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Zur Ladungsabhängigkeit der Kernkräfte
in der Vektormesontheorie ohne neutrale Mesonen

von Res Jost.
(5. IL 1946.)

Die ^-Potentiale eines Zwei-Nukleonen- Systems werden untersucht. Die
Hamilton-Funktion ist der Vektor- (oder Pseudoskalar-) mesontheorie ohne
neutrale Mesonen bei starker Kopplung entnommen. Die Ladungsabhängigkeit der
Potentiale erweist sich als zu stark auch dann, wenn die Isobarenanregungsenergie
klein ist gegenüber der mittleren Wechselwirkungsenergie der Nukleonen.

§ 1. Einleitung.

Die experimentellen Untersuchungen über die Streuung von
Neutronen und Protonen in Wasserstoff haben ergeben, dass die
eigentlichen Kernkräfte zwischen zwei Nukleonen im massgebenden
^-Zustand fast unabhängig sind vom Ladungszustand der beiden
Kernteilchen1). In der „charged theory" (nur geladene Mesonen)
wirken, unter der Annahme schwacher Kopplung, zwischen Teilchen

gleicher Laduug (z. B. zwei Protonen) in erster Näherung
keine Kräfte. Sie widerspricht also den Tatsachen. Um die
Ladungsunabhängigkeit der Kernkräfte zu erreichen, ist man, immer unter
der Annahme schwacher Kopplung, gezwungen, entweder neben
den geladenen Mesonen auch neutrale Mesonen in symmetrischer
Weise einzuführen (symmetrische Theorie) oder auf die geladenen
Mesonen zur Erklärung der Kernkräfte überhaupt zu verzichten
(„neutral theory"). Die letzte Möglichkeit erscheint aus folgenden
Gründen wenig befriedigend: zunächst muss man auf die
Mesontheorie des /J-Zerfalls und der magnetischen Momente des Neutrons
und Protons verzichten, weiter hat man zwar geladene Mesonen
in der Höhenstrahlung direkt beobachtet, die Existenz ungeladener
Mesonen aber ist äusserst unsicher, und es ist schwer zu verstehen,
wieso gerade die Teilchen, deren Existenz gesichert erscheint, aus
der Theorie der Kernkräfte ausgeschlossen werden. Es wäre, von
diesem Standpunkt aus beurteilt, im Gegenteil wünschbar, nur

1) Titve, Heydenbttrg und Hafstad, Phys. Rev. 50, 806 (1936); Breit,
Condon und Present, Phys. Rev. 50, 825 (1936) ; Breit und Feenberg, Phys.
Rev. 50, 850 (1936).
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114 Res Jost.

unter Heranziehung geladener Mesonen allein, eine Theorie der
Kernkräfte aufzubauen.

Eine solche Möglichkeit könnte sich in der charged theory mit
starker Kopplung ergeben. Es ist ein wesentliches Ergebnis der
Mesontheorien mit starker Kopplung, dass sie das Nukleon mit
neuen inneren Freiheitsgraden versehen: insbesondere kann das
Nukleon in jeder Theorie, die geladene Mesonen einführt, alle
„ganzzahligen" Ladungswerte annehmen. Dies hat zur Folge, dass
auch Kernteilchen mit gleicher Ladung geladene Mesonen
austauschen können: auch in der charged theory wirken demnach
zwischen Teilchen gleicher Ladung weitgehend ähnliche Kräfte wie
zwischen Teilchen verschiedener Ladung.

Es ist das Ziel dieser Arbeit, zu untersuchen, ob die Kernkräfte
zwischen zwei Nukleonen im ^-Zustand unter Annahme der
charged theory wenigstens näherungsweise ladungsunabhängig sein
können.

Das Nukleon-Modell entnehmen wir, ähnlich wie dies Fierz,
Wentzel und Bleuler1) für die symmetrische Theorie getan
haben, der Pseudoskalar- oder Vektormesontheorie2) (oder auch
einer Mischungstheorie). Auch in methodischer Hinsicht werden
wir ähnlich vorgehen wie diese Autoren.

Die Lage eines Nukleons ist (ähnlich wie die Lage eines starren
Körpers) durch seinen Ortsvektor und eine Drehung, die etwa durch
eine orthogonale Matrix jja^jj dargestellt sei, gegeben. Bei
festgehaltenem Ortsvektor kann sich das Nukleon demnach noch auf
der dreidimensionalen Drehgruppe bewegen. Die kinetische Energie
dieser Bewegung: die Isobarenenergie, lautet3):

y [2d2—hf} 7 const.

und entspricht der kinetischen Energie eines symmetrischen Kreisels,
e ist die Isobarenkonstante,
d der Spin (Drehimpuls im „raumfesten" Koordinatensystem)

des Nukleons mit den Eigenwerten:

d^j(j+i) ?•=-!, T...,
x) Fierz, H.P.A. 17, 181 (1944) im folgenden als F. zitiert. Fierz und

Wentzel, H. P. A. 17, 215 (1944) im folgenden als I zitiert. Wentzel, H. P. A. 17,
252 (1944); Bleuler, H. P. A. 18, 317 (1945).

2) Die Theorie wurde entwickelt von Pauli und Dancoff in Phys. Rev. 62,
85 (1942); Pauli und Kusaka: Phys. Rev. 63, 400 (1943).

3) Pauli und Dancoff 1. c. S. 104.
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hz ist die 3-Komponente des isotopen Spins (Drehimpuls im
„körperfesten" Koordinatensystem) mit den Eigenwerten:

h3 n n= ±y, ±y- M =?>

w7| ist die Ladung des Nukleons1).

Zwischen zwei Nukleonen im Abstand r wirken eine Zentralkraft
und eine Tensorkraft. Die Tensorkraft wird hier ignoriert. Die
Zentralkraft hat das Potential: V(r)-Ü, wo V(r) eine Funktion
des Nukleonenabstandes ist, über deren genaueren Verlauf wir
hier keine Voraussetzungen machen.

ü ist eine Funktion der „Orientierung", also der orthogonalen
Matrizen [| xik\\ und || x-k\\ der beiden Nukleonen. In der Bezeichnung

von F., dem wir hier folgen, lautet sie2) :

2 3

Q=EEx^x'iic-
i=l fc l

Der Ansatz unterscheidet sich von demjenigen in der
symmetrischen Theorie dadurch, dass der Index i (der sich auf den
isotopen Spin bezieht) in der Summe nur über die Werte 1,2 läuft,
währenddem er in der symmetrischen Theorie über 1,2,3 läuft.

Eine angenäherte Ladungsunabhängigkeit der Kernkräfte im
xS'-Zustand ist nur unter der Voraussetzung |F(f)|>£, |F(i)|:
Mittelwert von |U(r)|, zu erwarten, da man für jU(r)|<^e wieder
im wesentlichen zur Theorie der schwachen Kopplung zurückkommt.
Wir werden im folgenden sogar voraussetzen, dass |F(r)|^>e sei.

Unter dieser Voraussetzung gibt es ein Intervall r < r0, in
welchem | V(r) \ ^> e.

Im Sinne der „Adiabatenmethode" beziehen wir unsere
Rechnungen auf dieses Intervall: wir halten also die Orte der beiden
Nukleonen fest und bestimmen die Energieeigenwerte W(r) als
Funktion des Abstandes.

Die entsprechende Hamiltonfunktion des Zweikörperproblems
lautet :

H=T+V(r)-Ü
wo T die Isobarenenergie der beiden Nukleonen vorstellt. Bei
unserer Voraussetzung sind die Eigenzustände von H kleine
Schwingungen um die Minimallagen, V (r) • Û Min. Da die 11 xtk \ \,

x) Der Zusammenhang der || xik|| mit der Transformation von „raumfesten"
auf das „körperfeste" Koordinatensystem: F. S. 182.

2) Pauli und Kusaka 1. c. S. 405 (61) und (62).
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|| «it|| orthogonale Matrizen (der Determinante —1) sind, ist
—2 sS.ß gS 7 2. Die Extrema werden erreicht:

Û -2 für xt k -x'ik i 1,2 1

fc 1; 2> 3_

x3 fc= ^3* I

ß=72 für xik x'ik i, fc 1,2,8.

Ist V (r) > 0, so treten kleine Schwingungen um die erste
Gleichgewichtslage auf. Die Nukleonen stossen sich also auf der
Drehgruppe ab, was für die Stabilität der schweren Kerne
notwendig ist1). Ist V(r) <0, so treten Schwingungen um die zweite
Gleichgewichtslage auf. Die Nukleonen ziehen sich auf der
Drehgruppe an; es tritt keine Absättigung der Kernkräfte ein, was bei
schweren Kernen zum Zusammenbruch führt2). Wir werden
deshalb im folgenden V(r)>0 voraussetzen. Auf den Fall F(r)<0
werden wir in § 6 noch kurz eingehen.

§ 2. Transformation der Hamiltonmatrix.

Die Hamiltonfunktion lautet :

H=^~ [2d\+2dl-(h\z+hl^ + V(r) -Q + const. (1)

Dabei bedeuten dx, d2 mit den Komponenten (dxx, dX2, dX3), (d2X, d22,

d23) die Spins, hX3, h23 die 3-Komponenten des isotopen Spins der
beiden Nukleonen,

Die Operatoren

und

a=EZxikxa. (2)
t=i *=i
D dx + d2 (3)

H3 hX3 + h23 (4)

kommutieren mit der Hamiltor funkt ion. Es ist daher zweckmässig,
diese in den folgenden Variablen darzustellen:

1 3
jv ii '¦ Spinbeträge der Nukleonen : ji—-â, y ' ' '

J : Betrag des Gesamtspins D: J 0,1,2...
M : 3-Komponente des Gesamtspins: M — 0, 7l, 7 2...
nx,n2: 3-Komponenten des isotopen Spins der Nukleonen:

,1_ 3
W<i — rt 2 ' t 2 '"

x) Coester, H.P.A. 17, 35 (1944). Der Fall der charged theory ist dort
nicht behandelt. Das Vorgehen bleibt sich aber gleich.

2) Wentzel, H. P. A. 15, 686 (1942) zeigt, dass auch die Berücksichtigung
der kinetischen Energie den Zusammenbruch nicht zu verhindern vermag.

Vektor- und Pseudokalartheorie ergeben V > 0. Vermutlich ergäbe die
Pseudovektortheorie V< 0. Kemmer, Proc. Roy. Soc. 166, 127 (1938).
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Die Variablen unterliegen den folgenden Beschränkungen:

\M\^J, \jx~h\^J^h + J2

\rti\^ji i l,2
(5)

J und M sind Integrationskonstanten, wir unterdrücken sie daher
als Matrixindices.

Nach der Transformation wird H von der Form sein:

(ji, H, nx, n2\H\ jx, j2, nx, n2)

y[2;(h + 4)2 + 2(/2+|)2-K7n|)].l
+ V(r) (jx, j2, nx, n2\Q\ jx', j2', nx, n2') + const. (6)

Die Hilfsmittel zur Berechnung der Matrix ü sind in F. enthalten.
ü entsteht nämlich aus den Formeln (IV. 1) bis (IV. 5) (F.S. 192),
indem man dort den Index i nur über die Werte 1 und 2 laufen
lässt und ausserdem hxi, h2i; cXi, c2i; cxi, cfc (wir führen an Stelle
des Akzentes ' zur Unterscheidung der Nukleonen einen ersten
untern Index ein), gemäss (IL 3) und der Bemerkung auf S. 185

unten und S. 186 oben, in den Variablen ji, «jausdrückt. Die Terme,
die aus der Summation über k entstehen, sind identisch mit
At(J, jx,j2) in (IV.).

Q hat also die folgende Gestalt:

(h, k, nx, n2\ü\ jx, j2, nx, n2')

-4 *'(h»h') *0Wa') (ivh\^\h',h') ¦ (Ji,n,ni,nz\B\ii ,h'>ni >n%) (7)

wo

v-(i'i)=Jc]TY) °c (j, j-1) oc (j-1, j) .u .2_ 1 (8)

und
(k, k \Ä I h> k) Äi (J, h> k)
(Ji> k M I h—1» k) A2 (J, h, k)
(h, îîMIii-l, Ja + X) Az (J, h, ii)
(ii, k M I h—1» h—1) ^4 (J, h, h)-

Die Matrix B entsteht aus den Termen mit dem Index i in
(IV. 1) bis (IV. 5) und lässt sich durch elementare Rechnung
gewinnen.
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Zu ihrer Angabe führen wir für gewisse Indexkombinationen
Nummern ein:

1— ~ (iv k, nx,n2\ 1 jx, jz, nx—l,n2 + l)
1+ ~ (ii, it, nx,n2\ | jx, j2, nx +1, n2—1)

analog
2=F ~ (jx,k, | |h—1, k, ••••)
3t ~ (jx,j2, ••••! \h—Wa + L ••••)
4 =F ~ ö'i. ?2, • • • •

I • • • •
I h-L 7a—1, ••••)•

Für S gilt dann folgend« Tabelle

1_ [Öi + «i) Öi—»i +1) (k + n2 + l) (J2-n2)f
2- -[Öi7%) (ji7%-l) ö'a + n2 +1) (j.-n,)]*
2+ [(h-«i) (h-ni-1) (?» + »a) 02-^2 + 1)]*

(10)
3" [Gi + %) Öi + %-l) Öi + ^2 + 2) Öi + w2 +1)]*
3+ [Ö'i-%) Öi-«!-!) Ö'a-»«+ 2) (k~n2 + l)f
4_ —[Ö'i + «i) Öi + "i—1) 02—«2) Öi—«i—l)]* •

Alle übrigen von Null verschiedenen Matrixelemente ergeben
sich aus der Hermitizität von Û und aus der Symmetrie in den
beiden Nukleonen 1 und 2. Die Ladungserhaltung ist evident, da

nur Matrixelemente von Null verschieden sind, für welche nx + n2

nx'+n2. N nx + n2 ist daher eine Integrationskonstante, JV7I die
Ladung des Zwei-Nukleonen-Systems.

Spezialisieren wir auf J=0, mit welchem Fall wir uns im
folgenden ausschliesslich befassen werden, so folgt aus (5)

h"h i (u)

und es treten nur die Indexkombinationen 1 =F und 4 =f neben den
dazu konjugierten auf.

Aus (7), (8), (9), (10) ergibt sich

Ö, nx, n2\Q\ j, nx—l, n2 +1) — ^-j(.+ T)

•[(?' + %) Ö'-«i + 1) Ö'-«s) Ö' + «2 + l)le
1 (12)

(j, nx, n2 \Q\ j—1, nx—l, n2 + l) — 2jy4p=rï
¦ [(i+nx) (j+nx-l) (j-n2) (j-n2-l)]i,
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wobei die Matrixindices der Beschränkung

| n{ | ^ j, n{, j halbganz (5')

unterworfen sind.

Hier ist es jetzt zweckmässig, die Ladung als neue Variable
einzuführen, indem man setzt :

P y K + wa) " Y (wi~na) ¦ (13)

/j. wird als Integrationskonstante in den Matrixindices wieder
unterdrückt. Aus (5') ergibt sich bei vorgegebenem /j,: •¦

j7à\f*\ und —j + \fi\<^v^j—\f*\. (14)

Weiter muss p, + v halbganz sein.

Als Matrixelemente ergeben sich gemäss (12) :

(j, v | Q | j,v =F 1)

- 2j]77T) [Ö + i« ± ») Ö'-if* ± ") Ö + A*=F " +1) (i-ß T v + 1)F

ö>|u|7-L"Tl) (15)

=~ 2jSW=l [Ö'+ /*± ") Ö'-A»± »)Ö+ A* ± v-l)Ö'-A* ± "-!)]*
Gemäss (13) kann p, alle positiven und nicht positiven ganzen und
halbganzen Zahlwerte annehmen.

2 p 71 ist die Ladung des Zustandes.
Wir schliessen diesen Paragraphen mit der Bemerkung, dass

es zwar möglich aber gänzlich unzweckmässig ist, den Betrag des
totalen isotopen Spins (K bei F.) als Matrixindex, einzuführen.
Dies war in der symmetrischen Theorie dem Problem angepasst,
weil K in jener Theorie eine Integrationskonstante darstellt, was
hier offenbar nicht der Fall ist.

§ 3. Das Nähcrungsverfahren zur Lösung des Eigenwertproblems.

Nach den Erfahrungen, die man mit der symmetrischen Theorie

gemacht hat, erscheint der Versuch einer exakten Lösung des

Eigenwertproblems für die Matrix H auch im einfachsten Fall
J M /j, 0 aussichtslos. Wentzel und Fieez haben in I eine
Näherungsmethode entwickelt, die sie mit der Bezeichnung „Oszil-
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latornäherung" belegen. Wendet man dieses Verfahren auf unser
Problem an, so ergeben sich vollständig unübersichtliche Formeln.
Wir sehen uns deshalb gezwungen, die mathematische Form der
Oszillatornäherung passend abzuändern. Wie dies geschieht, werde
an einem Beispiel erläutert.

Das Hauptachsenproblem sei durch folgende Matrix definiert
(es handelt sich im wesentlichen um den Fall J K 0 in 1) :

(x | H | x) x2

(x\H\xt-1) (x-1\H\x)=-co2. • (16)

Die Eigenwertgleichung lautet (W Eigenwert):

(x2—W) u(x)-oj2 [u(x-l)+u(x + l)] 0 (17)

Sie ist äquivalent einer Mathieu'sehen Differentialgleichung. Der
Variabilitätsbereich von x sei zunächst das Gitter der ganzen
Zahlen. Nun weiss man aber, dass jeder Lösungsvektor von (17)
bei beliebigem W sich einbetten lässt in eine analytische (hier sogar
ganze) Lösung von (17) mit beliebigem komplexen x1). Es ist also
sinnvoll u(x) zu differenzieren. Wentzel und Fierz machen den
Ansatz :

(x)= feixzw(z)dz, (18)

wobei das Integral über einen passenden Weg der komplexen
2-Ebene zu erstrecken ist.

Aus (18) folgt:

u(x±l)= feixze±izw(z)dz (19)

x2- u(x) feixz \—w" (z)]dz, (20)

wobei wir in (20) partiell integriert haben, unter der Voraussetzung,
dass die integralfreien Summanden in den Integrationsgrenzen
verschwinden. Schliesslich merken wir uns noch folgende Formeln für
die Ableitungen von u(x) an:

u^(x) jeixz(iz)vw(z)dz- (21)

*) N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer 1924

(im folgenden als: „Nörlund" zitiert). 10. Kapital, § 1.
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Gemäss (19) und (20) ist (17) erfüllt, wenn w(z) folgender
Differentialgleichung genügt :

w" + [W+co2(eiz + e-iz)]w 0, (22)

welches die schon erwähnte Mathieu-Gleichung darstellt. Oszillatornäherung

bedeutet Entwickeln der Exponentialfunktionen in (22)
und Abbrechen der Reihen nach den quadratischen Termen in z.
Dies ist für co2 ^> 1 zulässig. Höhere Potenzen von z werden stö-
rungsmässig behandelt. Führen wir die Entwicklung der
Exponentialfunktion schon in (19) durch, so erkennen wir mit (21), dass sie
einer Taylorentwicklung von u(x±l) um den Punkt x
gleichkommt. Oszillatornäherung bedeutet Abbrechen der Taylorreihe
nach der zweiten Ableitung.

So ergibt sich das im Folgenden dargestellte Näherungsverfahren.

A. Oszillatornäherung für „eindimensionale" Probleme.

Es seien die Eigenwerte einer reellen Matrix (x \ H \ x') mit
den folgenden nicht identisch verschwindenden Elementen zu
bestimmen :

(x\H\x) =f(x)
(x\H\x + l)=-p+x(x) (23)

(x\H\x—l) =—p_x (x).

H braucht nicht unbedingt hermitisch zu sein.
Der Variabilitätsbereich von x sei zunächst ein Abschnitt aus

dem ganzzahligen Gitter :

A ^x <B (23')

f(x), p+x (x) und p_x (x) seien meromorphe Funktionen. Die
Eigenwertgleichung lautet :

[/ (x) -W] u (x) =£ pk (x) u (x +k). (24)
k=-\

Wir erweitern zunächst den Variabilitätsbereich von x auf das
unbegrenzte ganzzahlige Gitter, indem wir an Stelle von (23') die
folgende Forderung stellen :

P-x(Ä)u(A-l) 0
)X

p+x(B) u(B+ 1)=0.
l °> '

x) Durch (25) wird erreicht, dass die Punktionswerte für x > B und x < A
mit den u(x) in A Sì x :£ B nicht gekoppelt sind. Natürlich betrachten wir nur
solche Lösungen u(x), die in A ;g x ^ B nicht identisch verschwinden und dort
normierbar sind.
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Dadurch werden wir auf eine Randwertaufgabe für Differenzengleichungen

geführt.
Jede Lösung von (24) lässt sich wieder einbetten in eine mero-

morphe Lösung von (24), wobei x jetzt eine komplexe Variable
bedeutet. (Damit erhält (25) erst den vollen Sinn.) Unter gewissen
einschränkenden Voraussetzungen über die Lage der Singularitäten,
auf deren Angabe wir aber verzichten, kann man dann (24) in eine

Differentialgleichung unendlich hoher Ordnung verwandeln, indem
man u(x + k) nach k entwickelt.

Die Differentialgleichung lautet:

[f(x)~W]u(x) Z^Zpk(x)(k^) u(x). (24')

In der Oszillatornäherung bricht man in (24') die Reihe über v

nach der zweiten Ableitung ab und erhält so (unter Umständen)
eine brauchbare Näherungslösung für u(x), die wir mit y(x)
bezeichnen. Es gilt:

yE h2P" (x) ' y>" +27fep* (x) ¦ ¥ +

Zpk(x)-f(x)+W\y> 0. (26)

2
*

Es liegt nicht in unserer Absicht, allgemeine Kriterien für die
Anwendbarkeit der eben skizzierten Methode anzugeben. Wir
begnügen uns damit, aus zwei Beispielen einige Schlüsse zu ziehen.
Dabei wird es sich hauptsächlich darum handeln, was an Stelle
von (25) für die Funktion y>(x) zu fordern ist.

1. Beispiel (vgl. (16)).

f(x) x2

V+i(x)=V-i(x)=V.
(26) folgt:

y>"-(ß2x2-x) y> 0 ß2 V~1, ol
W+2V

(27)

(28)

Für V > 0 also ß2>0 ist dies die Oszillatorgleichung mit den
Eigenwerten

*«">rnLL o^W-f~2V+^ + 1^'T (29)
ß >0, n 0,l,2 » 0,1,2....

Die Näherung hat nur dann einen Sinn, wenn die Eigenfunktionen
zu (28) : ipn (x) über dem Gitter der ganzen Zahlen langsam ver-
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änderlich sind. Dies ist der Fall, wenn ß1!- <^ 1 ist. Die Darstellung
von <x„ in (29) ist als Beginn einer Entwicklung nach ß aufzufassen :

man kann nämlich die dritte und vierte Ableitung (vgl. (24')) noch
störungsmässig berücksichtigen, was in (29) für <x„ einen Zusatz
~ß2 ergibt1).

Es werde nun in (27) der Variabilitätsbereich von x wie folgt
abgeändert:2)

«'-1,2,8... (27')

Im Sinn von (25) können wir (27') ersetzen durch die Forderung

tt(0) 0, (30)

wobei wir als Eigenlösungen natürlich nur solche zulassen, die auf
dem positiven ganzzahligen Gitter nicht identisch verschwinden
und dort normierbar sind. Offenbar haben wir (30) auch für ip(x)
zu verlangen, wodurch in (29) die Werte von n auf die ungeraden
natürlichen Zahlen beschränkt werden.

Ist V < 01), so hat (28) keine in einem unendlichen Intervall
normierbare Lösung. In diesem Fall alternieren die Eigenfunk-
tionen von (27). Setzt man an Stelle von u(x) (—l)x v(x), so

gelten für v (x) alle Gleichungen mit V > 0.

Über alternierende Vorzeichen ist so zu verfügen, dass (26) im
betrachteten Intervall eine normierbare Lösung besitzt.

Das Beispiel (27) ist dadurch ausgezeichnet, dass weder die
der Matrix (27) entsprechende Differenzengleichung, noch die
Näherungsgleichung (28) im Endlichen eine Singularität besitzen.
Darin liegt der Grund, weshalb wir (25) unmittelbar übertragen
konnten.

(31)

2. Beispiel.

f(x) ßx ß>2^ 1E 0,1,2,....
V-i (x)=p+x (x-1) =]/(x + K)(x-K) \x K,K + l,...
In dieser Gestalt passt das Beispiel noch nicht in unsere

Methode: pt(x) sind irrational. Der irrationale Bestandteil der
Eigenlösungen u(x) lässt sich aber leicht separieren:

u(x)=y(x)v(x)
y2(x) (x-K + l)(x-K + 2) (x + K).

[ '

x) Das Resultat stimmt mut. mut. überein mit der Störung die Wentzel
und Fierz in I berechnen.

2) Vgl. I.
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Für v(x) ergibt sich eine Differenzengleichung, die durch folgende
Matrix bestimmt ist:

f(x)=ßx
p+x(x) x + K + ì (33)

V-i (x) x—K.
Sie lautet:

(x + K + l) v(x + l) + (x-K) v(x-l) + (W-ßx) v(x) =0. (33')

Lassen wir x jetzt beliebig variieren, so haben wir an Stelle von
(25) zu setzten :

l(x-K)v(x-l)]^K 0, (34)

weiter müssen wir die Normierungsbedingung
oo

0<2>2(z) \v(x)\2<oo (35)
K

hinzufügen.

Im Anhang werden wir auf Grund von (34) und (35) die
Differenzengleichung (33') und damit das Eigenwertproblem (31) exakt
lösen. Es wird sich ergeben, dass die Eigenlösungen: vn(x) ganze
Funktionen von x sind. Die Oszillatornäherung liefert die
Differentialgleichung :

(x + i)it>" + (2K + l)f' + (2x-J-l-ßx+W)y> 0 (36)

oder, wenn man den Nullpunkt der x-Achse um \ nach links
verschiebt :

xip" + (2K + l)f' + («.— ö2x)y> 0

mit a W + iß (36')

ò2= ß-2.
Wendet man auf (36') die elementaren Methoden der
Wellenmechanik an: Polynommethode y (x) e~àx<^n(x), ò >0, so ergeben
sich für « die Eigenwerte:

v.n (2n + 2K + l)ò, n 0, 1,2
also

Wng*-±ß + (2n + 2K + l)o, n 0,l,2... (37)

Damit unsere Näherung sinnvoll ist, muss ó<^l sein. Man
überzeugt sich übrigens leicht, dass die Eigenfunktionen rpn(x)
von (36') die Differenzengleichung (33') bis auf Terme ~ ò2, diese
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eingeschlossen, erfüllen1). Dadurch ist gezeigt, dass (37) als eine
Entwicklung der Eigenwerte Wn nach Potenzen von ô zu betrachten

ist.
Die Differenzengleichung (33') hat in x K—1 eine

Singularität2). (34) bedeutet, dass wir nur Lösungen zulassen, die sich
in diesem Punkt regulär verhalten. Die Übertragung auf die
Differentialgleichung (36') lautet offenbar : es sind nur solche Lösungen
zuzulassen, die sich in der Singularität x 0 der Differentialgleichung

regulär verhalten. Die Singularität der Differentialgleichung

fällt aber immer ausserhalb des Normierungsintervalles
K + \-^x<<x>. Dass trotzdem die Lösungen von (36'), die in
x 0 singular sind, auch dann, wenn sie in K + \ f^x < oo normierbar

sind, ausgeschlossen werden müssen, sei am Beispiel:

f(x)=x~2Ke~dx zu a=-(2K-l)ô
illustriert. Nach (38') sollte, wenigstens näherungsweise, gelten:

("*+t)UT'-'<"-K-L{PK'^2" m- ^+ii'
was offensichtlich nicht erfüllt ist.

B. Oszillatornäherung für „zweidimensionale" Probleme.

Die sinngemässe Übertragung unseres Näherungsverfahrens
auf Matrizen mit mehreren Matrixindices (mehrdimensionale
Matrizen) ist trivial.

Es sei (y, x \ H \ y', x') eine (nicht notwendig hermitische)
reelle Matrix mit folgenden nicht verschwindenden Elementen:

(y,x\H\y, x)=f(xy)
(y,x\H\y + i,x + k)=-pik(xy) i,k 0, ±1; i2+k2>0. (38)

Die Schrödingergleichung lautet:

EVn(xy)'"'(x + k,y + i) [f(xy)-W}u(xy). (39)
ik

Entwickeln wir hierin u (x + k, y + i) nach k und i und brechen
nach den zweiten Ableitungen ab, so erhalten wir eine Differential-

1) Die Verifikation kann, ähnlich wie wir dies in § 5 in extenso durchführen
werden, an Hand der erzeugenden Funktion

i + t 6

E^Hx)tn=e !"* "(î-tr2*-1
0 '

erfolgen.
2) Nörlund S. 273.
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gleichung für eine (unter Umständen brauchbare) Näherungsfunktion
ip(xy):

YEk2Pi*-¥£+EikPi*-£L+T£iiP'*-^+
i, k

(40)

-Ek Pt* ¦ Tx +E *p<* ¦ I!- + (2><*~/+w) w=o.
dy> v-t • dy
77+2, lPi*'Tij~

i, k i,k -* \ ì, k

§ 4. Anwendung der Oszillatornäherung.

Es handelt sich jetzt um die Lösung des Hauptachsenproblems,
welches durch (6) und (15) dargestellt ist. (Fall J=0). Vorerst
erkennt man, dass die Fälle ii u. und ii —a dieselben Eigenwerte
liefern. Wir können uns also auf

,«^0 (41)

beschränken. Wie in der Einleitung § 1 erwähnt wurde, schränken
wir unsere Diskussion auf einen Bereich ein, wo

F(r)>£, also /?=l/^<l. (42)

Im Bereich V(r)-^e kommt man mit gewöhnlichen
Störungsverfahren zum Ziel. Die Zuordnung der Eigenwerte in den beiden
r-Bereichen geschieht nach bekannten Prinzipien (Verbot des
Überschneidens adiabatischer Potentialkurven). Durch die
Separation

u(j,v)=y(j, v)-v(j, v),
mit

y~(Ì,v) (i+^)]J(Ì-p + v + a) (j-(i-v + o) (43)

schaffen wir in Ü die Wurzeln weg und erhalten eine Matrix Q mit
den folgenden Elementen (wir setzen y i + \, x v):

c«i3i».'±')4t^|a (44)

(y,x\Q\y — l,x±l)=- 1 (p±*+t)(i*±*+t) {fi±x)(fi±x+l)
4 2y Ìv-\)
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Gemäss (38) führen wir die Bezeichnungen ein:

pik(xy)=-(y,x\Q\y + i,x + k)

f(xy) =ß2(2y2-x2-n2). '

Nach (14) ist der Variabilitätsbereich von x y) wie folgt
eingeschränkt :

y ganz, y > ju,

fi + x halhg&nz,—y + [j, + ^tLxtLy--pt-—\. (46)

An die Stelle von (46) setzen wir wieder eine Randbedingung
für die Differenzengleichung :

Poi " V Q 1 i- In¦
J längs y—x—u—-=r — \)

P-ux ¦ v 0 | 6 y f 2

P-.Xyl -v 0 längs y—x—ft—<r 0

p0_! -v 0 \ l (47)

?_!_!-17 0 j gS 2/ + a;-^-T
3

p_1(_1-» 0 längs y + x — fj,—ö~ 0-

Da, wie man aus (44) erkennt, alle pik, die in (47) auftreten,
verschwinden, verlangt (47) die Endlichkeit von v(x + k, y + i) längs
den angegebenen Geraden.

Natürlich sind nur solche Lösungen v(xy) brauchbar, die im
Bereich (46) nicht identisch verschwinden und dort mit dem Gewicht
y2(xy) aus (43) normierbar sind. Um zur Oszillatornäherung
überzugehen, müssen wir die Differentialgleichung (40) aufstellen. Aus
(44) folgt:

Zi'PH-i+'yX1* '
*

(48)

2>„ -o,2>„-| ^7i)(^+|)+^]-2,^±li
27p« =2.

Um zu einer annehmbaren Differentialgleichung zu gelangen,
entwickeln wir die Ausdrücke nach y1 und vernachlässigen in den
Koeffizienten der zweiten Ableitungen in (40) Terme mit y~2...
in den Koeffizienten der ersten Ableitungen Terme mit t/~3...,
wobei | x | ~y betrachtet wird. Wir werden später zeigen, dass die
Vernachlässigungen, die wir dadurch begehen, unsere Näherung,
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deren Ziel es ist, die Eigenwerte W bis auf Terme in ]/eV genau
zu bestimmen, nicht stören. Es ergibt sich dann :

Ek2pik=2, EikPi*=-f-' Ei2Pik=1 + i,2

2>«-0 ZW^^W—T? Ep^ 2- (49)

Damit lautet schliesslich (40) :

Ö2y> 2x d2y> [1 x2 \ d2 y
öi1 y dxdy ' \2 ' 2 y* ä iß '

/4/* +3 x2 \ dy r /J2/0.2 r2il«n 0 (50)+ l 2y 2»»j dy+L" P^» ajjJy-U,
WO

IF+2F+ÊM2
F ¦ (51)

Die Substitution:

£ £ | x
(52)__ / i mit der Umkehrung /H—-—3 =-

2/=|/l27-2-r/2
fo

n ]/2(y2-x2)

führt zur Normalform:

^+^— 4^+[«-w+»?2)]y=o. (53)

Separation :

y «(!) -v(rj)
liefert :

(54)

V"+4V+1 V> + (_X jg2r/2)r==0 (55)

u"+[(ol—X)— ß2i2]u 0. (56)

(55) stellt die Radialgleichung des 4/^7 2-dimensionalen isotropen
Oszillators dar und hat die Eigenwerte:

Xt 2 [2l + 2fj, + l]ß, 1 0,1,2.... (57)

(56) ist die gewöhnliche Oszillatorgleichung mit den Eigenwerten:

y.n + (2n + l)ß,
also

a$=(2n + 4l + 4/t + 8)|8. (58)
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Nach (51) also

W\»l=-2V + (2n + 4l + 4\/i\+3)ß+----
n Ò, 1,2 1 0,1,2.... (59)

W^=-2V+(2m + 4\Li\ +S)ß+----
m 0,l,2.... (60)

Die bestehende Entartung würde durch eine Störungsrechnung
weitgehend aufgehoben.

§ 5. Die Eigenfunktionen, Rechtfertigung der Entwicklung (49).

Setzt man in (55)
z

ßrf z und v(z) e 2
w, (61)

so ergibt sich für w die Differentialgleichung der Laguerreschen

Polynome :

zw" + (m—z)w' + lw 0 (62)
mit

»71 2^ + 1 (63)
und

^ 4^72742. (64)

Die Lösungen seien mit w|m) (z) bezeichnet. Dann hat man die
folgende erzeugende Funktion:

zx

Euf0 (z)-xl=(l-x)~me i-* (65)
1=0

Durch Ableiten nach x folgt die Rekursion:

m wfz+^ I w<m> 7 z w^+2), (66)

wobei wir w|m) 0 setzen für l < 0.

Für die Eigenfunktionen von (55) zum Ladungsparameter /j,
und zum Eigenwertparameter l ergibt sich als Funktion von x und
y aus (61), (63), (64); (52):

vf> (xy)-e-ß<-y'~xt)wf"+l) [2ß(y2-x2)], (67)

nach (65) und (66) :

2>{*> -xl=(l- x)-2 "-1 e
1_* (68)

und
(2/J. + 1) v\^=lvf + 2ß(y2—x2)-v\L\l)- (69)
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Die Eigenfunktionen von (53) lauten:

VM un(x)vM(xy) (70)

wo un(x) die bekannten Oszillatoreigenfunktionen sind.
Nach (67) sind sie gerade oder ungerade in x, je nachdem n gerade

oder ungerade ist.
Damit unsere Rechnung sinnvoll ist, müssen die Funktionen

y>(x, y) über dem Gitter der ganzen Zahlen langsam variieren.
Nach (67) und (56) bedeutet dies, dass

£1/2<1. (71)

(58) ist aufzufassen als Beginn einer Entwicklung von a^ nach
Potenzen von ß. Dies ist natürlich nur dann widerspruchsfrei
möglich, wenn yfli (XV) ^ie Differenzengleichung

EPik(xy)y>(x+k>y+i)=[f(xy)-v~lwif(xy) (72)

genügend genau erfüllt. Falls dies nachgeprüft ist, ist die
Entwicklung (49) gerechtfertigt.

Zur Verifikation beschränken wir uns zunächst auf „kleine"
(xy)-Wevte, d.h. auf solche, für welche

ß2x2,ß2y2<41. (73)

In[f(xy) — V-1W]=[ß2(2y2-x2) + 2-oc]könnenwiv, da oc ~/5
ist, den Term ß2(2y2—a;2) als klein gegen <x weglassen, desgleichen
andere Terme von gleicher oder kleinerer Grössenordnung. Wir
bezeichnen

EPik(xy)-w\%(x+k, y+i) R\% ¦ (74)

Aus (68) folgt:

EvrH^y+^^^^-^^e'^^''^^^^^1^
1=0

Hierin entwickeln wir die zweite Exponentenfunktion und vernachlässigen

Terme ~/?2 und höhere; nach (68) folgt dann leicht:

v\">(x, y + i) g* [l-2ßi(y+ Ì)] v^-4ßi{y+ 4)^ìè) (75)

oder nach (70)

<"> (x, y+i)^ [i-2ßi (y + i)} fii-^ßi{y + i)ft+J; (76)
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(78)

Ladungsabhängigkeit der Kernkräfte in der Vektormesontheorie. 131

damit wird aus (74)

fyi=E(EPi>)fli(x+k>y)-

- zßE{Ei(y+i)p^ya(x+k> y) -
~^ß ^(E^y+YJPi^t^l^+^y)

Aus (44) und (45) :

EVi* 1

i

Ei(y+ ¦j)pi*:=kx+!*+1

so dass aus (77) wird:

B^^[l-2ß(/, + l)]2Jv\i(x + k, y)-2ßxE^n(x + k, y) -
k k

-4ß(fi + i)^wniJ (X + K y)-±ßxEvtt$(x+k,y)- (79)
k k

Es sind also nur noch die Grössen

E vìi (x+k,y) und ßx £ kw\% (x+k> y)
fc=-i,+i *=-i,+i

zu bestimmen.

Zunächst folgt, immer auf dieselbe Weise, aus (68) :

E vìi (x + h y) ^v\">£un(x + k) + ß [t>j">+ 2 v^] E^n(x + k) +
k k k

72 [«{")+ 2 »£+*>] ßx£kun(x + k) (80)
k

und
ßxEkf{l%(x+k,y)=4")ßxEku«(x+k)-> (81)

* k

überall wo keine Variablen geschrieben sind, ist xy zu setzen.
Aus den bekannten Formeln für die Oszillatoreigenfunktionen

leitet man (in unserer Näherung) leicht ab:

Eun(x + k) g* [2-(2n + l)ß]un
k

ßx£kun(x + k) g^ 2nßun + ßun^2.1)
k

(82)

(83)

x) Die Hermiteschen Polynome in un(x) sind wie üblich normiert.
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Setzt man (82) und (83) in (80) und (81) ein und verwendet die
Resultate in (79), so folgt für

B|>= [2-(2n + 4i« + 8)/î]V^-4/3(2^ + 1) y{fL+» (84)

Zur Umformung des letzten Summanden benützt man (69), worin
rechts der zweite Term zu vernachlässigen ist:

B# Ê* [2-(2«74?74^73)/3] y$= [2-a$]y$ (85)

womit die Verifikation für „kleine" (xy) durchgeführt ist1).

Für alle „nicht kleinen" (œy)-Werte können wir die Entwicklung

(49) durchführen. Will man auch hier (wenigstens solange
ßy-^.1 ist) explizit die Konsistenz der Lösung nachweisen, so hat
man nur zu zeigen, dass dann gilt:

V(x + k,y + i)^{l+i~+k-^ + ±(i^ + k-±)2}f(xy);

denn damit geht die Differenzengleichung (72) in die Differentialgleichung

(50) über. Wir verzichten auf die ausführliche
Durchrechnung.

Natürlich kann man die Approximation der Eigenwerte durch
eine Störungsrechnung verbessern. Will man nur die Grössenordnung

der Störung bestimmen, so bietet sich folgende Möglichkeit:
man bestimmt einerseits die Störterme aus der Entwicklung (49)
dadurch, dass man diese Entwicklung um 2 Potenzen in y~~x weitertreibt,

ferner die Störterme aus der Vernachlässigung der
Ableitungen höherer Ordnung in der Oszillatornäherung dadurch, dass

man als Störungen auch die dritten und vierten Ableitungen von
ip nach x und y berücksichtigt, wobei man aber an der Entwicklung
(49) festhält.

So findet man für die Störung der tiefsten Eigenwerte Wfâ
leicht, dass sie ~e ist (grössere Terme, wie £3/4 F1/4, heben sich
weg), dass also gilt:

W$ -2V+(4\fi\+d)]/ËV + 0(e). (86)

1) Die durchgeführte Verifikation kann auch unter der schwächeren

Voraussetzung: ß (y2- x2) <^ 1 und ßy<^l erfolgen.
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§ 6. Diskussion der Resultate.

Die 1/S-Zustände sind durch folgende Quantenzahlen
ausgezeichnet: J 0.

Bahndrehimpuls L 0.

Den verschiedenen Ladungszuständen /li entsprechen:

/li 0 Deuteron
jjt \ Proton-Proton /u — J Neutron-Neutron

Die den empirischen ^-Zuständen zuzuordnenden Potentiale Wfâ
sind die tiefsten, die mit dem Pauliprinzip verträglich sind.

^-Zustände sind in den räumlichen Koordinaten symmetrisch,
in den Spinkoordinaten1) antisymmetrisch, also nach dem
Pauliprinzip in nx, n2 symmetrisch, d.h. in x v \(nx—n2) (13) gerade.
Nach (43) und § 5 gehören dazu W'fl mit geradem n.

Demnach lauten die Potentiale der tiefsten ^-Zustände :

Ki M -2 VW + (4 I /" I + 3) ]fiVjf) + 0 (fi)

im Bereich, wo V(r)^>s.
Die Abhängigkeit von /i: W^— TF^, ^ 2 (/eF ist viel zu stark,

um mit der Erfahrung vereinbar zu sein.
Die „charged-theory" ist also auch unter der Annahme starker

Kopplung zur Darstellung der Kernkräfte ungeeignet.

Eigentümlicherweise tritt im Fall V < 0, den wir in § 1

ausgeschlossen haben, in unserer Näherung Ladungsunabhängigkeit
ein. u(j, v) sei eine Eigenlösung zu F>0. Wir gelangen zu einer
Eigenlösung zu V — V und zum selben Eigenwert, indem wir
setzen u'(j, v) (—iy u(j, v).

Die Eigenwerte zu V — V < 0 stimmen also überein mit den
Eigenwerten zu V und lauten allgemein für V^ 0, |F|^>e:

WiÌ(r) =-2 | V(r) | 7 (2n74i74 | ^ | 73) |/e| V(r) | 7 • • ¦ • (87)

Es sei nun V(r)<0. Da der Faktor (—1)" die Parität der
Eigenfunktionen bei halbganzem v oder ganzem /u (vgl. (14))
umkehrt, für ganzes v oder halbganzes /u aber nicht verändert, sind
den empirischen ^-Zuständen die folgenden Potentiale zuzuordnen :

Proton-Proton 1
TTr,, ,9l _ T7, „ ITT.Neutron-Neutronl<o3) -2|F(r)|+5,/^|7....

Deuteron W$\ =-2\V(r)\+5 ]/e\V(r)\ + ¦¦•¦
x) re,, m2 bei F.
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In unserer Näherung besteht also Ladungsunabhängigkeit der
Kernkräfte. Natürlich ändert dies nichts an der in § 1 besprochenen
Sachlage bei den schweren Kernen, die zum Ausschluss des Falles
V(r) <0 zwingt.

ANHANG.

Exakte Lösung des Eigenwertproblems (SS)1).

Die Lösung v(x) von (33') gestattet die folgende
Integraldarstellung :

"W -él!z^K ^-^A (h~z)*äz - (88)

Der Integrationsweg in der komplexen 2-Ebene bleibt noch
frei. Es bedeuten: Xx, 12 die Wurzeln der Gleichung P—Aß+1 0

also

A1(2=4±]/-Ç--l, 1X>1>12,
weiter

A K +^, B K-l±±
und es ist

A + B 2 K—l eine ganze Zahl. (89)

Die Singularitäten des Integranden liegen in z 0, z X, und
z X2. Sie sind im allgemeinen Verzweigungspunkte.

Zunächst seien A und B beide nicht 0, 1, 2 Wir erhalten
ein Fundamentalsystem der Differenzengleichung, wenn wir als
Integrationswege die Wege lx und l2 wählen (vergi, die Figur) :

^)-ï5t/ *(*>-«k/ (90)

Die Integrale konvergieren in B[x] > K—1. Die durch sie
definierten analytischen Funktionen sind in x K—1 singular und
haben dort Pole. Als asymptotisches Verhalten findet man leicht:
vx(x) nimmt für x^>l exponentiell zu, v2(x) exponentiell ab.

Die allgemeine Lösung von (33') lautet:

v(x) =nx(x) vx(x) +n2(x) v2(x) (91)

wo 7ix(x) und n2(x) beliebige (nicht notwendig analytische)
periodische Funktionen der Periode 1 sind. Da für uns nur die Funk-

*) Nörlund, 11. Kap., § 6.
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tionswerte in den Punkten K, K+l, von Bedeutung sind,
können wir nx und n2 als Konstante annehmen, ohne dass wir
dadurch Lösungen des Eigenwertproblems verlieren. Nun verlangt
(34) die Regularität der Eigenlösungen im Punkte x K—1. nx
und 7i% in (91) sind demnach so zu bestimmen, dass v(x) im
Normierungsintervall nicht identisch verschwindet und in x K—1
regulär ist. Dies ist im wesentlichen genau dann der Fall, wenn wir
setzen :

v(x) =vx(x)+v2(x) -^jj ¦ (92)

Wegen des angegebenen asymptotischen Verhaltens von vx(x) ist
v(x) nicht normierbar.

Verzweigungschnitte

Z-Ebene

Es muss also mindestens eine der Zahlen A oder B eine natürliche

Zahl sein, dann sind sie aber nach (89) beide ganz. Es sei

jetzt B — 1, —2... Dann verschwindet vx identisch, d& A^O
wird. (92) stellt eine Eigenfunktion dar. Die zugehörigen Eigenwerte

lauten:

W„ — ß2- + (2n + 2K + l)l/-C-l, n 0,l,2- (93)

und stimmen mit (37) in der dort angegebenen Näherung überein.
Sind sowohl A als auch B natürliche Zahlen : A /u, B v,

so verschwinden vx(x) und v2(x) identisch. Als Ersatz findet man
das folgende Fundamentalsystem:

¦"¦2

vx(x) fzx~K (Xx—z)" (X2-z)vdz

,(as) f zx-K(Xx-zy (X2-z)vdz
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vx(x) ist in x K—1 singular, v2(x) ist für a;^>l exponentiell
zunehmend. Demnach gibt es in diesem Fall keine Eigenlösungen.
Ganz entsprechend scHliesst man den noch verbleibenden Fall :

A =—l, —2... aus. (93) stellt daher alle Eigenwerte dar. Nach
(92) sind die Eigenfunktionen ganze Funktionen (im Sinn der
Analysis).

Meinem verehrten Lehrer, Herrn Prof. Dr. Geegor Wentzel
bin ich zu grossem Dank verpflichtet. Er hat diese Arbeit angeregt.
Ihm verdanke ich es, dass ich sie zu Ende führen konnte.

Zürich, Physikalisches Institut der Universität.
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