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Ein Beitrag zum Deuteronppoblem
von Felix Villars.

(20. Juni 1946.)

Die tiefsten Zustände des zwei-Nukleon-Systèmes werden untersucht im
Rahmen einer Mesontheorie, die die Existenz "isobarer Zustände" des Systèmes
vorsieht (starke Kopplung). Besondere Beachtung findet der Einfluss der Tensorkraft.

Es zeigt sich, dass der von der Erfahrung geforderte Abstand der Bindungsenergien

der beiden „S-Zustände" (3S und 1S) die Anregungsenergie der Isobaren
auf Werte > 200 MeV beschränkt. In diesem Falle sind letztere ohne wesentlichen
Einfluss auf die Anisotropie der Proton-Neutron-Streuung.

I. Einleitung.

Bis jetzt haben sich jedem Versuch, zu einer quantitativ
befriedigenden Deuterontheorie zu gelangen, grosse Schwierigkeiten

in den Weg gestellt; dies auch, wenn man sich, wie das im
folgenden geschehen soll, auf den „mechanischen" Aspekt des
Problèmes beschränkt und feinere Fragen (magnetische Momente)
vorläufig beiseite schiebt. Es verbleiben dann im wesentlichen
vier Punkte, die eine mit der Erfahrung übereinstimmende
Darstellung erfordern. Dies sind die Bindungsenergien der zwei
untersten Deuteronzustände (3S und 1S), das elektrische Quadrupolmoment

des erstem und die für die Anisotropie der Proton-Neutron-
Streuung massgebende P-Wechselwirkung. Die grösste Schwierigkeit

bereitet jeweilen der zuletzt genannte Punkt. Eine rechnerische

Betrachtung zeigt nämlich, dass die Anisotropie in geradezu
ausserordentlich empfindlicher Weise von der Stärke der
P-Wechselwirkung abhängt. Im allgemeinen sind aber die Konstanten
der Kraftansätze bereits festgelegt durch die Forderung, die
Deuteron S-Zustände richtig zu beschreiben. Übergang zu P-Zu-
ständen bedeutet dann Paritätswechsel der räumlichen
Eigenfunktionen; genaue Kenntnis der Streuanisotropie ergäbe demnach
die Möglichkeit, die einzelnen Wechselwirkungsansätze auf Grund
ihres charakteristischen Verhaltens bei Paritätswechsel der
Eigenfunktion zu begutachten. Leider sind die Ergebnisse der
Anisotropiemessungen1) nicht von der ihrer Wichtigkeit entsprechenden
Genauigkeit; es soll weiter unten auseinandergesetzt werden, dass

sogar Gründe dafür bestehen, gewisse Ergebnisse in quantitativer
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Hinsicht stark anzuzweifeln, wogegen sie qualitativ durchaus
richtig sein mögen.

Den Vorzug geniessen aus grundsätzlichen und experimentellen

Erwägungen die Ansätze, die zu ladungsunabhängigen
Kräften führen (ladungssymmetrische Theorien). Ein
Charakteristikum dieser Ansätze ist aber — etwas grob ausgedrückt —
der Vorzeichenwechsel der Kräfte bei Paritätswechsel, d. h. zu
den gezwungenermassen anziehenden S-Potentialen gehören ab-
stossende P-Potentiale. Der Sachverhalt wird indessen etwas
komplizierter, falls man eine Wechselwirkung vom Typus der
Spin-Bahn-Kopplung (Tensorkraft) hinzuzieht, was zur Deutung
des elektrischen Quadrupolmomentes (Q) erforderlich ist. Die
Tensorkraft spaltet nämlich die Triplett-P-Terme auf (wobei die
Lage des „Schwerpunktes" erhalten bleibt) ; in der symmetrischen
Theorie ergibt sich der 3P0-Term als der tiefstliegende, falls man
das Vorzeichen der Tensorkraft der Forderung, dass Q positiv ist,
anpasst. (Im Sinne einer Mesontheorie mit Vektor- und Pseudo-
skalarfeld bedeutet ein positives Q, dass das vektorielle Meson
das schwerere ist; vgl. 2)). Die Messungen1) deuten nun
übereinstimmend darauf hin, dass die massgebenden P-Potentiale
anziehend sind; dies ist aber in der symmetrischen Theorie in
Anbetracht des kleinen Gewichtes des 3P0-Termes nicht der Fall.
Dieser Ansatz lässt also anscheinend nur die Alternative zu, dass
entweder das Quadrupolmoment des Deuteron-Grundzustandes
oder aber die Anisotropie der Proton-Neutron-Streuung das falsche
Vorzeichen erhält*).

Diesem Einwand ist nun aber die symmetrische Theorie im
Grenzfall „starker Kopplung" wenigstens prinzipiell nicht
ausgesetzt3). Die in diesem Falle auftretenden angeregten Zustände
(Isobaren) bewirken nämlich eine Verschiebung der adiabatischen
Potentiale im Sinne stärkerer Anziehung und dies um so mehr,
je kleiner die Anregungsenergie der Isobaren ist. So werden speziell

bei genügend kleiner Isobarenanregungsenergie die P-Potentiale

durchwegs anziehend. Falls also die übrigen Daten des
Deuterons die Annahme einer hinreichend kleinen Anregungsenergie
zulassen, darf man erwarten, dass die Streuanisotropie dadurch
wesentlich in Richtung auf die experimentell geforderten Werte
hin verbessert wird.

*) Die Anisotropie A sei hier definiert durch A (a (0) - a (ti)) / er I — wo

û den Streuwinkel im Schwerpunktsystem und a (&) den entsprechenden
Streuquerschnitt bedeutet. Vorwärts (Rückwärts-)streuung im Schwerpunktsystem
ist dann charakterisiert durch A>0 (A<0).
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In dieser Arbeit soll nun vorerst der Einfluss der Isobaren auf
die untersten Deuteronzustände untersucht werden; es wird sich
also in erster Linie darum handeln, zu sehen, ob und wieweit die
Anregungsenergie der Isobaren durch die Daten der bekannten
<S-Zustände nach unten begrenzt wird; alsdann soll untersucht
werden, wieweit zulässige Werte dieser Grösse ihren Einfluss auf
die Lage der P-Terme geltend machen.

II. Hamiltonfunktion des Zweikörpersystemes ; Variationsverfahren

zur Auflösung der Schrödingergleichung.

Das in Rede stehende Modell ist an anderer Stelle schon
eingehend diskutiert worden4). Es seien deshalb hier lediglich die
Variabein des Zweikörpersystemes und die Hamiltonfunktion des

besagten Modelles angegeben:
jx mx nx und j2 m2 n2 sind die Quantenzahlen der beiden

Nukleonkreisel,
J und M der Gesamtspin des Systèmes und seine Komponente,
K und N der gesamte isotope Spin und dessen Komponente ;

N + 1 stellt die Ladung des Systèmes dar.
Es gilt die Ungleichung

\h~h\< K < h + h ¦

J setzt sich mit dem Bahndrehimpuls L des Systèmes zusammen
zum Gesamtdrehimpuls I (Komponente Mj) ; es gilt

\J-L\ <I <J + L. (2)

Die Hamiltonfunktion ist diagonal bezüglich I, Mït K, N; für
jeden Satz dieser Zahlen ist sie die folgende Matrix bezüglich
der übrigen Variabein:

(JLjxj2\H\J'L'jx'j2')
{4(^^^)^[(^l)2+(^4)2-2])^^2!^^V/2')

+ V (r) (jxj2J \Q \jx' j2'J) ¦ (J L\l\ J' L')

+ U(r)(JLjxj2\T'\J'L'jx'j2'). (3)

Die Matrizen Q und T' (T' T — 1/3 Q in der Bezeichnung von
Fierz, s. u.) sind von Fierz5) berechnet worden. Über die
statischen Potentiale U(r) und V(r) gibt die Mesonthéorie für nicht
zu kleine Abstände der Nukleonen (f^>g, wo g die Kopplungskonstante

bedeutet) bestimmte Aussagen. Des weiteren sind durch
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die Bedingung starker Kopplung: g^>a im physikalisch
interessanten Fall ajx<^A (a: Ausdehnung des Nukleons, /x-hjc: Mesonmasse)

allzugrosse Werte von e ausgeschlossen (vgl. 6)). Wir
wollen aber hier so vorgehen, dass wir über die Potentiale U(r)
und V(r) sowie über die Konstante £ vorerst frei verfügen;
insbesondere behalten wir uns vor, U und V durch Kastenpotentiale
(U, V const, für r<r0, =0 für r>r0) passend gewählter Tiefe
zu approximieren. Auf Grund der so durchgeführten Rechnungen
mag dann diskutiert werden, wieweit die erhaltenen Ergebnisse
eine sinnvolle Interpretation im Rahmen der Mesontheorie
gestatten.

Die Komponenten der Schrödingerfunktion g bezeichnen wir
mit FJLhh(r) und erhalten demnach als Schrödingergleichung:

Ä2 / d2 L(L + 1)

M \dr* (h+i)2+(h+if-2]-E}FWih(r)
+Z{V(T)(3xkJ m ii'h'J) ojr òLL,+ U(r)(JLjxj2\T'\ J'L'jx'j2')}

Die Matrix Q koppelt die Werte jx—jx'= 0,±1 und J2—J2 0,7:1-
(Sie ist natürlich, wie auch T', symmetrisch in jx und j2.) Die
Matrix T' koppelt mit J,L,jx,j2 die Zustände J'=J,J±2,
L'=L, L±2, Ji'=h,h±l und 72'==?2> ?2±1- Die beiden
Ungleichungen (1) und (2) entscheiden aber letzthin, welche
Matrixelemente wirklich auftreten. Über das Verhalten der FjLiliSr)
gegenüber einer Vertauschung von jx und j2 gibt das Pauliprinzip
die Vorschrift

FjLn^) ir-^)J+K+L+1-FJLhh{r).

Insbesondere gilt für jx j2 (etwa im Falle J 0 oder K 0)
die Bedingung: J + K + L muss ungerade sein.

Eine exakte Lösung der Gleichung (4) dürfte unmöglich sein.
Wie schon bemerkt erleichtern wir uns die Aufgabe durch die
Annahme von Kastenpotentialen gleicher Reichweite r0 für U
und V. In dem durch r>r0 definierten Aussenraum ist dann das

Gleichungssystem (4) entkoppelt; für diesen Bereich sind exakte
Lösungen angebbar. Im Innenraum r<.r0 liegt ein System simultaner

Gleichungen mit zunächst unbeschränkter Komponentenzahl

vor. Das Problem lässt sich jedoch aus den folgenden Gründen
reduzieren: Gehen wir aus von der Annahme, dass e nicht zu klein
ist. (Diese Aussage soll weiter unten präzisiert werden.) In diesem
Falle nehmen mit wachsenden jx,j2 die Amplituden der
entsprechenden P-Komponenten rasch ab ; von bestimmten Werten jx, j2
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an wird man daher die FJLiiji(r) näherungsweise Null setzen
dürfen. Grosse Werte von J bedingen wegen (1) grosse W'erte
von jx oder j2 und grosse Werte von L sind wegen (2) mit grossen J
kombiniert, da in den interessierenden Fällen I klein ist (I 0,1
oder 2). Dazu wirkt für L>0 das der Zentrifugalkraft entsprechende

Glied ~L(L + l)/r2 im gleichen Sinne wie die Isobarenenergie.

Aus diesen Gründen kann man näherungsweise die
Schrödingergleichung im Innenraum auf ein endliches System
reduzieren. Bezeichnen wir für das folgende die Gesamtheit der
Indices JLjxj2 mit s und schreiben wir abkürzend Has/ für (s|H|s')
(and Hs für (s\H\s)), so lautet das reduzierte System (4) für den
Innenraum r<r0:

£Hss,Fs,(r)=E-Fs(r). (5)
s'

Dieser Gleichung ist äquivalent das folgende Variationsproblem:
Es soll die Variation von

(W-E. N*) =27 fdrF. (r) £ {H„.- E òss.) F, (r) (6)
s J s'

verschwinden, falls die zu variierenden Fs(r) den Randbedingungen

PS(0) OPS(0) 0
und

genügen. (xs ist bestimmt durch die Lösung von (4) im Aussenraum.)

In der Tat folgt aus (6) und (7) :

Ô(R*-EN*) 2Z fdròFs(r)Z(H(i,-Eoss,)Fs,(r) (8)
s J s'

Die Fs (r) sollen nun approximiert werden durch den Ansatz

Fs(r) ZaT)<)(r), (9)
n

wobei die a<m) zu variierende Parameter und die uf1 (r) vorgegebene

Funktionen sind, die die Randbedingungen

«<->(0) 0 und (± log u^(r)\ =-xs (T).dr
erfüllen. Die Forderung

d

daM(W-EN*) 0
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führt dann auf das in den a(sn> lineare Gleichungssystem

EE «?-) fdr u™ (ff«'- E «u «T ° • (10)

Zu Gleichung (10) führt aber auch die folgende Interpretation
des Variationsverfahrens: Es sei

Gs (r) E (HSS,-EÔSS,)FS, (r).
s'

Nach (8) ist die Gleichung ô (fl*— E ¦ N{) 0 unter Berücksichtigung

von (7) einer Orthogonalitätsrelation äquivalent: Gs(r) soll
zu jeder Funktion ôFs orthogonal sein und muss daher identisch
Null werden. Die Verwendung des Variationsverfahrens als
Näherungsmethode beruht nun gerade darauf, nur zu verlangen, dass

Gs(r) zu endlich vielen Funktionen w(gm) (r), die den Randbedingungen
(7') genügen, orthogonal sei:

r«

fdrGs(r)-u^(r) 0.

Mit dem Ansatz (9) für die Fs(r) erhält man wieder (10). Ferner
gilt, wie man jetzt leicht sieht, {Rl—E • N{) 0.*) Es ist aber
bei dieser Fassung der Näherungsmethode möglich, von
vornherein einen der Parameter af\ etwa a^\ wo a die „Hauptkomponente"

bedeutet, gleich 1 zu setzen. Dies ist wichtig für den
Fall, dass sich die Hauptkomponente im Aussenraum (r > r0)
oszillatorisch verhält und daher deren asymptotische Amplitude
zu normieren ist. Es ist nämlich in der Tat unwesentlich, ob es

sich bei (4) um ein Eigenwertproblem im eigentlichen Sinne oder
aber um ein Streuproblem handelt. Im ersteren Falle sind sämtliche

Konstanten xs (7, 7') durch die exponentiell abfallenden
Lösungen im Aussenraum bestimmt, und zwar wird

für L 0: ^o,^yS|l[(?i+i)2+(^l)-2]-Pp
für L 2: *,0,,=2-

1 + ^o,„-,
¦*M. ^ l + H'Mu+SlH'jou.

*) Hier bedeutet natürlich E vorerst nur einen Parameter, der sich aber

nm so mehr dem Eigenwert des Problèmes nähert, je besser die Fs{r) die exakten
Lösungen approximieren.
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Damit sind durch (10) und die Normierungsbedingung

N £jdrF2s(r) l (11)
8 o

alle Koeffizienten a<m) und der Eigenwert E bestimmbar.
Im Falle eines Streuproblemes verhalten sich die Komponenten

FJLyziÀ(r) (J 0,1) im Aussenraum oszillatorisch. An Stelle des

nun vorgegebenen Wertes von E sind hier mit Hilfe von (10) die
entsprechenden logarithmischen Ableitungen xJLVz Vi zu bestimmen ;

ihr Wert legt die Phasen der gestörten Welle im Aussenraum fest.
Das Problem ist aber nur im Falle einer einzigen oszillatorischen
Komponente (er) durch (10) schon vollständig festgelegt. In diesem
Falle gestattet (10) nämlich gerade die Bestimmung der
Amplitudenverhältnisse (d. h. der a^\ falls af-}-' 1 gesetzt wurde)
und des Wertes von xa. Treten hingegen mehrere oszillatorische
Komponenten auf, so gibt erst die Ausstrahlungsbedingung die
erforderlichen zusätzlichen Randbedingungen zur Bestimmung
aller xs. (Vgl. auch Anhang 1.)

III. Der Deuteron-Grundzustand.

Bei Vernachlässigung der Tensorkraft sind J und L Quantenzahlen

und die beiden tiefsten Eigenwerte E gehören zu K 0,
J 1, L 0 resp. K 1, J 0, L 0. Die beiden energetisch
tiefstliegenden Zustände werden also in dieser Näherung ein
3S- und ein ^-Zustand. Die Tensorkraft spaltet diese beiden, in
obiger Näherung zusammenfallenden Zustände auf; die Hamiltonfunktion

ist nun nicht mehr diagonal bezüglich J und L und der
Deuteron-Grundzustand ist in diesem Falle zu charakterisieren
durch

1 1, K 0, J ungerade, L gerade.

Die Hauptkomponente dieses Zustandes ist JL? 101/2 (3S;
wegen K 0 ist jx j2 j). Die Vektorungleichungen (1) und (2)
ergeben die möglichen Beimischungen JLj zur Hauptkomponente:

103/2, 105/2 (3S) ; 121/,, 123/2, (3D) ; 323/2, 32*/2, (7D).

Die Isobarenanregungsenergie ist 3 e. Es sollen nun alle P-Kom-
ponenten mit ?>5/2, J>5, L>4 vernachlässigt werden; eine
Diskussion der Bedingungen, unter denen dies erlaubt ist, sei auf
den Schluss dieses Abschnittes verspart. Wir geben nachstehend
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eine Tabelle der interessierenden Matrixelemente von Q und Ï"
(nach 5)):

Tabelle 1.

Jj Jj' (Jj \Q\ Jj')

iVi iVi
1

iVi i3/2 ||/J
1% i3/2 il
l3/2 i5/2 jK2T
l5/2 172

31
~35~

37. 33/2
3

5

33/2 37. T
Ka35/2 35/2 li

35

JLj J'L'j' (JLj|2"|J'L'j')

10 10 j' 0

10V2 «V.
2 /—-Tl/2

123/2 y^ä/ö

323/2 -yl/775

10»/. «Vi -§-1/2/5

123/2
-34 ._
Ü25 ^2

125/2 y*2

JLj J'L'j' (JLj\T'\J'L'f)

io3/2 323/2 ¦KV*

32V. ^1/42

107. 123/2 -^m
32V. ^l/ï/3

12V. 12V.
2

~9~

123/2 -ivm
32V. -=^2/35

123/2 123/2
34

225

125/2 ^ 1/7/3

323/2 ^-1/2/V

32V. 25~^
125/. 127.

74

525

32V. 17^2/3

32»/. 32V.
48

175

32V. Ï75V273

327. 32V.
752

3675

Es ist wesentlich, zu bemerken, dass hier die Schrödinger-
gleichung mit unbekannten Potentialkonstanten U und V gelöst
werden muss; hingegen sind bekannt der Eigenwert E (die
Bindungsenergie —2,17 MeV des Deuteron-Grundzustandes); eine
zweite Bedingung ergibt sich aus der Berücksichtigung des
elektrischen Quadrupolmomentes. Seine Existenz ist eine Folge der
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D-Beimischungen, deren Ausmass durch die Grösse des Potentials

U der Tensorkraft bestimmt ist. Wir definieren hier wie
üblich als Quadrupolmoment den Mittelwert des Operators von

¦ (8 z2 - r2) L- (3 cos2 » - 1) ¦Q'

im Zustand MI
(vgl.')):

1. Q' ist die folgende Matrix bezüglich J und L

J=l J 3

L= 0 L 2 L 2

L=0 0 J/2720
J 1

L=2 I/272O -1/20
£ 2 -1/70

J=S Ì

Es ist demnach
00

Q [dr r2ZZFJLj (r) £ (JL \ Q' \ J'L') FrL.f (r)
^ j JL J'L'

im Falle unserer Näherung also

00

Q / dr f2 [% (Fiov>-FW + ^ov/ Fnv) -
0

~~
~2Ö~ ^12^+ ^128/^ ~~

TO" ^32s/a| • (12)

Es müssen nun gut zu handhabende Ausdrücke für die Funktionen
u^(r) (vgl. (9)) gefunden werden. Dazu wird man die
Reihenentwicklungen der Lösungen der Schrödingergleichung
hinzuziehen, vor allem um das Verhalten bei kleinen r-Werten klarzulegen.

Es ergibt sich folgendes Bild:

F-Komponenten zu L 0: axr + a3r3 + adr5 (1 7 bh log r) 7 • • •

F-Komponenten zu L 2: cc3r3(l+ß3logr)+<x.5ri(l + ßalogr)+-¦ ¦

Dieses Verhalten bei kleinen r-Werten kann mit für unsere Zwecke
genügender Genauigkeit dargestellt werden durch zwei-parametrige
Funktionen

Fs(r) =a^u^(r) + afuf\r),
wobei die u^(r) Binome sind, zusammengestellt mit Hilfe von
r, r3, r5 im Falle L 0 und r3, r5, r3- log r für L 2. Gelegent-
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lieh, namentlich für schwächere Komponenten, wurde auch nur
ein einziger Parameter belassen, der dann also lediglich einen
Amplitudenfaktor darstellt. Wir geben nachstehend ein Beispiel
eines Satzes von F-Komponenten (Tabelle 2). Vorerst führen wir
die folgenden Bezeichnungen ein:

x =- «Vmi 9 Mr,xl ^(ße+\E[),

Tabelle 2.

Die J'-Komponenten FJL- (x).

JLj Innenraum (x<l) Aussenraum (a;>l)
Stetigkeitsbedingung

107. a1 — (x-a.^ x3)
1 — ai

«! • «-*' <*-» 1+»!
ai~ 3+*x

12V. ho a (x3~ß10X5)
1-Pio

+ ò11^(l-ft1loga;)

(*io+*n)«_,"(a;-1>

17 3 3 \
«

3 +K]

Äi 3+[«J

io3/. H (x <x3x5)
x — a3

a3 e-*> <*-« l + «3
a, — —3 5+ x3

123/2 b3x3(l-ß3log x) 03
<*3>

|S3=3 + [x3]

32V. C30 i \X YiX
1-73

+ % x3 (1 - ß3 log x)

(c30+ c31) f?

1/3 3 \
<*3> \ *3 œ («3 œ) V

3+[«3]
n 5+M

ai> °io' °iit a3> °3> c3o> c3i sm(i die zu bestimmenden Parameter.
Trotz der Einfachheit der Ansätze führt also das Variationsverfahren

hier zu einem System von 7 linearen Gleichungen. Dazu
treten zwei zusätzliche Gleichungen zur Bestimmung von U und V,
nämlich die Normierungsbedingung (11) und die Gleichung (12),
beide bilinear in den obenerwähnten Parametern. Es dürfte
infolgedessen kaum möglich sein, deren Zahl wesentlich zu erhöhen,
ohne ein allzu unhandliches Gleichungssystem zu erhalten. Der
hier gewählte Ansatz (der das Ergebnis vieler Versuche darstellt)
dürfte der kürzeste sein, der noch vertrauenswürdige Resultate
ergibt. Einige Besonderheiten erfordern jedoch noch eine
Rechtfertigung: Es erweist sich als nicht notwendig, für die
Hauptkomponente (lO1^) einen feineren Ansatz zu wählen. Schlecht
angepasste Funktionen w(n) machen nämlich ihren Einfluss haupt-
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sächlich dadurch geltend, dass die kinetische Energie des Bereiches
r<r0:

Ö^--'-£-(/*ri?(ry) 1-JdrF8(r){-^-L^)Fs(r) (13)

einen unrichtigen Wert erhält. Eine Untersuchung bestätigt dabei
aber die ohnehin plausible Tatsache, dass für S-Zustände der
Wert von (Fkin)s weit weniger rasch verfälscht wird als etwa
für D-Zustände. Es erschien deshalb geboten, vor allem die den
hier massgebenden D-Zuständen (12x/2 und 323/2) zugehörenden
F-Komponenten sorgfältig zu berücksichtigen.

Numerische Ergebnisse:
Unter Zugrundelegung der in Tabelle 2 zusammengestellten

Ansätze erhält man mit r0 2,8*10~13 cm und Q 2,73-10-27 cm2 8)

a) für e 30 MeV:
F10y2 1,499 • (x - 0,450 • X3) Beimischung*)

F ivi. - 0,1443 • (x - 0,5625 • x5) 0,467%
F12% — 0,0798 • (x3 - 3,636 • x5 + 20,78 • x3 • log x) 3,87 %
fj#L - °>0296 • (^3 - 7>710 • x* ¦ log x) °>08 %
F32S/2 — 0,395 • (x3 - 1,258 • x5 7 4,52 • x3 • log x) 1,38 %

und als Potentialkonstanten im Innenraum x<l:
U 113,0 MeV, V 11,55 MeV.

b) für e 60 MeV:
F10'/2 1,508 • (x - 0,450 • x3)

j^io'/, - 0,1200 • (x — 0,6304 • x5) 0,288%
Fi2y2 - 0,0802 • (x3 - 3,600 • x5 7 20,58 • x3 • log x) 3,83 %
^12s/8 - 0,0203 • (x3 - 9,255 • x3 ¦ log x) 0,045%
^32s/2 — 0,2856 • (x3 — 1,225 • x5 7 4,355 • x3 log x) 0,635%

ü 106,1 MeV, V 20,9 MeV.

WTir müssen nun die Frage diskutieren, ob die Beschränkung
des ursprünglichen Problèmes auf das hier betrachtete zulässig sei.
Als hinreichende Bedingung können wir formulieren: Die nicht

*) Unter „Beimischung" verstehen wir den Betrag des Normierungsintegrales
CO

Ns=fdxFs2(x),
wenn U Ns 1 ist. o
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berücksichtigten Komponenten müssen schwach genug sein, dass
sie, mit den oben erhaltenen Werten von U und V, die Bindungsenergie

nicht mehr wesentlich beeinflussen können. Zur
Untersuchung dieser Frage leiten wir eine grobe Näherungsformel zur
Abschätzung von E ab: Durch Multiplikation der Schrödinger-
gleichung (5) mit Fs(r) und Integration von 0 bis r0 wird, unter
Berücksichtigung der Konstanz von U und V und mit den
Bezeichnungen

fdrF2 (r) NU fdrFs(r) Fs,(r) ff*,
b o

und r„

JdrFs(r)HsFs(r)=HsNl
o

(d.h. Hs ergibt sich aus Hs durch die Substitution Fkin->-Fkin,
vgl. (13)) die Gleichung

(Hs-E)Ni + E'Hu,Ni, 0. (14)
s'

Es sei a die Hauptkomponente; mit s seien die an a gekoppelten
und mit t nicht an a gekoppelte Nebenkomponenten bezeichnet
(d. h. t entspricht mindestens L 4 oder j h\2; dies zufolge der
bereits erwähnten Auswahlregeln j—j' 0, ±1 und L — L'= 0, -+_2

für die Matrixelemente von Q und T"). Wir können dann für
(14) näherungsweise folgendes System setzen:

(Ha-E)Ni + 2J'HsaNla^0, (15a)
S

HsNi + £'Hsa,Nl, + EHstNit + HsaNia^O, (15b)
s' t

HtNi+EHgtNitc*0. (15c)

In (15b) und (15c) wurde E gegen Hs vernachlässigt (vgl. die
nachstehend angegebenen Zahlwerte von Hs), in (15 c) dazu die
Kopplungen der i-Komponenten unter sich. Da wir an dieser
Stelle nur eine Abschätzung der Grössenordnung des Einflusses
der einzelnen Komponenten anstreben, dürfen wir annehmen, dass

Ni N], ç* (Ni,)* (16)

ist. (Diese Gleichung würde exakt gelten, falls im Innenraum
0<r<r0 Fs(r) und Fs,(r) zueinander proportional wären.) Damit
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gelingt es nämlich, die N{ aus (15a, b, c) zu eliminieren, und es

wird

E^Ha-E^(l+ES^+-A-2E^-HS3,+ .-. (17)
s tis \ | fl,fl| / s<s' s "s

in erster Näherung also

E^Ha-Z^ H„-ZAEs. (17a)

Für die von uns oben vernachlässigten Komponenten ist immer
/5>5/î oder L>4; sie sind infolgedessen nicht an die Hauptkomponente

gekoppelt. Eine solche Komponente (t) ruft aber nach
(17) eine Depression von E um

Ha H~ - H,

hervor. Ihre Vernachlässigung ist demnach gerechtfertigt, sobald
für jedes mit t gekoppelte s gilt

<1, d.h. Jk-<^1. (18)
AE, HSHt

Wir verifizieren die Erfüllung dieser Bedingung am Beispiel der
Komponente t 325/2. Hier sind folgende zweistufigen Änkopp-
lungen an a vorhanden

1) 325/2 -> 103/2 -> IO1/,, mit Hst U- (325/2 | T'\ 103/2) TJ. 1j/42

2) 325/a -> 123/2 -> IO1/,, mit Hst=U- (325/2| T | 123/2) 7J-1 /3/7

25 1

Äi

3) 325/2 -> 323/2 -? 101/», mit ffs( ZJ. (325/2 | T'\ 323/2

fiS^., 5
F- (35/2|ßi33/2) U.^ /2/3 + V.\)/6

1) ergibt den grössten Beitrag zu A Et; für den Fall r0 2,8 • 10~13

cm und £ 30 MeV, U 113 MeV, V 11,5 MeV wird

Hs 139, Ht 408, flf, 29,2 MeV und H2t f H3 ¦ Ht 1/67

Analoge, zum Teil noch wesentlich günstigere Ergebnisse erhält
man für t 105/2 und t 125/2. Damit dürfte also die vorgenommene

Reduktion des ursprünglichen Problèmes gerechtfertigt sein.
Wir können noch zeigen, dass die Berücksichtigung der Kopp-
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lungen der Nebenkomponenten s untereinander sinnvoll ist. Diese
Kopplungen geben in (17) Anlass zu den Gliedern

AE,
HsoHs'o

1

H.H.,
TJ

deren Vernachlässigung wäre erlaubt im Falle dass

\AEL d.h. 2 <1. (19)AEss,\<^y\AE$l ,_,, _ _
VHSHS,

Die Bedingung (19) ist nun aber, wenigstens für den kleinsten
hier verwendeten Wert von £ (30 MeV), nicht erfüllt. Betrachten
wir z. B. den Fall s 103/2, s' 123/2 : Hss, - 34 |/2~- /225 • ü.
Mit den gleichen Potentialkonstanten wie oben wird

Hs 139, Hs, 245, H„. -24,2 MeV und damit 2
H„

Vê,h,
1_

3,8'

Es bleibt nun zu untersuchen, ob das Variationsverfahren
hinreichend genaue Lösungen des reduzierten Problèmes ergibt. Dazu

bestimmen wir mit Hilfe der oben erhaltenen Lösungen:
V V°, U =U° und JJ 5° die „Fehlerfunktionen" Gs(r)
(vgl. Abschnitt II) :

Gs(r) (H-E)F?+£'HSS,F?,, mit H H(U°, V°) (20)
s'

Gs(r) verschwindet im Aussenraum (r>r0) und ist nach dem in II
gesagten orthogonal zu F°s (r) :

JdrF?(r)Gs(r) 0 (21)

Zum Operator H (20) gehöre g a^s exakte Eigenfunktion und È
als Eigenwert, g gibt Anlass zu einem Quadrupolmoment Q. Um
die „Störungen" E—E und Q—Q der Energie und des Quadrupol-
momentes wieder rückgängig zu machen, genügt es, in einer ersten
Näherung U° und V° durch

dS-)(È-E)-(^-)(Q-Q) (22a)

m-)(È-E)-(-^-)(Q~Q) (22b)

zu ersetzen, wobei die Ableitungen von U° und V° nach E und Q

durch entsprechende Differenzenquotienten approximiert werden

j- ü r> i du° j ,_ U°(E,Q)-U°(E,Q1) T-rn/ü^xdürfen, z. B. also ->-„- durch À n > usw. U° (E, Qx)
°H H—Hi

und
U

V

UO¬
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und V° (E, Qx) erhält man hierbei als Lösungen des Gleichungs-
systemes (10), (11), (12) mit dem speziellen Wert Qx des
Parameters Q.

Es handelt sich nun darum, E—E und Q—Q zu bestimmen.
Dazu zerlegen wir, im Sinne eines Störungsverfahrens, den
Operator Hs:

Hs (Skin + #pot + Eimb)s H°s + H] ;

H» (Fkin7 E°ot + Ffeob)s ; B\ (Fpot-F°ot)

und zwar derart, dass

(H°s-E) • Fs° 0 und folglich auch H] Fs° Gs -£' Hss, -F° (23)
s'

ist. Die Schrödingergleichung (H—E) g 0 oder

(HO+Hl-E-AxE-A2E—) • (F°+Fl+.-)+2~;'Hss.(F°+Fs\+.-)=0
s'

erfüllen wir dann wie üblich in der folgenden Weise:

(H°-E)Fs°=0, (24a)

(H°-E) F/ -(H]- AXE)F?-]T'n.ss,F° AXEF? - Gs, (24b)

(H0-E)Ff -(H)-AxE)F} + A2EF0-Z'Hss,Fj, (24c)

Aus (24 b) folgt durch Multiplikation mit F® und Integration und
mit Hilfe von (24 a)

OO OO

AxEJdr(F^=JdrF^Gs,
o o

d. h. nach (21): AXE 0 Ebenso folgt aus (24c) mit (23)

9° r„ r„

A2Ejdr (FÌ)*=JdrF}Gs + £Hss,fdr (FS°F3-F/F«) (25)
0 0 *' 0

und hieraus durch Summation nach s

AJÏ E JàrF}Gs. (25')
" o

Nach (24 b) ist F1 eine Lösung der inhomogenen Gleichung

(H°-E)F} -GS. (26)
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Nennen wir ®° eine von F°s linear unabhängige Lösung der
Gleichung (24 a), so gilt offenbar

i (dFl d0°s \
— s 00 s-Fo) _ 0dr \ dr Ws dr rs/ ~ U

und man kann ®°s so normieren, dass

dFl d0°,
0Os-^Fs i (27)dr s

ist. Dann lautet die den erforderlichen Randbedingungen
genügende Lösung von (26)

r r

F/ A8F°7 f], mit fl =F«Jdq 0°SGS-®°S JdoF»Gs.
r, ra

(Als untere Integrationsgrenze kann r0 gesetzt werden, da ja Gs

und damit f\ im Aussenraum identisch verschwindet.)
Zur Festlegung der Xs dienen die Normierungsbedingung

oo r,

Z[drF?F}=£(XsNs + ns)=0 ; n,= [drF?ft, (28)
* o o

und die Gleichungen, die sich durch Elimination von A2E aus
(25) ergeben:

A 2 E ~T Ies + ^ ^ss'+ ^s'~~ ^ ^} unabhängig von s > (29)

wobei

es =Jdr f] Gs ; hss, -hs,s Hss,fdr (Fs° f\. -F° /J)

o o

bedeuten. ^s' +ri*'s H**' N"'
Für eine Abschätzung der Grössenordnung der Korrekturen

genügt es offenbar, das System (28), (29) zu reduzieren auf die
Berücksichtigung der Hauptkomponente 10% (=0) und der
grössten Nebenkomponente 12% 2). Es folgt dann

h - («o + n3) + -£*- 0„ N2 -e2N0 + h02) (30)
'/02

und X2 durch Vertauschen der Indices 0,2.

Numerische Ergebnisse:
Vorerst sei bemerkt, dass 0\ erhalten wurde durch Integration

von (27); mit F0 a ¦ (x — ax3) wird

<Z>° -^-(l-3ax2 + a2x4+.--) ;
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<Z>2 hingegen wurde, mit Hilfe von (27), graphisch bestimmt, da
eine gute Approximation der Reihe durch wenig Glieder hier
nicht möglich ist. Wir geben im folgenden die Ergebnisse des
Verfahrens für den Fall r0 2,8 • 10"13 cm, e 30 MeV an:

Die Fehlerfunktionen Gs werden (x<l):
G0 -^V (- 3,346 • x — 3,969 • x3 7 5,910 • x5 - 26,08 • x3 • log x)u Mrl

G2 —— (7 1,82 • x 7 0,64 • x3 — 2,219 • x4 + 10,09 • x3 • log x)i Mr\y 6

Es folgt damit

e0 - 1,40 • 10-2 MeV, e2 - 0,612 • 10-3 MeV,
d.h.

A2E^E-E -1,46- 10"2MeV und A2E\E 0,67%

Die zur Bestimmung von A0 und X2 notwendigen Koeffizienten
werden :

n0 + 0,790 • IO"2 h02 + 0,49 • 10~2 N2 3,87 • 10~2

n.2= 70,253 -IO"8 n02 -0,663 N0 0,942

Es folgt 10 -0,884 • 10-2, X2 -0,109 • 10"2.

Damit kann nun ô Q Q — Q abgeschätzt werden. Unter
Berücksichtigung des Umstandes, dass der Aussenraum (r>r0),
wo /j 0 ist, den grössten Beitrag zu Q liefert, und dass die
Maximalamplituden von /0l und /o1 nicht wesentlich grösser sind als
| A0| und |A2| (es ist Max |/i| 2,4 • 10"2 bei x 0,6 und Max \fl2\

0,65 • 10-2 bei x 0,5), wird mit guter Annäherung

ÒQ s (A07 A2) • )/2/10/drr* (F0° • F2°) « (A0 + X2) ¦ Q

b

d. h. Ò QIQ g* (Ao 7 As) ^ - 1 • 10"2.

Zur Bestimmung von 77 -*• 77° und V — F° nach (22 a, b) benötigen
wir noch die dort eingehenden partiellen Ableitungen. Mit Hilfe
der weiter unten angegebenen Werte von 77° und F° zu Qx 0,8 •

2,73 • IO"27 cm2 ergibt sich

« (4f) « 210 MeV, Q (4£) « - 92'5 MeV •

Demgegenüber erweisen sich die Werte von E-(dU°fdE) und
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E ¦ (dV°jdE) als bedeutend kleiner*), so dass es genügt, in (22a, b)
die Glieder ~ (Q — Q) zu betrachten. Infolgedessen wird

77 _ xjo s _ 210 • 10-2 MeV - 2,1 MeV,
y _ i/o ^ + 92>5 10-2 MeV 7 0,92 MeV.

Diese Korrekturen sind aber für die Beurteilung der Theorie
belanglos.

Abschliessend seien noch einige Angaben gemacht bezüglich
des Verhaltens der Potentiale 77 und V bei einer Änderung der
Reichweite r„ und einer kleinen Änderung im Wert des Quadrupol-
momentes Q. Eine Vergrösserung von r0 zieht eine Vergrösserung
des mittleren Abstandes der zwei Nukleonen nach sich. Infolgedessen

wird das zur Hervorbringung von Q notwendige Potential 77

kleiner werden und damit F anwachsen. Den gleichen Effekt
bringt, bei gleichbleibendem r0, eine Verkleinerung des Wertes
von Q hervor. Wir geben nachstehend zwei Beispiele:

a) Eine Abänderung von r0 : r0 3,2 • 10-18 cm, e 30 MeV.
Es Wlrd

77 52,6 MeV, F 27,4 MeV;

die Beimischungen werden

108/2: 1,16%, 12V,: 2,47%, 123/2: 0,07%, 323/2: 0,57%.

Mit abnehmendem r0 nimmt auch F ab, um schliesslich negativ zu
werden. Dieser Fall wäre an sich interpretierbar im Rahmen
einer pseudovektoriellen Mesontheorie (vgl. 9) ; sie muss aber hier
ausgeschlossen werden, da nach Cobstbr10) positives F notwendig
ist, um die Stabilität der schweren Kerne zu garantieren. Die
Forderung F>0 beschränkt aber die zulässigen r0-Werte nach
unten und zwar um so stärker, je kleiner die Anregungsenergie
der Isobaren ist; es gehören

Wibd 2,6 • IO"13 cm,
Wmii» 2,5 • 10"13 cm,
Wmì„ 2,3 • IO"13 cm.

Diese Feststellungen sind wichtig im Hinblick auf die nachfolgende

Behandlung des Singlett-S-Zustandes. Um dessen
Bindungsenergie in Übereinstimmung mit der Erfahrung zu bringen,
stehen noch die zwei Parameter r0 und e zur Verfügung, die aber
beide in ihrer Bewegungsfreiheit ziemlich eingeschränkt sind.

zu £ 30 MeV
e 60 MeV
£ OO

*) (d U°jdE) und (dV dE) wurden abgeschätzt unter Verwendung von
Ergebnissen der Rechnungen von Herrn A. Kind (unveröffentlicht). Es ergab
sich E ¦ (dV°,öE) iß 30 MeV und | OU^dE \ < | dV> dE \
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(Dies gilt bezüglich £ natürlich nur, falls man sich an die Bedingung

starker Kopplung hält.)
b) Eine Abänderung von Q. Unter Zugrundelegung der

Daten: r0=2,8 • 10-13 cm, £=30 MeV und Q=0,8 • 2,73 • 10~27 cm2
erhält man ^ %Q;J ^ y ^ my
und die Beimischungen

103/2: 1,24%, 12V2: 2,27%, 123/2: 0,09%, 328/2:0,71%.

IV. Der Singlett-S-Zustand.

Dieser Zustand ist charakterisiert durch die Quantenzahlen
K 1, 1 0, L und J gerade. Wegen K 1 ist für J>0:
jx — j2 0,71; der tiefste angeregte Zustand gehört infolgedessen
zu ji 1l2, ja 3/2 (resp. umgekehrt); seine Anregungsenergie
ist 3/2 £, d.h. die Hälfte der Anregungsenergie der Isobaren im
Deuteron-Grundzustand. Zur Hauptkomponente JLjxj2 00 Va Va
gesellen sich die Beimischungen:

003/2, 005/2, (iß), (jx j2 wegen J 0; vgl. (1))
22V23/2, 228/2V2, 223/2, (5D),...

Wegen 7 0 treten nach (2) nur Komponenten mit J L auf.
Wir geben im folgenden eine Tabelle der interessierenden
Matrixelemente von Û und T' (Tabelle 3). Durch das Indextripel 22 s

Tabelle 3.

J) Jj' (Jj\Q\Jj')

0Vi 07,
1

y
0Vi o3/2 if-
o3/2 Q»/, îi

15

2s 2s
1

~"6~

2s 23/2 tW*
23/2 23/2

11

75

JLj J'L'j' (JLj\T\J'L'Y)

00 j oo y 0

oov, 22 s
4

223/2 ->
oo3/2 22 s ->

223/2
44

225

22 s 22 s
5

TJ

223/2 =\m
22«/» 22%

44
225~
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ist daselbst der aus 221/23/2 und 223/21/2 gebildete, in jxj2
symmetrische Zustand angedeutet.

Wir werden nun so vorgehen, dass wir für bestimmte Werte
von r0 und £ und unter Benützung der für diese Werte in III
erhaltenen Potentialkonstanten 77 und F eine Eigenwertbestimmung

durchführen. Das Verfahren ist dabei grundsätzlich
dasselbe wie in III, doch müssen folgende Bemerkungen noch
gemacht werden:

a) Die Hauptkomponente g" 00V2 hat im Aussenraum
x>l im Falle eines negativen Eigenwertes E den Verlauf

Fa(x) e-*L <*-", mit x\ -~- \E\.

Für den Innenraum setzen wir infolgedessen an

Fa (») Y {(3 + xx).x-(l + xx) ¦ X3} (31)

womit alle erforderlichen Stetigkeitsbedingungen erfüllt sind.

b) In den Ausdrücken für die den angeregten Zuständen
entsprechenden F-Komponenten treten im Aussenraum die
Konstanten

-i/ Mrl /3 \ n/ Mrl
"s=V-J^(te-E) und *•= K-jf.-(3« —B)

auf. Hier vernachlässigen wir E gegen 3/2 £ und 3 e; dadurch
wird der Gang der Rechnung sehr vereinfacht.

Das System der Gleichungen (10) gestattet dann die Bestimmung

der relativen Amplituden a^'i (a„ 1) und des
Eigenwertparameters xx. Wir geben einige Resultate: Mit

a) r0 2,8-10-13cm, £= 30 MeV, 77 113 MeV, F 11,55 MeV
b) r0 2,8-10-13cm, e= 60 MeV, F 106 MeV, V 20,9 MeV
c) r0 2,6-10-13cm, £ 180 MeV, 77 150 MeV, F 18,2 MeV

wlrd
a) E - 1,58 MeV
b) E - 1,17 MeV
e) E - 0,28 MeV.

In allen drei Fällen würde es also, im Widerspruch mit der
Erfahrung, einen stabilen 1S-Zustand geben. Bei genügend kleinen
Werten von e (<30 MeV bei r0 2,8 • 10~13 cm) kann der ^-Zustand

sogar stabiler werden als der Grundzustand. Dieses
überraschende Resultat ist dem Umstand zuzuschreiben, dass in dem
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hier benützten Modell im Gegensatz zu den älteren Theorien ohne
Isobaren (schwache Kopplung) die Tensorkraft für diesen Zustand
des Systèmes nicht identisch verschwindet. Für nicht zu grosse
Isobarenanregungsenergien hat dann die starke Ankopplung der
Komponente 22 s (5D) an die Hauptkomponente eine wesentliche
Vergrösserung der Bindungsenergie zur Folge. Um die Energie
des xS-Zustandes Null oder positiv zu machen, wie es die Erfah-

250

r„ 2.4

200

2.5

150 2.6

m m

'« 2,100 ¦-

50 -¦
o *2

> V

Fis. 1

Die Bindungsenergie des Singlett-S-Zustandes. Alle Energien in MeV; r0 in 10~13 cm.

rung verlangt, muss man demnach die Anregungsenergie der
Isobaren sehr gross wählen, d. h. grösser als die übrigen, in den
Diagonalelementen (s|H|s) stehenden Energien. Um ein Beispiel
zu geben: für obige Werte von r0 ist (FKln)22s~100 MeV; daraus
ergibt sich sofort, dass man zu einer richtigen Darstellung der
Bindungsenergie zu Werten von £>100 MeV greifen muss. Wie
ungünstig die Sachlage ist, kann aus der beiliegenden graphischen
Darstellung (Fig. 1) ersehen werden. Ausgehend von den oben



344 Felix Villars.

berechneten Werten sind dort weitere, mit Hilfe von Formel (17a)
bestimmte Werte von E E(e,r0) in Funktion dieser zwei
Parameter aufgetragen. Die Darstellung ist folgendermassen zu lesen:
Das Netz der Kurven £ const, und r0 const, ist so auf die
77,V-Ebene aufgelegt, dass die Wertegruppe U,V,r0,e richtige
Bindungsenergie und richtiges Quadrupolmoment für den
Deuteron-Grundzustand ergibt. (Der Grenzfall £ oo entspricht
dem bei Rarita und Schwinger11) behandelten Problem.) Die
zugehörigen ^-Energien können aus den Kurven E const.
qualitativ abgelesen werden. Aus dem Verlauf der Kurve E 0
ersieht man, dass die kleinsten e-Werte in der Gegend von r0
2,6 • 10~13 cm zu erhalten sind, und auch dort sind noch rund
200 MeV erforderlich*).

' Abschliessend sei noch bemerkt, dass die zu den vorliegenden
Rechnungen verwendete Methode unbrauchbar wird, sobald man
zu e-Werten < etwa 10 MeV übergeht. In diesem Falle werden
nämlich grössere Werte von jx, j2 massgebend, und es existieren
dann diesem Falle besser angepasste Näherungsmethoden
(Adiabatenverfahren, vgl. 3)). Nach Fig. 1 ist es aber sehr unwahrscheinlich,

dass so kleine Werte von £ mit der Erfahrung verträglich
sein könnten. Es wurde daher auf diese Seite des Problèmes nicht
näher eingetreten.

V. Die Proton-Neutron-Streuung.

Wie in der Einleitung bemerkt wurde, war die Annahme der
Existenz von Isobaren mit nicht allzuhoher Anregungsenergie vor
allem von Interesse im Hinblick auf die Anisotropie der Proton-
Neutron-Streuung. Um die P-Potentiale in wirksamer Weise
herabzudrücken (insbesonders den in der symmetrischen Theorie
tiefstliegenden 3P0-Term), wären aber Werte von £ <30 MeV
erforderlich (dies für r0 2,8 • 10~13 cm, vgl. 3)). Die in IV
erhaltenen Ergebnisse bedeuten also, dass es nicht möglich ist, den
das Vorzeichen und den Betrag der Anisotropie betreffenden
Einwand gegen die ladungssymmetrische Theorie ganz zu entkräften.

*) Man könnte hier die Frage aufrollen, wieweit dieses Ergebnis durch die
tatsächliche (hier nicht berücksichtigte) Verschiedenheit des räumlichen Verlaufes
der Potentiale U(r) und V(r) betroffen wird. Eine qualitative Überlegung zeigt
jedoch leicht, dass dadurch keine wesentliche Änderung des obigen Ergebnisses
zu erreichen ist.
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Für den günstigsten, in IV berechneten Fall (c) erhalten wir nämlich

nur
*(*)/* v 0,97 für FKin 14 MeV.

(Für die Berechnung dieses Quotienten siehe Anhang 2.)
Demgegenüber erhält Amaldi1) für den gleichen Wert von FKin :

o (n) f a (f) 0,52 ±0,03.

In diesem Zusammenhang soll nun aber einmal die Frage
aufgeworfen werden, wie schwerwiegend eigentlich der Einwand des

Experimentes gegen die symmetrische Theorie ist, m. a. W.
welches Gewicht den Ergebnissen von Amaldi zukommt. Ausgangspunkt

dieser Betrachtung ist der auffällig kleine Unterschied
zwischen den gemessenen Werten des Gesamtstreuquerschnittes
und den berechneten Werten für S-Streuung allein (berechnet auf
Grund einer kurzreichweitigen Zentralkraft) ; demnach würde
auch bei 14 MeV Neutronenenergie im wesentlichen nur erst
S-Streuung vorliegen. Die Phasen der P-W711en mussten also
noch klein sein; in diesem Falle ist aber auch eine wesentliche
Anisotropie der Streuung ausgeschlossen. Nun hatten zwar Rarita
und Schwinger11) bemerkt, dass man bei Annahme nichtzentraler
Kräfte (Tensorkräfte) kleinere Werte des S- Streuquerschnittes
erhält als für zentrale Kräfte; dies gilt aber nur für kleine Energien

(die Reduktion beträgt dort 2—3%), für Energien um 15 MeV
ist der Unterschied belanglos. Daran kann auch die Annahme
isobarer Zustände nichts ändern, solange letztere nur mit sehr
kleinen Wahrscheinlichkeiten angeregt sind. Eine Durchrechnung
dieses Problèmes ist auf Grund der in II dargestellten Methode
leicht möglich und ergibt folgendes Bild für 15 MeV-Neutronen :

Der integrale Querschnitt für (3SX 7 3P7)-Streuung wird, unter
Annahme der in III für r0 2,8 • 10-13 cm und e 30 MeV erhaltenen

Werte von 77 und F, innerhalb der Rechengenauigkeit
(~/4%) gleich gross wie der Querschnitt für 3S-Streuung unter
Zugrundelegung eines gewöhnlichen Kastenpotentiales gleicher
Reichweite, nämlich zu

o-Tripl 0,695 • 10-24 cm2.

(Im Anhang, Abschnitt 3, ist eine kurze Beschreibung der Rechnung

gegeben.)
Damit bleibt der oben erwähnte Einwand gegen die

Messresultate von Amaldi bestehen; des weiteren sagt obiges Resultat
aus, dass es zur Bestimmung der S-Streuquerschnitte genügt,
zentrale Kräfte anzunehmen. Eine gewisse. Schwankungsbreite
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erhalten die Werte von a noch infolge unserer Unkenntnis der
genauen r-Abhängigkeit der Wechselwirkung. Die unter verschiedenen

diesbezüglichen Annahmen durchgeführten Rechnungen
ergeben jedoch nur wenig voneinander abweichende Ergebnisse,

70"

60"

50«

40° ¦¦

30" ¦¦

20«

10«

10 0 W (MeV)

11"

Fig. 2.

Beziehung zwischen Potentialtiefe W und der Phase ôj, der P-Wellen für
•Ekm 15 MeV. Kastenpotential mit r0 2,6 • 10~13 cm.

und wir werden für das Folgende einfach die minimalen so erhaltenen

Werte zuziehen. Wir stellen nun einiges Material zusammen :

a) Berechnete Werte für S- Streuung
für F 14 MeV, in Einheiten 10"24 cm2:

a(^S) + 3Ua(3S))

1: Kastenpotential mit r0 2,8 • IO-13 cm: as 0,685
2: „ mit r0 2,0 • IO"13 cm: a, 0,710
3: Yukawapotential*) mit a 1,92 •IO"13 cm: o% 0,621
4: Exponentialpotential**) mit a 2,0 IO"13 cm: <7S 0,616
5: mit a 1,5 IO"13 cm: as 0,643

*) V V0— exp (- ria); im Sinne der Mesontheorie ist a= h/Mc, wo M
die Mesonmasse darstellt. Der hier gegebene Wert von a entspricht M 200 mei;
die Berechnung des Streuquerschnittes stammt von Hulthén12).

**) V= V0 exp - r/a) ; für die Berechnung der entsprechenden
Streuquerschnitte siehe Anhang, 4.
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b) Gemessene Werte des totalen Streuquerschnittes für E
14 MeV:

1 : Nach Ageno18) : ertot 0,694±0,019

2: Nach Salant und Ramsey14): o-tot 0,70±0,06

1) ist wohl der genaueste z. Z. bekannte Wert. Ein Vergleich
der minimalen berechneten WTerte: <rs> 0,615 mit der Obergrenze
des Wertes von Ageno: 0,713 ergibt als Beitrag der P-Wellen
zum Gesamtstreuquerschnitt den Höchstwert von

op < 0,10 • 10-24 cm2. (32)

Auf Grund der in Fig. 2 dargestellten Beziehung zwischen Phase
und Potentialtiefe für P-Wellen erkennt man, dass man im Falle
grosser Aufspaltung der Triplett-P-Terme den Einfluss der P-Wellen

schon mit guter Näherung beschreibt, falls man nur die zum
tiefstliegenden der drei Potentiale gehörende Phase berücksichtigt.
Unter dieser Voraussetzung kann man für die in Frage kommenden
Fälle eine Beziehung zwischen dem Wert von crtot und dem

des Quotienten er (ti)/cm y aufstellen. Ausgehend von der Formel

für a(&) (siehe z.B. bei Kittel und Breit15); in Gleichung (33) ist-
das I—F-Interferenzglied etwas anders dargestellt als bei den

genannten Autoren) :

fe2 • er (&) — • sin2 ôxs+ — ¦ sin2<53s76- cos & J-j- • sinc51Ä- sinc5lp-

• cos (ôxs — ôlp)+ — ¦ sin ô3s [J-sin ò3Ps ¦ cos(<53s—•c53J),) + -9-sin<W1¦

• cos((33s- ô3P) + — sinò3Pa • cos (Ô3S- ó3pjj}

79 • cos2;?-Lsin2 ólp7 --• [|- sin2ô3p + -g-sin2 ò3Pi + -sin2 ò3Pt

+|• (3 • cos2t?-l) (sin2 (Ô3P-Ô3P) +lsin2(ô3P-ô3r)}+ • • - (33)

erhält man durch Spezialisierung auf die Fälle

a): ô3Pi, ô3Pi, ôxp ^ 0 b) : c53iV ô3Pt, ôlp^0
c): ôap0> ôsp,> V °

den folgenden Zusammenhang zwischen aP und er (n) \a (^



348 Felix Villars.

Tabelle 4.

<5,p crp »(»)/»(!) 7p 1

ffp °W°[t) diF, °p ff(»)/ff(f)

90° 0,189 0,570 60° 0,425 0,438 45° 0,472 0,242
60 0,142 0,644 49 V3 0,324 0,520 30 0,236 0,520
45 0,094 0,741 45 0,284 0,560 22 Vi 0,138 0,678
30 0,047 0,854 30 0,142 0,731 15 0,063 0,825

Die Interpretation dieser Werte im Rahmen der Mesontheorie

erlaubt es, anhand von (32) den Höchstwert der
massgebenden Phase c53P abzuschätzen und damit zu einer Aussage über

die möglichen Werte von er (n) fa (y) zu gelangen:

1) Symmetrische Theorie.
Der tiefstliegende Term ist hier 3P0; nach (32) und Tabelle 4
ist die maximal zulässige Phase etwa 45°; damit wird aber

der AMALDische Wert von a(n)fa (y)= 0,52 bei weitem nicht
erreicht.

2) Charged Theory.
Die relative Lage der Triplett-P-Terme ist hier die gleiche
wie in 1), die Aufspaltung aber grösser (dreimal, gleichen Wert
von 77 wie in 1) vorausgesetzt). Es gilt also hier das in 1)

Gesagte.

3) Neutrale Theorie.
Die 3P-Terme liegen umgekehrt wie in 1) und 2) ; zutiefst liegt
3PX; nach Tabelle 4 ist die Situation hier wesentlich ungünstiger

als in den Fällen 1) und 2) ; zum AMALDischen Wert von
0,52 gehört ein aP 0,324 • 10~24 cm2; dadurch würde der
Gesamtstreuquerschnitt auf rund 0,94 • 10~24 cm2 erhöht, in
völligem Widerspruch mit der Erfahrung.
Wir beachten, dass die Unmöglichkeit, die AMALDischen

Werte in Übereinstimmung mit der Forderung (32) zu bringen,
weitgehend unabhängig vom benützten Modell ist; sie beruht
einfach darauf, dass in jedem denkbaren Falle durch den Wert

0,52 von a(n)My) zu grosse Phasen für die massgebenden P-Wellen

angefordert werden. Die Vermutung liegt daher nahe, dass die
von Amaldi gemessenen Werte etwas zu klein sind; diese Feststellung

würde jedenfalls nicht im Widerspruch stehen mit den bisheri-
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gen Messungen von Champion und Powell1)*). Auf alle Fälle
kann gesagt werden, dass hier eine Schwierigkeit liegt, von der
jedes der genannten Modelle betroffen wird. Es erscheint daher
beim derzeitigen Stand der experimentellen Daten als nicht
angebracht, die drei obengenannten Varianten gegeneinander
auszuspielen; insbesondere erscheint die symmetrische Theorie nicht
unbedingt gegenüber den andern benachteiligt.

VI. Anhang.

1) Zum Variationsverfahren im kontinuierlichen Eigenwerts-
Spektrum.

Falls man nicht mit einem Kastenpotential operiert, muss man
das Problem folgendermassen formulieren: Man definiert zuerst

oo

TTT-^W) =Z[kdrFs(r)£(Hss,-E ôss,)Fs,(r).
s J s'

Falls E kleiner ist als die Anregungsenergie der Isobaren, so sind
die FJLy2y2(r) (J =1 oder 0) die einzigen oszillatorischen Komponenten.

Mit
0 Fjl'a y2 (*¦-»-«>)« aL cos (kr ^7 <pL) òcpL +

L;c^sinl/cr—~ + cpL

wird dann

ô JR-Ë) 2 JJ f kdr Ò Fs (r) £ (ff„.-E d„.) F, (r) + EJJ a\ öcpL
s l *' (£)

Die Schrödingergleichung ist also äquivalent dem Variationsproblem:

Es soll die Variation von (H — E) verschwinden, unter
der Bedingung, dass die Phasen der oszillatorischen Komponenten
nicht variiert werden. Im Gegensatz zur Formulierung dieses
Problèmes bei Hulthen12) halten wir hier darauf, von vornherein
die Stationarität der Phasen zu verlangen: Diese Bedingung ist
in der Tat gleichwertig den üblichen, an die in Frage kommenden
Funktionen gestellten Randbedingungen : Setzt man nämlich etwa
für r>a in (H — E) die exakten Lösungen ein, so legt die Forde-

*) Anm. bei der Korrektur: Nach einer Mitteilung von C.F.Powell am
Internat. Physik-Kongress in Cambridge vom Juli 1946 ergibt die Auswertung
seiner neuesten Messungen eine sehr schwache, möglicherweise sogar negative
Anisotropie, also ein Resultat, das qualitativ mit den Aussagen der symmetrischen

Theorie im Falle schwacher Kopplung verträglich wäre.



350 Felix Villars.

rung òqjL 0 der nurmehr im Bereich 0<r<a zu variierenden
Funktion Fs(r) die Randbedingung

ö(±logFs(r))r=a=0 d.h. {^ogFs(r))r==(-^logôFs(r))r=a

auf; dies ist aber die gleiche Bedingung, die den F-Komponenten
im Falle eines eigentlichen Eigenwertproblemes durch die
Forderung HmPs(r) 0 auferlegt ist (vgl. (7)).

2) Die Bestimmung von a (ti) faiy
Wir stützen uns hier auf eine von Wentzel angegebene Formel

(Gleichung (2) in 3)), welche für das in II beschriebene
Deuteronmodell die adiabatischen P-Potentiale in Form einer
Entwicklung nach 77/£ und Vf e darstellt:

W (3P7) 1 (3 F7 20 • c,U) - «MdLfL^gZ±J^LgLa

-^1,757+ ••' ;

die Konstante cT hat für I 0,1,2 den Wert:
1 1 1

/27(2J77l)-c/ 0C°
5 ' Cl ~ 10 ' 6'2 ~ 50

Mit den Werten r0 2,6 • 10"13 cm, 77 150, F 18,2, £ 180
MeV erhält man

IF(3P0) - 20,2 - 5,4 - 25,6 MeV,
W(3PX) 7 13,1 - 0,5 + 12,6 MeV,

W(3P2) - 0,2 - 4,0 - 4,2 MeV.

Die entsprechenden Phasen sind: c53Po 11° 50', c5,Pi —2° 20',

d,Pi 7 1° 0', und mit (33) folgt er(n)\a (~\ 0,970.

3) Die Bestimmung des Querschnittes für (3SX + 3D1)-Streuung.

Die Hamiltonfunktion dieses Problèmes ist die gleiche wie im
Falle des Deuteron-Grundzustandes, d. h. entspricht den.Quanten¬
zahlen I — 1, K 0, L gerade, J ungerade. Die P-Komponenten
10% und 12% haben im Aussenraum den Verlauf

P10y2 (x) ~sin (kx + (p0) (34a)

Fi-2'/, ix) ~ Sin (fea;, 9»a) (34b)

mit k2=-}-[0-.^f-nndSin(y,cp)^(l-^yin(y+cp) + jCOs(y+cp).



Ein Beitrag zum Deuteronproblem. 351

Wir betrachten nur reelle Lösungen des Variationsproblemes.
Infolgedessen sind cpx und cp2 zwei reelle Phasen; sie sind aber im
allgemeinen nicht identisch mit den sogenannten „Phasen" der
gestörten Wellen. Für die gleichen Komponenten setzen wir im
Innenraum an:

Fio* (*) j -{(ßx- x3) + K(x- x3)} (35a)

F12% (x) a2 ¦ {(2 x2 -i4)+| A2 (x2- x4)}. (35b)

Die Bedingungen für den stetigen Anschluss der logarithmischen
Ableitungen an die Ausdrücke (34) sind:

k • ctg (k + (p0) — A0 (36a)

k- cos (k+yj-ain (k+<pt) _ g (36 bì
Sin (fr, ç>,) 2' ^ '

Das Gleichungssystem (10) ergibt, mit den Ausdrücken
(35a, b), nach Elimination aller übrigen Amplitudenparameter
zwei Gleichungen zwischen den drei Grössen 10, 12 und a2. Wie
schon in II bemerkt wurde, muss demnach zur vollständigen
Festlegung des Problèmes die Ausstrahlungsbedingung zugezogen
werden; diese verlangt, dass die oszillatorischen F-Komponenten,
die zum Wertepaar I, MT M (in der Planwelle ist ML 0 ;

M bedeutet im folgenden immer den Anfangswert der
Spinkomponente) gehören, von der folgenden asymptotischen Form
sind:

fjivM -" °°) const {L /2L+1 ei6L6J (J, L). sin(fcx- -.-7 òL) (37)

Die b\j M, (J,L) bedeuten hier die normierten Koeffizienten der
CLEBsen-GoRDANSchen Reihe für die Zusammensetzung der
Drehimpulse J + L I.

Nach (37) hängen die Phasen ô ausser von L speziell noch von
der „Anfangspolarisation" M ab. Gehören nun zu einem durch
I, MT, K und die Paritäten von J und L festgelegten Problem wie
im Falle der (SSX + ^^-Streuung zwei oszillatorische Komponenten,

so ist die Bedingung (37) nicht mit reellen Phasen zu
erfüllen. Zur Lösung der Aufgabe mit Hilfe des genannten
Variationsverfahrens geht man daher praktisch wie folgt vor: Man
zerlegt (37) nach Abspaltung eines passend gewählten Phasen-
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faktors in einen Real- und einen Imaginärteil ; in dem hier betrachteten

Falle also mit ò n + i £ :

F10y2 (x) const e%6° • sin (k x + ô0)

const e10« Ch £0 sin (kx+n0) — i Sh £0 sin (kx+n0 - ~
F12% ix) const eia°{blM (1, 2) ]/5 e'<«r*>> Sin (fcœ, ó2)}

const eiö°{b\M(l,2)]/5e-^-c«)(}/çL^2(^Vo) + Sh2"C2 Sin(kx,t]2-

+ i]/sin2 (T]2 — rj0) + Sh2Ç2 • Sin (kx, Jy2+e+))}

mit tg £ tg (rf0 -f]2) ThÇ2; tg £+ ctg (n2 — n0) Th Ç2

Wir setzen demnach

SR e F10y2 ~ sin (fe # 7 %) (88 a)

*ciW= ~ckfi,u^ 2) e«-** /cos2 (%-W+Sfe«^ •

• Sin (fco;, %7fi) (38b)

3mPloy2~sin^fea;7% —y), (39a)

3 m F121/2 ~ r £«_ 6JM (1, 2) e-<^W /sin2 (%-r/o) 7 S/i2C2 ¦

• Sin(fea;, »?27£+) (39 b)

Diese Ausdrücke sind nun von der Form (34 a, b), und eine
Identifikation der Real- resp. der Imaginärteile ergibt:

9?o %; <??=% +e;

«2Wîr -È 6o,m d, 2) ar<™ /cos2 («)TS^,
<Po=Vo—Y > <Pt=rÌ2+£+;

sm (t+'At)- ^5 ÒJ.v(l,2)e-^»)l/sinM%-%)7«S/l2£2.2 Sin (fe, 95+) ,S%Ç0

Dadurch sind die 6 Grössen <p0, cp2, a2 und cp+, cp+, a+, oder,
vermittelst (36a, b), die 6 Grössen 20, X2, a2 und A+, A+, a2 als
Funktionen der vier Parameter i]0 f0 n2 C2 dargestellt. Wie oben
bemerkt wurde, sind indes durch Gleichung (10) zwischen diesen
6 Grössen gerade vier Beziehungen aufgestellt; diese erlauben
die Festlegung der vier Parameter r/0 C0 V2 £2 •

Wir bemerken noch, dass für den Fall der (3SX + ^^-Streuung
infolge der zu J 1 möglichen zwei Werte von | M | bei diesem
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Problem insgesamt 8 Phasen t]^, Çf auftreten. Wegen des Bestehens

von Differentialbeziehungen erster Ordnung zwischen den
Lösungen der Schrödingergleichung (diese sind in 1X) ausführlich
dargestellt) sind aber nur drei dieser Phasen unabhängig. Man
braucht infolgedessen das Problem nur für einen Wert von M zu
lösen; dass bei obiger Fassung des Lösungsverfahrens vier Phasen
explicite eingehen, gibt eine Möglchkeit, die Güte des Verfahrens
zu kontrollieren.

Nach (37) erhält man für den Gesamtstreuquerschnitt für
Triplettstreuung

fftripi 4?27 (2 L+!) iE*'**" I KMÌ.hL)\2(sin2 n^+Sh2 ^u)

und speziell für die (3SX + 3DX)-Streuung unter Berücksichtigung
der zwischen den Phasen bestehenden Beziehungen:

ff if-K2 J°'° («m2 Vo'° + sin2 VÌ'1) + (1 - e~2 ä»'°)}•

Für r0 2,8 • 10~13 cm und mit einer Neutronenenergie von
15 MeV werden

rì0 1,482 riY -0,019 £j-° -0,093

Ein isotropes Kastenpotential gleicher Reichweite, dessen Tiefe
der Bindungsenergie des Deuteron-Grundzastandes angepasst ist,
ergibt dagegen ô0 1,461. Der sich daraus ergebende Wert von
ertr;pl ist in beiden Fällen praktisch gleich gross.

4) Die Bestimmung der Streuquerschnitte.

Das Eigenwert- und Streuproblem für die S-Zustände eines

Zweikörpersystemes mit einem Wechselwirkungspotential 77(f)
—F0 exp (—rfa) lässt sich auf die Diskussion einer Bessel-

funktion zurückführen. Es sei

Ma2 T7 j 9 Ma2
^rYo und ^ -^r

d. h. z ist rein imaginär für F>0, reell für F<0.
Die Berücksichtigung der Randbedingung für die Eigenfunktion

/(f) führt auf eine Funktion KZ(A), definiert durch

oo ^. n - -,

KzM) l+2,^-^-i72Ì-£ ^(l+2.)i-J2z(2^). (40)
ft — 1 € 1

Die Eigenwerte sind dann festgelegt (bei vorgegebenem a und Ä)
23
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durch die Nullstellen der Funktion KZ(A) für positiv reelle z-Werte
(z x):

J2„(2jA4)=0.
(Siehe z. B. bei Bethe und Bacher16); daselbst ist eine Tabelle
von Wertepaaren a, A angegeben, die die richtige Bindungsenergie

für den Deuteron-Grundzustand ergeben.) Zur Bestimmung
von A(XS) wurde hier E(XS) 0 angenommen.

Die Phasen der gestörten S-Wellen sind ebenfalls durch
KZ(A) festgelegt; es ist nämlich

Ò arg Kik (A) ;

7c bedeutet die Wellenzahl der S-Welle in Einheiten lja.
Die Reihe (40) konvergiert nun sehr rasch, so dass die

Bestimmung der Phasen ohne Mühe durchgeführt werden kann.

Die vorliegende Arbeit entstand auf Anregung meines
verehrten Lehrers, Herrn Prof. Dr. G. Wentzel. Ich möchte ihm
an dieser Stelle für die vielen, freundlichst gewährten Ratschläge
meinen verbindlichsten Dank aussprechen.

Zürich, Physikalisches Institut der Eidg. Techn. Hochschule.

Literatur.

C. F. Powell, H. Heitler, F. C. Champion, Nature 146, 716 (1940). E. Amaldi,

D. Bocciarelli, B. Ferretti, C. Trabacchi, Naturwiss. 30, 482 (1942).
H. Tatel, Phys. Rev. 61, 450 (1942). C.F.Powell, F.C.Champion, Proc.
Roy. Soc. A 183, 64 (1944).

2) J. Schwinger, Bull. American Phys. Soc. 16, Nr. 7, S. 7 (1941).
3) G. Wentzel, Helv. Phys. Acta 18, 430 (1945).
4) M. Fierz und G. Wentzel, Helv. Phys. Acta 17, 215 (1944). G. Wentzel,

Helv. Phys. Acta 17, 252 (1944).
5) M. Fierz, Helv. Phys. Acta 17, 181 (1944), und 18, 158 (1945).
6) W. Pauli und S. M. Dancoff, Phys. Rev. 62, 85 (1942). G. Wentzel, Helv.

Phys. Acta 16, 551 (1943).
7) M. Fierz, Helv. Phys. Acta 18, 158 (1945).
8) J. M. B. Kellogg, 1.1. Rabi, N. F. Ramsey, J. R. Zacharias, Phys. Rev.

57, 677 (1940).
8) N.Kemmer, Proc. Roy. Soc. A 166, 127 (1938).

10) F. Coester, Helv. Phys. Acta 17, 35 (1944).

") W. Rarita und J. Schwinger, Phys. Rev. 59, 436 (1941).
12) L. Hulthén, Kungl. Fys. Sails, i Lund Förhandl. 14, No 21 (1944).
13) M. Ageno, E. Amaldi, D. Bocciarelli, C. Trabacchi, Il nuovo Cimento 1/3

(1943).
14) E. O. Salant und N. F. Ramsey, Phys. Rev. 57, 1075 (1940).
15) C. Kittel und G. Breit, Phys. Rev. 56, 744 (1939).
a6) H. A. Bethe und R. F. Bacher, Rev. of Modern Physics 8, 82 (1936).


	Ein Beitrag zum Deuteronproblem

