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Ein Beitrag zum Deuteronproblem
von Felix Villars.
(20..Juni 1946.)

Die tiefsten Zustinde des zwei-Nukleon-Systemes werden untersucht im
Rahmen einer Mesontheorie, die die Existenz ‘‘isobarer Zustande* des Systemes
vorsieht (starke Kopplung). Besondere Beachtung findet der Einfluss der Tensor-
kraft. Es zeigt sich, dass der von der Erfahrung geforderte Abstand der Bindungs-
energien der beiden ,,S-Zustinde (3S und 1S) die Anregungsenergie der Isobaren
auf Werte >200 MeV beschrinkt. In diesem Falle sind letztere ohne wesentlichen
Einfluss auf die Anisotropie der Proton-Neutron-Streuung.

I. Einleitung.

Bis jetzt haben sich jedem Versuch, zu einer quantitativ
befriedigenden Deuterontheorie zu gelangen, grosse Schwierig-
keiten in den Weg gestellt; dies auch, wenn man sich, wie das im
- folgenden geschehen soll, auf den ,,mechanischen* Aspekt des
Problemes beschrénkt und feinere Fragen (magnetische Momente)
vorlaufig beiseite schiebt. Es verbleiben dann im wesentlichen
vier Punkte, die eine mit der Erfahrung iibereinstimmende Dar-
stellung erfordern. Dies sind die Bindungsenergien der zwei
untersten Deuteronzustiande (3S und 18S), das elektrische Quadrupol-
moment des erstern und die fiir die Anisotropie der Proton-Neutron-
Streuung massgebende P-Wechselwirkung. Die grosste Schwierig-
keit bereitet jeweilen der zuletzt genannte Punkt. Eine rechneri-
sche Betrachtung zeigt nimlich, dass die Anisotropie in geradezu
ausserordentlich empfindlicher Weise von der Stirke der P-Wech-
selwirkung abhéngt. Im allgemeinen sind aber die Konstanten
der Kraftansitze bereits festgelegt durch die Forderung, die Deu-
teron S-Zustinde richtig zu beschreiben. Ubergang zu P-Zu-
stinden bedeutet dann Parititswechsel der rdumlichen FEigen-
funktionen; genaue Kenntnis der Streuanisotropie ergibe demnach
die Moglichkeit, die einzelnen Wechselwirkungsansitze auf Grund
ihres charakteristischen Verhaltens bei Paritdtswechsel der Eigen-
funktion zu begutachten. Leider sind die Ergebnisse der Aniso-
tropiemessungen?) nicht von der ihrer Wichtigkeit entsprechenden
Genauigkeit; es soll weiter unten auseinandergesetzt werden, dass
sogar Griinde dafiir bestehen, gewisse Ergebnisse in quantitativer

*
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Hinsicht stark anzuzweifeln, wogegen sie qualitativ durchaus
richtlg sein mogen.

Den Vorzug geniessen aus grundsitzlichen und experimen-
tellen Erwidgungen die Ansatze, die zu ladungsunabhéngigen
Kraften filhren (Jadungssymmetrische Theorien). Ein Charak-
teristikum dieser Ansétze i1st aber — etwas grob ausgedriickt —
der Vorzeichenwechsel der Kriafte beir Paritatswechsel, d.h. zu
den gezwungenermassen anziehenden S-Potentialen gehéren ab-
stossende P-Potentiale. Der Sachverhalt wird indessen etwas
komplizierter, falls man eine Wechselwirkung vom Typus der
Spin-Bahn-Kopplung (Tensorkraft) hinzuzieht, was zur Deutung
des elektrischen Quadrupolmomentes () erforderlich ist. Die
Tensorkraft spaltet ndmlich die Triplett- P-Terme auf (wobei die
Lage des ,,Schwerpunktes*‘ erhalten bleibt); in der symmetrischen
Theorie ergibt sich der 3P,-Term als der tiefstliegende, falls man
das Vorzeichen der Tensorkraft der Forderung, dass @ positiv ist,
anpasst. (Im Sinne einer Mesontheorie mit Vektor- und Pseudo-
skalarfeld bedeutet ein positives (), dass das vektorielle Meson
das schwerere ist; vgl. 2)). Die Messungen') deuten nun tberein-
stimmend darauf hin, dass die massgebenden P-Potentiale an-
ziehend sind; dies 1st aber in der symmetrischen Theorie in An-
betracht des kleinen Gewichtes des 3P -Termes nicht der Fall.
Dieser Ansatz lisst also anscheinend nur die Alternative zu, dass
entweder das Quadrupolmoment des Deuteron-Grundzustandes
oder aber die Anisotropie der Proton-Neutron-Streuung das falsche
Vorzeichen erhalt*).

- Diesem Einwand ist nun aber die symmetrische Theorie im
Grenzfall ,starker Kopplung* wenigstens prinzipiell nicht aus-
gesetzt3). Die in diesem Falle auftretenden angeregten Zustinde
(Isobaren) bewirken nédmlich eine Verschiebung der adiabatischen
Potentiale im Sinne stidrkerer Anziehung und dies um so mehr,
je kleiner die Anregungsenergie der Isobaren ist. So werden spe-
ziell bel gentigend kleiner Isobarenanregungsenergie die P-Poten-
tiale durchwegs .anziehend, Falls also die {ibrigen Daten des Deu-
terons die Annahme einer hinreichend kleinen Anregungsenergie
zulassen, darf man erwarten, dass die Streuanisotropie dadurch
wesentlich in Richtung auf die experimentell geforderten Werte
hin verbessert wird.

*) Die Anisotropie A4 sei hier definiert durch 4= (¢ (0)—o0 (7)) /o (-521)’ wo

© den Streuwinkel im Schwerpunktsystem und o (#) den entsprechenden Streu-
querschnitt bedeutet. Vorwirts (Riickwirts-)streuung im Schwerpunktsystem
ist dann charakterisiert durch 4>0 (4 <0). :
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In dieser Arbeit soll nun vorerst der Einfluss der Isobaren auf
die untersten Deuteronzustinde untersucht werden; es wird sich
also 1n erster Linie darum handeln, zu sehen, ob und wieweit die
Anregungsenergie der Isobaren durch die Daten der bekannten
S-Zustande nach unten begrenzt wird; alsdann soll untersucht
werden, wieweit zuldssige Werte dieser Grosse.ihren Einfluss auf
die Lage der P-Terme geltend machen.

II. Hamiltonfunktion des Zweikirpersystemes; Variationsveriahren
zur Auflosung der Schriodingergleichung.

Das in Rede stehende Modell ist an anderer Stelle schon ein-
gehend diskutiert worden?). Es seien deshalb hier lediglich die
Variabeln des Zweikorpersystemes und die Hamiltonfunktion des
besagten Modelles angegeben:

j1myny und jymyn, sind die Quantenzahlen der beiden
Nukleonkreisel,

J und M der Gesamtspin des Systemes und seine Komponente,
K und N der gesamte isotope Spin und dessea Komponente;
N + 1 stellt die Ladung des Systemes dar.

Es gilt die Ungleichung
. . J s . ‘
|71—72|<K<‘71+72' (1)

J setzt sich mit dem Bahndrehimpuls L des Systemes zusammen
zum Gesamtdrehimpuls I (Komponente M;); es gilt

|d—E| LT €F+T. @)

Die Hamiltonfunktion ist diagonal beziiglich I, M;, K, N; fur
jeden Satz dieser Zahlen ist sie die folgende Matrix beziiglich
der tibrigen Variabeln:

(JLjge|H[J" Ly 35') =
h? (—d? L+1 2 /. 1 '
{ 3 ( T (T: ))+ [(h+ ) (7o+ ) ]}(JLmz [1{J"L'jy"j5")
+ V() Guied |25 5"d) - (JL[1]|J L)
+ U () (JJLgyge [T " L7 1" ') - (3)
Die Matrizen £ und 7" (7" =T —1/3 2 in der Bezeichnung von
Fierz, s.u.) sind von Fierz5) berechnet worden. Uber die stati-
schen Potentiale U(r) und V(r) gibt die Mesontheorie fiir nicht

zu kleine Abstdnde der Nukleonen (r>g, wo g die Kopplungs-
konstante bedeutet) bestimmte Aussagen. Des weiteren sind durch
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die Bedingung starker Kopplung: ¢>-a im physikalisch inter-
essanten Fall a u<€1 (a: Ausdehnung des Nukleons, u - h/c: Meson-
masse) allzugrosse Werte von & ausgeschlossen (vgl: ¢)). Wir
wollen aber hier so vorgehen, dass wir iiber die Potentiale U (r)
und V(r) sowie iiber die Konstante & vorerst frei verfiigen; ins-
besondere behalten wir uns vor, U und V durch Kastenpotentiale
(U, V = const. fir r<ry,, =0 fiir r>r,) passend gewihlter Tiefe
zu approximieren. Auf Grund der so durchgefithrten Rechnungen
mag dann diskutiert werden, wieweit die erhaltenen Ergebnisse
eine sinnvolle Interpretation im Rahmen der Mesontheorie ge-
statten.

Die Komponenten der Schriodingerfunktion § bezeichnen wir
mit F,; ;. (r) und erhalten demnach als Schrédingergleichung:

ht [ d? L(L+1 . 1)\2
{" W (d,rz - (7:— )) - [(?1+ ) (?2+§)_2]_E} Eypjis (1)
+ 2 V) Grded (2] 5242 ) 8,50 0y +U (1) (J Ly | T'] J L' i 5')}
I LG 5
FJILle' ?'zl — 0 . (4)

Die Matrix Q koppelt die Werte 9;—19,"= 0,41 und j,—g," = 0,41.
(Sie ist natiirlich, wie auch T’, symmetrisch in 4; und j,.) Die
Matrix T" koppelt mit J, L, 7,7, die Zustiande J'=J,J+2
L'=L, L+2, 1,'=1;, 141 und j5'=7s, Jo+1. Die beiden Unglei-
chungen (1) und (2) entscheiden aber letzthin, welche Matrix-
elemente wirklich auftreten. Uber das Verhalten der F,g; ; (r)

gegeniiber einer Vertauschung von j; und j, gibt das Pauliprinzip
die Vorschrift

FJL?;?: (T) = (—_1)J+K+L+1 F JL gy g, (’r) ¢

Insbesondere gilt fir j,= 4, (etwa im Falle J =0 oder K = 0)
die Bedingung: J + K + L muss ungerade sein.

Eine exakte Losung der Gleichung (4) diirfte unmoglich sein.
Wie schon bemerkt erleichtern wir uns die Aufgabe durch die
Annahme von Kastenpotentialen gleicher Reichweite ry fir U
und V. In dem durch r>ry definierten Aussenraum ist dann das
Gleichungssystem (4) entkoppelt; fiir diesen Bereich sind exakte
Losungen angebbar. Im Innenraum r<r, liegt ein System simul-
taner Gleichungen mit zun#ichst unbeschriankter Komponenten-
zahl vor. Das Problem lisst sich jedoch aus den folgenden Griinden
reduzieren: Gehen wir aus von der Annahme, dass ¢ nicht zu klein
ist. (Diese Aussage soll weiter unten priizisiert werden.) In diesem
Falle nehmen mit wachsenden j,, j, die Amplituden der entspre-
chenden F-Komponenten rasch ab; von bestimmten Werten j;, 7,
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an wird man daher die F;;;; (r) néherungsweise Null setzen
diirfen. Grosse Werte von J bedingen wegen (1) grosse Werte
von 7; oder j, und grosse Werte von L sind wegen (2) mit grossen J
kombiniert, da in den interessierenden Fillen I klein ist (I = 0,1
oder 2). Dazu wirkt fiir L>0 das der Zentrifugalkraft entspre-
chende Glied ~L(L+1)/r? im gleichen Sinne wie die Isobaren-
energle. Aus diesen Griinden kann man niherungsweise die
Schrodingergleichung im Innenraum auf ein endliches System redu-
zieren. Bezeichnen wir fiir das folgende die Gesamtheit der In-
dices J L 4,5, mit s und schreiben wir abkiirzend H,, fiir (s|H|s")
(und H, fir (s|H|s)), so lautet das redumerte System (4) fir den
Innenraum Pyt

2 HuFy () =B-F, (). - ®)

Dieser Gleichung ist dquivalent das folgende Vanatlonsproblem
Es soll die Variation von

(Hf—E.Ni)_—__ZfdrF Z(Hss _Eé,)F.() (6)

verschwinden, falls die zu variierenden F,(r) den Randbedin-
gungen
F.(0)=0F,(0)=0

und
(4 log By (1)), = (5-log 8 F, (1)) = —=, (7)

gentigen. (», 1st bestimmt durch die Losung von (4) im Aussen-
raum.) In der Tat folgt aus (6) und (7):

8 (H'—ENY) =23 f aro P, ) X (Hy,—E8)Fe(). (8

Die F(r) sollen nun approximiert werden durch den Ansatz
— X amu (), )

wobel die a zu variierende Parameter und die «!™ (r) vorgege-
bene Funktionen sind, die die Randbedingungen

" (0) =0 und (- logu® () = —x, (7)

0

erfiillen. Die Forderung

(Hi — EN%) =0

0 aé")
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fithrt dann auf das in den a!™ lineare Gleichungssystem

To

33 f dr u® (Hy—E 0,,) u®) =0. (10)

s h

Zu Gleichung (10) fithrt aber auch die folgende Interpretation
des Variationsverfahrens: Es sei

Gy (r) EZ (Hy. — E 64) For (7).

Nach (8) ist die Gleichung 6 (H*— E * N%) = 0 unter Beriicksich-
tigung von (7) einer Orthogonalitiitsrelation iquivalent: G,(r) soll
zu jeder Funktion 6 F; orthogonal sein und muss daher identisch
Null werden. Die Verwendung des Variationsverfahrens als Nahe-
rungsmethode beruht nun gerade darauf, nur zu verlangen, dass
G,(r) zv endlich vielen Funktionen «™ (r), die den Randbedingun-
gen (7') geniigen, orthogonal sei:

fdr Gy (r) ul (r) = 0.
0

Mit dem Ansatz (9) fiir die F,(r) erhilt man wieder (10). Ferner
gilt, wie man jetzt leicht sieht, (H:*— E * N¥) = 0.*¥) Es ist aber
bei dieser Fassung der Naherungsmethode moglich, von vorn-
herein einen der Parameter a, etwa aV), wo o die ,,Hauptkom-
ponente** bedeutet, gleich 1 zu setzen. Dies ist wichtig fiir den
Fall, dass sich die Hauptkomponente im Aussenraum (r> r,)
oszillatorisch verhélt und daher deren asymptotische Amplitude
zu normieren ist. Es ist niamlich in der Tat unwesentlich, ob es
sich bei (4) um ein Eigenwertproblem im eigentlichen Sinne oder
aber um ein Streuproblem handelt. Im ersteren Falle sind samt-
liche Konstanten x, (7, 7') durch die exponentiell abfallenden
Losungen im Aussenraum bestimmt, und zwar wird

fir L=0: 2,,, = V% {-;— [(jﬁ— —%—)2-!- (j2+ %)2— 2] —E}m,

1+ %5054,
2 L]
14302505, 7,7 3/% 504, 5,

fir L=2: %y, ,;, =2+

*) Hier bedeutet natiirlich E vorerst nur einen Parameter, der sich aber
nm so mehr dem Eigenwert des Problemes nihert, je besser die F((r) die exakten
Losungen approximieren.
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Damit sind durch (10) und die Normierungsbedingung

Nz%‘;fdrFf(r) ~1 (11)

alle Koeffizienten a®™ und der Eigenwert E bestimmbar.

Im Falle eines Streuproblemes verhalten sich die Komponenten
Firy () (J=0,1) im Aussenraum oszillatorisch. An Stelle des
nun vorgegebenen Wertes von E sind hier mit Hilfe von (10) die
entsprechenden logarithmischen Ableitungen #;;,, ., zu bestimmen;
1hr Wert legt die Phasen der gestorten Welle im Aussenraum fest.
Das Problem ist aber nur im Falle einer einzigen oszillatorischen
Komponente (¢) durch (10) schon vollsténdig festgelegt. In diesem:
Falle gestattet (10) namlich gerade die Bestimmung der Ampli-
tudenverhaltnisse (d.h. der a®, falls al) =1 gesetzt wurde)
und des Wertes von #,. Treten hingegen mehrere oszillatorische
Komponenten auf, so gibt erst die Ausstrahlungsbedingung die
erforderlichen zuséitzlichen Randbedingungen zur Bestimmung
aller »,. (Vgl. auch Anhang 1.)

ITII. Der Deuteron-Grundzustand.

Bei Vernachlédssigung der Tensorkraft sind J und L Quanten-
zahlen und die beiden tiefsten Eigenwerte E gehoren zu K = 0,
J=1, L=0resp. K=1, J =0, L =0. Die beiden energetisch
tiefstliegenden Zustinde werden also in dieser N#éherung ein
3S- und ein 1S-Zustand. Die Tensorkraft spaltet diese beiden, in
obiger Naherung zusammenfallenden Zustinde auf; die Hamilton-
funktion ist nun nicht mehr diagonal beziiglich J und L und der

Deuteron-Grundzustand ist in diesem Falle zu charakterisieren

durch
I=1, K=0, J ungerade, L gerade.

Die Hauptkomponente dieses Zustandes ist JLj= 101/, ('38 ;
wegen K = 0 ist 4, = j, = 7). Die Vektorungleichungen (1) und (2)
ergeben die moglichen Beimischungen J L j zur Hauptkomponente:

103);, 105/, ... (3S); 121),,123),, ... (3D); 823/y,32%),, ... ("D).

Die Isobarenanregungsenergie ist 3 . Es sollen nun alle F-Kom-
ponenten mit j>3/,, J>>5, L >4 vernachlissigt werden; eine Dis-
kussion der Bedingungen, unter denen dies erlaubt ist, sei auf
den Schluss dieses Abschnittes verspart. Wir geben nachstehend
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eine Tabelle der interessierenden Matrixelemente von 2 und T"
(nach %)):

Tabelle 1.
Jji | Jy (J7 2] J7) JLj | JL§ (JLG|T'|J'L§')
Py | 1, - % 10%/, | 323/, = VT
75
U | 1 %— Vs 329, | :2% V42
18y | 1%, %— 105/, | 123/, 71—5 V42
19, | 1%, Syt 32, | S VT3
Pfe | 1% —% 12y, | 12, —‘3—
N 2, | -1y
3% | 3%, —;— Ve 328, | %Vﬁ
¥l | 3% —:1,;;— 123, | 129, 2%
JLj T | (JLj|T|JL §) : 125/, _2% Vi/3
10j | 107 0 325, | eV
10Y, 124, | -2 325, | 5o V3TT
o % /a5 125/, | 125/, 5.72_45
323, | - % V775 32, | )37
10%/, | 121, % V2/5 32 | 32 %
ot | S2s v
195, % /B 32, | 82% | oo

Es ist wesentlich, zu bemerken, dass hier die Schrodinger-
gleichung mit unbekannten Potentialkonstanten U und V gelost
werden muss; hingegen sind bekannt der Eigenwert E (die Bin-
dungsenergie —2,17 MeV des Deuteron-Grundzustandes); eine
zwelte Bedingung ergibt sich aus der Berticksichtigung des elek-
trischen Quadrupolmomentes. Seine Existenz ist eine Folge der
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D-Beimischungen, deren Ausmass durch die Grosse des Poten-
tiales U der Tensorkraft bestimmt ist. Wir definieren hier wie
iiblich' als Quadrupolmoment den Mittelwert des Operators von

LBy =" (Beos2d—1) = 2.’

im Zustand M; = I. Q' ist die folgende Matrix bezliglich J und L
(vgl.?)):

J=1 J=3
L=0 | L=2 | L=2
L=0] 0 V2 /20
T=1 V2 /20 | —1/20
L=2| ~1/70 |
J=3 | |

Es 1st demmach

| QZfdrﬂZ%‘FJLj(T)Z(JL[Q’fJ’L’)FJ,L,j(T),

JL

irri Falle unserer Naherung also
v 2
Q = f drr? {Kﬁ (1;‘101/2'};‘121/2 +Fwﬂ/; F12’f2) -
0

1 1 |
T (Flay,+ Flas,) — 70—F§23/2} : (12)

Es miissen nun gut zu handhabende Ausdriicke fiir die Funktionen
uw™(r) (vel. (9)) gefunden werden. Dazu wird man die Rethen-
entwicklungen der Liosungen der Schridingergleichung hinzu-
ziehen, vor allem um das Verhalten bei kleinen r-Werten klarzu-
legen. Es ergibt sich folgendes Bild:

F-Komponenten zu L=0: a;r + azr® 4+ a;r> (1 + bslogr) + - - -

F-Komponenten zu L=2: «zr3(1+p5 log 7) +ogr® (145 log )+ - - -
Dieses Verhalten bei kleinen r-Werten kann mit fiir unsere Zwecke
ceniigender Genauigkeit dargestellt werden durch zwei-parametrige

HFunktionen
F, 1) = a®u () + aPu (),

wobel die u{(r) Binome sind, zusammengestellt mit Hilfe von
r, 13, r5 im Falle L = 0 und »3, 75, ¢3 log r fiir L = 2. Gelegent-



332 Felix Villars.

lich, namentlich fiir schwichere Komponenten, wurde auch nur
ein einziger Parameter belassen, der dann also lediglich einen Am-
plitudenfaktor darstellt. Wir geben nachstehend ein Beispiel
eines Satzes von F-Komponenten (Tabelle 2). Vorerst fithren wir
die folgenden Bezeichnungen ein:

ST o2
x:To’ ”f—%IEI’

2 _ M ry?
xS_ he

Be+|E],

. 3 3 1+ %
= — 4+ — =
€2 1+x F 5 [#] =2+ oS
Tabelle 2.
Die F-Komponenten F;; . ().
JLj Innenraum (z<1) Aussenraum (z>1) Stetfgkelts-
bedingung
1 1+ %
101 g _ 3 . p—# (2—1) _ 1
/2 a, = (r—a, z3) a, e o T+
1 (byo+ byy) e~ @1 _3+[]
121 3_ 5 10T 011 _
a 0 g, (0~ Pro 2®) 1 (1+ 3 3 ) Po = 5]
+by 23 (1P log ) | (xp) w2 (e2)%/ | P = 3+[x,]
3 25 —x5 (z—1) ey LT
103/, | ag —a (x—og %) ase oy 5w,
129, | bya® (1 B, log o) by e @D = 34 [xy]
o)
3923 ¢ 13—, 25 ‘ (c30+€3) € o =
fo | fo g (=10 ®) 1 (,, 3 3 YT Bl
+ ¢ 2% (1= By log 2) €D ( Hy X * (73 x) 2) 1

@y, by, D11, @5, b3, €59, 3 sind die zu bestimmenden Parameter.
Trotz der Einfachheit der Ansdtze fihrt also das Variations-
verfahren hier zu einem System von 7 linearen Gleichungen. Dazu
treten zwel zusétzliche Gleichungen zur Bestimmung von U und V,
niamlich die Normierungsbedingung (11) und die Gleichung (12),
beide bilinear in den obenerwihnten Parametern. Es diirfte in-
folgedessen kaum moglich sein, deren Zahl wesentlich zu erhéhen,
ohne ein allzu unhandliches Gleichungssystem zu erhalten. Der
hier gewahlte Ansatz (der das Ergebnis vieler Versuche darstellt)
dirfte der kiirzeste sein, der noch vertrauenswiirdige Resultate
ergibt. Einige Besonderheiten erfordern jedoch noch eine Recht-
fertigung: Es erweist sich als nicht notwendig, fiir die Haupt-
komponente (10'),) einen feineren Ansatz zu wihlen. Schlecht
angepasste Funktionen ! machen némlich ihren Einfluss haupt-
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sichlich dadurch geltend, dass die kinetische Energie des Bereiches
e

B, = — 2 (fdfer(fr)) fdrF (r) ( & _L(L“)F() (13)

einen unrichtigen Wert erhalt. Eine Untersuchung bestatigt dabei
aber die ohnehin plausible Tatsache, dass fiir S-Zustéinde der
Wert von (Ey;,), weit weniger rasch verfalscht wird als etwa
fir D-Zustande. Es erschien deshalb geboten, vor allem die den
hier massgebenden D-Zusténden (12'/, und 323/,) zugehoérenden
F-Komponenten sorgfiltig zu berticksichtigen.

Numerische Ergebnisse:

Unter Zugrundelegung der in Tabelle 2 zusammengeétellten An-
sitze erhilt man mit ry=2,8-10-1% cm und @ =2,73-10-27 cm? )

a) fir ¢ =30 MeV:

Froy = 1,499 . (x — 0,450 * 3) Beimischung*)
Figy, = — 0,1448 . (z — 0,5625 - 27) 0,4679%,
Flgy, = —0,0798 - (23 — 3,686 - 25 + 20,78 - 2% - log @) 3,87 %
Flg, — — 0,0296 - (23 — 7,710 - 23 - log ) 0,08 %

Fapy = — 0,395 - (23 — 1,258 - 25 + 4,52 - 23 - log ) 1,38 9
und als Potentialkonstanten im Innenraum x<<1:
U = 113,0 MeV, V = 11,556 MeV.

b) fiir & = 60 MeV:
Fioy, = 1,508 - (z — 0,450 - z3)

Flp, = — 0,1200 - (z — 0,6304 - 29) 0,288 % -
Fisy = — 0,0802 . (23 — 8,600 - 25 4 20,58 - 23 - log #) 8,88 %,
Fly, = — 0,0203 - (23 — 9,255 - 2 - log ) 0,045,

Flygsy, = — 0,2856 - (2% — 1,225 - 25 + 4,355 - 23 log ) 0,635%
U =106,1 MeV, V = 20,9 MeV.

Wir miissen nun die Frage diskutieren, ob die Beschrinkung
des urspriinglichen Problemes auf das hier betrachtete zuldssig sei.
Als hinreichende Bedingung konnen wir formulieren: Die nicht

*) Unter ,,Beimischung‘‘ verstehen wir den Betrag des Normierungsintegrales

(¢ 9]
stfdesz(x),
wenn 3 N, =1 ist. 0
s
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beriicksichtigten Komponenten miissen schwach genug sein, dass
sie, mit den oben erhaltenen Werten von U und V, die Bindungs-
energie nicht mehr wesentlich beeinflussen kénnen. Zur Unter-
suchung dieser Frage leiten wir eine grobe Naherungsformel zur
Abschétzung von E ab: Durch Multiplikation der Schrédinger-
gleichung (5) mit F,(r) und Integration von 0 bis r, wird, unter
Beriicksichtigung der Konstanz von U und V und mit den Be-
zelchnungen

To To
[arF2 @) =N, [drF()F.() =N
0 0

und

f drF,(r) H,F, (r) = H, N

(d.h. H, ergibt sich aus H,; durch die Substltutlon Eyin ~> Eyin »
vgl. (13)) die Gleichung

(H,—E)Ni+ " H, Ni,=0. (14)

Es sei ¢ die Hauptkomponente; mit s seien die an ¢ gekoppelten
und mit ¢ nicht an o gekoppelte Nebenkomponenten bezeichnet
(d. h. t entspricht mindestens L = 4 oder § = 3/,; dies zufolge der
bereits erwéahnten Auswahlregeln j—;' =0, 41 und L—L'=0, +2
fiir die Matrixelemente von £ und 7). Wir koénnen dann fir
(14) naherungsweise folgendes System setzen:

(HU—E) N‘ia_!_Z’HsaNgaﬂO’ ; (15&)

HNi+ 3" H,Ni,+ YH, N +H_ N =0, (15b)
s’ t

8§ad —

H,Ni+ 3 H,Ni,~0. (15¢)

In (16b) und (15¢) wurde E gegen H, vernachlissigt (vgl. die
nachstehend angegebenen Zahlwerte von H,), in (15¢) dazu die
Kopplungen der t-Komponenten unter sich. Da wir an dieser
Stelle nur eine Abschétzung der Grossenordnung des Einflusses
der einzelnen Komponenten anstreben, diirfen wir annehmen, dass

N NG = (NE,)? (16)

ist. (Diese Gleichung wiirde exakt gelten, falls im Innenraum
0<r<ry F(r) und F, (r) zueinander proportional wiren.) Damit
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gelingt es namlich, die N? aus (15a, b, c) zu eliminieren, und es
wird

EcxH,— 3 o (1+2 4. ) Hyt (17)
8 H H; s<s’
in erster Néherung also
2
E~H, — I% —H,— Y AE,. (172)

Fir die von uns oben vernachlassigten Komponenten ist immer
7°>>%/5 oder L>4; sie sind infolgedessen nicht an die Hauptkom-
ponente gekoppelt. Eine solche Komponente (f) ruft aber nach
(17) eine Depression von E um

Hia H?t

st—- —

AE AE
Z § Hs : ESE

hervor. Ihre Vernachlissigung ist demnach gerechtfertigt, sobald
fiir jedes mit ¢t gekoppelte s gilt

\"Est <1, d.h ey, (18)
t

s

Wir verifizieren die Erfillung dieser Bedingung am Beispiel der
Komponente ¢ = 825),. Hier sind folgende zweistufigen Ankopp-
lungen an ¢ vorhanden '

1) 825/, — 108/, — 101/, mit H,,= U- (32%/ | T'|103/,) =U- 5- )22
9) 820/, 123/, > 101/, mit H,,= U-(325/,|T" | 12%/,)=U- 2 /3]7

3) 32%/, > 323/, 9101/2, mit H,,= U- (325/2 |T’| 323/, +
(3%, Q8% =T- 2 y2B+ V- LyE.

1) ergibt den grissten Beitrag zu 4 E,; fir den Fall r, = 2,8 - 10-18
cm und € = 30 MeV, U =118 MeV, V = 11,5 MeV wird

H,—189, H, =408, H,,= 29,2 MeV und H2, |/ H,- H,= 1/67.

Analoge, zum Teil noch wesentlich giinstigere Ergebnisse erhélt
man fiir { = 105/, und t = 125/,. Damit diirfte also die vorgenom-
mene Reduktion des urspriinglichen Problemes gerechtfertigt sein.
Wir kénnen noch zeigen, dass die Beriicksichtigung der Kopp-
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lungen der Nebenkompohenten s unteremander sinnvoll ist. Diese
Kopplungen geben in (17) Anlass zu den Gliedern

HsaH.s’a
AESS,:QH_'E 'Hss’;

s s’

deren Vernachlassigung wire erlaubt im Falle dass

H
|AE,,| <€V|4E,|- |4E,| d.h. 2| —*

L1, (19
| <t 9
Die Bedingung (19) ist nun aber, wenigstens fiir den kleinsten
hier verwendeten Wert von ¢ (30 MeV), nicht erfiillt. Betrachten
wir z. B. den Fall s = 103),, s’ =12%/,: H,, = —84 2. [225 . U.
Mit den gleichen Potentialkonstanten wie oben wird

H,=139, H, =245, H,,, = —24,2 MeV und damit 2

88’

3
38"

VH, H,

Es bleibt nun zu untersuchen, ob das Variationsverfahren hin-
reichend genaue Losungen des reduzierten Problemes ergibt. Da-
zu bestimmen wir mit Hilfe der oben erhaltenen Ldsungen:
V=V U=U° und §=F° die ,Fehlerfunktionen* G,(r)
(vgl. Abschnitt II):

G,(r) = (H,—E)F*+ Y H, F?, mit H—H(U, V9. (20)

G,(r) verschwindet im Aussenraum (r>7g) und ist nach dem in II
gesagten orthogonal zu F9(r):

fod'r FX(r) Gy(r) = 0. (21)

Zum Operator H (20) gehore § als exakte Eigenfunktion und E
als Eigenwert. & gibt Anlass zu elnem Quadrupolmoment . Um

die ,,Storungen*’ E—E und @-—Q der Energie und des Quadrupol-
momentes wieder riickgdnglg zu machen, geniigt es, in einer ersten
Naherung U° und V° durch

U=U— (G5 E-B)—(5)@—@  (229)

v=v (D) E-B)— () (@-@  (e2b)

zu ersetzen, wobel die Ableitungen von U°? und V° nach E und @

durch entsprechende Differenzenquotienten approximiert werden

diirfen, z. B. also 0~ durch L \E@-UUE Q) o po(m, Q)
0q Q-e

und
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und VO (E, ,) erhélt man hierbei als Losungen des Gleichungs-
systemes (10), (11), (12) mit dem speziellen Wert ¢, des Para-
meters ¢

Es handelt sich nun darum, E—E und §—@ zu bestimmen.
Dazu zerlegen wir, im Sinne eines Storungsverfahrens, den Ope-

rator H,:
HS = (Ekin gy Epot . Eisob)s = Hg + Hé s
Hg: (Ekin+ Ef)ot + Eisob)s ’ H; = (B ~H

pot pot) ’

und zwar derart, dass

(H*—E) - F*=0 und folglich auch H!.F’=G,—3"H,.-F® (23)

ist. Die Schridingergleichung (H—E) & = 0 oder
(H2+H;—E~A1E~A2E—") - (F£+Fsl+")+2lﬁss’ (qu—*_Fsl’_*_'):O

erfiillen wir dann wie iiblich in der folgenden Weise:
(H—B)F =0,  (24a)
(H(.S)_E) Fsl = —(Hi - AIE) F;)_Zrﬁss'Fs(') = AIE‘FsO — Gy, (24b)
(HO— B) F2 = — (H!— A, B)F} + A,EF0— 3" H, F}. (24c)

Aus (24b) tolgt durch Multiplikation mit F¢ und Integration und
mit Hilfe von (24a)

ME [dr(Fo)? :fdn:g G,
K 0
d. h. nach (21): 4,FE = 0. Ebenso folgt aus (24c) mit (23)
A,B [ ar (F)?= [arFiG,+ 3 B, [ar (FOF}—FIFY) (25)
0 0 s i
und hieraus durch Summation nach s
A2E=ZfdrFsl G,. (25")
0

Nach (24b) ist F! eine Losung der inhomogenen Gleichung
(H>—E)Fl!= —G,. ‘ (26)

22
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Nennen wir @9 eine von F? linear unabhingige Losung der Glel-

chung (24a), so gilt Offenbar
d (ng , 49
dr \ dr @8

er) =0
und man kann @9 so normieren, dass

ard o de
ar _@3— ar =1 (27)

1st. Dann lautet die den erforderlichen Randbedingungen genu
gende Losung von (26)

— A, FO+f!, mit f;:Fs"fdg@gGs-—CDgfdQFst.

(Als untere Integrationsgrenze kann r, gesetzt werden, da ja G,
und damit f! im Aussenraum identisch verschwindet.)
Zur Festlegung der 4; dienen die Normierungsbedingung
ZfdrF;’F; ~ 3 (AN, +n)=0; nszfdrFf L (@28)
0 4 i}

und die Gleichungen, die sich durch Elimination von 4,E aus
(25) ergeben:

A,E = {s 4 E(hss + (Av—A4) n,)} = unabhiingig von s,  (29)

wobel " "
s =fdrf; Gyi  hyy=—hys= ﬁss,fdr (B0 f, —F2 f1)
0 0

SS’= Sls=g ’N'i'
bedeuten. g T e

Fir emne Abschétzung der Grossenordnung der Korrekturen
geniigt es offenbar, das System (28), (29) zu reduzieren auf die
Beriicksichtigung der Hauptkomponente 1015 (=0) und der
grossten Nebenkomponente 1214 (=2). Es folgt dann

22 (e Ny— ey No+ hoa) (30)

und 4, durch Vertauschen der Indices 0,2.

Ay=—(ng+ny) +

Numerische Ergebnisse:

Vorerst sei bemerkt, dass @ erhalten wurde durch Integration
von (27); mit Fy = a * (r—az3) wird

P = - (1—Bazt+atai+...);
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@) hingegen wurde, mit Hilfe von (27), graphisch bestimmt, da
eine gute Approximation der Reihe durch wenig Glieder hier
nicht moglich ist. Wir geben im folgenden die Ergebnisse des
Vertahrens fir den Fall r, = 2,8 - 10-13 ¢m, ¢ = 80 MeV an:

Die Fehlerfunktionen G, werden (x<1):
Gy % (—8,346 - 2 — 8,969 - 2%+ 5,910 - 25 — 26,08 - 23 - log )
Ty

& e TZ_ (+1,82 - +0,64 - 23 — 2,219 - ¢ +10,09 - 2% - log ) -

0
Es folgt damit
g = — 1,40 - 10-2 MeV, gy = — 0,612 - 103 MeV,

d. h. |
‘ AE~E—FE=—1,46-10-2 MeV und 4,E/E=0,67%.
Die zur Bestimmung von 4, und 4, notwendlgen Koeffizienten
werden:

ny = +0,790 - 10-2  hyy = +0,49 - 10-2 N, =38,87-10-2
ny, = +0,253 - 10-2  5,, = —0,663 Ny = 0,942 .

Es folgt 4, = —0,884-10-2, 4, = —0,109 - 10-2.

Damit kann nun 6 @ = @ — @ abgeschéitzt werden. Unter
Berticksichtigung des Umstandes, dass der Aussenraum (r>r),
wo fl = 01st, den grossten Beitrag zu ) liefert, und dass die Maxi-
malamphtuden von f! und fi nicht wesentlich grosser sind als
| 4| und |4,| (es ist Max |f]| = 2,4+ 10-2 bei 2 = 0,6 und Max |f}|
= 0,65-10-2 bet x = 0,5), wird mit guter Annéherung

0Q = (Ag+ 4) - ]/@/10[617'7“2 By 'on) = (Ag+4y) - Q
Y :

d.h. 6Q/Q ~ g+ A) =~ —1-10-2.

Zur Bestimmung von U — U°® und V — V°nach (22a, b) benotigen
wir noch die dort eingehenden partiellen Ableitungen. Mit Hilfe
der weiter unten angegebenen Werte von U und V°zu @, = 0,8 -
2,73 - 1027 cm? ergibt sich

Q(5q) =210 MeV, ~@(57)=—925 MeV.

Demgegeniiber erweisen sich die Werte von E (0U°/0E) und

%
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E - (0V°/0E) als bedeutend kleiner*), so dass es gentigt, in (22a, b)
die Glieder ~ (@ — @) zu betrachten. Infolgedessen wird

U—-—U%>~—210-10-%2 MeV = — 2,1 MeV,
V—Vo~+925-10-2 MeV = + 0,92 MeV.

Diese Korrekturen sind aber fiir die Beurteilung der Theorie
belanglos. _

Abschliessend seien noch einige Angaben gemacht beziiglich
des Verhaltens der Potentiale U und V bei einer Anderung der
Reichweite 7, und einer kleinen Anderung im Wert des Quadrupol-
-momentes ¢). Eine Vergrosserung von 7, zieht eine Vergrosserung
des mittleren Abstandes der zwei Nukleonen nach sich. Infolge-
dessen wird das zur Hervorbringung von ¢ notwendige Potential U
kleiner werden und damit V anwachsen. Den gleichen Effekt
bringt, bei gleichbleibendem r,, eine Verkleinerung des Wertes
von € hervor. Wir geben nachstehend zwei Beispiele:

a) Eine Abanderung von ry: 7y = 8,2 - 1013 cm, & = 30 MeV.
£ vepigd U=526MeV, V=274 MeV;
die Beimischungen werden
10%,: 1,169, 121/, 2,47%, 128/,: 0,07%, 82%/,: 0,57%.

Mit abnehmendem 7, nimmt auch V ab, um schliesslich negativ zu
werden. Dieser Fall wire an sich interpretierbar im Rahmen
einer pseudovektoriellen Mesontheorie (vgl. ®)); sie muss aber hier
ausgeschlossen werden, da nach CoesTER!?) positives V notwendig
ist, um die Stabilitdt der schweren Kerne zu garantieren. Die
Forderung V>0 beschrinkt aber die zuldssigen r,-Werte nach
unten und zwar um so stérker, je kleiner die Anregungsenergie
der Isobaren ist; es gehoren

zu ¢ =30 MeV: (ry)u, = 2,6 - 10-13 cm,
e =60 MeV: (o)ym = 2,5 -1071% cm,
f=oe : (To)am = 2,3 - 1071 cem.

Diese Feststellungen sind wichtig 1im Hinblick auf die nachfol-
gende Behandlung des Singlett-S-Zustandes. Um dessen Bin-
dungsenergie in Ubereinstimmung mit der Erfahrung zu bringen,
stehen noch die zwel Parameter 7, und ¢ zur Verfiigung, die aber
beide in ihrer Bewegungsfreiheit ziemlich eingeschrankt sind.

*} (0 U%0E) und (0V9/0E) wurden abgeschitzt unter Verwendung von
Ergebnissen der Rechnungen von Herrn A.KiIND (unveréffentlicht). Es ergab
sich E - (0V°0E) ©230 MeV und |0U®0E | < [V OE |.
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(Dies gilt beziiglich & natiirlich nur, falls man sich an die Bedin-
gung starker Kopplung hilt.)

b) Eine Abinderung von . TUnter Zugrundelegung der
Daten: ry=2,8 - 10-1% cm, ¢=30 MeV und ¢@=0,8 - 2,73 - 10-27 ¢m?

erhiilt, man U =707 MeV, V — 30,6 MeV
und die Beimischungen

103/,: 1,24%, 121/,: 2,27%, 128/,: 0,09%, 828/, 0,719% .

IV. Der Singlett-S-Zustand.

Dieser Zustand ist charakterisiert durch die Quantenzahlen
K=1, I =0, L und J gerade. Wegen K =1 ist fir J>0:
J1 — Ja = 0,-£1; der tiefste angeregte Zustand gehort infolgedessen
za j; = 1Y,, 75 =3/, (resp. umgekehrt); seine Anregungsenergie
ist 3/, e, d.h. die Hilfte der Anregungsenergie der Isobarea im
Deuteron-Grundzustand. Zur Hauptkomponente J Lj;j, = 001/,1/,
gesellen sich die Beimischungen:

003/, 00/, ... (1S), (j1 = j, wegen J = 0; vgl. (1))
291/:%,, 2234, 22% ... (D), ... .
Wegen I = 0 treten nach (2) nur Komponenten mit J = L auf.

Wir geben im folgenden eine Tabelle der interessierenden Matrix-
elemente von £ und 7" (Tabelle 3). Durch das Indextripel 22 s

Tabelle 3.
4G Ji | (7|2 J7) JLA !J’L’j’ TL T
0y, | oy, | - “:-1;“ 00§ | 00§ (;
0%y | 0%, _;_ 3 00Y/, | 22 | ?
0%/, | 03, % 223/, _ g V5
| | A
23 _23 ___% 003/, | 22 s _§V1/5
2s | 2% %“. V75 2%, | 5ar
28, | 234, _% 25 | 225 | _Tg_ B
2%, | 5 V5
293/, | 223/, %
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1st daselbst der aus 221),3/, und 223/,1/, gebildete, in 7,7, Sym-
metrische Zustand angedeutet.

Wir werden nun so vorgehen, dass wir fiir bestimmte Werte
~von 7, und & und unter Beniitzung der fiir diese Werte in III
erhaltenen Potentialkonstanten U und V eine Eigenwertbestim-
mung durchfithren. Das Verfahren ist dabei grundsatzlich das-
selbe wie in III, doch miissen folgende Bemerkungen noch ge-
macht werden:

a) Die Hauptkomponente o = 001!/, hat im Aussenraum
2>1 im Falle eines negativen Eigenwertes I den Verlauf

g

F(zx)=e ™D mit »2=—3"|E]|.
Fir den Innenraum setzen wir infolgedessen an
F,(#) = 5 {B+m) a—(1+x) 2%, (31)

womit alle erforderlichen Stetigkeitsbedingungen erfiillt sind.

b) In den Ausdriicken fiir die den angeregten Zustédnden ent-
sprechenden F-Komponenten treten im Aussenraum die Kon-
stanten

s :Vﬂ (3’_ g — E) und %, = Vii:‘zi (8e—E)

auf. Hier vernachlissigen wir K gegen 3%/, ¢ und 38 e; dadurch
wird der Gang der Rechnung sehr vereinfacht.

Das System der Gleichungen (10) gestattet dann die Bestim-
mung der relativen Amplituden a) (a, = 1) und des Eigenwert-
parameters »;. Wir geben einige Resultate: Mit

8) 7,—=2,8:10-8 ¢m, e= 80 MeV, U=118 MeV, V=11,55 MeV
b) 7,=2,8-10-18 cm, e= 60 MeV, U=106 MeV, 7 =20,9 MeV
¢) 7o=2,6-10-13 cm, £ =180 MeV, U =150 MeV, V' =18,2 MeV
wird a) E=—1,58 MeV
b) E=—1,17 MeV
¢) E = —0,28 MeV.

In allen drei Féllen wiirde es also, im Widerspruch mit der Er-
fahrung, einen stabilen 1S-Zustand geben. Bei geniigend kleinen
Werten von & (<30 MeV bei ry = 2,8 - 10-12 ¢m) kann der 'S-Zu-
stand sogar stabiler werden als der Grundzustand. Dieses iiber-
raschende Resultat 1st dem Umstand zuzuschreiben, dass in dem



Ein Beitrag zum Deuteronproblem. - 343

hier beniitzten Modell im Gegensatz zu den #lteren Theorien ohne
Isobaren (schwache Kopplung) die Tensorkraft fiir diesen Zustand
des Systemes nicht identisch verschwindet. Fir nicht zu grosse
Isobarenanregungsenergien hat dann die starke Ankopplung der
Komponente 22 s (D) an die Hauptkomponente eine wesentliche
Vergrosserung der Bindungsenergie zur Folge. Um die Energie
des 1S-Zustandes Null oder positiv zu machen, wie es die Erfah-

It

s/

LAV

VoL

100 -
50 -
0 ' } e —+=> V
10 2 L3 40
Fig. 1.

Die Bindungsenergie des Singlett-S-Zustandes. Alle Energien in MeV ; 7,in 1012 cm.

rung verlangt, muss man demnach die Anregungsenergie der Iso-
baren sehr gross wahlen, d. h. grosser als die ibrigen, in den Dia-
gonalelementen (s|H|s) stehenden Energien. Um ein Beispiel
zu geben: fir obige Werte von 7y ist (Fxiy)sgs ~100 MeV; daraus
ergibt sich sofort, dass man zu einer richtigen Darstellung der
Bindungsenergie zu Werten von ¢>100 MeV greifen muss. Wie
ungiinstig die Sachlage ist, kann aus der beiliegenden graphischen
Darstellung (Fig. 1) ersehen werden. Ausgehend von den oben
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berechneten Werten sind dort weitere, mit Hilfe von Formel (17a)
bestimmte Werte von £ = F (e,r,) in Funktion dieser zwel Para-
meter aufgetragen. Die Darstellung ist folgendermassen zu lesen:
Das Netz der Kurven ¢ = const. und 7, = const. ist so auf die
U,V-Ebene aufgelegt, dass die Wertegruppe U, V,r,, ¢ richtige
Bindungsenergie und richtiges Quadrupolmoment fiir den Deu-
teron-Grundzustand ergibt. (Der Grenzfall & = co entspricht
dem bei Rarita und ScawinciEr!!) behandelten Problem.) Die
zugehorigen 1S-Energien konnen aus den Kurven E = const.
qualitativ abgelesen werden. Aus dem Verlauf der Kurve £ = 0
ersieht man, dass die kleinsten ¢-Werte in der Gegend von r, =

2,6 - 1013 em zu erhalten sind, und auch dort sind noch rund
200 MeV erforderlich*). '

Abschliessend sei noch bemerkt, dass die zu den vorliegenden
Rechnungen verwendete Methode unbrauchbar wird, sobald man
zu e-Werten < etwa 10 MeV iibergeht. In diesem Falle werden
nédmlich grossere Werte von 7;, j, massgebend, und es existieren
dann diesem Falle besser angepasste Naherungsmethoden (Adiaba-
tenverfahren, vgl. 3)). Nach Fig. 1 ist es aber sehr unwahrschein-
lich, dass so kleine Werte von ¢ mit der Erfahrung vertriglich
sein konnten. Es wurde daher auf diese Seite des Problemes nicht
niéher eingetreten.

V. Die Proton-Neutron-Streuung.

Wie in der Einleitung bemerkt wurde, war die Annahme der
Existenz von Isobaren mit nicht allzuhoher Anregungsenergie vor
allem von Interesse im Hinblick auf die Anisotropie der Proton-
Neutron-Streuung. Um die P-Potentiale in wirksamer Weise
herabzudriicken (insbesonders den in der symmetrischen Theorie
tiefstliegenden 3P,-Term), wiren aber Werte von & <30 MeV
erforderlich (dies fir r, = 2,8 - 10-13 e¢m, vgl. 3)). Die in IV er-
haltenen Ergebnisse bedeuten also, dass es nicht moglich ist, den
das Vorzeichen und den Betrag der Anisotropie betreffenden Ein-
wand gegen die ladungssymmetrische Theorie ganz zu entkraften.

*) Man konnte hier die Frage aufrollen, wieweit dieses Ergebnis durch die
tatsachliche (hier nicht beriicksichtigte) Verschiedenheit des rdumlichen Verlaufes
der Potentiale U(r) und V(r) betroffen wird. Eine qualitative Uberlegung zeigt
jedoch leicht, dass dadurch keine wesentliche Anderung des obigen Ergebnisses
zu erreichen ist.
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Fir den giinstigsten, in IV berechneten Fall (¢) erhalten wir nim-

lich nur _
o () /a( ) — 0,97, fir By, — 14 MeV.

(Fur die Berechnung dieses Quotienten siehe Anhang 2.)
Demgegeniiber erhdlt Amarpi?) fir den gleichen Wert von Egy,:

(7)o (g) ~ 0,52 4 0,03.

In diesem Zusammenhang soll nun aber einmal die Frage auf-
geworfen werden, wie schwerwiegend eigentlich der Einwand des
Experimentes gegen die symmetrische Theorie ist, m.a. W. wel-
ches Gewicht den Ergebnissen von AmALDI zukommt. Ausgangs-
punkt dieser Betrachtung ist der auffillig kleine Unterschied
zwischen den gemessenen Werten des Gesamtstreuquerschnittes -
und den berechneten Werten fiir S-Streuung allein (berechnet auf
Grund emer kurzreichweitigen Zentralkraft); demnach wiirde
auch bei 14 MeV Neutronenenergie im wesentlichen nur erst
S-Streuung vorliegen. Die Phasen der P-Wellen miissten also
noch klein sein; in diesem Falle ist aber auch eine wesentliche
Anisotropie der Streuung ausgeschlossen. Nun hatten zwar RariTa
und SCHEWINGER!!) bemerkt, dass man bei Annahme nichtzentraler
Krafte (Tensorkriifte) kleinere Werte des S-Streuquerschnittes
erhélt als fiir zentrale Kriifte; dies gilt aber nur fiir kleine Ener-
gien (die Reduktion betriigt dort 2—389,), fiir Energien um 15 MeV
ist der Unterschied belanglos. Daran kann auch die Annahme
isobarer Zusténde nichts #ndern, solange letztere nur mit sehr
kleinen Wahrscheinlichkeiten angeregt sind. Eine Durchrechnung
dieses Problemes ist auf Grund der in II dargestellten Methode
leicht moglich und ergibt folgendes Bild fir 15 MeV-Neutronen:
Der integrale Querschnitt fiir (3S; + 3D;)-Streuung wird, unter
Annahme der in IIT fiir r, = 2,8 - 10-13 ¢cm und & = 30 MeV erhal-
tenen Werte von U und V, innerhalb der Rechengenauigkeit
(~%%,) gleich gross wie der Querschnitt fir 3S-Streuung unter
Zugrundelegung eines gewohnhchen Kastenpotentiales gleicher
Reichweite, namlich zu

Ot = 0,695 - 1024 cm?,

(Im Anhang, Abschnitt 8, ist eine kurze Beschreibung der Rech-
nung gegeben.)

Damit bleibt der oben erwiihnte Einwand gegen die Mess-
resultate von AmMALDI bestehen; des weiteren sagt obiges Resultat
aus, dass es zur Bestimmung der S-Streuquerschnitte geniigt,
zentrale Kréfte anzunehmen. Eine gewisse. Schwankungsbreite
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erhalten die Werte von ¢ noch infolge unserer Unkenntnis der
genauen r-Abhéngigkeit der Wechselwirkung. Die unter verschie-
denen diesbeziiglichen Annahmen durchgefiihrten Rechnungen er-
geben Jedoch nur wenig voneinander abweichende Ergebnisse,

J.P
A
700 ] -]
60° 4
500 4
400 4
300 4

20° 3

1001

—40 =30 =20 — 10 0 W (MeV)

10 20 30 40

—70" 1

Fig. 2.
Beziehung zwischen Potentialtiefe W und der Phase ¢, der P-Wellen fiir
Egin = 15 MeV. Kastenpotential mit r, = 2,6 - 10712 cm.

und wir werden fiir das Folgende einfach die minimalen so erhal-
tenen Werte zuziehen. Wir stellen nun einiges Material zusammen :

a) Berechnete Werte fiir S-Streuung (14 o (1S) + 3/, 0 (35))
fir £ = 14 MeV, in Einheiten 10-24 ¢m?2:

1: Kastenpotential mit 7o =2,8-10-1% cm: o, = 0,685
2. . mit 1, =2,0-10-1% ¢m: o,= 0,710
3: Yukawapotential*) mit a =1,92-10-1% ecm: ¢, = 0,621
4: Exponentialpotential®**) mit ¢ =2,0-10-1% cm: o,= 0,616
GE . mit ¢ =1,5-10"1% cm: o,= 0,643

* V= VG% exp (—r/a); im Sinne der Mesontheorie ist a = h/M¢c, wo M

die Mesonmasse darstellt. Der hier gegebene Wert von a entspricht M = 200 me);
die Berechnung des Streuquerschnittes stammt von HULTHEN2).

*¥¥) V= Vyexp(—r/a); fir die Berechnung der entsprechenden Streu-
querschnitte sieche Anhang, 4.
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b) Gemesséne Werte des totalen Streuquerschnittes fir K
=14 MeV:

1: Nach Agenol3): 0y = 0,694-40,019

2: Nach SavanT und Ramsey!?): o = 0,704-0,06
1) ist wohl der genaueste z.Z. bekannte Wert. Ein Vergleich
der minimalen berechneten Werte: o, = 0,615 mit der Obergrenze

des Wertes von Aceno: 0,718 ergibt als Beitrag der P-Wellen
zum Gesamtstreuquerschnitt den Hochstwert von

op < 0,10-10-2¢ em?. (32)

Auf Grund der in Fig. 2 dargestellten Beziehung zwischen Phase
und Potentialtiefe fiir P-Wellen erkennt man, dass man im Falle
grosser Aufspaltung der Triplett- P-Terme den Einfluss der P-Wel-
len schon mit guter Naherung beschreibt, falls man nur die zum
tiefstliegenden der drei Potentiale gehorende Phase berticksichtigt.
Unter dieser Voraussetzung kann man fiir die in Frage kommenden
Fille emme Beziehung zwischen dem Wert von oy, und dem

2
tir o(d) (siehe z. B. bei Kitten und Brerr!®); in Gleichung (83) ist-

das I—I'-Interferenzglied etwas anders dargestellt als bel den
genannten Autoren):

des Quotienten o (7)/o (jr'—> aufstellen. Ausgehend von der Formel

k2.0 (%) = ¢ - Sin® dyg+ -+ - Sin?8ye+6-cos & | - sin &y g sindy

- 008 (19— 81 )+ ~ - 8D By [g Sin dg.p, - €08(Og5—B5p)+ o 5N,

1 .
+ c08(0g9— d3p,)+ 5 8N d3p, + €OS (Jgg— 631;0)“

; : 3 . 1.
+9 - cos2d Hﬁ— sin? 0, , + % [‘g sin®d3p + T sin? 63P1+§Sln2 5313.,] }

1 : 9 . |
+4 - (8- cos2d—1) [smz (855, O3p) -y 5in% (05p — 631,1)}+ ... (88)
erhilt man durch Spezialisierung auf die Fille

3)} 53P1a O3p,» O1p =2 0. | 63Po’ O3p,5 O1p = 0.

b):
- ©): Ogp, Ogp, 0p =0

den folgenden Zusammenhang zwischen GP‘ und o (n)/o (;)
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Tabelle 4.

1 _z\j' .1\‘]
op, | Op ]o(:'v)/a(ig—); O,p, | Op Ea'(:rz)/o'('?),} dyp

| | & I

i
o) 0‘(%)/’0’(%)

i

90° 0,189 | 0,570 | 60° |0,425 | 0438 | 450 0472 | 0,242
60 0,142 | 0,644 | 491410324 | 0520 | 30 10236 | 0,520
45 0,094 | 0741 | 45 |0284 | 0560 @ 22% 0138 | 0,678
30 0,047 | 0,854 ‘ 30 |0,142 | 0,731 | 15 |0,063 | 0,825

Die Interpretation dieser Werte im Rahmen der Meson-
theorie erlaubt es, anhand von (32) den Hochstwert der mass-
gebenden Phase d;p abzuschétzen und damit zu einer Aussage iiber

die moglichen Werte von o(n)/o (—Z—) zu gelangen:

1) Symmetrische Theorie.

Der tiefstliegende Term ist hier 3P,; nach (32) und Tabelle 4
ist die maximal zuldssige Phase etwa 45°; damit wird aber

der Amarpische Wert von o (n)/o (%): 0,562 bei weitem nicht
erreicht.

2) Charged Theory. .

Die relative Lage der Triplett-P-Terme ist hier die gleiche
wie in 1), die Aufspaltung aber grosser (dreimal, gleichen Wert
von U wie in 1) vorausgesetzt). Es gilt also hier das in 1)
Gesagte.

3) Neutrale Theorie.
Die 3P-Terme liegen umgekehrt wie in 1) und 2); zutiefst liegt
3P;; nach Tabelle 4 ist die Situation hier wesentlich ungiin-
stiger als in den Féallen 1) und 2); zum Amarpischen Wert von
0,52 gehért ein op = 0,324 - 1024 cm?; dadurch wiirde der
Gesamtstreuquerschnitt auf rund 0,94 - 10-2¢ e¢m? erhoht, in
volligem Widerspruch mit der Erfahrung.

Wir beachten, dass die Unmoglichkeit, die Amarpischen
Werte in Ubereinstimmung mit der Forderung (82) zu bringen,
weitgehend unabhénglg vom benititzten Modell ist; sie beruht
einfach darauf, dass in jedem denkbaren Falle durch den Wert

0,52 von o (n) /o (%) zu grosse Phasen fir die massgebenden P-Wellen

angefordert werden. Die Vermutung liegt daher nahe, dass die
von AMALDI gemessenen Werte etwas zu klein sind; diese Feststel-
lung wiirde jedenfalls nicht im Widerspruch stehen mit den bisheri-
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gen Messungen von CramproN und Powern!)*). Auf alle Fille
kann gesagt werden, dass hier eine Schwierigkeit liegt, von der
jedes der genannten Modelle betroffen wird. Es erscheint daher
beim derzeitigen Stand der experimentellen Daten als nicht an-
gebracht, die drei obengenannten Varianten gegeneinander auszu-
spielen; insbesondere erscheint die symmetrische Theorie nicht
unbedingt gegeniiber den andern benachteiligt.

VI. Anhang.

1) Zum Variationsverfahren im kontinuierlichen Eigenwerts-
spektrum.

Falls man nicht mit einem Kastenpotential operiert, muss man
das Problem folgendermassen formulieren: Man definiert zuerst

H—E) =Y [1drF,(1) 3 (How— B 64) Fo (1)

Falls E kleiner ist als die Anregungsenergie der Isobaren, so sind
die Fypy4 (r) (J =1 oder 0) die einzigen oszillatorischen Kompo-
nenten. Mit

L
O Fy g (r = 00) = ag 008 (kr — 27 + ;) S+

. L=n
+ dasin (kr— - T (pL)
wird dann ~

6(1?_@7=22fkdr 8F,(r) X (Hyw—E8,) Fu(r) +E Y adgy,.
¥

4 (€]

Die Schrodingergleichung ist also dquivalent dem Variations-
problem: Es soll die Variation von (H— FE) verschwinden, unter
der Bedingung, dass die Phasen der oszillatorischen Komponenten
nicht variiert werden. Im Gegensatz zur Formulierung dieses Pro-
blemes bei Hurnregn!%) halten wir hier darauf, von vornherein
die Stationaritét der Phasen zu verlangen: Diese Bedingung ist
in der Tat gleichwertig den tblichen, an die in Frage kommenden
Funktionen gestellten Randbedingungen: Setzt man namlich etwa
fir r>a in (H—E) die exakten Losungen ein, so legt die Forde-

*) Anm. bei der Korrektur: Nach einer Mitteilung von C. F. PowELL am
Internat. Physik-Kongress in Cambridge vom Juli 1946 ergibt die Auswertung
seiner neuesten Messungen eine sehr schwache, moglicherweise sogar negative
Anisotropie, also ein Resultat, das qualitativ mit den Aussagen der symmetri-
schen Theorie im Falle schwacher Kopplung vertraglich wire.
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rung d¢;=0 der nurmehr im Bereich 0<{r<a zu varilerenden
Funktion F,(r) die Randbedingung

6(rlog Fy(r)),,—0 d.h, (Wlog E(r) _= (dir log 6 F,(r)), _,

auf; dies ist aber die gleiche Bedingung, die den F-Komponenten
im Falle eines eigentlichen Eigenwertproblemes durch die For-
derung lim F(r) = 0 auferlegt ist (vgl. (7)).

2) Die Bestimmung von o (7))o (_21_)

Wir stiitzen uns hier auf eine von WENTZEL angegebene For-
mel (Gleichung (2) in 3)), welche fiir das in II beschriebene Deu-
teronmodell die adiabatischen P-Potentiale in Form einer Ent-
wicklung nach U/e und V/e darstellt:

1 3206V—-5-¢;U)2+253V+2-¢;U)2
W (3P)) = 2 (8 V+20 - ¢,U) — 2 G =

1402
O T

die Konstante ¢; hat fir I = 0,1,2 den Wert:

1 1 1 ‘
G="7%: G=715 2= 5 (;‘(21‘5‘1)'01:0)-
Mit den Werten ry = 2,6 - 10-13 ecm, U =150, V = 18,2, ¢ = 180
MeV erhalt man |
W(3P,) = — 20,2 — 5,4 = — 25,6 MeV,
W(EP,) = + 13,1 — 0,5 = + 12,6 MeV,
WEP,) = — 0,2—4,0=— 42 MeV.
Die entsprechenden Phasen sind: 0.p, = 11° 50°, d,p = — 2° 20/,
dup, — +1°0’, und mit (33) folgt o(x)/o (’2”) — 0,970.

I

3) Die Bestimmung des Querschnittes fiir (3S; + 2D,)-Streuung.

Die Hamiltonfunktion dieses Problemes ist die gleiche wie im
Falle des Deuteron-Grundzustandes, d. h. entspricht den.Quanten-
zahlen I =1, K = 0, L gerade, J ungerade. Die F'-Komponenten
10Y% und 121 haben im Aussenraum den Verlauf

Floy, (z) ~si (kz + @) (34a)
Fry, () ~ Sin (ko ) 3

M ’To EKID

; 3
mit ksz?-é g und Sin (y, ¢) = (lm:/)s1n(y+<p)w~——cos(y+99)
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Wir betrachten nur reelle Losungen des Variationsproblemes.
Infolgedessen sind ¢; und ¢, zwei reelle Phasen; sie sind aber im
allgemeinen nicht identisch mit den sogenannten ,,Phasen* der
gestorten Wellen. Fir die gleichen Komponenten setzen wir im
Innenraum an: |

Fyoy (1) = 4 - {82 — 2%) + &y(z — a?)} (35a)
Figy (3) = 6y {202 — 2% + 5 (e —29].  (35D)

Die Bedingungen fiir den stetigen Anschluss der logafithmischen
Ableitungen an die Ausdriicke (34) sind:

k-ctg (k+ @q = — 4 (862)
k-cos(k+g)—sin(k+@,) o
Sin (£, @,) =2 A R

Das Gleichungssystem (10) ergibt, mit den Ausdriicken
(85a,b), nach Elimination aller iibrigen Amplitudenparameter
zwel Gleichungen zwischen den drei Grossen 4y, 4, und a,. Wie
schon in II bemerkt wurde, muss demnach zur vollstdndigen Fest-
legung des Problemes die Ausstrahlungsbedingung zugezogen
werden; diese verlangt, dass die oszillatorischen F-Komponenten, -
die zum Wertepaar I, M; = M (in der Planwelle ist M, = 0;
M bedeutet im folgenden immer den Anfangswert der Spin-
komponente) gehoren, von der folgenden asymptotischen Form
sind :

F 5, (% — 00) = const % [/ 241 6L , (], L) - sm(ka: Yys ) (87)

Die bM ar (J,L) bedeuten hier die normierten Koeffizienten der
CrLeBscH-Gorpanschen Reihe fiir die Zusammensetzung der Dreh-

1mpulse J+L=1I.

Nach (37) hingen die Phasen ¢ ausser von L speziell noch von
der ,,Anfangspolarisation’“ M ab. Gehoren nun zu einem durch
I, M;, K und die Parititen von J und L festgelegten Problem wie
im Falle der (3S; + 3D;)-Streuung zwel oszillatorische Kompo-
nenten, so ist die Bedingung (37) nicht mit reellen Phasen zu er-
tillen. Zur Losung der Aufgabe mit Hilfe des genannten Varia-
tionsverfahrens geht man daher praktisch wie folgt vor: Man
zerlegt (37) nach Abspaltung eines passend gew#hlten Phasen-
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faktors in einen Real- und einen Imaginérteil; in dem hier betrach-
teten Falle also mit 6 =» + 1¢:

Floy, (%) = const €% . sin (kx + )
= const €% {Ch Cosin (kxz+n4) — 1 Sh {ysin (k L1 — %)} ,
Fyyy, (1) = const e {b) 1, (1,2) 5 0= Sin (ka, 5,))
= const e {b} 1,(1,2))/5 e ¢ ([ eos? (17,—1,) —Fgﬁéfz Sin(ka,1,+ €)
+ 1 )/sin? (ny—1o)+Sh2, - Sin (kz, 172—|-‘-«e+))}
mit tg &€ = tg (o —1y) Thiy; tg e™=ctg (ne—1no) Thiy. |

Wir setzen demnach

ReFyyy, ~sin (kx + 7) , ' ' (38a)
ReFpyy ~ C‘lé—s(: by, (1, 2) % |/ c0s? (g — 1)+ Sh2 Ly -

| - Sin (kz, n,+e),  (38b)
JmF,,, ~ sin (k:c+%—_"2‘_), (39a)

IM Fpy, ~ -.-9%052 b} (1, 2) et Vsin? (15— 1) + Sh2 ¢, -
- Sin (kx, ny+ &™) . (39b)

Diese Ausdriicke sind nun von der Form (34a, b), und eine Iden-
tifikation der Real- resp. der Imaginédrteile ergibt:

Po= Mo Po =Ty + E;
bé,M (1, 2) e7Ces) Veos? (s —no) + Sh2l,,

a sin (k+ @) __l/g
2 Sin (k, @,) ~ ChE,

JT e
P=N—5;i P =Mte&;

sin (k+ ¢ 5 - s
a; Ea((k—,z% — 78%5@; by 2 (1, 2) e %% [/sin? (n,— o)+ Sh2 ¢, .
Dadurch sind die 6 Grossen ¢, ¢,, 65 und ¢, ¢, a, oder, ver-
mittelst (86a, b), die 6 Grossen 4y, 4y, ayund 45, 47, aj als Funk-
tionen der vier Parameter %, (, 7, £, dargestellt. Wie oben be-
merkt wurde, sind indes durch Gleichung (10) zwischen diesen
6 Grossen gerade vier Beziehungen aufgestellt; diese erlauben
die Festlegung der vier Parameter 4 £y s Cs.

Wir bemerken noch, dass fir den Fall der (3S; + 3D,)-Streuung
infolge der zu J = 1 méglichen zwei Werte von | M | bei diesem
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Problem insgesamt 8 Phasen #/, [ auftreten. Wegen des Beste-
hens von Differentialbeziehungen erster Ordnung zwischen den
~ Losungen der Schrodingergleichung (diese sind in 1) ausfithrlich
dargestellt) sind aber nur drei dieser Phasen unabhingig. Man
braucht infolgedessen das Problem nur fiir einen Wert von M zu
16sen ; dass bei obiger Fassung des Losungsverfahrens vier Phasen
explmlte eingehen, glbt eine Moglchkeit, die Giite des Verfahrens
zu kontrollieren.

Nach (87) erhilt man fiir den Gesamtstreuquerschmtt fiir
Triplettstreuung

Cripl = 4”2 (2 L+1) Z e*“iMlb (1, L)|? (sin> IMTShz L1, 1)

I, M

und speziell fir die (3S; + 3D;)-Streuung unter Berﬁcksmhtlglmg
der zwischen den Phasen bestehenden Beziehungen:

-0'= {6 2&0 (sz 10+Sln2 11 +(1 92;(1),0)}.

Fir r,=2,8-10"1% em und mit emer Neutronene.nergie von
15 MeV werden

b= 1,482, 7= —0,019, 3= —0,093.

Ein isotropes Kastenpotential gleicher Reichweite, dessen Tiefe
der Bindungsenergie des Deuteron-Grundzastandes angepasst ist,
ergibt dagegen d, = 1,461. Der sich daraus ergebende Wert von
Orpl, 156 In beiden Féllen praktisch gleich gross.

4) Die Bestimmung der Streuquerschnitte.

Das Eigenwert- und Streuproblem fiir die S-Zusténde eines
Zweikorpersystemes mit einem Wechselwirkungspotential Uf(r)
= —V,exp (—r/a) lisst sich auf die Diskussion einer Bessel-
funktion zurickfihren. Es sei
M a? M a?
hr SR
d. h. 2z 1st rein imaginér fir K >0, reell fur £<<0.

Die Berticksichtigung der Randbedingung fiir die Eigenfunk-
. tion f(r) fiihrt aut eine Funktion K, (A4), definiert durch

_~1+2 " 4n. H2 T = D420 G T @YD) (40)

A = B

Ve und 2% = —

Die Eigenwerte sind dann festgelegt (bel vorgegebenem a und A)
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durch die Nullstellen der Funktion K, (4) fiir positiv reelle z-Werte
(2 =%):
Jy, (2)A4)=0.

(Siehe z. B. bei BETHE und BacHER!®); daselbst ist eine Tabelle
von Wertepaaren a, A angegeben, die die richtige Bindungs-
energie fiir den Deuteron-Grundzustand ergeben.) Zur Bestimmung
von A4 (1S) wurde hier E(*S) = 0 angenommen.

Die Phasen der gestorten S-Wellen sind ebenfalls durch
K, (A4) festgelegt; es ist nimlich

0 =arg K;; (4);

Ik bedeutet die Wellenzahl der S-Welle in Einheiten 1/a.
Die Reihe (40) konvergiert nun sehr rasch, so dass die Be-
stimmung der Phasen ohne Miihe durchgefithrt werden kann.

Die vorliegende Arbeit entstand auf Anregung meines ver-
ehrten Lehrers, Herrn Prof. Dr. G. WENTzZEL. Ich mo6chte ithm
an dieser Stelle fiir die vielen, freundlichst gew&éhrten Ratschlage
meinen verbindlichsten Dank aussprechen.

Zirich, Physikalisches Institut der Eidg. Techn. Hochschule.
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