciumcarbids

von G. Buseh und H. Labhart.
(2. IX. 1946.)

Zusammenfassung. An einkristallinen Proben von SiC wird der HALLeffekt
im Temperaturbereich von 100—1100° K gemessen. Zusammen mit
Leitfähigkeitsmessungen von Busch an denselben SiC-Proben können die folgenden Schlüsse
auf den Leitungsmechanismus des Siliciumcarbids gezogen werden:

1. Die grünen SiC-Kristalle sind Überschusshalbleiter, die schwarzen
dagegen Defektleiter.

2. Zur Leitfähigkeit tragen die Elektronen von zwei verschiedenen Energie-
niveaux bei, über deren Lage und Natur Aussagen gemacht werden können.

3. Bei hohen Temperaturen ist das Elektronengas in Entartung begriffen.
Es wird eine Erweiterung der WiLSONschen Theorie der Halbleiter für den Fall
beginnender Entartung gegeben, welche den Temperaturverlauf der Leitfähigkeit

bei hohen Temperaturen, insbesondere die Lage der Leitfähigkeitsmaxima
erklärt.

4. Die Freiheitszahl der Elektronen des Leitungsbandes kann bestimmt und
die Zahl der Störstellen der Kristalle abgeschätzt werden.

5. Die Relaxationszeit ergibt sich von der gleichen Grössenordnung wie bei
Metallen.

I. Einleitung.

Die elektrische Leitfähigkeit des Siliciumcarbids (SiC) ist von
Seemann1), Sears und Becker2), Voelkl3), Guillery4),
Kurtschatow, Kostina und Rusinow8), Henninger6) und in jüngster
Zeit von Busch7) untersucht worden. Während die Resultate der
älteren, an SiC-Pulvern nach verschiedenen Methoden
durchgeführten Messungen stark streuen, geht aus den neueren
Untersuchungen an zahlreichen einkristallinen Proben hervor, dass in
bezug auf die Volumenleitfähigkeit des SiC das C-HMSche Gesetz
über einen Strombereich von mehreren Zehnerpotenzen ausnahmslos

gültig ist. Die Temperaturabhängigkeit der elektrischen Leit-

Seemann, Phys. Zs. 30, 194 (1929).
2) Sears und Becker, Phys. Rev. 40, 1055 (1932).
3) Voelkl, Ann. d. Phys. 14, 193 (1932).
4) Guillery, Ann. d. Phys. 14, 216 (1932).
5) Kurtschatow, Kostina und Rusinow, Phys. Zs. d. Sow.-Union 7,129 (1935).
e) Henninger, Ann. d. Phys. 28, 245 (1937).
») Busch, H.P.A. 19, 167 (1946).
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fähigkeit a zeigt den für Halbleiter typischen Verlauf, d. h. sie

-pist im wesentlichen proportional T e 2kT. Dabei bedeuten T
die absolute Temperatur, e die scheinbare Aktivierungsenergie
und k die BoLTZMANNkonstante.

Die von Busch erhaltenen experimentellen Kurven weisen
aber folgende Eigentümlichkeiten auf:

E

1) Das gemäss dem Gesetz a ~T e 2kT auftretende Maximum
in der elektrischen Leitfähigkeit zeigt sich schon bei viel tieferen
Temperaturen, als mit dem Wert p 3/4, welcher aus der Wilson-
schen Theorie1) der Halbleiter folgt, zu erwarten wäre.

Bedeuten e die Elektronenladung, n die Elektronenmasse,
t die Relaxationszeit, F die Freiheitszahl und n die Zahl der
Leitungselektronen, so stellt sich a dar als

e2

a= — rFn.
m

Hieraus geht hervor, dass die erwähnte Diskrepanz bei hohen
Temperaturen zwei Gründe haben kann: Erstens eine Unstimmigkeit

der Theorie2) für den Temperaturgang der Relaxationszeit

t; zweitens eine Unstimmigkeit der theoretisch errechneten
Temperaturabhängigkeit der Zahl der Elektronen im Leitungsband.

In der vorliegenden Arbeit soll diese Frage beantwortet
werden.

2) Die meisten o--Kurven (besonders diejenigen der Kristalle
des schwarzen SiC) zeigen bei Temperaturen von ca. 200° K einen
deutlichen Knick in dem Sinne, dass bei tieferen Temperaturen
eine kleinere scheinbare Aktivierungsenergie e in die «r-Formel
eingeht, als bei hohen. Infolge der grossen Verschiedenheit der
e-Werte vor und nach dem Knick muss angenommen werden, dass
zwei Störstellenniveaux verschiedener Energie für diese Erscheinung

verantwortlich sind. An Hand von Leitfähigkeitsmessungen
allein können aber keine Schlüsse über die Natur und Zahl der
Störatome gezogen werden. Insbesondere ist es nicht möglich, zu
entscheiden, ob es sich um Elektronenspender-Niveaux oder um
Elektronenempfänger-Niveaux handelt.

Um Näheres über den Leitungsmechanismus des SiC aussagen
zu können, ist es nötig, noch weitere, mit der Leitfähigkeit
zusammenhängende Erscheinungen zu untersuchen. Sowohl aus
experimentellen, wie auch theoretischen Erwägungen ist die Unter-

Wilson, Proc.Roy. Soc. 133, 458 (1931); 134, 277 (1932); 136, 487 (1932).
2) Fröhlich, Elektronentheorie der Metalle S. 238 (1936).
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suchung des HALLeffektes besonders aufschlussreich. Die Hall-
konstante B ist unabhängig von der Relaxationszeit r und gestattet
daher den Einfluss der Temperatur auf r und die Zahl n der
Leitungselektronen voneinander zu trennen. Andererseits gibt das
Vorzeichen der HALLkonstanten Aufschluss darüber, ob die
Elektronen eines nahezu leeren oder die Löcher eines nahezu
vollbesetzten Energiebandes den Elektrizitätstransport bewirken.

Aus diesen Gründen wurde an den gleichen SiC-Proben, deren
elektrische Leitfähigkeit gemessen worden war, der HALLeffekt
im selben Temperaturintervall von 100°—1100° K bestimmt.

Durch Kombination der B- und cr-Messungen lassen sich die
oben aufgeworfenen Fragen weitgehend abklären.

II. Messung des Halleffektes.

I. Messmethoden.

Bei der Messung des HALLeffektes an Halbleitern muss vor allem
auf die folgenden Schwierigkeiten geachtet werden:

1) Die Strombelastung der Kristalle mit relativ hohem Widerstand

darf nicht zu gross gewählt werden, weil sich sonst infolge
der JouLEschen Wärme die Temperatur des Kristalls merklich
erhöht.

Die obere Grenze der zulässigen Stromdichte erweist sich bei
Zimmertemperatur von der Grössenordnung einiger Zehntel

PTY1 * SPP"-
Amp/cm2. Damit werden die HALLspannungen bei B- cr=10 =-^z—=r
und einem Querschnitt der Proben von ca. lxl mm2 einige
IO"5 Volt.

An Hand von Leitfähigkeitsmessungen bei verschiedenen
Strombelastungen wird, wenn nötig, der maximal zulässige Strom
bestimmt. Bei denjenigen Messpunkten, wo B-a 1 ist, muss diese
Grenze überschritten werden, da die HALLspannungen zu klein
werden, um gemessen werden zu können. In diesen Fällen wird
gleichzeitig mit der HALLkonstanten die Leitfähigkeit bestimmt.
Durch Eingehen mit diesem Wert in die bei kleinen Strömen
gemessene Leitfähigkeitskurve ergibt sich dann die effektive
Temperatur.

2) Infolge der besonders bei tiefen Temperaturen sehr kleinen
Leitfähigkeiten der Kristalle und der hohen Übergangswiderstände
zwischen Sonde und Siliciumcarbid steigt der innere Widerstand
des HALLkreises oft bis IO9 Ohm und höher. Dadurch ist man
gezwungen, von der bei den Metallen üblichen Kompensations-

30
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méthode abzugehen und diese sehr kleinen Potentialdifferenzen
elektrometrisch zu messen. Da auch die empfindlichsten Quadrant-
elektrometer sich kaum bis zu der hier erforderlichen Empfindlichkeit

von mindestens 5-10-6 Volt justieren lassen, so wird ein
unten beschriebener Elektrometerverstärker gebaut, der diese
Empfindlichkeit zu erreichen gestattet.

3) Gleichzeitig mit dem HALLeffekt tritt immer der Ettings-
HAusENeffekt, d. h. eine transversale Temperaturdifferenz des
stromdurchflossenen Stäbchens im Magnetfeld auf. Diese
Temperaturdifferenz wirkt in zwei Hinsichten störend: Erstens ist die
HALLkonstante bei Halbleitern wesentlich verschieden, wenn die
ETTiNGSiiAUSEN-Temperaturdifferenz auftritt (adiabatischer
HALLeffekt), als bei isothermem Stäbchen (isothermer HALLeffekt).
Die theoretischen Formeln für die HALLkonstante sind meistens
für den isothermen Fall gültig. Wir müssen daher schon aus diesem
Grund danach trachten, den EïTlNGSHAUSENeffekt zu
unterdrücken. Zweitens entstehen zwischen Kristall und Sonden bei
Anwesenheit des EïTiNGSiiAUSENeffektes Thermospannungen, die
bei der grossen Thermokraft der Halbleiter gegen Metalle die Hall-
spannung wesentlich fälschen können.

Um den transversalen Temperaturgradienten auszuschliessen,
kann man auf zwei Arten vorgehen. Man kann den Kristall in
einem Flüssigkeitsbad konstanter Temperatur genügend stark
kühlen; es ist aber auch möglich, wie das von Zahn1) und anderen
zur Unterscheidung des isothermen und adiabatischen HALLeffektes
getan wurde, die Messungen mit Wechselstrom durchzuführen.
Während nach Untersuchungen von Smith2) der HALLeffekt bis
zur Frequenz von 105 Hertz trägheitsfrei ist, zeigt der Ettings-
HAUSENeffekt besonders bei breiten Platten eine Einstellzeit von
mehreren Sekunden. Bei den von uns verwendeten SiC-Stäbchen
lässt sie sich zu grössenordnungsmässig 0,1 sec abschätzen.

Weil bei sehr hohen und sehr tiefen Temperaturen (über 450°K
und unter 150°K) die Methode des Flüssigkeitsbades entweder
unmöglich oder zum mindesten unpraktisch ist, so wird zum sicheren

Ausschalten einer Störung durch EïTlNGSHAUSENeffekt überall
dort, wo es möglich ist, die Wechselstrommethode angewandt.
Sie hat den Vorteil grosser Empfindlichkeit und Bequemlichkeit,
da die sehr kleinen HALLwechselspannungen in fast beliebig
vielen Stufen verstärkt werden können, dagegen auch den Nachteil,

dass der Eingangswiderstand eines Wechselstromverstärkers

Zahn, Ann. d. Phys. 47, 279 (1915).
2) Smith, Phys. Rev. 35, 81 (1912).
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infolge der unvermeidlichen Abschirmkapazitäten nicht beliebig
hoch gemacht werden kann. Bei tiefen Temperaturen muss daher
doch die Gleichstrommethode angewandt werden. Dabei erweist
sich durch Vergleich mit den Wechselstrommessungen und durch
Eintauchen des Kristalls in gekühltes Pentan, dass die allseitige
Kühlung durch den Wasserstoffstrom des Gaskryostaten
(Beschreibung siehe unter Apparaturen) genügt, die Störungen durch
den ETTiNGSHAUSENeffekt zu unterdrücken.

4) Die Elektrodenanordnung bei HALLeffektmessungen ist
gewöhnlich so, dass auf der einen Längsseite des Kristalls zwei
Sonden Sx und S2 (siehe Fig. 1), auf der andern dazwischenliegend

n

er hCu

3f

Aufsicht des Deckeis

Quarzrökren

-C2

SiÇ-KristqUX f J ¦S/^-ünü-' $2

SiC-Kristail

Fig. 1.

Kristallhalter und Sondenanordnung.

eine ÜALLSonde S3 angebracht sind. Mit einem Potentiometer
kann zwischen den beiden zuerst erwähnten Elektroden bei strom-
durchflossenem Kristall und ausgeschaltetem Magnetfeld der
Aquipotentialpunkt zur dritten Elektrode S3 gesucht werden.
Dadurch wird bewirkt, dass beim Einschalten des Magnetfeldes
nur die HALLspannung zur Messung gelangt. Im vorliegenden Fall
muss jedoch das Potentiometer einen Widerstand von ca. IO9 Ohm
haben, damit es bei grossen Sondenwiderständen die Abgleichung
erlaubt. Bei den Wechselstrommessungen kann ein solches hoch-
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ohmiges Potentiometer leicht durch zwei hintereinander geschaltete
Drehkondensatoren realisiert werden. Für Gleichspannung gelang
es nicht, ein genügend hochohmiges Potentiometer von den in
diesem Fall notwendigen sehr guten Eigenschaften zu konstruieren.
Man sieht sich daher genötigt, die dritte HALLelektrode möglichst
genau gegenüber der einen der zwei andern anzusetzen, und den
kleinen verbleibenden Spannungsabfall am stromdurchflossenen
Kristall mit einer Hilfsspannung zu kompensieren.

II. Apparaturen.

1) Kristallhalterung. Bei der Konstruktion der Kristall-
halterung muss darauf geachtet werden, dass die für die Hall-
effektmessungen nötigen Elektroden bei hoher gegenseitiger
Isolation möglichst raumsparend angebracht werden, damit der
Abstand der Magnetpole klein und damit das Magnetfeld gross
gehalten werden kann. Ferner können nur solche Materialien
verwendet werden, die sich gleichermassen für hohe und für tiefe
Temperaturen eignen.

Aus diesen Gesichtspunkten heraus ergibt sich die Anordnung
von Fig. 1: Die Platinschneide S3, welche an Platindrähten durch
die Bronzefedern F nach oben gezogen wird, drückt den Kristall
gegen die in die zwei Quarzröhrchen Q eingekitteten HALLelek-
troden Sx und S2. Während auf diese Weise die für die Hall-
spannungsmessung nötigen Elektroden zugleich als mechanische
Halteelemente wirken, sind die Stromzuführungen Cx und C2 nur
so leicht angefedert, dass der Kristall von ihnen nicht aus seiner
Lage gebracht wird. Das Ganze wird von einer Kupferscheibe Cu
getragen, welche die Befestigung am Ofen oder Gaskryostaten
ermöglicht. Die Wasserleitung W hat bei Messung im Ofen den Zweck
zu kühlen; bei Messungen unter 273°K wird dadurch die Reif-
bildung an den Isolationen verhindert.

Bei Th ist das Thermoelement zur Messung der Kristalltemperatur

eingesteckt. Es besteht für Temperaturen über 300°K aus
einem Pt - Pt/Rh-Paar, bei tiefen Temperaturen aus Kupfer und
Konstantan.

2) Gaskryostat. Für die Messungen von Zimmertemperatur
an abwärts wird ein Gyskryostat nach dem von Busch und Ganz1)
beschriebenen Prinzip gebaut. Die hier getroffene Konstruktion,
die aus Fig. 2 hervorgeht, gestattet jedoch die Untersuchungen
zwischen den nahestehenden Polen eines Elektromagneten durch-

x) Busch und Ganz, H.P.A. 15, 501 (1942).
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zuführen. Da dabei Aussen- und Innenwand des Vakuummantelrohres

A sehr verschiedene Temperaturen aufweisen, ist es nötig,
ein Tombakstück in die äussere Wandung einzufügen. Dadurch
wird vermieden, dass sich infolge der beim Abkühlen entstehenden
Spannungen Risse im Glas bilden1).

3) Ofen. Ein die Heizwicklung tragendes Quarzrohr von 20 cm
Länge und 1,5 cm innerem Durchmesser ist in einem Abstand von

Wem

Vakuummantel
I Rohr

Halteplatte

Tombak
Glas Wellrohr

Kristall
Magnetpole

Heizspirale

Gummimanchetten
Wasserstoffzufuhr

flüssiger Stickstoff

JJ

Fig. 2.

Gaskryostat.

2 mm von einem wassergekühlten Kupfermantel umgeben, der die
Erwärmung der Magnetpole verhindert. Weil auf diese Weise
die Wärmeisolation sehr schlecht ist, braucht man für eine
Temperatur von 1100°K eine Heizleistung von ca. 800 Watt. Dafür
hat der Ofen den Vorteil einer relativ kurzen Einstellzeit für das
einer Stromstärke entsprechende Temperaturgleichgewicht. Als
Schutzgas wird gereinigter Stickstoff verwendet.

1) Das Vakuummantelrohr wurde von der Hochfrequenz-Abteilung der
AG. Brown- Poveri, Baden, hergestellt, wofür auch an dieser Stelle bestens
gedankt sei.
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4) Elektrometerverstärker. Für die HALLeffektmessungen
mit Gleichstrom wird mit einer Elektrometerröhre FP 54 eine
Schaltung nach Barth1) aufgebaut. Die Elektrometerröhre ist
zum Schutz gegen Beeinflussung durch das Streufeld des Magneten
mit einem 1,5 cm dicken Eisenpanzer abgeschirmt und ein Meter
von den Polen entfernt aufgestellt. In dieser Anordnung verursacht

das Einschalten des Magnetfeldes einen kaum messbaren
Ausschlag des Anodenstrom-Galvanometers, der als kleine
Korrektur bei den Messungen berücksichtigt wird.

Die Empfindlichkeit des Verstärkers beträgt bei einer
Lichtzeigerlänge von ca. 6 Metern 2,5 mm für 10~5 Volt. Die
Ablesegenauigkeit beträgt 0,5 mm. Eine Spannung von 2-10-5 Volt kann
demnach mit 10% Genauigkeit gemessen werden.

100 pF EL 3RCA 38 EF6FP54>^ 0,1uF0,05 /_T7. 0.05 0.05

HHmF kF

wo

TX.

Ss°

6 1/

+4 +20 + 8 +30 + 250

Fig. 3

Wechselstromverstärker.

5) Wechselstromverstärker. Die HALLeffektmessungen mit
Wechselstrom werden durchwegs mit 50 Hertz durchgeführt.
Diese Frequenz erweist sich einerseits gerade als genügend gross,
um die erwähnten Ettingshausen-Störungen auszuschalten,
andererseits darf sie zur Aufrechterhaltung einer hohen Eingangsimpedanz

nicht wesentlich höher gewählt werden.
Bei der Kleinheit der auftretenden HALLspannungen muss das

Rauschen des Verstärkers auf ein Mindestmass herabgesetzt werden.
Das geschieht durch Abstimmen der zwei letzten Stufen auf die
allein zu messende Frequenz von 50 Hertz. Das Frequenzband ist
durch diese Massnahme auf ca. 10 Hertz eingeengt.

Aus diesen Anforderungen ergibt sich die in Fig. 3 dargestellte
Schaltung. Als Eingangsröhre findet dieselbe Röhre FP 54 wie
beim Gleichstromverstärker Verwendung, was das Einfügen des

Barth, Zs. f. Phys. 87, 399 (1934).
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hohen Gitterableitwiderstandes von 2-109 Ohm und die Ankopp-
lung durch die kleinen Kapazitäten von 100 pF ermöglicht.

Diese mit Cx und C2 bezeichneten Drehkondensatoren sind
mechanisch so gekoppelt, dass beim Grösserwerden des einen der
andere im selben Mass kleiner wird. Dadurch wirken sie als
kapazitives Potentiometer hoher Impedanz zwischen den HALLSonden
Sx und S2.

Die zweite Stufe dieses Verstärkers wird wie die erste von Batterien

gespiesen. Sie arbeitet mit einer Röhre RCA 38, deren
Anodenspannungsschwankungen auf das Gitter einer Pentode EF 6

gegeben werden. Diese Röhre sowie die Endröhre erhalten die
Anodenspannung aus einem sehr sorgfältig geglätteten Netzanschluss-
gerät. Als Anodenwiderstände wirken die auf 50 Hertz abgestimmten
LC-Glieder.

Die Ausgangswechselspannung wird von einem Kathodenstrahl-
oszillographen nachgewiesen. Dieser erlaubt besser als ein
gewöhnliches Voltmeter, die nicht ganz unterdrückbare Störspannung

von der Messpannung zu trennen. Am Verstärkereingang wird
die zu messende Spannung auf Null kompensiert. Der Verstärker
wirkt somit als Nullinstrument.

Die kleinste noch nachweisbare Eingangsspannung beträgt ca.
5-10~7 Volt. Eine HALLspannung von 5-10~6 Volt kann somit
mit einem mittleren Fehler von 10% gemessen werden.

6) Kristallstrom. Der für die Erzeugung des HALLeffektes
notwendige Strom durch den Kristall wird im Falle der
Gleichstrommessungen von einer 120 Volt-Akkumulatorenbatterie
geliefert. Die Spannung ist so hoch gewählt, damit es möglich ist,
durch Serieschaltung eines hohen Widerstandes Stromschwankungen,

die durch Änderung der Übergangswiderstände zwischen
Stromzuführung und Kristall entstehen könnten, zu unterdrücken.

Weil die Sonde S3 geerdet ist, müssen die Batterien samt Vor-
schaltwiderstand und Amperemeter hochisoliert gegen Erde
aufgestellt werden, damit die HALLspannung aufrechterhalten bleibt.
Die grössten Kristallströme betragen bei den schwarzen Kristallen
6 mA, bei den grünen Kristallen 2 mA.

Im Falle der Wechselstrommessungen dient ein hochisolierter,
kapazitätsarmer, abgeschirmter Transformator als Stromquelle.
Die Sekundärspannung wird mit Hilfe eines Potentiometers auf
der Primärseite zwischen 100 und 200 Volt gehalten. Durch
statische Messung des Spannungsabfalls an den bekannten Vorschalt-
widerständen im Kristallkreis kann man den Kristallstrom ermit-
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teln. Dieser hat die gleiche Grössenordnung wie bei den
Gleichstrommessungen.

7) Elektromagnet. Zur Herstellung des Magnetfeldes dient
ein grosser Elektromagnet (Gewicht ca. 1000 kg). Die kegelförmigen

Polstücke sind auf einer Basis 54 mm abgeplattet und müssen

zur Aufnahme von Ofen- oder Gaskryostat einen Abstand von
26 mm haben.

Auf diese Weise erreicht das Magnetfeld einen Sättigungswert
von ca. 16000 Amp/cm. Bei den Messungen wird mit einem
konstanten Magnetstrom von 27 Amp gearbeitet, welcher einem
Magnetfeld von 12800 Amp/cm entspricht. Der bei so grossen Feldern
infolge der Hysterese entstehende Fehler nach dem Umpolen
sowie die Remanenz nach dem Abschalten des Magneten sind bei
unserer Messgenauigkeit zu vernachlässigen.

Die Messung der Feldstärke geschieht mit Probespule und
ballistischem Galvanometer für verschiedene Stromstärken. Nach dieser
Eichung wird der Polabstand nicht mehr verändert.

III. Messergebnisse.

Mit der im vorhergehenden Abschnitt beschriebenen Apparatur
wird an 12 SiC-Kristallen, an denen Busch1) die
Temperaturabhängigkeit der Leitfähigkeit a bestimmte, die HALLkonstante B
im selben Temperaturbereich gemessen. Die grössten auftretenden
HALLspannungen erreichen 5-10~4 Volt bei grünen, 1,5-10-4 Volt
bei schwarzen Kristallen. In Fig. 4 und Fig. 5 sind je drei typische
E-Kurven für grüne bzw. schwarze Kristalle aufgetragen.

Die Kurven weisen die folgenden wichtigen Merkmale auf:
1) Alle grünen Kristalle zeigen eine HALLkonstante, deren

Vorzeichen einer Elektronenüberschussleitung entspricht. Alle schwarzen

Kristalle geben dagegen HALLeffekt mit umgekehrtem
Vorzeichen (Defektleitung).

2) Bei allen grünen Kristallen wächst die HALLkonstante im
untersuchten Temperaturgebiet monoton mit wachsender
reziproker Temperatur 1/T.

3) Sämtliche schwarzen Kristalle zeigen in der Gegend von
200°K ein Maximum in der HALLkonstanten, welchem gegen grössere

Werte von 1/T hin ein steiler Abfall folgt. Bei weiter fallender
Temperatur wird die HALLkonstante bis zu den tiefsten mit
flüssigem Stickstoff erreichbaren Temperaturen unmessbar klein.

x) Busch, loc. cit.
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R ¦ a für grünes SiC.
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R -a für schwarzes SiC.

Für die Diskussion der Messungen wird besonders die in den

Fig. 6 und 7 gegebene Darstellung des Produktes aus B und a
in Funktion der Temperatur Bedeutung haben.
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IV. Diskussion.

I. Verlauf der Ba-Kurven.

1) Der Abfall gegen hohe Temperaturen. Solange die
Leitfähigkeit nur durch die Elektronen eines einzigen Energiebandes

bewirkt wird, bedeutet das Produkt B-a ihre Beweglichkeit

v. Für v folgt aus der Elektronentheorie der Metalle

d -tP. (1)
m \ '

Dabei bedeuten e und m Ladung und Ruhmasse des Elektrons.
F ist die Freiheitszahl. Die Relaxationszeit r ist demnach die
einzige temperaturabhängige Grösse in v. Ba liefert also in diesem
Falle die gesuchte Temperaturabhängigkeit von t. Bei Temperaturen

über 400° ist die am Anfang dieses Abschnittes gestellte
Bedingung hinreichend erfüllt. Die Bcr-Kurven zeigen in diesem
Bereich einen Abfall, der, wie es die Theorie verlangt, nicht wesentlich

verschieden ist vom Verlauf der Funktion T~3'2. Somit ist
die Möglichkeit ausgeschlossen, dass die Maxima in den cr-Kurven
infolge einer andern Temperaturabhängigkeit der Relaxationszeit

t nach tieferen Temperaturen verschoben sind. Es kann
demnach geschlossen werden, dass die Zahl n der Leitungselektronen
einen von der Wilsonschen Theorie verschiedenen Temperaturgang
aufweisen muss.

2) Verlauf bei tiefen Temperaturen. Im Gegensatz zum
Verhalten bei hohen Temperaturen wächst für T<400°K die
Grösse Ba mit steigender Temperatur. Diese Erscheinung soll im
Folgenden untersucht werden.

Der Knick in den o--Kurven macht es sehr wahrscheinlich, dass
zwei Störstellenniveaux verschiedener Energie am Leitungsmechanismus

beteiligt sind.
Auf Grund der Eo--Kurven können aber weitere Aussagen über

die Art und gegenseitige Lage dieses Energieniveaus im Kristall
gemacht werden.

Vorerst kann entschieden werden, welcher der beiden folgenden
Fälle beim SiC vorliegt:

1. Es kommen nur in einem Band freie Elektronen bzw. Löcher
vor, deren Zahl gleich der Summe der aus zwei verschiedenen
Niveaux gespendeten Elektronen bzw. Löcher ist.

2. Der Elektrizitätstransport geschieht durch gleichzeitige
Wanderung von freien Elektronen bzw. Löchern in zwei verschiedenen
Energiebändern.
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Da im ersten Fall alle Elektronen (Löcher) ungeachtet des
Störstellenniveaus, aus dem sie stammen,, gleiche Freiheitszahl und
Relaxationszeit haben, muss ihre Beweglichkeit im ganzen
Temperaturbereich, speziell also auch bei tiefen Temperaturen,
proportional T~3'2 sein. Die aus den Messungen erhaltenen Ba-Kurven
zeigen aber, dass dieser Fall beim SiC sicher nicht realisiert ist.
Wie unter Annahme der zweiten Möglichkeit der Verlauf der
Ba-Kurven erklärt werden kann, zeigt das Folgende.

3) Formeln für den Fall zweier Leitungsniveaux.
Aus der wellenmechanischen Elektronentheorie der Metalle1) folgt
für die elektrische Leitfähigkeit a im Fall zweier beteiligter Niveaux

e2

° In (Tl I Fl I ni + T2 lF2 I nz) oxAa2 (2)

nx und n2 bedeuten die Zahlen der in den beiden Leitungsbändern
enthaltenen Elektronen bzw. Löcher. rx und t2 sind die
entsprechenden Relaxationszeiten, Fx und F2 die Freiheitszahlen. ax und
<r2 bedeuten die Einzelbeiträge der beiden Leitungsbänder zu a.

Mit denselben Bezeichnungen schreibt sich die HALLkonstante B
in diesem Fall

R _3_£ ±r^ F,2 ni±r22 F/ n2 ,„>
8 e (tJ^K+ TsI^I».,)2 W

und somit

Ba %ne ±Ti2*,i2%±T22fiia "H m\
S m i:i\Fi\ni+ r2\F2\n2 ' ^ ;

Das positive Vorzeichen ist jeweils für positive, das negative für
negative Freiheitszahl zu wählen.

Setzt man noch, wie experimentell bestätigt ist,

Ti Tio I~ '¦> Ta T2o I ~ \y)

wobei t10 und t20 konstant sind, so wird der Temperaturverlauf
des Ausdruckes BaTzli nur noch von den Elektronenzahlen nx
und n% abhängig, d. h.

Ha T13/2 àne + t10 t_\ wi7T2o 72 nî /a\
8W Tioi^ll »l + Tgol-Pgl W2

"

4) Berechnung von nx und n2. Für die Berechnung der
Elektronenzahlen nx und n2 werde das in Fig. 9 a dargestellte,
möglichst allgemein gehaltene Niveauschema zugrunde gelegt.

]) Siehe z. B. Fröhlich, Elektronentheorie der Metalle S. 237 (1936).
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Wenn man beachtet, dass die Gesamtheit der Elektronen durch
ein und dieselbe FERMi-Verteilungsfunktion

/ E-i
TcT + 1

beschrieben wird, so kann man die Bilanzen für Löcher und Elektronen

wie folgt schreiben :

2 f (1 - / (E)) D (E) dE
~°° Zahl der Löcher

im vollen Band

Z 7 nA f (Es)

Zahl der Elektronen
im Rezeptorenniveau

2 f(E)D(E)dE Z 7 nD(l-f(E2))
E' Zahl der Elektronen

im leeren Band
Zahl der Löcher
im Donatorenniveau

(")

D(E) bedeutet die Eigenwertdichte. Z ist die Zahl der Elektronen,
die bei der betrachteten Temperatur aus dem höchsten
vollbesetzten in das leere Band übergegangen sind. Das oberste und
unterste Band im Schema der Fig. 9 a haben im allgemeinen
genügenden Abstand von der Grenzenergie C der FERMiverteilung,
um mit einer MAXWELLSchen Verteilungsfunktion behandelt werden

zu können. Dagegen ist diese Vereinfachung nicht ohne weiteres
für die Störniveaux zulässig, da sie der Grenzenergie unter
Umständen sehr benachbart sein können. Setzt man nach Fröhlich
für D(E)

D(E)
1

An2
2 m

(E — ERmä) 1/2 (7a)

und eliminiert aus unsern Ausdrücken (7) Z, so folgt eine
Bestimmungsgleichung für C von der Form:

JEi-

B.-Ï a„e kT
S-E,

a0e kT

kT + 1

WO

mkT
2 7th2\F„

3/2 mkT
2xh2F0

(8)

(9)

Fu und F0 sind die Freiheitszahlen im unteren bzw. oberen Band.
Da die Lösung der Gleichung (8) auf eine Gleichung vierten

i
Grades in ekT führt, so ist es nicht möglich, die Lage und den
Temperaturgang von £ übersichtlich zu diskutieren.
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Wir beschränken uns daher auf die Feststellung, dass es zum
vornherein nicht selbstverständlich ist, dass im Falle mehrerer
Niveaux die Elektronenzahlen nx und n2 sich als einfache e-Funk-
tionen darstellen lassen, wie das in der Theorie von Wilson für
ein einziges Leitungsband möglich ist.

Ferner muss darauf hingewiesen werden, dass die aus dem
Experiment bestimmten scheinbaren Aktivierungsenergien ex und e2

durchaus nicht in einem einfachen Zusammenhang mit der
Energiedifferenz zweier Niveaux zu stehen brauchen.

5) Bestimmung von nx und n2 aus a. Infolge der
Unmöglichkeit der geschlossenen Durchführung der Rechnung scheint
es aussichtsreicher, die Ausdrücke für nx und n2 direkt den o--Kurven
zu entnehmen.

Wir treffen dabei die Annahme, dass sich die Leitfähigkeit bei
hinreichend tiefen Temperaturen (T<600°K) darstellen lasse in
der Form:

a ax T~sli e~Yk"¥ + a2 T~zli e~ «*. (10)

Die Faktoren T~3li sind entsprechend der WiLSONschen Theorie
der Halbleiter eingeführt. Durch Auftragen von logo"!13''4 in
Funktion von 1/T lassen sich sofort aus den Steilheiten der beiden
Kurvenäste ex und e2 bestimmen. Durch Extrapolation nach 1/T=0
erhält man ax und a2. Unter Berücksichtigung von (5) sieht man
durch Vergleich mit Formel (2) sofort, dass für nx und n2 zu setzen
ist:

% ^kr^~^; nz=^^T^e-^. (11)

6) Anpassung von BaTS12 an die Messungen. Durch
Einsetzen von (11) in (6) folgt

__
£1 £2

rj f n dt K i. _|_ rm ' n £ fC A
TD ml/s __ "l e ~r»2 " f-\ 0\

a-, e 2kT+a„e 2kT

wobei
3 Ti e t-, 3 ti e -,-, /,n\^^sTT^0*1 °2 =a*AXm~r™F*- t13)

Die aus den Experimenten hergeleiteten B a T3,2-Kurven müssen
sich demnach durch Ausdrücke von der Form (12) darstellen
lassen.
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Zur Anpassung an die Messungen, d.h. zur Bestimmung der
Koeffizienten axa1' a2a2, zerlegen wir (12) wie folgt:

BaT32= ^77+ "t^' (14)

x+LLeA^T 1 + £i.e~"2F!T"
al a2

Wählt man als unabhängige Variable x i.J und führt die

Funktionen

0i (y) r—y 9i (y) r—--yl + e" 1 + e *

ein, so geht damit (14) über in

B a T^ £ gx [x- lu ^) 7f g2 (x - In -j) (14a)

Die Analyse der JRö-T3/2-Kurven an Hand von Gleichung (14a)
erfolgt in der folgenden Weise:

1. Auftragen von log aTsli in Funktion von 1/T und Bestimmung

von ex und e2 zur Berechnung von x.
2. Auftragen von logEo-T3'2 in Funktion von x.
3. Auftragen von log gx und log g2 in Funktion von y im selben

Masstab auf Transparentpapiere.
4. Auflegen von gx auf BaT3l2, so dass sich die Kurven bei

hohen Temperaturen möglichst gut decken.
5. Eine Abweichung der Messkurve von gx bei tiefen Temperaturen

muss durch Addition oder Subtraktion von g2 in passender
Stellung dargestellt werden können.

6. Aus der endgültigen Stellung der Achsen log gx 0 und

l°g 02 0 können- -und --*-abgelesen werden. Die Stellung der
flj a%

gx und g2 gemeinsamen Achse y 0 liefert In —.a2

Die Fig. 8 zeigt je ein Beispiel für eine solche Anpassung bei
einem grünen und einem schwarzen Kristall.

Bei allen untersuchten Kristallen findet man, dass innerhalb
der Messfehler BaT3'2 durch den ersten Summanden von (14)

allein dargestellt wird, d. h. dass — mindestens um einen Faktor

1000 kleiner als — sein muss.

Da aber -1- : -2- —"—— ist, so bedeutet dies, dass die Frei-
a-i a2 ^20-^2

heitszahl F2 in dem bei tiefen Temperaturen wirksamen Niveau
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um mindestens einen Faktor 1000 kleiner sein muss als in dem
bei hohen Temperaturen massgebenden Leitungsband. Ein Grund,
t10 und t20 grössenordnungsmässig verschieden anzunehmen,
besteht dagegen nicht.

Zu dem durch diese Anpassung bestimmten Verhältnis axja2 ist
zu bemerken, dass es sich durchwegs um einen Faktor 10—20
kleiner ergibt als der aus den o-T3,4-Kurven bestimmte Wert.
Dies kann teils von einer durch den Ansatz (10) nicht erfassten,
relativ starken Temperaturabhängigkeit der Grenzenergie 'Q

herrühren, teils eine Folge der Anisotropie des HALLeffektes und der
Leitfähigkeit in den hexagonalen Kristallen des SiC sein.

ReV"

10s

Ra-TS!

106

—..7 ^A=9iS.ws

\9,5-10s-g,(x--1,55)

105

ln
12

-1,5s\

0 2 4 6 r=Ü=
SiC 8a

—=9.2-10

ln-^=6.05

103

SiC 7

9,2-104g,(x-6,05)

Fig. 8.

7) Modell. Es erhebt sich nun die Frage nach einem Modell
im Sinne der WiLSONschen Theorie, durch welches die gefundenen
Verhältnisse erklärt werden können.

Infolge der grossen Verschiedenheit der Freiheitszahlen in den
beiden Niveaux scheint es nicht möglich, dass der Fall
gleichzeitiger Elektronenleitung in einem fast leeren Band und Löcherleitung

in einem fast vollbesetzten Leitungsband vorliegt. Zwanglos

ergeben sich aber die Verhältnisse aus einem Modell nach
Fig. 9 b für die grünen, nach Fig. 9c für die schwarzen Kristalle.
Dabei wird je einem Störniveau Leitvermögen zugeschrieben. Die
geforderte sehr kleine Freiheitszahl und die (wie später gezeigt
wird) relativ grosse Zahl der Störstellen nÄ bzw. nD rechtfertigen
diese Annahme durchaus.
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E4
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E2

E,

%

Leeres Band

nA Elektronenempfängerstellen pro cm3

n„ Elektronenspenderstellen pro cm3

Höchstes vollbesetztes Band

a) Allgemeines Niveauschema

Leitungsband mit wenigen Elektronen

— — — — — — E3 n 4 Elektronenempfängerstellen pro cm3

2 nD Elektronenspenderstellen pro cm3

b) Niveauschema für grüne SiC-Kristalle.

y1-/7s

%

n^ Elektronenempfängerstellen pro cm3

n,. Elektronenspenderstellen pro cm3

Fast vollbesetztes Band

c) Niveauschema für schwarze SiC-Kristalle.

Fig. 9.
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8) Näherungsweise Berechnung der Modelleigenschaften.
Es soll nun gezeigt werden, dass ein Modell, wie es in Fig. 9b

oder 9 c angenommen ist, wirklich die experimentell gefundenen
Eigenschaften erklären kann. Besonders soll gezeigt werden, dass
sowohl im Leitungsband wie auch in den leitenden Störstellen-
niveaux die Zahl der Elektronen im wesentlichen durch Funktionen

£

der Form e 2kT dargestellt werden kann.
Im Falle des grünen SiC besagt die Gleichung

oo

(1 - / (E2)) nh f (E3) nA 7 2J'f (E) D (E) dE, (15)

E,

dass die aus den nD Spenderstellen emittierten Elektronen sich
im Rezeptorenniveau und im Leitungsband wieder finden. Die
Näherung der Rechnung besteht nun darin, an Stelle der strengen
FERMiverteilung /(E) eine MAxwELLsche Verteilung in (15)
einzusetzen. Die so erhaltene Gleichung ist algebraisch geschlossen
lösbar und hat die Form

Ey-ç E3-ç j-E,
nDekT nA e kT 7 <x0 e kT (16)

ç

Dabei ist <x0 aus (9) zu entnehmen. Bestimmt man aus (16) e kT

und geht damit in die beiden Summanden der rechten Seite ein,
so erhält man für die Zahl nx der Elektronen im Leitungsband und
für die Zahl n2 der Elektronen im Störband

/ (V _ A \
(17)

nD a0 e

nD 2 kT

E,-Ez
X+'AAe V / \ 1+nA.e tr

\ a0 / \ a0

Die Zahl der Löcher im Störstellenband der Energie E2, die auch
Leitfähigkeit bewirken können, ist n3 nx + n2. Für die
Leitfähigkeit darf man jedoch n3œn2 setzen, da die nx Leitungselektronen

im Leitungsband mit grosser Freiheitszahl einen weit
grösseren Beitrag liefern als die n1-Löcher im Störstellenband mit
kleiner Freiheitszahl. Wir finden somit im Grenzfall

Et-E,

2 Ej- (E*+E3) JS,-E,

e
'" 2kT

; n3~n2 (nDnAyl*e "r (17a)
/ nD \i/2
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und im Grenzfall
E,-E3

^ «0

B.-E, ,1/2 -ÏE,+ (Ei+Ei)

»i («o»d)1/*« ;«3^%=1^) »^e *" (17b)

Um zu entscheiden, welcher Fall bei SiC vorliegt, gehen wir mit
den Ausdrücken (17a) bzw. (17b) in (6) ein und erhalten durch
Vergleich mit (12) die Beziehung

nA _ % «a ji2
a„ a, a/ a,

(18)

öiDurch Einsetzen der experimentell für —- —— und — gefundenen
Werte überzeugt man sich, dass für nicht zu hohe Temperaturen
der Grenzfall (17a) vorliegt.

Damit ist gezeigt, dass nx und n2 näherungsweise wie e 2kT

bzw. mit e 2kT von der Temperatur abhängen. Zugleich ist der
Zusammenhang zwischen ex und e2 und den Energiewerten des
Niveauschemas hergestellt. Es ist

ex 2 E4 - (E2+E3) ; e2 E3~E2 (19)

Für SiC 8a ist gemessen ex 0,2 eV, e2 0,1 eV. Setzt man
E2 0, so folgt für E3 0,2 eV, für E/4 0,3 eV.

Für die schwarzen Kristalle (Schema Fig. 9 c) ergibt die analoge
Rechnung dieselben Ausdrücke. Man darf daher die obigen Resultate

auch auf die schwarzen Kristalle übertragen.
So ergibt sich für SiC 7 mit ex 0,31 eV und e2 0,054 eV,

wenn Ex 0 ist, E2 0,13, E3 0,18 eV.
Welchem der beiden Störniveaux Leitvermögen zugeschrieben

werden muss, geht aus unseren Experimenten nicht hervor.

II. Erklärung der Maxima in den a-Kurven.

Es wurde oben dargetan, dass die Verschiebung der Maxima in
den c-Kurven nach tieferen Temperaturen, als nach der Wilson-
theorie der Halbleiter zu erwarten ist, ihren Grund darin hat, dass
diese den Temperaturgang der Zahl % der Leitungselektronen nicht
in allen Fällen richtig wiedergibt.

In diesem Abschnitt soll der Gültigkeitsbereich der Wilson-
theorie untersucht und erweitert werden.
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1) Experimentell ermittelte Zahl der Leitungselektronen

pro cm3. Bei hohen Temperaturen überwiegt der
Einfluss des einen Leitungsbandes so stark, dass die Zahl der
Leitungselektronen aus dem einfachen Ausdruck

B=sT-~n7 W
berechnet werden kann.

Wie aus Fig. 4 und Fig. 5 zu entnehmen ist, haben bei hohen
Temperaturen die grünen Kristalle HALLkonstanten von ungefähr
10 cm3/Clb, die schwarzen Kristalle solche von 0,2 cm3/Clb. Mit
Gleichung (20) ergibt sich daraus für die grünen Kristalle n^lO18
Elektronen/cm3, für die schwarzen Kristalle n1«^4-1019
Elektronen/cm3.

Diese Elektronenkonzentrationen sind schon so hoch, dass mit
der Möglichkeit beginnender Entartung des Elektronengases
gerechnet werden muss.

Entartung tritt dann ein, wenn die Elektronendichte von der
Grössenordnung von

12m*kT \3/2 m
%rit=(—p—) w0 m*= -y

wird. Bei Temperaturen von 1000°K und einer Freiheitszahl F 1

ist nkrit 1,3-1019 Elektronen/cm3, also gerade von der Grössenordnung

der experimentell gefundenen Elektronendichten.
Bei der Berechnung von nx in der WiLsoNtheorie der Halbleiter

wird die FERMifunktion durch eine MaxwellVerteilung ersetzt.
Das bedeutet aber Vernachlässigung jeder Entartungserscheinung.
Es ist daher zu vermuten, dass die erwähnte Diskrepanz durch eine
Berechnung von nx unter Berücksichtigung der beginnenden
Entartung geklärt werden kann.

2) Berechnung von nx bei beginnender Entartung.
Im Falle des grünen SiC müsste zur strengen Berechnung von nx
die Gleichung (15) unter Verwendung der FERMiverteilungsfunktion

für / nach £ gelöst werden. Einsetzen von t, im Integral 2 / fDdE
E,

ergäbe dann das gesuchte nx.
Diese Rechnung ist aber nicht geschlossen durchführbar, da

sie auch unter Verwendung einer im Folgenden abgeleiteten Näherung

für das Integral der rechten Seite von (15) auf eine Gleichung
g

dritten Grades in ekT mit sehr unübersichtlichen Koeffizienten
führt.
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Um eine diskutierbare Lösung des Problems zu erhalten, werden
die beiden Störstellenniveaux der Fig. 9 b durch ein einziges Elek-
tronenspenderniveau der Energie E2 und der Störstellendichte nD'
ersetzt.

Dieser Ersatz ist dadurch gerechtfertigt, dass sich a oberhalb
des Knicks wirklich so verhält, wie wenn nur ein Störstellenniveau
vorhanden wäre.

Im Fall 17b, der bei hohen Temperaturen bei einigen schwarzen
Kristallen realisiert sein könnte, spielt nA in der Formel für nx
keine Rolle. Es ist in diesem Fall

E2 E2 nD' nD.

Im Fall 17a, der bei der Mehrzahl der Kristalle auch bei hohen
Temperaturen vorliegt, ergibt sich durch Vergleich der nach
Wilson aus unserem Ersatzmodell abgeleiteten Formel

Ei-e;
% K01/2e 2kT

mit dem dort erhaltenen
2Et-(Ea+E3)

n, an|— I1/2e 2kT-fê)
dass gesetzt werden muss :

E2' E3 + E2 — E4

nj) (20a)

Da der Berechnung dieser Ausdrücke MAxwELLverteilung zugrunde
liegt, sind sie nur als rohe Abschätzungen zu bewerten.

Die für das Ersatzmodell zu lösende Gleichung lautet

(1 - / (E2)) n7; 2 / (E) D (E) dE. (21)
0

Setzt man für / die FERMifunktion ein und verwendet für D(E)
den Ausdruck (7 a), so geht (21) über in

n» 1 [2m \3/2 f (E-Erfi'-dE
E,'-Z " 2 n2 \h2Fj ¦ E-C (22)

e kT +1 J e kT +1

Mit den Substitutionen

t - 1-^L u- ;-£4 K*-E2' Al.
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folgt hieraus „& oo

WO

A* 1 r xi 2 dx

ee"+f,+ l ~ 2"7 ~?-"+1
o

¦fw(M) (23)

h2 \3/2

D\2m*kT) ¦

Diese Gleichung ist identisch mit einem von Shifrin1) gegebenen
Ausdruck. Um /j, und damit auch £ zu bestimmen, wurde von
Shifrin eine graphische Methode angegeben. Diese hat den Vorteil,
für jeden beliebigen Entartungsgrad gültig zu sein, gestattet jedoch
keine übersichtliche Diskussion der vorliegenden Verhältnisse.
Shifrin hat gezeigt, dass /j, als Mass für die Entartung des

Elektronengases betrachtet werden kann. Wenn juti—2 ist, d.h.
solange die Grenzenergie £ um mehr als 2kT unter dem unteren
Rand des Leitungsbandes liegt, darf das Elektronengas als nicht
entartet betrachtet werden. Für ^^7l dagegen, wo £ mit einem
Abstand :g k T oberhalb des unteren Randes des Leitungsbandes
liegt, darf schon mit völliger Entartung gerechnet werden.

Im Folgenden soll eine analytische Methode gegeben werden,
durch welche die Gleichung (23) für alle Werte jU^+1,5 gelöst
wird. Sie ermöglicht, das ganze Übergangsgebiet zwischen völlig
unentartetem und völlig entartetem Zustand zu beherrschen und
eine in diesem Gebiet gültige geschlossene Formel für a aufzustellen.

oc) Berechnung des Integrals /1/2 (fi).
Die Funktion /1/2 (fi) ist durch die folgende Integraldarstellung

gegeben :

oo

1 Ç xll2dx
/1/2 W ~2 J ex~i*+i

o

Durch Entwicklung des Integranden nach Potenzen von e'l~x und
gliedweise Integration erhält man die von Shifrin gegebene, für
/u<0 gültige Reihenentwicklung

imiti ^'"êi-ir —ïTT- (24)1/2 4 ^o (n+1)3/2
V ;

Es ist möglich, aus dieser Reihe einen Ausdruck abzuleiten, der
den in der Arbeit von Shifrin im Intervall —6^,« 2a 76 tabellier-
ten Verlauf von /x/2 (fi) für alle ,a^7l,5 sehr gut wiedergibt.

Shifrin, Journal of Physics of USSR, Vol. VHI, 242 (1944).
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Wir setzen zu diesem Zweck

/1/2 (/")

G (rj) wird somit
G(v)

mit rj e"

G {ri)

£{¦
ü

in)
(n + 1)3!2

Die TAYLORentwicklung in der Umgebung von n

G(r]) l+ 0,3535 rj — 0,06745 rf 7
Damit wird:

/1/2 M

0 liefert hiefür

(25)Ill2\r/ 4 1 +0,3535 e"-0,06745 e2"

Wie aus Tabelle 1 ersichtlich ist, gibt f\2 (//) schon bei /u, — +1
eine Abweichung von 20% vom richtigen Wert. Man kann aber die
Näherung verbessern, indem man setzt

ei*

4 1 + bef+ce2»- ^25a^

Durch Anschluss an das exakte fx\2 (fi) in den Punkten /u 0 und
fi 71,5 bestimmen sich b 0,369483; c -0,027967.

Aus Tabelle 1 geht hervor, dass das mit diesen Koeffizienten
berechnete flj2(fi) für ^^71,5 mit einem Maximalfehler von
3,5% die exakte Funktion /1/2 (fj) wiedergibt.

Tabelle 1.

fi /1/2 W1) /ï/2 (/*) f\% W /$(/*)

-6 0,0011 0,0011 0,0011

-3 0,0216 0,0217 0,0217

-2,5 0,0352 0,0353 0,0353

-2,0 0,0564 0,0573 0,0571

-1,5 0,0917 0,0919 0,0914

-1,0 0,1448 0,1454 0,1440
-0,5 0,2245 0,2259 0,2214

0 0,3303 0,3445 0,3303 00

0,5 0,4955 0,5220 0,4769 0,699
1 0,6865 0,8235 0,6700 0,744
1,5 0,9484 1,6152 0,9484 0,948
2 1,2498 1,4861 1,233
2,5 1,5776 1,580
3 2,0125 1,970
6 5,1215 5,068

J) nach Shifrin.
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In Tabelle 1 findet man für ^^0,5 auch die aus der Sommer-
FELDtheorie nach der Formel

fi)l (/*)
*3'2

17

berechneten Werte /™ (ja) eingetragen. Man sieht, dass gerade
dort, wo /"2 (ft) merkliche Fehler gibt, die Näherung durch f[\l (fi)
gut wird. Anschaulich werden die Näherungsverhältnisse durch
Fig. 10 wiedergegeben.

fio M

f112(f)

CM

fio (f)

5-£;
" kT

-6 -4-2o 2 4 6

Fig. 10.

Die Funktion f± 2 (/a).

ß) Berechnung der Zahl nx der Leitungselektronen.

Wenn man mit dem Ausdruck (25 a) für /™2 (ft) in Gleichung (23)
eingeht, so erhält man mit den Abkürzungen

ß ekT B* m*kT \3/2

n'D \21l3nh2
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die folgende Bestimmungsgleichung für e,J und damit für die
Grenzenergie £

1 + ße* l + bei'+ce2^ "

Die Auflösung nach e" gibt

^t¥ (b-B*) + [(B*-i)2 + i(ßB*-c)]1!2
p f* — p "¦ ¦*¦ ——- —— - -—- »e _e 2{ßB*-c)

Durch Nullsetzen von b und c sieht man leicht, dass vor der Wurzel

im Zähler nur das positive Zeichen einen physikalischen Sinn
haben kann, da e" immer positives Vorzeichen erhalten muss.

Die Zahl nx der Leitungselektronen folgt jetzt durch Einsetzen
dieses Ausdruckes in eine der beiden Seiten von Gleichung (22).
Man berechnet

n =n' 2(ßB*-c)
1 D ß(b+B*)-2c+[(B*-b)2 + 4:(ßB*-c)-]1l2 ' K }

Separiert man Temperaturabhängigkeit und Störstellendichte aus
B* ab durch die Schreibweise

ß* _ ^* J>3/2
n'D

WO

-r,* f m*k \3/2 1 1 mk \3/2 1 -, 1ftl,ß* (w^) =7^(w^j =7r -4'7° '10 cgs

so geht (26) über in

_ 2n'D(ßD*T3l2-c.n'n)
1

ß(bn'J)+D*T3l2)-2cn'D+ß[{D*T3i2-bn'I))2 + 4:n'r){ßD*T3l2-cn'B)]1/2^ '

Wenn die Berechnungen für den Fall der Fig. 9 c durchgeführt
werden, so bekommt man die genau gleiche Formel für nx. Die
abgeleiteten Ausdrücke gelten daher gleichermassen für grüne
und schwarze Kristalle.

y) Diskussion des Ausdruckes für nx.

Gültigkeitsbereich der WiLsoNtheorie : Setzen wir

cnD<bnD <D* T312 (28)

so geht (27) über in

^-rW* (29)
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Aus dieser Formel folgt sofort der WiLSONsche Ausdruck

l/«7/2m*feT\3/4 Yk~¥~
»i HsrHnH e

wenn zugleich die Bedingung erfüllt ist

n* 713/2/*>4^- (30)

Die Freiheitszahl F werde als 1 angenommen. Dann bedeutet die
Ungleichung (28) bei einer kleinsten Temperatur von 100°K

nD < -y" T3/2 ¦= 1>3 "1019 cm"3 ¦

Die Ungleichung (30) sagt aus, dass andererseits der Energieunterschied

Ei—E2' nicht zu klein werden darf. Bei einer Störstellenzahl

von z. B. nD' 1018 cm~3 folgt für eine höchste Temperatur
T 1000°K

ß > 37,5, d. h. -E4-E2 mindestens 0,31 eV

Wird ß so klein und die Temperatur so hoch, dass gilt

/j)*y3/2ß< 4 nD

so folgt aus (29), dass die Zahl der Leitungselektronen gleich der
Zahl der Störstellen ist.

Für die Berechnung von a treffen wir die Voraussetzung, dass

bnB qD* T3/2, wo jedoch der Faktor q nach oben dadurch
beschränkt sein soll, dass immer noch cnD'<^.ßD* T3/2 ist. Das
bedeutet, dass das quadratische Glied im Nenner von f\}2 (fi)
vernachlässigt wird. Für q folgt somit

1<-^ ßmin-

Für SiC mit -E4—E2'=0,3 eV bedeutet das für eine höchste
Temperatur von 1000°K g<440.

Die Formeln werden gültig bis zu einer Störstellendichte

«B<3m«-—^=5,7-1021 cm-3

also wohl bis zu den höchsten Werten von nD', bei denen ein Kristallgitter

noch bestehen kann.
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In diesem Falle stellt sich % dar als

2 n'p n*y3/2
1 r *¦ 11/2

bn'D+ D*T3I2+ [(D*T312- bn'D)2+ 4 n'DD*T3I2 e kT \

ô) Berechnung von ax.

Geht man mit (31) ein in den allgemeinen Ausdruck für ax

Qi ~nx F0 rx

und berücksichtigt rx t10T-3'2, so erhält man

(31)

2-~TlnD*n'
r ei 11'2

{bn'n + D*T3l2)+[(D*T3l2-bnD)2 + 4:n^D*T3l2ekT\

(32)

Durch Nullsetzen der ersten Ableitung von (32) erhält man die
Maximumsbedingung

e \kT„ 2)^2 \kT0 2/ 2n'D kT0 ^00'

T0 ist dabei die dem maximalen ax entsprechende Temperatur.
ex kann wie schon gezeigt aus der Steilheit der Kurve logaT3'4
in Funktion von 1/T entnommen werden, wobei natürlich darauf
zu achten ist, dass man die Tangente dort an die Kurve legt, wo
die Entartung noch keinen merklichen Einfluss hat.

Somit sind wir imstande, mit Hilfe von Gleichung (33) die Grösse

D*
ii^~S

und damit das Produkt
nDF3'2 ux

zu bestimmen. Andererseits folgt bei gemessener HALLkonstante
B für eine Temperatur Tx im WiLSONgebiet

3rr
• e

n, --^.^=(^-n'D^e 2kT

n,
woraus der Wert des Quotienten—t^-=m2 berechnet werden kann.

Damit lässt sich die Freiheitszahl im Leitungsband bestimmen

ausF1=(~) n'D geht aus (uxu2)112 hervor. Es gibt aber nur
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im Falle (17b) die wirkliche Zahl der Spenderstellen an. Im Fall
(17a) lässt sich damit das Verhältnis von Elektronenempfängern
und Elektronenspendern nach Gl. (20a) roh abschätzen.

Die auf diese Weise bestimmten Freiheitszahlen im Leitungsband

liegen sämtliche zwischen 0,06 und 0,3.

SIC

0.1

0,01

S,Cl
o gemessene Werte $;Q y

— Berechneies &,
® Anschlusspunkt ifQ

SiC 7
» gemessene Werte .5

— Berechnetes S,
® Anschlusspunkt

0.001

5 10' 10

0,1

0,01

Fig. 11.

Die Störstellendichte «# wird von der Grössenordnung 1018

bis 1020 cm-3.
Mit diesen Störstellendichten und Freiheitszahlen ist in dem in

Frage stehenden Temperaturgebiet b-ni,<^D*-T312, so dass sich
Formel (32) mit den Abkürzungen

Q* 2~irT10n^
D*

s —,-

vereinfacht zu

t-'i
ax Q

1:2

l +_ T~3 2ekT1 +

(34)
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ex ist aus der Kurve log a, T3'4 in Funktion von 1/T zu bestimmen,

s folgt aus Gleichung (33). Q* ergibt sich durch Anschluss
des Ausdrucks (34) an einen Punkt der aus den Messungen erhaltenen

ovKurve. Dabei muss darauf geachtet werden, dass nur
der Anteil ax (siehe Gleichung (2)) durch die obige Theorie
dargestellt wird. Man hat daher vor der Bestimmung von Q* die gemessene

cr-Kurve in ihre Komponenten ax und a2 zu zerlegen.
Die gute Übereinstimmung zwischen der nach Gleichung (34)

berechneten und der gemessenen oyKurve geht aus Fig. 11 für
je einen grünen und einen schwarzen Kristall hervor. Der anomale
Temperaturgang der elektrischen Leitfähigkeit des Siliciumcarbids
bei hohen Temperaturen ist somit auf die beginnende Entartung
des Elektronengases infolge der hohen Störstellenkonzentrationen
zurückzuführen.

e) Abschätzung der Relaxationszeit.
Da jetzt n'j) und F bekannt sind, könnte aus dem Wert von Q*

die Relaxationszeit x berechnet werden. Wir ziehen aber vor, dazu
Gleichung (13) und den aus der Anpassung der Eo--Kurven bestimmten

WTert ax'/ax zu verwenden, weil dort n'D nicht eingeht. Wir
erhalten für Zimmertemperatur bei SiC Relaxationszeiten von der
Grössenordnung 10-7 sec, wie sie auch bei Metallen vorkommen.

Zum Schlüsse benützen wir gerne die Gelegenheit, Herrn Prof.
Dr. P. Scherrer für das anregende Interesse, welches er den
vorliegenden Untersuchungen entgegenbrachte, sowie für die
Überlassung der experimentellen Hilfsmittel herzlichst zu danken.

Zürich, Physikalisches Institut der ETH.
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