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Sur la phase variable de fermeture de l'écoulement d'un liquide
visqueux dans un tube horizontal raccordé à un réservoir

par P. Lambossy.

(26. V. 1946.)

1. Introduction.

L'écoulement stationnaire d'un liquide visqueux dans un tube
a été étudié depuis longtemps et a fait l'objet de nombreuses
recherches théoriques et expérimentales. Au contraire la période
variable de cet écoulement quand le dispositif de fermeture
fonctionne dans un sens ou dans l'autre constitue un problème dont
on ne voyait pas l'importance pratique, à en juger d'après le peu
de travaux qui ont paru sur ce sujet. Je dois citer cependant un
article remarquable de Grumbach1) concernant la phase initiale
de l'écoulement dans un tube capillaire vertical, en vue de l'application

aux viscosimêtres. Avec des modifications de détail ces
calculs s'appliquent à un écoulement dans un tube horizontal relié à

un réservoir, la pression à l'origine du tube et celle à l'extrémité
étant maintenues rigoureusement constantes. En lisant cet article,
on est surpris de voir que la solution mathématique exacte d'un
problème dont l'énoncé est si simple exige des développements
étendus (Grumbach le fait remarquer lui-même), et on peut se

demander si une voie plus commode pourrait conduire à des résultats

d'une exactitude suffisante. Cette idée devient d'une
impérieuse nécessité si on veut traiter des cas complexes, ceux où des

tubes de sections inégales sont raccordés. Car le phénomène hydraulique

à l'endroit du raccordement, et surtout dans l'état variable,
est d'une complication telle qu'il ne peut se mettre rigoureusement
en équation. De plus, on n'oubliera pas que les expériences elles-
mêmes sont difficiles, et qu'il est malaisé de se mettre dans les

conditions théoriques voulues; ce de fait il n'est pas dit qu'un
traitement prétendu correct donnerait des résultats concordant
mieux avec l'expérience qu'une méthode approchée.

*) A. Grumbach, Sur l'écoulement libre des liquides dans les tubes capillaires.
J. de Phys. et le Radium, t. 9, p. 49 (1938). Cet article a paru antérieurement
plus succinctement dans les Comptes-Rendus, en 1936, p. 1653.



Ecoulement d'un liquide visqueux. 267

L'Institut de physiologie de l'Université de Fribourg entreprend

depuis quelques années, sous la direction de A. Müller, des
recherches sur la période variable de l'écoulement visqueux. Leur
but est l'étude, sur des modèles et dans des circonstances
particulièrement simples, du phénomène de la circulation du sang.
Cette méthode est probablement la seule possible du moment que
le phénomène réel est inabordable au calcul.

Dans une expérience récente, dont on trouvera la description
détaillée dans Helv. physiol. Acta, 19461), un liquide doué de
viscosité (glycérine7eau) contenu dans un réservoir s'écoule dans un
tube horizontal en régime laminaire. On ferme alors progressivement

l'extrémité du tube au moyen d'un dispositif de fermeture
approprié; la vitesse du liquide dans le tube diminue jusqu'à zéro
suivant une certaine loi et en même temps la pression s'élève.
C'est le phénomène connu du coup de bélier. Cette question
présente au point de vue technique, pour les conduites forcées, un
haut intérêt; elle a été étudiée théoriquement et expérimentalement;

mais dans ce cas technique, contrairement à celui qui va
nous occuper, la viscosité de l'eau a un effet négligeable.

La durée de l'état variable est d'ordinaire si courte que la
viscosité peut n'avoir que peu d'importance. Il est utile d'être
renseigné là-dessus et, comme la fait A. Müller, de traiter un
problème d'hydraulique par la théorie de deux manières, une
première fois en supposant un liquide parfait, une deuxième fois en
tenant compte de la viscosité, et de confronter ensuite les résultats
du calcul avec l'expérience. Toutefois, dans le problème qui fait
le sujet de cet article, la viscosité joue un rôle décisif, et si on la
néglige, on est conduit à des résultats inacceptables.

2. Position du problème.

Un tube horizontal est raccordé à un réservoir. Le niveau du
liquide dans le réservoir étant maintenu constant, le liquide s'écoule
tout d'abord avec une vitesse constante. On ferme ensuite progressivement

l'extrémité du tube. Etudier comment varient avec le temps la
vitesse et la pression du liquide dans le tube.

L'installation comprend trois parties (fig. 1) :

a) un réservoir AB de section S; le liquide qu'il contient
a une hauteur constante h,

*) Aloys Müller, Über die nicht stationären Strömungsphasen in einem

starrwandigen Leitungssystem leim öffnen und Sehliessen des Ausflussrohres,
Helv. physiol. Acta, Vol. 4, fase. 2 (1946).
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b) un tube horizontal BG de longueur l, de section circulaire s,
raccordé au réservoir,

c) un dispositif de fermeture CD de longueur très courte que
nous appellerons le distributeur1) ; la section d'ouverture, variable
avec le temps, est a.

Nous admettons que les parois sont parfaitement rigides et
que le liquide est incompressible.

La méthode que nous suivrons est la suivante: Nous écrirons
d'abord les équations du mouvement en supposant le liquide
parfait, et ensuite nous apporterons les corrections nécessitées par
la viscosité.

Au-dessus du réservoir, de même qu'à la sortie en D, règne
la pression atmosphérique p0. Soit, à l'instant t, v la vitesse du

I T— ^
Fig. 1.

liquide dans le tube, c'est-à-dire la vitesse commune des différents
filets, V la vitesse dans le réservoir. L'équation de continuité donne

V -=v.

Dans les expériences on fait toujours en sorte que le rapport des

sections -~- soit négligeable devant l'unité. Dès lors V 0 et l'on

peut admettre que le liquide du réservoir est toujours en repos.
Nous nous proposons d'abord d'établir une équation différentielle

se rapportant à la partie AB + BG du circuit hydraulique.

1) Nous adoptons ce terme, quoique peu approprié à la disposition
expérimentale, parce qu'il est employé dans le cas des conduites forcées. Voir, par exemple,
Etude théorique et expérimentale sur les coups de bélier dans les conduites forcées.
Rapports de Jouguet, Râteau et de Sparre. Paris, Dunod et Pinat, 1917.
I. Rapport de E. Jouguüt, p. 1—68. - Le problème que traite cet auteur a beaucoup

de points de ressemblance avec celui du présent article, mais la méthode
d'exposition est différente.
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Le principe de l'énergie cinétique pourrait être invoqué ici, mais
il est préférable d'employer une méthode plus particulière, d'ailleurs
équivalente, qui aura l'avantage de nous faire voir comment peut
être introduit le terme correctif dû à la viscosité.

Soit p la pression du liquide en C, — cette pression évaluée en

hauteur de liquide (q densité). Examinons comment cette pression

varie de A, où elle est —, jusqu'en C.

A l'entrée du liquide dans le tube, règne la pression statique
h augmentée de la pression atmosphérique, donc

-^ + h.
eg

Au point de jonction du tube et du réservoir, en B, il se produit
une chute de pression due au fait que le liquide, d'abord en repos,
prend de la vitesse. Puisque le liquide est parfait, cette chute de

pression, évaluée en hauteur de liquide, est ¦=-. Nous avons donc

à l'origine du tube la pression

eg 2g

Cette même pression régnerait en C, à l'extrémité du tube, si
l'écoulement était stationnaire. Comme il s'agit de l'état variable,

nous devons, pour obtenir la pression — régnant en C, soustraire
P

eg

un terme — dû à l'inertie, de sorte que
eg ' H

JL II«. ^ _ Jül p
eg eg %g eg '

Nous allons expliquer et calculer ce dernier terme.
Lorsqu'une colonne de liquide est en mouvement dans un tube,

d'inclinaison quelconque mais de section constante, elle supporte
de la part du liquide qui la suit dans ce mouvement une force de
pression. Si le mouvement a une accélération, cette force de pression

subit une diminution égale à M -=-, M désignant la masse de

liquide qui suit la colonne considérée et -=- son accélération (si je
tiens une pierre dans ma main et si je fais mouvoir ma main vers
le bas avec une accélération g, la force de pression sur ma main
est diminuée de mg, c'est-à-dire la pierre me paraît sans poids).
Dans notre cas, la masse de liquide à considérer est celle du tube.
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En se rappelant que pour une pression on ne doit prendre qu'une
section de 1 cm2, on a pour la pression d'inertie

t-, 7 -t dv m * P l dv
P qI-1--n-, d ou — =-.e dt ' Qg g dt

JL J>e_ i, _ i! Lll m
eg eg ^ 2g g dt ' ^ >

Dès lors

3. Equation relative au distributeur.

La même méthode peut être appliquée au distributeur CD.
Cette partie du circuit hydraulique est le siège d'une chute de
pression due àia variation de vitesse. La section d'ouverture étant a,

la vitesse en D est— v, de sorte que cette chute de pression évaluée

en hauteur de liquide est

S2 Vi V2, V2 I s2

~<W"2g~~~12g~' 0U2^\^_1
S'il n'y a pas d'autre pression dont il faille tenir compte, comme
nous allons le montrer, nous avons la relation suivante entre la
pression p dans la section C et p0 à l'extrémité D

og qg 2g\o2 *¦ >

L'effet de l'inertie est représenté dans (1) par le terme — —rr t

Comme le distributeur, dans le dispositif expérimental, est de très
courte longueur et se réduit à un obturateur, le terme en question
devient alors négligeable. Nous n'avons donc rien à ajouter à
l'équation (2)1).

4. Modifications nécessitées par la viscosité.

Les équations (1) et (2) ont été obtenues dans l'hypothèse
d'un liquide dénué de frottement intérieur et s'écoulant par tranches
parallèles. Voyons maintenant comment ces équations peuvent
être améliorées pour qu'elles s'appliquent à un liquide visqueux

l) Nous admettons ici que le terme d'inertie est négligeable, sans prétendre

qu'il soit donné exactement par une formule telle que =-, car le distributeur
constitue un canal dont la paroi change de forme avec le temps. Jouguet, dans
l'ouvrage déjà cité, p. 7, traitant le même problème du distributeur, arrive à
une équation équivalente à notre équation (2); mais son argumentation, différente

de la nôtre, ne paraît pas décisive. Il renvoie d'ailleurs pour une analyse
plus serrée à DE Sparre.
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dont l'écoulement est laminaire. Nous savons qu'à l'état station-
naire le profil des vitesses dans la section du tube est parabolique;
dans l'état variable cette distribution est un peu différente. En
toute circonstance nous admettrons que dans (1) et (2) v est la
vitesse moyenne dans la section.

Nous avons admis que la chute de pression au point de jonction
V2

du réservoir et du tube était ~- Par suite de la viscosité les filets
de liquide prennent des vitesses différentes suivant leur distance
à l'axe, et, au bout d'un petit parcours, règne la distribution
parabolique ou à peu près, qui se maintient dans le reste du tube.
On peut prendre pour cette chute de pression1)

1,1—.' g

Le long du tube, de B en C, il se produit une chute de pression
que l'on déduit de la loi de Poiseuille. Si Zip est la pression nécessaire

pour entretenir en mouvement stationnaire, avec une vitesse

moyenne v, un liquide de coefficient de viscosité /j, dans un tube
de rayon r et de longueur l, on a

8 ulv

Nous devons donc soustraire à droite de l'équation (1) le terme

8 fj.lv
egr2

de sorte que nous avons

JL JAL+fc_l;1Jïl_±j£_Ai^. (3)
eg eg ' g g dt ggr* *¦ >

On peut admettre que, vu la courte longueur du distributeur,
l'équation (2) ne doit subir aucune correction.

5. Les équations de la vitesse et de la pression.

Nos équations (3) et (2) peuvent s'écrire de la façon suivante:

2l-%+2,2v2+^-2gh=2-^ (4)

£_A*-*Si=2à. (5)

*) Sur la correction de Hagenbach consulter S. Erk, Über Zähigkeitsmessungen

nach der Kapillarmethode, Zeit, für techn. Phys., 1929, p. 454. -
A. Müüer, Abhandlungen zur Mechanik der Flüssigkeiten mit besonderer
Berücksichtigung der Hämodynamik. Freiburg (Schweiz) und Leipzig, 1936, p. 25—37.
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Nous introduirons les constantes

v0 l/2gh, /*=-$£ (6)

et les nouvelles variables
<t TT V-POX -, H
s ' Qg

de sorte que nos équations pourront s'écrire

2l^+2,2v2 + 2ßv0v-v02 -2gH (7)

(~-l)v2 2gH (8)

v0 est la vitesse de régime qu'on aurait dans le cas d'un liquide
parfait; ß est une grandeur proportionnelle au coefficient de viscosité;

X est une fraction qui peut varier de 0 à 1 et peut s'appeler
le degré d'ouverture du distributeur.

Pour a 0, X 0

a s, 1 1.

H est la différence de pression entre l'extrémité du tube et la pression

atmosphérique, évaluée en hauteur de liquide; nous appellerons

H tout simplement la pression.

On élimine H des équations (7) et (8) par addition:

Zl^ + (^r+l,2)v2+2ßvov-vo2 0. (9)

Cette équation différentielle contient trois variables v, X, t de sorte
qu'il nous faudra admettre une relation entre X et t. Nous admettrons
que le degré d'ouverture est une fonction linéaire du temps et nous
poserons

X l-~, dX -~ (10)

T est la durée totale de fermeture. A l'instant initial t 0, l'ouverture

est complète, X 1, a s. En substituant dt — TdX
dans (9) on obtient

^-^-(i+h^)v2-2ßv0v + v02 0 (11)

(11) est l'équation différentielle de la vitesse; (12) est la formule de

la pression.
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6. Cas de l'état stationnaire.

Avant d'entreprendre l'intégration de l'équation différentielle
considérons l'état stationnaire, alors que le distributeur est grand
ouvert. La vitesse est constante, v vx. On fera donc dans l'équation

(11)

Il vient
2,2vx2 + 2ßv0v1 — v02 0.

Si pour ce régime on connaît — on peut calculer ß

ß= _A*Z- (13)

Nous nous baserons sur les données suivantes correspondant à

une expérience de A. Müller
h 69,5 cm r 1,1 cm l 380,7 cm
T= 1 sec q 1,1827 v1 98,8 cm/sec

On calcule d'après (6)

^o |/2-981-69,5 369,3

t W 0'2676 ^
d'après (13)

l-2,2-(0,2676)2
^ 2-0,2676 i,'"'*'*

d'après (6)

__
er2v0ß _ 1,1827 -(l,l)2-369,3-1,5744

t*-~8l 8^38ÖJ -U^ö.
Nous utiliserons ces valeurs numériques lorsque l'équation
différentielle sera intégrée.

7. Intégration de l'équation différentielle de la vitesse.

Pour ramener l'équation (11)

^•^--(-^ + l,2)v2-2ßv0v + v02 0

à une forme intégrable, il faut faire subir aux variables diverses
transformations.

18
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Première transformation. Nous poserons tout d'abord

2l_

et ensuite nous ferons le changement de fonction
Tir n

¦ W

z étant la nouvelle fonction.
dv vn dz

- i+h (16)

dX '
(ß+z)2 dX •

En remplaçant v et-=-par leurs expressions dans (11), il vient

¦nv,

dX

(17)

dz
On résout par rapport à -=- et on obtient

dz_ _ _
1,2 + j32 1_ z2

dX n w/2 n

Deuxième transformation. L'équation (17) est de la forme

-^=P + Qz + Bz2

où P, Q, B sont des fonctions de la variable X

« M/2 5 X w

Il existe pour cette forme d'équation une transformation classique
par laquelle on obtiendra une équation linéaire, mais du second
ordre. Cette transformation est la suivante

LJLi_M_
~~ B u dX

ou, puisque B - n du
Z -^HX> (18>

u est une nouvelle fonction. On déduit de (18) par differentiation

dz
_

n Id

Substituant dans (17), il vient

dz
__

n I du\2 n d2u
1X~~li? \dX) ~ ~u~ ~aW

n tduy n d2u
_

1,2 + /?2 1 1 m2 Idu\2
m2 \dx) ~ ~u~ ~JW ~~

n n~W + ~n ' m2" \~dX~)

d*u /l,2+/î2 1 \ n ,10X
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Troisième transformation. On introduit une autre variable
indépendante x reliée à X par

1 nx Vh2+ /S2 ,om5 - ou x *——v— X. (20)
|/l,2 + /?2

'

On déduit, par differentiation

du _
rfw l/l,2 + j92 d2u

_
d2u 1^2 + ß^

~dX~-~dx « ' <U2 ~ dx2 n* '

Substituant dans (19), il vient

S-(1+W)W °- (21)

Quatrième transformation. Bien qu'il paraisse que l'équation
obtenue soit aussi simple qu'on puisse le souhaiter, il convient de
lui faire subir une transformation, qui est la suivante

u xiy. (22)
On déduit

du 1 du
-r- -= a;-* y + x* -+-dx 2 v dx
d2u 1 du d2u
-j-* — -r %~ i y 7 x~i -r- 7 x* -j-4- •ax2- 4 a dx dx2

En substituant dans (21) on obtient, après quelques calculs,

&+7Ï-(»+nr)»-»' W
Cette équation peut être ramenée à une équation de Bessel.

L'équation différentielle de Bessel a la forme suivante

dx* ^ x dx ^ y- x2)y u- \ '

Une telle équation, si p n'est pas un nombre entier a deux
solutions particulières indépendantes I„(x) et I-V(x) qui, abstraction
d'un facteur constant sans intérêt pour nous, ont la forme
suivante1)

1
22-l!(p + l) ' 24-2!(p + l)(p + 2)

1 ~~ 22-l!(-p+~ï) + 2*-2!(-p + l)(-p + 2)

(25)

1) Voir par exemple A. R. Forsyth, Lehrbuch der Differentialgleichungen,
deutsch von W. Jacobsthal, IL Aufl., p. 182—185 (1912).
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Il est possible de ramener notre équation (23) à une équation
de Bessel en l'écrivant comme suit

d2y 1 dy
d(ix)2 ix d(ix)

1 1_

n2 4
(ix)2 y 0.

C'est une équation de Bessel pour la variable ix, donc vérifiée par
les fonctions Ip(ix) et I_v(j,x), où p est donné par

V Y¥+ï- w
La solution générale de notre équation différentielle (23) a donc

pour expression, Ax et Bx désignant deux constantes arbitraires

y A1IJ>(ix) 7 B1I_v(ix).

8. Solution du problème.

Connaissant y, nous reprenons la chaîne des transformations
dans l'ordre inverse. D'après (22) on a

u Ax]/x Iv(ix) 7 B,\/x I-V(ix). (27)

La formule de transformation (18) peut s'écrire, du moment que
d'après (20) _

dX dx n '

z -yïLT+J2\%. (28)

Enfin, reprenant (16), nous avons la vitesse v

Ces trois formules (27), (28) et (29) auxquelles il faut joindre (20),
savoir

nx* WJTW- (30)

résolvent théoriquement notre problème.
Les constantes Ax et Bx seront déterminées par la condition

l/l 2 + 82
initiale : Au temps t 0, pour lequel on a X 1, xx n
l'écoulement est celui du régime stationnaire et se fait avec une
vitesse vx que l'on connaît ou que l'on sait calculer (n° 6). Cette
valeur de vx introduite dans (29) permet de déterminer la valeur
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correspondante zx de la variable z. Si ensuite dans (28) on fait
x xx et z zx on obtient

zx -yijirß2-\^
Contrairement aux apparences,

1 du
u dx calculable à l'aide de (27),

A
ne contient que le rapport -jL, donc une seule constante arbitraire ;

cette dernière équation permet de la déterminer. C'est pourquoi
on pourrait supposer d'emblée Bx 1.

du
9. Le développement en série de u et -=—.

Les tables très connues de Jahnke et Emde permettent de
calculer les fonctions de Bessel Iv(x) même pour les valeurs
imaginaires de l'argument. Malheureusement ces tables sont établies
pour les valeurs entières de p: 0, 1, 2, et ne sont d'aucune
utilité pour nous, car dans tous les cas pratiques n, donné par (15),
est plus grand que 2 et en conséquence

V y n2

ne peut dépasser 0,71. C'est pourquoi nous avons été dans

l'obligation d'écrire les séries et de calculer u et =— d'après ces séries.

Si, en se basant sur (25), nous formons IP(ix) et I_v(ix) et
qu'ensuite nous utilisons les séries obtenues pour former u d'après
(27), les facteurs constants Ax et Bx seront multipliés, l'un par iv,
l'autre par i~p. On désignera par A et B deux nouvelles constantes
arbitraires, mais on peut prendre B 1, d'après une remarque
du n° 8. Dès lors

(31)
u A xv+b fl+ *'

1

** +•¦•"x ^ 22-li{p + l)
'

24-2!(p + l)(p+ 2) T

+ X-V+l 1 1

X*
1

Xi
1

' 22-l!(-p+ l)
' 2i-2[{-p+ l)(-p+ 2)

'

¦

du „-r- =Axp-idx ^-t- 2)i~ 22-l!(p+l) ' 21-2!(p+l)(p+2)"t"

7 X-p-i {(-v (-p+ 2 +\y (-ïH-4 + 1)*'
+ 2/ + 22-l!(-p + l)

'

24-2!(-p+l)(-p + 2) ^

(32)
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Pour pouvoir utiliser ces séries il est nécessaire de connaître
numériquement les coefficients. On se reportera au n° 6 où ont
été données les valeurs des constantes fondamentales.

Calcul de n (15) : n -,Tva
2-380,7
1-369,3 2,062 (33)

Calcul de p (26) : p « ]/^ +1 }/-=^w 7 -\ 0,6966. (34)

En utilisant cette valeur de p on peut calculer les coefficients
qui interviennent dans les séries (31) et (32) et on trouve:

w=J4a;1.1966(l7a2x27a4a;47---)7x-0'1966(l7o2a;27&^x47---) (35)

^=^0,1966 (a'0+a'%x2+a[xi+- ¦ •) 7x-1-w66(b'0+b^x2+b'ixi+- ¦ ¦) (36)

a2 0,14738
a4 0,00683
a6 0,00015

0,82390
0,07901
0,00286
0,00005

1,19657
0,47104
0,03550
0,00111
0,00002

b0' -0,19657
ò2' 1,48590

V 0,30053
66' 0,01659

V 0,00042

Voici enfin la valeur de A que nous allons bientôt calculer

A - 1,2498

10. Détermination de la constante A.

Au temps t 0, l'ouverture est totale, 1 1. Si donc dans
la formule (30) on fait X 1 on peut calculer la valeur correspondante

de x
]/\,2+ß2

X, —.¦*¦ n

Puisque ß 1,5744 (14) et n 2,062 (33), on a |/l,2 7 ß2 1,918

^1 W °'9302 •

Pour cette valeur x xx 0,9302 les séries (35) et (36) donnent

ux 1,03876 A 7 1,79937

1,60837 A 7 1,4450

A l'instant initial, la variable z, donnée par (28), a pour expression

zx= -/1,27^ 1 du
u dx 1,918

1,60837 A+1,4450
1,03876 4 + 1,79937
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D'autre part zx peut être calculé au moyen de (16) en faisant v vx

V"
-ß -oirìr- !>5744 2,163071

v1 r 98,8

En égalant ces deux expressions de zx on obtient une équation de

laquelle on peut tirer A

1,60837 1+1,4450 _ „~~ 1,yl8 1,03876 4 + 1,79937 " ^ItKjU' ¦

On trouve ^ _1,2498

11. Courbe de la vitesse et courbe de la pression.

Donnons un exemple du calcul de la vitesse et de la pression
correspondant à une ouverture déterminée, par exemple X 0,4.

On obtient x par la formule (20) •

.'-»SïEi-ai-M-o*»-.
Les séries (35) et (36) permettent, pour cette valeur de x, de

calculer u et =—. On trouvedx

u 0,96414 ~ - 1,25036.

On calcule z par (28)

2Ìiu__i qiö_
0,96414

/t=—7= 1 du _..,. —1,25036 _ „_,,z -yi,2+ß2--^ -1,918 -ft™- 2,4872.

Calcul de la vitesse (29)

«o 369,3
90,92.

ß + z 1,5744 + 2,4872

Calcul de la pression (12)

#_JJ1/_L i\_ (»0,92)»/ 1 j\_ 00 1021 - 2g \X2 l)~ 2-981 U d2 -ij-^fU4-
C'est ainsi qu'ont été calculés les nombres qui figurent dans les
2e et 4e colonnes du Tableau (p. 281).

La vitesse v et la pression H étant maintenant des fonctions
connues de X ou de t, on peut les représenter graphiquement (fig. 2).
En abscisse on a porté le temps t et l'on a AB T. En adoptant
une seconde échelle pour laquelle AB 1, on peut lire pour
chaque t la valeur correspondante du degré d'ouverture X; cette
variable est comptée positivement vers la gauche, à partir de

l'origine B.
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12. Pression maximum et coup de bélier.

La valeur maximum Hm de la pression H a lieu à la fin de la
fermeture, soit pour X 0. Nous ne pouvons sans étude préalable
appliquer nos formules à ce cas puisque, pour x 0, on a d'après

(35) et (36) u oo, ~ oo.
Pour x tendant vers zéro (31) et (32) se réduisent à deux

termes _., „,,u A xp+* + x-v+i

On notera que p~>\, de sorte que les exposants p + \ et p — |
sont positifs. Les termes Axv+ï et A(p+ |) xp-i tendant vers zéro
avec x, les seconds termes sont prépondérants, de sorte que poules

-valeurs de x voisines de zéro, nous avons
du
dx

1 du _ __/ 1 \ x-p-i _/ 1\1
~û ~dx ~ ~ \P ~~2/ x-vi "~ \P ~" TJ aT

a!-»+i. 4^- - (p —Ì") *-*-*

-^l,2+^2l^=KL2T^(p-|)^
• Vh2+ ß2

et puisque x — X,

ß+* ß} n(p-i) j8A+nJp_|)

lim-r- :

a=o A n(p-\)
Connaissant la limite du rapport -y-, nous pouvons calculer la pression

H d'après (12)

¦LmH
V2 1 1

; 2g~W
Pour X 0, on a

Hn

Enfin, puisque »5 2 2gh
H,

-X2).

2g (p-W
h

'(»-¦r
(37)
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Telle est la valeur maximum de la pression; mais nous pouvons
donner à cette expression une autre forme, car nous pouvons
montrer qu'on a l'identité

n2lp
1\2 P-y
2/ P+l

En effet, on déduit successivement de cette équation

n2(p-i) ^+T

n2(p2—Tj

P+2

1.

Cette égalité a lieu puisque p2 n2 -r d'après (26).

Tableau.

Ouverture Vitesse v Pression H
X expérim. théor. expérim. théor.

1,0 98,8 98,80 0 0

0,9 98,8 - 98,65 0 1,14
0,8 ' 98,8 98,24 1 2,77
0,7 98,5 97,44 2 5,04
0,6 98,0 96,15 5 8,38
0,5 96,7 94,12 11 13,55
0,4 94,5 90,92 25 22,12
0,3 89,5 85,55 45 37,72

0,2 79,8 75,80 95 70,29
0,1 59,5 55,20 161 153,70
0 0 0 248 423,07

Nous avons donc l'expression

i
H„

P+

p-
\h, avec p ]/-^+l

Passons à l'évaluation numérique de Hm.

p 0,6966 (34) h 69,5

0,6966 + 0^5. 69 5 - 423 i"¦m 0,6966-0,5 °y'° ~ ffSd.'

(38)
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Hm-hOn appelle d'ordinaire coup de bélier le rapport
L'examen de la formule (38) montre que le coup de bélier est

indépendant de la viscosité. Rappelons que la viscosité est signalée

Vitesse
l cm/sec)

courbe théorique

courbe expérimentale

pression si le liquide était parfait

•x
messe \ i

v/

-200

i pression

Pnaaion
(tm)

0,3 O.B 0,7 0,B 0,1 0.4 ftJ 0,3 0,1 0 OIMFtlirW i -

o,s

Fie. 2.

fempi / *n mk.
B

dans nos formules par la présence de ß et du nombre 1,2; ce dernier
a été introduit par la correction de Hagenbach, qui est elle-même
une conséquence de la viscosité. Or Hm ne contient ni l'une ni
l'autre de ces constantes.
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Ce résultat, assez surprenant, est incontestable. Nous en tirons
la conclusion que le même problème traité en admettant un liquide
parfait donnerait pour Hm l'expression même que nous venons de
trouver1).

13. Vérification expérimentale.

Comme nous l'avons dit au début, des expériences répétées
ont été faites par A. Müller avec les données mêmes que nous
avons utilisées pour nos calculs. Le plus grand soin a été apporté,
tant pour constituer une installation irréprochable que pour
enregistrer correctement la vitesse et la pression.

La jonction tube—réservoir a été soignée tout particulièrement

; afin d'éviter la turbulence en cet endroit, le tube à son origine
était judicieusement évasé et ainsi cette jonction adoucie. L'extrémité

du tube passait progressivement de la forme circulaire à la
forme carrée, de sorte que, l'obturateur se déplaçant avec une
vitesse constante, la fermeture était une fonction linéaire du temps.

Le Tableau donne pour diverses ouvertures X variant de 1 à 0
les valeurs de la vitesse moyenne et de la pression à l'extrémité
du tube que nous avons calculées et celles qui ont été observées2).

Ce tableau a servi à construire les courbes de la fig. 2. On

remarquera que la vitesse varie très peu tout d'abord, puis, vers la
fin de la fermeture, tombe rapidement à zéro. Corrélativement la
pression (plus exactement, excès de la pression du liquide sur la
pression atmosphérique) est presque nulle durant une grande partie
de la période de fermeture, puis s'élève brusquement vers la fin.

Pour servir de comparaison et rendre visible l'influence de
la viscosité on a tracé également la courbe qui figurerait les variations

de la pression dans le cas théorique d'un liquide parfait.
Nous ne trouvons d'écart entre la théorie et l'expérience qui

soit digne de remarque que pour la pression finale; celle qui est
observée est notablement plus faible que la valeur calculée Hm.
A notre avis, les approximations que nous avons faites dans nos
calculs ne sont responsables de cet écart que dans une faible

*) Jottgtjet (ouvrage cité, p. 10) trouve pour le coup de bélier dans les

conduites forcées la formule ôm n — + 1/t-+ 1 • Du moment que ôm est égal à

TJ j.
—~r— et que « a la même signification que dans notre étude, il est aisé de vérifier

que la formule de Jouguet est identique à notre formule (38).

2) Voir l'article déjà cité de A. Müller, Tableau IL
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mesure. A. Müller estime plutôt que, par suite de l'élasticité des

parois du tube et de la compressibilité du liquide, dont il n'a pas
été tenu compte, l'onde de pression voyageant avec amortissement

a été cause de l'atténuation observée. On comprend que
cette perturbation ne soit appréciable qu'à la fin de la phase, au
moment où la pression a pris de grandes valeurs. Des expériences
sont en cours pour élucider ce point.

Fribourg (Suisse), Institut de physiologie de l'Université.
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