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Sur la phase variable de fermeture de I’écoulement d’un liquide
visqueux dans un tube horizontal raccordé & un réservoir

par P. Lambossy.
(26. V. 1946.)

1. Introduetion.

L’écoulement stationnaire d’un liquide visqueuz dans un tube
a été étudié depuis longtemps et a fait 1’objet de nombreuses re-
cherches théoriques et expérimentales. Au contraire la période
variable de cet écoulement quand le dispositif de fermeture fonc-
tionne dans un sens ou dans l'autre constitue un probléeme dont
on ne voyait pas I'importance pratique, & en juger d’apreés le peu
de travaux qui ont paru sur ce sujet. Je dois citer cependant un
article remarquable de GrumBACH!) concernant la phase initiale
de I’écoulement dans un tube capillaire vertical, en vue de I'appli-
cation aux viscosimétres. Avec des modifications de détail ces cal-
culs s’appliquent & un écoulement dans un tube horizontal relié &
un réservoir, la pression & l'origine du tube et celle & 'extrémité
étant maintenues rigoureusement constantes. En lisant cet article,
on est surpris de voir que la solution mathématique exacte d’un
probléme dont l’énoncé est si simple exige des développements
étendus (GrumBacH le fait remarquer lui-méme), et on peut se
demander si une vole plus commode pourrait conduire & des résul-
tats d’une exactitude suffisante. Cette idée devient d'une 1mpé-
rieuse nécessité s1 on veut traiter des cas complexes, ceux ou des
tubes de sections inégales sont raccordés. Car le phénomeéne hydrau-
lique & l'endroit du raccordement, et surtout dans 1’état variable,
est d'une complication telle qu’il ne peut se mettre rigoureusement
en équation. De plus, on n’oubliera pas que les expériences elles-
mémes sont difficiles, et qu’ll est malaisé de se mettre dans les
conditions théoriques voulues; ce de fait il n’est pas dit quun
traitement prétendu correct donmnerait des résultats concordant
mieux avec ’expérience qu’une méthode approchée.

1) A. GruMBACH, Sur U'écoulement libre des liquides dans les tubes capillai%es.
J. de Phys. et le Radium, t.9, p. 49 (1938). Cet article a paru antérieurement
plus succinctement dans les Comptes-Rendus, en 1936, p. 1653.
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L’Institut de physiologie de 1'Université de Fribourg entre-
prend depuis quelques années, sous la direction de A. MULLER, des
recherches sur la période variable de I’écoulement visqueux. Leur
but est I’étude, sur des modéles et dans des circonstances parti-
culiérement simples, du phénoméne de la circulation du sang.
Cette méthode est probablement la seule possible du moment que
le phénoméne réel est inabordable au calcul.

Dans une expérience récente, dont on trouvera la. descrlptlon
détaillée dans Helv. physiol. Acta, 1946'), un hqulde doué de vis-
cosité (glycérine+eau) contenu dans un réservoir s’écoule dans un
tube horizontal en régime laminaire. On ferme alors progressive-
ment 'extrémité du tube au moyen d'un dispositif de fermeture
approprié; la vitesse du liquide dans le tube diminue jusqu’a zéro
sulvant une certaine loi et en méme temps la pression s’éléve.
C’est le phénomeéne connu du coup de bélier. Cette question pré-
sente au point de vue technique, pour les conduites forcées, un
haut intérét; elle a été étudiée théoriquement et expérimentale-
ment; mais dans ce cas technique, contrairement & celui qui va
nous occuper, la viscosité de 1’eau a un effet neghgeable

La durée de ’état variable est d’ordinaire si courte que la
viscosité peut n’avoir que peu d’importance. Il est utile d’étre
renseigné la-dessus et, comme le fait A. MULLER, de traiter un
probléme d’hydraulique par la théorie de deux maniéres, une pre-
miére fois en supposant un liquide parfait, une deuxiéme fois en
- tenant compte de la viscosité, et de confronter ensuite les résultats
du calcul avec I'expérience. Toutefois, dans le probléme qui fait
le sujet de cet article, la viscosité joue un role décisif, et si on la
néglige, on est conduit & des résultats inacceptables.

2. Position du pr,obléme;

Un tube horizontal est raccordé a um réservoir. Le miveau du
ligurde dans le réservoir étant maintenu constant, le liquide s’ écoule
tout d’abord avec une vitesse constante. On ferme ensuife progressive-
ment Uextrémité du tube. Etudier comment varient avec le temps la
vitesse et la pression du liquide dans le tube.

L’installation comprend trois parties (fig.1):

a) un réservoir A B de section S; le liquide qu’il contient
a une hauteur constante h,

1) Arovys MULLER, Uber die nichi stationiren Strémungsphasen ¢n einem
starrwandigen Lettungssystem beim Offnen und Schliessen des Ausflussrohres,
Helv. physiol. Acta, Vol. 4, fasc. 2 (1946).
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b) un tube horizontal BC de longueur [, de section circulaire s,
raccordé au réservoir, ‘

¢) un dispositif de fermeture CD de longueur trés courte que
nous appellerons le distributeurt); la sectmn d’ouverture, variable
avec le temps, est o.

Nous admettons que les parois sont parfaitement rigides ot
que le liquide est incompressible.

La méthode que nous suivrons est la suivante: Nous écrirons
d’abord les équations du mouvement en supposant le liquide par-
fait, et ensuite nous apporterons les corrections nécessitées par
la viscosité.

Au-dessus du réservoir, de méme qu’a la sortie en D, régne
la pression atmosphérique p,. Soit, & l'instant , v la vitesse du

=—————arifi
S
Y
< 1 ¢
|
LB = * C D
_——— e T T TS ,__Ii
{

Fig. 1.

liquide dans le tube, c’est-a-dire la vitesse commune des différents
filets, V la vitesse dans le réservoir. L’équation de continuité donne

Vz—g}v.

Dans les expériences on fait tbujours en sorte que le rapport des
sections % soit négligeable devant 1'unité. Deés lors ¥V = 0 et l'on
peut admettre que le liquide du réservoir est toujours en repos.

Nous nous proposons d’abord d’établir une équation différen-
tielle se rapportant & la partie A B + BC du circuit hydraulique.

1) Nous adoptons ce terme, quoique peu approprié a la disposition expéri-
mentale, parce qu’il est employé dans le cas des conduites forcées. Voir, par exemple,
Etude théorique et expérimentale sur les coups de bélier dans les conduites forcées.
Rapports de JoueuET, RATEAU et DE SpPARRE. Paris, Dunod et Pinat, 1917.
I. Rapport de E. JoveuET, p. 1—68. — Le probléme que traite cet auteur a beau-
coup de points de ressemblance avec celui du présent article, mais la methode
d’exposition est différente.
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Le principe de I’énergie cinétique pourrait étre iﬁvoqué icl, mais
il est préférable d’employer une méthode plus particuliére, d’ailleurs
équivalente, qui aura 'avantage de nous faire voir comment peut
étre introduit le terme correctif da a la vi%cosit’é’

Soit p la pression du liquide en C, o P cette pression évaluée en
hauteur de liquide (p = demlte) Exammons comment cette pres-
sion varie de 4, ou elle est E’ jusqu’en C.

A Tentrée du liquide dans le tube, régne la pression statique
h augmentée de la pression atmosphérique, donc

Po
P g,
eyg i

Au point de jonction du tube et du réservoir, en B, il se produit

une chute de pression due au fait que le liquide, d’abord en repos,

prend de la vitesse. Puisque le liquide est parfalt cette chute de

pression, évaluée en hauteur de liquide, est TR . Nous avons donc

3 Porigine du tube la pression ‘ '
| Do v?

Cette méme pression régnerait en C, & Pextrémité du tube, si
I’écoulement était stationnaire. Comme il s’agit de 1'état variable,

nous devons, pour obtenir la pression —gg— régnant en C, soustraire
| B s s
un terme da & l'inertie, de sorte que

2
_p__«__*{_h____?___i

eg o4 29 o9’

Nous allons expliquer et calculer ce dernier terme.

Lorsqu’une colonne de liquide est en mouvement dans un tube,
d’inclinaison quelconque mais de section constante, elle supporte
de la part du liquide qui la suit dans ce mouvement une force de
pression. Si le mouvement a une accélération, cette force de pres-

sion subit une diminution égale & M iy t , M désignant la masse de

d
liquide qui suit la colonne considérée et - son acceleratlon (si je

tiens une pierre dans ma main et si je fals mMouvoIr ma main vers
le bas avec une accélération g, la force de pression sur ma main
est diminuée de mg, c’est-a-dire la pierre me parait sans poids).
Dans notre cas, la masse de liquide & considérer est celle du tube.
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En se rappelant que pour une pression on ne doit prendre qu'une
section de 1 cm?, on a pour la pression d’inertie

dv sy o P 1 do
PZQl'l'm‘, d’ou @——?W
Dés lors
P P @1 dve
0g og TMTRg Ty @ (1)

3. Equation relative au distributeur.

La méme méthode peut &tre appliquée au distributeur CD.
Cette partie du circuit hydraulique est le siége d’une chute de
pression due & la variation de vitesse. La section d’ouverture étant o,

la vitesse en D est %,v, de sorte que cette chute de pression éva-
luée en hauteur de liquide est

§2 v v? v?® [ 82

T Mg (e 1)

9’1l n’y a pas d’autre pression dont il faille tenir compte, comme
nous allons le montrer, nous avons la relation suivante entre la
pression p dans la section C et p, & 'extrémité D

B B (ﬁz_ _ ‘
eg ey 29 \¢* 1)' )
L’effet de l'inertie est représenté damns (1) par le terme —;—% 5

Comme le distributeur, dans le dispositif expérimental, est de trés
courte longueur et se réduit a4 un obturateur, le terme en question
devient alors négligeable. Nous n’avons donc rien & ajouter &
I’équation (2)%).

4. Modifications nécessitées par la viseosité,

Les équations (1) et (2) ont été obtenues dans I’hypothése
d’un liquide dénué de frottement intérieur et s’écoulant par tranches
paralléles. Voyons maintenant comment ces équations peuvent
étre améliorées pour qu’elles s’appliquent & un liquide visqueux

1) Nous admettons ici que le terme d’inertie est négligeable, sans prétendre
qu’il soit donné exactement par une formule telle que r ~&~:~]~
constitue un canal dont la paroi change de forme avec le temps. JoUGUET, dans
Pouvrage déja cité, p. 7, traitant le méme probléme du distributeur, arrive &
une équation équivalente & notre équation (2); mais son argumentation, diffé-
rente de la ndtre, ne parait pas décisive. Il renvoie d’ailleurs pour une analyse
plus serrée 4 DE SPARRE.

, car le distributeur
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dont 1’écoulement est laminaire. Nous savons qu’a ’état station-
naire le profil des vitesses dans la section du tube est parabolique;
dans 'état variable cette distribution est un peu différente. En
toute circonstance nous admettrons que dans (1) et (2) v est la
mitesse moyenne dans la section.

Nous avons admis que la chute de pression au point de jonction

2
du réservoir et du tube était%. Par suite de la viscosité les filets

~ de liquide prennent des vitesses différentes suivant leur distance
a I'axe, et, au bout d’'un petit parcours, régne la distribution para-
bolique ou & peu prés, qui se maintient dans le reste du tube.
On peut prendre pour cette chute de pression?)

pv2
11,

Le long du tube, de B en C, il se produit une chute de pression
que I'on déduit de la loi de Poiseuille. Si Ap est la pression néces-
salre pour entretenir en mouvement stationnaire, avec une vitesse
moyenne v, un liquide de coefficient de viscosité u dans un tube
- de rayon r et de longueur I, on a

' 8 ulv
A D= 2
Nous devons donc soustraire & droite de I'’équation (1) le terme

8 ulv

, egr?
de sorte que nous avons

v? l dv 8 ulv

P _ Po _qq b bt B Bl
09 o9 +h—11 g g dt ogr® ° )

- On peut admettre que, vu la courte longueur du distributeur,
I’équation (2) ne doit subir aucune correction.

5. Les équations de la vitesse et de la pression.

Nos équations (3) et (2) peuvent s’écrire de la fagon suivante:

d 16 ul 2(pp—
212" 19,202 + Q’jz”—zgh=—‘p;—’” 4)
82 2 (p-—
(& — 1) - 220, (5)

1) Sur la correction de Hagenbach consulter S.Erk, Uber Zihigkeits-
messungen nach der Kamllarmethode, Zeit. fiir techn, Phys., 1929, p.4564. —
A. MULLER, Abhandlungen zur Mechanik der Fliissigkeiten mit besonderer - Beriick-
sichtigung der Hdamodynamik. Freiburg (Schweiz) und Leipzig, 1936, p. 25—37.
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- Nous mtroduirons les constantes

=)2gh, B= o, o | (6)
et les nouvelles variables ° : -

ZZE—, H:p_po
2 eg

de sorte que nos équations pourront s’écrire

21 9% 1 9,9 v2 19 Bvyw — vt = —2gH ()

(/11—2*1) v? = 29 H | (8)

vy est la vitesse de régime qu’on aurait dans le cas d’un liquide
parfait; f§ est une grandeur proportionnelle au coefficient de visco-
sité; A est une fraction qui peut varier de 0 a 1 et peut s’appeler
le degre d’ouverture du distributeur.

Pour ¢ =0, =1
o =8, A=1;

H est la différence de pression entre I’extrémité du tube et la pres-
ston atmosphérique, évaluée en hauteur de liquide; nous appel-
lerons H tout simplement la pression.

On élimine H des équations (7) et (8) par addition:

d .
zzuﬁ?’ﬁ( +1,2) 02 + 2Bv40 05 = 0. 9)

Cette équation différentielle contient trois variables v, 4, { de sorte
qu’ll nous faudra admettre une relation entre 1 et t. Nous admettrons
que le degré d’ ouveTtme est une fonction linéaire du temps et nous
poserons

t dt :
A=1—wp, di=—"¢ (10)

T est la durée totale de fermeture. A I'instant initial £ = 0, I’ouver-
ture est complete, A =1, o =s. En substituant df=—TdAa
dans (9) on obtient

l |
T (g 1.2) 0 —2Buw 020 (11)

: (O -2”7’—(%— 1) | (12)

(11) est V'équation différentielle de la vitesse; (12) est la formule de
la pression. :
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6. Cas de I'état stationnaire.

Avant d’entreprendre l'intégration de ’équation différentielle
considérons 'état stationnaire, alors que le distributeur est grand
ouvert. La vitesse est constante, v = v;. On fera donc dans 1’équa-
tion (11) |

dv
=0, A=1.
Il vient

2,202 + 2Bvyv; — 2 =0.

: £ o Y
Si pour ce régime on connait —- on peut calculer B
0

Nous nous baserons sur les données suivantes correspondant a
une expérience de A. MULLER

h = 69,5 cm T 380,7 cm
T= 1 sec o =1,1827 v; = 98,8 cm/sec

I
QT
—

o
B
I

On calcule d’apres (6)
vy = J/2-981-69,5 — 369,3

n 988
2 — ooy = 0,2676 (14)

dapres (15) 1-2,2+(0,2676)?

fr= 2-0,2676 =1,6744
d’aprés (6) -
_ orty,f  1,1827-(1,1)%-369,3-1,5744
=g = 8-380,7 = 0,278.

Nous utiliserons ces valeurs numeériques lorsque 1'équation diffé-
- rentielle sera intégrée.

7. Intégration de Péquation difiérentielle de la vitesse.

Pour ramener 1’équation (11)

21 d 1 | :
T d—;—(«——i—l 2)?)2——2ﬁvov+vo2z 0

4 une forme intégrable, 11 faut faire subir aux variables diverses
transformations.
18
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Premiére transformation. Nous poserons tout d’abord

21
et ensuite nous ferons le changement de fonction
. (16)
z étant la nouvelle fonction.
dv vy dz
dr (B +2)? dA

En remplacant v etg—z par leurs expressions dans (11), il vient

vy dz

] (1 V2 Vo -
— N, Wﬁ (F+1,2)W—2ﬂvomz +’002—0.
On résout par rapport a {—;% et on obtient -

dz __ 12+p 1, 2 a7

CdA n YE n

Deuxiéme transformation. L’équation (17) est de la forme

dz 2
‘deP—*!-QZ‘FRZ

ou P, @, R sont des fonctions de la variable A

1248 1 1
— % e €=0, E=<5.

Il existe pour cette forme d’équation une transformation classique
par laquelle on obtiendra une équation linéaire, mais du second
ordre. Cette transformation est la suivante

P =

o e B R
= 7R w di
s 1
ou, puisque R = s Wi |
i T ' (18) ,

% est une nouvelle fonction. On déduit de (18) par différentiation
dz n (du)2_ n d*u

dr wr\di)  u dar -
Substituant dans (17), il vient
n 'du 2 n d’u 1,2+ 2 1 I 1 n? (du 2
"@Tz(d_;t)—?_dﬁ—" n mi? }?'F\d_}*)
du (1,24 pe 1
i — (T + ) u=o0. (19)
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Trowsiéme transformation. On introduit une autre variable
indépendante z reliée & A par

s wzwz_ (20)

R e ou
Vl’ 2+ B2 g N

On déduit, par différentiation
du au V1,2 + g2 d*w _ d*uw 1,24 %

dAi ~ dx n ’ dar T dxr o n?
Substituant dans (19), il vient
d?u '
== (1+7ﬁﬁ)u::0. 1)

Quatriéme transformation. Bien qu’il paraisse que 1’équation
obtenue soit aussi simple qu’on puisse le souhaiter, il convient de
lui faire subir une transformation, qui est la suivante

| | u = by, | 22)
On déduit '
du 1 dy
=3ty tatgy
d?u 1 _1 dy
T =~ goiyraigl o

En substituant dans (21) on obtient, aprés quelqueé calculs,

1 1
.._ﬁ._.+_u._ =
d? 1 d 2 4
. (1+”mz )y=0. (28)

x dx

Cette équation peut étre ramenée & une équation de Bessel.
L’équation différentielle de BrssEL a la forme suivante

2y 1 dy p? | |
Tt r(1—L)y-o. (24)

Une telle équation, si p n’est pas un nombre entier a deux solu-
tions particuliéres indépendantes I,(x) et I_,(x) qui, abstraction
d’un facteur constant sans intérét pour nous, ont la forme sui-
vantel)

x? !
I,(x) = x? [1 T TiprD) T2 (pr) (01D ]

- (25)

o xt
L, (z)=27 [1 T ANpr]) | Rt }

1) Voir par exemple A.R. ForsytH, Lehrbuch der D@ﬁerentwlglezchungen,
deutsch von W. JacoBsTHAL, II. Aufl., p. 182—185 (1912)
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Il est possible de ramener notre équation (23) & une equatlon‘
de Bessel en ’écrivant comme suit

1 1
+

_d*y 1 dy n? 4 B
6z Tz dim) T [1 T (in)? } y=0.

(Pest une équation de Besser pour la variable 1z, donc vérifiée par
les fonctions I,(zx) et I_,(2x), ot p est donné par

1 1

La solution générale de notre équation différentielle (28) a donc
pour expression, 4, et B; désignant deux constantes arbitraires

y=A,1,0x) + ByI_,(1x).

8. Solution du probléme.

Connaissant y, nous reprenons la chaine des transformations
dans ’ordre inverse. D’aprés (22) on a

= A, Vx I,(12) + By Yz I_,(1). (27)
La formule de transformation (18) peut s’écrire, du moment que

d’apres (20) v du VIITE

dr dax n ?
1 du
=""V12+ﬁ2u dz ° (28)
Enfin, reprenant (16), nous avons la vitesse v
Yo
v 29)

Ces trois formules (27), (28) et (29) auxquelles il faut joindre (20),
savolr :

o nr
CVLzep
- résolvent théoriquement notre probléme.

Les constantes A4; et B, seront déterminées par la condition
« e, l/ 2
initiale: Au temps {=0, pour lequel on a A=1, x, = j%iﬂ .
Pécoulement est celui du régime stationnaire et se fait avec une
vitesse v; que ’on connait ou que l’on sait calculer (n® 6). Cette
valeur de v; introduite dans (29) permet de déterminer la valeur

(30)
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Correspbndante 2, de la variable 2. Si ensuite dans (28) on fait
x =x; et z =2, on obtient

u dx =12

Contrairement aux apparences, L %, calculable & l'aide de (27),

4,
ne contient que le rapport_— donc une seule constante arbitraire;

cette derniére équation permet de la déterminer. C’est pourquoi
on pourrait supposer d’emblée B; = 1. :

. u
9. Le développement en série de u et ax

Les tables trés connues de JAENKE et EMDE permettent de
calculer les fonctions de BessgwL I,,(x) méme pour les valeurs ima-
ginaires de l'argument. Malheureusement ces tables sont établies
pour les valeurs entiéres de p: 0, 1, 2, ... et ne sont d’aucune
utilité pour nous, car dans tous les cas pratiques », donne par (15),
est plus grand que 2 et en conséquence

1 1
P=Vﬁ+z

ne peut dépasser 0,71. C’est pourquoi nous avons été dans 1’obli-

. , . , . au . i i
gation d’écrire les séries et de calculer u et —— d’aprés ces séries.

Si, en se basant sur (25), nous formons I,(1x) et I_,(12) et
qu’ensuite nous utilisons les séries obtenues pour former % d’aprés.
(27), les facteurs constants 4, et B, seront multipliés, I'un par 12,
l'autre par ¢-?. On désignera par 4 et B deux nouvelles constantes
arbitraires, mais on peut prendre B =1, d’aprés une remarque
du n° 8. Des lors

+3 22 x
= Aa? [1 T Ti(pr D) T 2% 21 (p+1) (0+2) +]
" ! (31)

+ z7rH [1 toarcprn T a0 (—pr D (—pt2)

iu . 1\ (p+2+5)e (p+a+3)ar

Tz =4 %{(T"*_z‘)'*' P Alp+D) T2 a(pr) (pr2) T -
- H%[ (-p+2+3)2*  (-p+a+g)et

+ &7 ( P+~ )+2a 1C p+1)+24'2!(——p+1)(-—p+2)+“
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Pour pouvoir utiliser ces séries il est nécessaire de connaitre
numériquement les coefficients. On se reportera au n® 6 ou ont
été données les valeurs des constantes fondamentales.

21 2-3807
~ Ty,  1-369,3

Caleul de p (26): p = ]/M 4 ]/(2062)24- —0,6966.  (34)

En utilisant cette valeur de p on peut calculer les coefficients
qui interviennent dans les séries (31) et (32) et on trouve:

2 =A 51196 (1+a, 22+ Gy @it -) 27010 (14bg 22+byxt+- ) (35)

_%—Amowee(a +ay 2P +agxtt- ) + o 9(bo+ by 22 +-byzt+- ) (36)

ag = 0,14738 b, = 0,82890 a, = 1,19657 by = —0,19657
a, = 0,00688 b, = 0,07901  a,’ = 0,47104 b, = 1,48590
—0,00015 b, =0,00286 a, =0,08550  b,’ = 0,30053
b8 0,00005 @, = 0,00111 b, = 0,01659

ag’ = 0,00002 b = 0,00042

Calcul de n (15): n = 2,062 (33)

Voici enfin la valeur de 4 que nous allons bientot calculer
A ——1,2498 .

10. Détermination de la constante A.

Au temps t = 0, I'ouverture est totale, A = 1. S1 donc dans
la formule (30) on fait 2 =1 on peut calculer la valeur correspon-
dante de x

_Vi2+p°
p ==y ¢
Pulsque g=1, 5744 (14) et m = 2,062 (33), on a /1,2 + B2 = 1,918
2, = 3o = 0,9802.

Pour cette valeur = x; = 0,9302 les séries (35) et (36) donnent
u, = 1,03876 4 + 1,79937
= 1,60837 4 + 1,4450

T=2

du

ax

A Tinstant initial, la variable 2, donnée par (28), a pour expression

1 du 1,60837 A+ 1,4450
N 2 il __— o 3 ’
= —V1.2+4B 5| _ = — 1,918 T aerg A 170937
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‘D’autre part 2, peut étre calculé au moyen de (16) en faisant v=1v,

369,3

o —B = g5 — 1,574 = 2,16307 .

Z'lz

En égalant ces deux expressions de z; on obtient une équation de
laquelle on peut tirer 4

n 1,60837 A+1,4450
— 1,918 1,03876 A+ 1,79937

A=-—-12498 .

= 2,16307 .
On trouve

11. Courbe de ia vitesse et courbe de la pression.

Donnons un exemple du calcul de la vitesse et de la pression
correspondant 4 une ouverture déterminée, par exemple 4 = 04
On obtient z par la formule (20)

V1,248 5 L918

P 2,062 - 0,4 = 0,3721.

Les séries (35) et (36) permettent, pour cette valeur de x, de cal-

du
culer u et = On trouve

w= 096414 L _125036.
On calcule z par (28) .
1 du —1,25036
= —Y12+pr— o = — 1,913 Sousiis — 24872,
Calcul de la vitesse (29) |
o — Uy 369,3 90 99,

Btz 1,5744+ 2,4872

Calcul de la pression (12)

H= (; —1) = (s —1) - 2212,

("est ainsi qu’ont été calculés les nombres qui figurent dans les
2¢ et 4e colonnes du Tableau (p. 281).

La vitesse v et la pression H étant maintenant des fonctions
connues de 4 ou de t, on peut les représenter graphiquement (fig. 2).
En abscisse on a porté le temps t et 'on a 4B = T. En adoptant
une seconde échelle pour laquelle 4B =1, on peut lire pour
chaque ¢ la valeur correspondante du degré d’ouverture A; cette
varjiable est comptée positivement vers la gauche, & partir de
Iorigine B.

Tk
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12. Pression maximum et coup de hélier.

La valeur maximum H,, de la pression H a lieu & la fin de la
fermeture, soit pour 4 = 0. Nous ne pouvons sans étude préalable

appliquer nos formules & ce cas puisque, pour # = 0, on a d’aprés

d
(85) et (36) u = oo, — = oo,

Pour z tendant vers zéro (31) et (32) se réduisent & deux

termes w = Axp+tb L p-r+d

du 1) '

=4 (p + ) mf"i’—-—(pw—«?) ot
On notera que p>}, de sorte que les exposants p + 1 et p — }
sont positifs. Les termes 4 x?+ et A (p+ }) z*-* tendant vers zero

avec I, les seconds termes sont prépondérants, de sorte que pour
es -valeurs de x voisines de zéro, nous avons

U = w—fp+§', ﬂ: s (p __.....;_) a’;"—?"‘%

dx
1 du 1\ 7% 1\1
w ds (P "?) Tk T (P = ‘2‘):;
— —VT2Hp = VIZHR (p—5) -
. V1,2 + p*
et puisque & =—1— 4,
1
n(p——
4= ( p 2
. Y U Vo A

R S
im0t (p-g)
Connaissant la limite du rapport —Zj—, nous pouvons calculer la pres-

sion H d’apres (12)
1 1 [v)\2
H =g (1) =55 (30—
Pour 2=0, on a a
| I I
1T
Enfin, puisque v2 = 2 gh
by == s (87)

H, =
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Telle est la valeur maximum de la pression; mais nous pouvons
donner a cette expression une autre forme, car nous pouvons
montrer qu'on a l'identité

| ;-
1y P—3%
nz(p-é—) = =

n? (pz-—z) =1,

Cette égalité a lieu puisque p2? = ;1‘; ji— d’aprés (26).

. Tableau.
Ouverture Vitesse v _ Pression H

A expérim. “théor. | expérim. _théor.

1,0 98,8 98,80 0 0
0,9 98,8 . 98,65 0 : 1,14
0,8 © 98,8 98,24 1 2,77
0,7 98,5 97,44 2 5,04
0,6 98,0 96,15 5 8,38
0,5 96,7 94,12 11 13,55
0,4 94,5 90,92 25 922,12
0,3 89,5 85,55 45 37,72
0,2 79,8 75,80 95 70,29
0,1 59,5 55,20 161 153,70
0 0o 0 248 423,07

Nous avons donc l’expression
?+l 4 1
Ho=_"Th, avec p= Y5+ (38)
2 .

‘Passons a I’évaluation numérique de H,,.

p=06966 (34)  h =695

0,6966+Os5 . 69,5 — 4:23,1 .

H, = 0,6966— 0,6 —
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oo e -y
On appelle d’ordinaire coup de bélier le rapport ——{i—h—-—--

L’examen de la formule (38) montre que le coup de bélier est indé-
pendant de la viscosité. Rappelons que la viscosité est signalée

Vitesse e tourbe théorique | Pression
(em/sec) (em)
==0==courbe expérimentale

=== pression s/ le liquide était parfart

/ Hm = 425,1

- 100

' 63 08 o7 OG5 45 046 03 82 -01 0 ourerturw Ae—
o 05 q Temps ¢ en sac.
A

Fig. 2.

dans nos formules par la présence de § et du nombre 1,2; ce dernier
a été introduit par la correction de Hagenbach, qui est elle-méme
une conséquence de la viscosité. Or H,, ne contient ni l'une ni
I'autre de ces constantes.
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Ce résultat, assez surprenant, est incontestable. Nous en tirons
la conclusion que le méme probléme traité en admettant un liquide

parfait donnerait pour H,, 'expression méme que nous venons de
trouver?). | | '

. 13, Vérilication expérimentale.

Comme nous 'avons dit au début, des expériences répétées
ont été faites par A. MOLLER avec les données mémes que nous
avons utilisées pour nos calculs. Le plus grand soin a été apporté,
tant pour constituer une installation irréprochable que pour en-
régistrer correctement la vitesse et la pression.

La jonction tube—réservoir a été soignée tout particuliére-
ment ; afin d’éviter la turbulence en cet endroit, le tube & son origine
était judicieusement évasé et ainsi cette jonction adoucie. L’extré-
mité du tube passait progressivement de la forme circulaire & la
forme carrée, de sorte que, l'obturateur se déplacant avec une
vitesse constante, la fermeture était une fonction linéaire du temps.

Le Tableau donne pour diverses ouvertures A variant de 1 &4 0
les valeurs de la vitesse moyenne et de la pression & l'extrémité
du tube que nous avons calculées et celles qui ont été observées?).

Ce tableau a servi & construire les courbes de la fig. 2. On re-
marquera que la vitesse varie trés peu tout d’abord, puis, vers la
fin de la fermeture, tombe rapidement & zéro. Corrélativement la
pression (plus exactement, excés de la pression du liquide sur la
pression atmosphérique) est presque nulle durant une grande partie
de la période de fermeture, puis s’éléve brusquement vers la fin.

Pour servir de comparaison et rendre wvisible l'influence de
la viscosité on a tracé également la courbe qui figurerait les varia-
tions de la pression dans le cas théorique d'un liquide parfait.

Nous ne trouvons d’écart entre la théorie et 'expérience qui
soit digne de remarque que pour la pression finale; celle qui est
observée est notablement plus faible que la valeur calculée H,,.
A notre avis, les approximations que nous avons faites dans mos.
calculs ne sont responsables de cet écart que dans une faible

1) JouaUET (ouvrage cité, p. 10) trouve pour le coup de bélier dans les con-

- f ne .
duites forcées la formule 5, = n (-g—+ V%_—i- 1) . Du moment que 4, est égal a

H - . epe . ’ ’ . 2z 2P
—’-’-‘h— et que n a la méme signification que dans notre étude, il est aisé de vérifier

que la formule de JoUuGUET est identique & notre formule (38).
%) Voir article déja cité de A. MULLER, Tableau II.
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mesure. A. MULLER estime plutot que, par suite de I’élasticité des
parois du tube et de la compressibilité du liquide, dont il n’a pas
été tenu compte, 'onde de pression voyageant avec amortisse-
ment a été cause de l'atténuation observée. On comprend que
cette perturbation ne soit appréciable qu’a la fin de la phase, au
moment ol la pression a pris de grandes valeurs. Des expériences
sont en cours pour élucider ce point.

Fribourg (Suisse), Institut de physiologie de I'Université.
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