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Anisotropie der Proton-Neutron-Streuung und
symmetrische Mesontheorie
von G. Wentzel.
(12. VIIL. 1945.)

Inhalt. §1: Problemstellung. § 2: Uberblick iiber den Gang der Rechnung.
§ 3: Diskussion. — Anhang.

§ 1. Problemstellung.

Nach Messungen von AMALDI u. a.') ist die Proton-Neutron-
Streuung bei hoheren Energien (~ 15 MeV) stark anisotrop in dem
Sinne, dass im Schwerpunktssystem grosse Streuwinkel (¢ ~ @)
relativ selten auftreten (genaueres s. im § 8). Dies i1st als Argument
gegen die ladungssymmetrische Theorie der Kernkrifte angefiihrt
worden, die nach Rarita und ScEWINGER?) eine Anisotropie im
entgegengesetzten Sinne erwarten lasst; letzteres liegt daran, dass
in den P-Zustinden — die P-Wellen bestimmen ja in erster Nahe-
rung die Anisotropie — die Kernkriafte nach dieser Theorie ab-
stossend oder nur schwach anziehend sind. Dieser Einwand trifft aber
nicht die modifizierte Form der ladungssymmetrischen Theorie, in
welcher dem Nukleon eine Spintridgheit zugeschrieben wird. Fir
diese Theorie ist charakteristisch, dass das Nukleon ,,isobare Zu-
stdnde besitzen soll; die Isobaren-Energie hat die Form einer
Kreiselenergie, und zwar ist der Kreisel in der ladungssymmetri-
schen Theorie speziell ein Kugelkreisel (die Hamiltonfunktion ist
invariant gegeniiber Drehungen im Raum des isotopen Spins). Die
Anwendung dieser Theorie auf das Zwei-Nukleon-Problem liess vor-
aussehen, dass die P-Krifte bei geeigneter Parameterwahl syste-
matisch anziehend werden?), und es erhebt sich die Frage, ob dieser

1) E. AmaLp1, D. BocciargrLl, B. FErRrRETTI, G. C. TrRABACCHI, Naturwiss.
30, 582, 1942, und Ric. Scient. 13, 502, 1942. Vgl. auch die Angaben von F.C.
CaampioN und C. F. PowELL, Proc. Roy. Soc. 183, 64, 1944, die im Rahmen ihrer
— allerdings nicht grossen — Messgenauigkeit die Ergebnisse von AMALDI u. a.
bestétigen.

2) W. RarITA und J. ScEWINGER, Phys. Rev. 59, 556, 1941..

3) M. Frerz und G.WgeNTZEL, Helv. Phys. Acta 17, 215 und 252, 1944
(vgl. S. 228); K. BLEULER, Helv. Phys. Acta 17, 405, 1944 (vgl S. 407 und die
dort folgende Diskussionsbemerkung) und 18, 317, 1945.
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Effekt quantitativ ausreichend ist, um als Erkldrung fir die beob-
achtete Streu-Anisotropie dienen zu konnen.

Wenden wir uns dieser Frage zu, so ist es — wie frither schon
bemerkt wurde!) — unumginglich, die sogenannten Tensorkrifte
(Spin-Bahn-Kopplung) zu berticksichtigen, da durch diese der
3P-Term stark aufgespalten wird. Wir werden dabei die allge-
meinen Formeln verwenden konnen, die Fierz fiir die Tensorkrafte
in dieser Theorie angegeben hat?).

§ 2. Uberblick iiber den Gang der Rechnung.

Die Hamiltonfunktion des Zwei-Nukleon-Systems werde, wie
bei Fiurz®%), als Matrix dargestellt beziiglich der folgenden Quan-
tenzahlen:

71, Js = Spinquantenzahlen der beiden Nukleonen,
J, K = resultierender Spin und isotoper Spin,

L = Bahnimpulsmoment,

I = gesamtes Impulsmoment.

Die Hamiltonfunktion H, die in I und K diagonal ist (diese
Variablen werden deshalb als konstante Parameter behandelt),
setzt sich aus folgenden Termen zusammen:
kinetische Energie dér Relativbewegung:

H¥ —

1 0* LL+1) . Y prT
“I‘Tf(_' ot T+ (72 )'(szLllIh?zJL),

Isobaren-Energie der beiden Nukleonen:
A= 2 [( 5 )+ (a5 )= 2] o TL 1|y L),
potentielle Energie der skalaren Kraft: '
HS= V() (aiyd | @ |5y’ ) - (JL| 1] J'L),
potentielle Energie der Tensorkraft:
| - HT=U@) - (e J L[ T 15y I L),
(Hierbei ist T" = T — % £ in der Bezeichnung von Fierz.)

| Die Tensorkraft koppelt Zustdnde mit J'—J =0, + 2 und
L'—L=0, + 2 miteinander (wobei |J—L|=I<J+ L). So
enthif:ilt die Schridingerfunktion des hier zu betra,chtenden,,?’P-

4) Vgl. die unter 2) zitierte Diskussionsbemerkung.
%) M. Fierz, Helv. Phys. Acta 8, 158, 1945.
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Terms* (K = 1) ausser der Hauptkomponente J = L =1 noch
,»»Beimischungen‘‘ mit hoheren (ungeraden) J- und L-Werten. Eine
P-Beimischung (L= 1) kann — wegen | J —L | < I — nur im Falle
I =2 auftreten ; diese Beimischung (J =38, L = 1) soll im folgenden so-
weit als moglich berticksichtigt werden. Alle tibrigen Beimischungen
haben L = 3 und diirften wegen der starken Zentrifugalkraft nur
schwach mit der Hauptkomponente J = L = 1 gekoppelt sein; sie
werden hier vernachlissigt. Ubrigens wiirde ihre Berticksichtigung
die Potentialkurven nur noch stidrker herabdriicken und damit
die Streu-Anisotropie eher noch begiinstigen.

Von der Wechselwirkungsmatrix kommen also in erster Linie
die ,,Diagonalelemente*’

J=J =1, L=L=1 (K =1)

in Betracht. Wenn man fiir diese Quantenzahl-Werte die Fierzsche
T-Matrix (I.e.?), Gl. (9), (10)) berechnet, so zeigt sich, dass

"= T——% 2 (als Matrix beziiglich 4,j,) folgendermassen durch
die £2-Matrix®) darstellbar ist:

(a‘a’JT’lm=cf5{—1——:1,—(a'ﬂ91y'a'>+m}
G—=1,7=1[T"[ji) =c,-5 (G—1,7—1[L2]77)
i+5)-G—1,7121)
—f-%)-(m,ﬂﬂw
(G,7+11L2[7,7+1)

M?7+1HN9—1 j)
—42+3) (.1 —112]—1,9).

Die hier eingehende Konstante ¢; hat fiir I = 0, 1, 2 die folgenden
Werte:
1 1

1 |
——%, a-15> a-—3 (F@I+De=0). (1)

w{t\:a

G—=1,71T"175) = er -

A

G+, 7T 5 =¢

T

G+ 1T 5,7+ 1) = ¢
U7+ 1T =1, =¢

G, 7 —=1|T"j—=1,9)=¢

o
,_.—_\ /"‘\ w|w

Wir verwenden wie frither®) die Adiabaten-N#herung: Indem
-+ zundchst als Parameter behandelt wird, haben wir von der En-
ergie HT + H5 + HT die Eigenwerte W (r) zu bestimmen, welche

%) Diese findet man bei F1erz, Helv. Phys. Acta 17,181,1944: G1. IV, S.193.
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dann die adiabatischen Potentialkurven fiir das wellenmechanische
Streuproblem liefern:

2
{— B+ 57 (= g +) + WO} 1) = 0.
Die Berechnung der Eigenwerte W ldsst sich durchfiihren, wenn
die Isobaren-Energie ¢ sehr gross oder sehr klein ist im Vergleich zu
den Wechselwirkungsenergien V(r), U(r); fiir mittlere e-Werte sind
wir auf eine Interpolation angewiesen.

Der Grenzfall ,,& gross** ist mindestens bei grossen r-Werten
realisiert. Iier konnen H® und HT als kleine Stérungen zum
Hauptterm H! aufgefasst werden, und das bliche Stérungsver-
fahren gestattet die Eigenwerte als Entwicklungen nach Potenzen
von V/e und Ule anzuschreiben. Hier interessieren nur die Zusténde,
denen in nullter Naherung (V/e, Ule > 0,7 > oco) die Quanten-

zahlen 7, =7, = é— zugeordnet sind ; denn dies entspricht der Streu-
ung zweler unangeregten Nukleonen. In der zweiten stérungsmés-

. n . : ;3 : 1l = 3
sigen Ndherung miissen noch die Beimischungen 9, = 02 =5 und

= —‘35, Jo = 5, SOWIe ) =], = mg— beriicksichtigt werden. Das Er-

gebnis lautet:
328V-5¢,U)2+26(3V+ 2¢,U)

1
W =5 (8V +20¢,U) — e

14 U? '
i by g e s (2)

Der letzte Term, der nur fir I = 2 auftritt, rithrt von der Bei-
mischung J=3,L=1 (g] = g = g—) her.

Die Hauptaufgabe betrifft nun den Grenzfall ,,e klein*. Hier
werden wir, wegen zu grosser mathematischer Komplikationen, auf
die Beriicksichtigung der Beimischung J = 3, L = 1 verzichten.
Die folgenden Rechnungen gelten also ohne weiteres nur fir I = 0
und = 1; auf den 3P,-Zustand angewendet, liefern sie zu hohe
W-Werte. . ‘

Fir verschwindende Tensorkraft ist der Grenzfall ,,& klein'

schon von BreuLER?) behandelt worden und wir werden seinem
Vorgehen folgen. Sei

J1—J2=9, J1+tjs+1=0  (6+0 gerade).
6 kann die Werte 0, 4 1 annehmen (| 6 | = J, K). Fiir 6 = 0 durch-

?) K. BLEULER, Helv. Phys. Acta 18, 317, 1945. Beziiglich der folgenden
Transformationen vgl. die Formeln (4), (5), (6) und (9) bis (13) bei BLEULER.

28
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lauft ¢ die Werte 2,4, 6, ..., andernfalls die Werte 3,5,7,....
Von o transformiert man auf eine neue kontinuierliche Variable &:

| (6’§IH[6’:E’): ,
2 sin ZEE [y (0) [ (8,0  H[0,0") [y (o) -sin 5
WO
2 (g2 1)2
ya(a):"_;;’___s_z_)_
Dabei wird:

(O HI| 0, &) = (0]1]8) - (¢]1]8) - (—5pw + T —1)
(0, 8| HA| &, &) = V(r) - Do (&, &) ),
(0, [HT[0, &)= U(r) - Con (£, &)

Die Schriodingergleichung des Operators HY + HS + HT ist also
von der Form:

o 5 :
R LA e Rt D20
+).;v f [V - Dss (&, &N+ U- Css (€, g’)] oy (E)dE = 0. ®)
Dabei gelten (wegen ,,6 + o gerade®’) die Parititsbedingungen :

@s(— &) = (= 1)1 ps( ). (4)

Die Kerne Dys in (3) sind bet BLEULER?) berechnet, und die Cgy
sind mit den gleichen Formeln berechenbar?).

‘Ber Entwicklung nach Potenzen von & und & zeigte sich
im Falle verschwindender Tensorkraft, dass die Gleichungen (3)
durch zweimalige (allgemein (J + K)-malige) Differentiation in
-erster Niherung in Oszillatorgleichungen iibergehen:

\ .

95 &)+ (a—p2E2) () =0  (6=0,%1)
C(fiir U=0; 8=} V/e>1, so dass ¢y + 0 nur fiir [ €| << 1).

8) Wir schreiben D(&, &) an Stelle von BLEULER'S D(n+ &, m+&7).

9) Bei diesen Rechnungen war mir Herr Dr. BLEULER behilflich, wofiir ich
ihm auch an dieser Stelle besten Dank sagen méchte. In den Bezeichnungen der
BLEULERschen Arbeit?) ist z. B.

CulE.&)=op [4(EE)~5 Dulat&,nt8)- T IFE-E+FE+EN].
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Bei Mitnahme der Terme U Cys kommt in entsprechender Néherung :

@y + (20— BEN @) + Apo + ulp + 9 = 0,
rrrr rr 1 ”
¢ (o — /3?52) Pia ‘[‘311(9%1 +@q) —upy = 0;
— 2 (WH+V+3qU), =t (W+V—g¢U)o),

= (V3 U), B=t(V—1al), (6)

20———21 ﬂ—_ QCIU

(5)

Die Naherungsgleichungen (5) setzen nattirlich A2, 7 reell und
>1 voraus (,,tiefe Potentialmulde’ bel & = 0), was im Limes >0
erfillt ist, wenn V > — % ¢;Uund V > %01 U. Diesen Bedingungen
geniigen die U- und V-Werte, die wir bei der Diskussion (§3) —
auf Grund von S-Term-Daten — annehmen werden.

Nach (5) bewirkt die Tensorkraft eine Kopplung zwischen den
3 Oszillatoren d = 0, - 1. Eine genauere Abschitzung lehrt aber,
dass die Kopplung zwischen 6 = 0 einerseits und 6 = -+ 1 ander-

selts in dieser Niiherung vernachlissigt, d. h. u = 0 gesetzt werden
kann'?). Definiert man noch

4 _
P1+Pa=@ @@=,

so folgt:
gy + (2o — BEED @y + Ao@y =0, ‘
7 4 (g — /3252);" +he =0, J (7)
P (- EY T =0

Hier 1st noch zu beachten, dass die P-Potentialkurven, die
.. : . . 1
fiir r - oo zwei unangeregten Nukleonen entsprechen (71 = Jg = ?) ,

zu Eigenfunktionen gehoren, die in 7, j, symmetrisch, d. h. in 6
gerade sind:

1= 91, p=0.

10) Die Terme (~ % 02+ 1) in o, und «, sind in dieser Naherung zu vernach-
lassigen.

11) Mit anderen Worten: Der Einfluss dieser Kopplung fallt erst in die nichste
Néherung (Anharmonizititen), die hier ausser Betracht bleibt. Dabei ist wesent-
lich, dass schon in nullter N .herung (¢ > 0) die Eigenwerte W, und W, (sie
bestimmen sich durch «y =0 bzw. «; = 0) verschieden sind (ihre Differenz ist
4 ¢; U). — Die Vernachlissigung der Kopplung wire erst recht erlaubt, wenn
etwa f1>>1 aber 3 < 1 sein sollte (oder gar 3 < 0; dann wiirden die Oszilla-
tionen 0 = 0 und § = 4 1 in getrennten Potentialmulden stattfinden).
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Es bleiben somit nur die beiden ersten Gleichungen (7), die beide
von der Form sind:

"+ (0 — 282 9" + Ag = 0. (8)
Statt dessen schreiben wir mit den Bezeichnungen.
VeB-f=z, ¢@=u(2), 5=a (9)
w' (a —ji—a: )u” + 4ﬁ2 =0. (10)
Im Sinne emner ,,Eurerschen Transformation‘* setzen wir
= [dy (z—y)r o), (1)

wo die Integration in der komplexen y-Ebene um den Punkt y = «
herum zu fithren ist, etwa von y= + co (oder — oo) ausgehend und
dorthin zuriick, wenn das Integral dort konvergiert. Wennn > — 1,
kann statt dessen von y = *) oo bis zum Punkte y = & integriert

werden, dies insbesondere fir n= 0,1,2,... In letzterem Falle
folgt aus (11) durch (n + 1)-malige Differentiation:
ut+V(z) = nlv(z) (wemn n=0,1,2,...). (12)

Mit (11) wird die linke Seite der Gleichung (10) gleich

nfdy (m_y)"'l{v’”(y) (am——-y) () — g nyv(y)
+i[g—nm—1)] [ay @—yr ow).

Wir wihlen nun n so, dass der Koeffizient des zweiten Integrals
verschwindet :

", iR v B= ]/ +ﬁ2, (13)
dann ist (10) erfillt, wenn fir v(x) gefordert wird :
fu”’+(a—%w2) @’—%nmv:(). (14)

Durch die weltere Substitution

v=e * w(x) (15)
folgt:

w —% ww”+(a—~g~+ %:{:2) w'+ (—%a-l—'————n) zw=0. (16)
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Ausgezeichnete Werte des Eigenwertparameters e erhilt man durch
die Forderung, dass die Gleichung (16) gerade Polynome als
Losungen haben soll:

w = Sﬂzl.—i“ b1$2Z—2+ £ +bl_1w2—|—bl. (17)

Mit diesem Ansatz wird die linke Seite von (16) ein ungerades
Polynom vom Grad 21+ 1, dessen hochstes Glied lautet:

1 3 1
2014+1 , |.— W .
& [ e 2n+l],

dieses verschwindet fir

3

a=5—n,+2l=1FR+21 (1=0,1,2,...), (18)

und dann kénnen auch die anderen Glieder durch Wahl von by, b,,
..., b, zu null gemacht werden, so dass (16) mit (17) erfiillt ist.
Im Anhang wird gezeigt werden, dass die a-Werte (18) die einzigen
Eigenwerte unseres Problems sind. Mit (9) und (13) schreibt sich (18):

«=2p(1F YL+ +20) (=0,1,2,..).  (19)

Es ist nun wichtig, den Anschluss an den Grenzfall verschwin-

dender Tensorkraft herzustellen. Mit U = 0, 1= 0 wird (10) zur
1 3 5

Oszillatorgleichung fiir 4", mit den Eigenwerten a = -, 5, 5. . ..

Wir unterscheiden die zwel Falle

(A): a= % + 21, «' = gerade Oszillator-Eigenfunktion,

(B): a= % +21, w¥= ungemde Oszillator-Eigenfunktion.
Andererseits wird nach (18) fir 2= 0:

R_:%, n,=1, P =104

d. h. (18) liefert dieselben Eigenwerte a, wobei das obere Vorzeichen
(n,) dem Fall A, das untere Vorzeichen (n.) dem Fall B zuzuord-
nen ist. (Nach (12) ist v = "' fir n =1, und v =u" fir n = 0;

mit (A) bzw. (B) wird dann natiirlich auch (14) erfiillt.) Nun steht

w fiir @, bzw. fiir (}Lo: @1+ @_1. Auf Grund der Paritdtsbedingungen -
(4) konnen wir daher — mit BLeuLEr — folgern, dass fiir 6 = 0
der Fall A und fiir 6 = 4 1 der Fall B auszuschliessen ist; d. h.
es bleiben nur die Eigenwerte

a=1+R+2l fir =0, a=1—R+2] fir 6= +1. (20)
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Lésst man nun die Tensorkraft von null an anwachsen, so miissen sich
die Eigenwerte stetig dindern, d. h. die Zuordnung (20) bleibt auch
fir U + 0 bestehen?): es gilt in (19) das untere Vorzeichen fiir
é = 0, das obere fiir 6 = <4 1. Das Ergebnis schreiben wir, indem
wir mit Hilfe von (6) zu den urspriinglichen Bezeichnungen zuriick-
kehren:

I%:—JC~§QU+QW]/V+§mﬂI@+1%+20+

L ket @
V+--CI L

W= -V+aeU+2)5 V-2 U(1—Ry+20)+

fom

N N T b (22
wo B/ T 22
I/“—3—CII-

-+

Von diesen Eigenwerten interessieren hier nur die beiden mit
[ =0, und auch von diesen nur der tiefere, d.1. W fiir ¢;U > 0,
W, fir ¢, U < 0. Denn dies ist der Eigenwert, der, wenn man
die Parameter ¢/V, ¢/U anwachsen und schliesslich > 1 werden
lidsst, stetig in den Eigenwert (2) iibergehen muss, der im Grenz-
fall ,,e gross’* der tiefste ist13).

§ 3. Diskussion.

Zur Vereinfachung seien Treppenpotentiale angenommen: V, U
konstant fiir r < r,, = 0 fiir » > r,. Natiirlich ist dann auch die
Potentialkurve W (r) eine derartige Treppenkurve, und ihre Tiefe
lasst sich, je nach der angenommenen Grosse von &, nach (2) oder
nach (21), (22) berechnen oder eventuell interpolieren.

Als numerisches Beispiel wihlen wir

V=420, U= +100 (in MeV).

12) Die Funktionen % (11) lassen sich dann immer den Paritatsbedingungen
(4) entsprechend symmetrisieren. — Das bei ganzzahligen R-Werten eintretende
,»Uberschneiden*‘ der Eigenwerte (20) mit den aus Paritatsgriinden verbotenen
Eigenwerten bleibt natiirlich ohne Einfluss auf die Zuordnung (20).

13) Wennman | U | (ceteris paribus) anwachsen lasst, kann — je nach der Pari-
tit von 6 und I — der Fall eintreten, dass 4 <— $%/4 und folglich R imaginér
wird, womit die betreffenden Eigenwerte fortfallen. Wir brauchen jedoch diesen
Fall nicht niher zu untersuchen, da fiir denjenigen der beiden Eigenwerte (21),
(22), der (bei kleineren | I7 |-Werten) der tiefere ist (d.h. W, fiir ¢, U >0, Wyg
fiir ¢; U < 0), R immer reell bleibt.
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In der Figur ist, fir I = 0, 1, 214), der jeweils tiefste Eigenwert W
als Funktion von }e dargestellt, wobei die hyperbelartigen Kur-
venzwelge rechts der Formel (2), die Geraden links der Formel (21)
bzw. (22) entnommen sind; und zwar gilt (21) oder (22), je nach-
dem ob ¢; U > 0 oder < 0 1st; d.h. nach (1): fiir I =1 gilt (21)
(6= 0), fir I =0 und 2 gilt (22) (6= +1).

w

—204
-

Fig. 114).

Die Figur ldsst erkennen, dass bei abnehmender Isobaren-
Energie ¢ alle Potentiale vertieft werden, im Sinne stiarkerer An-
ziehung; dass aber diese Anziehung in den Féllen I =1 und I= 2
ziemlich schwach bleibt, wenn man von kleinsten &-Werten, die
nicht ernstlich in Betracht kommen, absieht?). Dagegen erfolgt
im 3P,-Zustand eine kraftige Anziehung, falls & < 80 MeV ange-
nommen wird. Allerdings ist hier die Interpolation zwischen den
beiden Grenzfillen mit einer Unsicherheit behaftet, die schwer zu
beheben sein wird; doch wird man wenigstens schliessen diirfen,
dass W (3P, = — 40 MeV fiir ¢ < 30 MeV.

Ein so tiefes Potential, mit einer Reichweite ry ~ 2,8 - 10-13 cm,
hat aber — trotz des geringen Gewichtes des 3P,-Zustandes —

1) Fiir I = 2 ist die ausgezogene Kurve (& gross) unter Berticksichtigung der
Beimischung J = 3, L = 1 (letzter Term in (2)) berechnet, wihrend in den punk-
tierten Kurvenstiicken diese Beimischung vernachlassigt ist (Formel (2) ohne
letzten Term, bzw. (22)). .,

15) Dasselbe gilt auch fiir den Singulett-P-Zustand (K = J =0, L= 1= 1),
dessen W-Kurve aus Gl. (40) in Helv. Phys. Acta 17, S. 227, entnommen werden
kann. Die Tensorkraft bleibt hier ohne Einfluss, wenn man die Kopplung mit
den Beimischungen L = 3 wieder vernachlissigt.
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einen gentigend starken Einfluss auf die Proton-Neutron-Streuung
bei hoheren Energien, um zur Erklirung der eingangs erwihnten
Streu-Anisotropie herangezogen werden zu kénnen'®). Rechnet man
mit Treppenpotentialen der Reichweite 7= 2,8 - 10-13 cm, und
nimmt man die Neutronen-Energie zu 15 MeV an, so verursacht
ein Potential der Tiefe 40 MeV eine Phasenverschiebung der P-Welle
von rund 80° (gegeniiber nur 30° bei 30 MeV Tiefe)!?). Infolge-
dessen wiirde die 3P,-Welle allein, wenn man ihr Potential zu
— 40 MeV annimmt und die anderen P-Wellen als zu schwach ver-
nachléssigt, schon eine recht starke Anisotropie hervorrufen; fiir
das Verhaltnis o (7)/o(/2) [¢(#) = Streuquerschnitt als Funktion
des Streuwinkels im Schwerpunktssystem] ergébe sich ein Wert
von ungefahr 0,617). Dieser kommt dem Amavrpischen Messwert?)
0,52 4- 0,08 (bei Neutronen-Energien von rund 14 MeV) schon
recht nahe.

Ein genauerer Vergleich, unter Zuziehung der anderen P-Wel-
len, diirfte sich erst lohnen, wenn verlésslichere Zahlwerte zugrunde-
gelegt werden konnen. Insbesondere ist noch genauer zu unter-
suchen, ob die oben angenommenen numerischen Werte von 7 und
U, zusammen mit einem e-Wert von etwa 80 MeV oder weniger
(vgl. die Figur), auch eine befriedigende Darstellung der S-Poten-
tiale gestatten (wobel die D-Beimischungen natiirlich nicht ver-
nachléssigt werden diirfen). Eine vorlaufige Abschiatzung (die sich
ebenfalls auf Rechnungen von Herrn F. Vinrars stiitzte) hat ge-
zeigt, dass jene Zahlwerte wenigstens in der Grossenordnung das
Richtige treffen. Etwa notwendige Korrekturen diirften also unsere
Ergebnisse beziiglich der P-Potentiale im wesentlichen bestehen
lassen.

Anhang.

Zum Beweis der obigen Eigenwert-Formeln wére streng ge-
nommen zu zeigen, dass fiir die betreffenden W-Werte — und nur
fir diese — normierbare Eigenfunktionen der Schridingergleichung
(8) existieren. Zur Untersuchung der Normierbarkeit miisste aber
der Verlauf der Funktionen ¢, ausserhalb der Potentialmulde
(| &£ | ~ ) bekannt sein, was nicht leicht zu erreichen sein diirfte!®).

16) Ein stabiler P-Zustand wire erst bei noch tieferen Potentialen maglich
(mindestens 50 MeV fiir 7y = 2,8 - 10-13 cm; vgl. BETHE und BACHER, Rev. of
Modern Physics 8, 82, 1936, Gl. (45d) auf S. 113).

17) Diese Angaben sind der ETH-Diplomarbeit von F.VILLARS (unverdffent-
licht) entnommen. -

. 18) Beziiglich des einfacheren Falles J = 0 vgl. G. WENTZEL, Helv. Phys.
Acta 17, 252, 1944, S. 265 bis 267.
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Statt dessen betrachten wir den Funktionsverlauf am ,,Rande der
Potentialmulde, wo. die Entwicklung nach Potenzen von &, &
noch legitim ist, auf Grund der Niherungsgleichungen (7 u.ff.), in-
dem wir in deren Losungen & gegen 4+ oo gehen lassen. Im Falle
U= 0 waren es die Oszillator-Eigenfunktionen ¢ = y, die sich
durch 1hr quasi-exponentielles Abfallen nach beiden Seiten vor den
anderen Losungen auszeichneten. Diese Rolle muss hier von den
Funktionen v bzw. v’ iibernommen werden, die ja im Limes U > 0,
d.h. n—>1 bzw. 0, in Losungen der Oszillatorgleichung iibergehen.
Wir werden also zu zeigen haben, dass die a-Werte (18) die ein-
zigen sind, die sich aus dem Kontinuum herausheben durch ein
ausgezeichnetes asymptotisches Verhalten, ndmlich beiderseitigen
quasi-exponentiellen Abfall, der Funktionen v (oder v"). Nachher
15t auf Grund von (11) unschwer einzusehen, dass auch mit Bezug
auf die Funktionen % bzw. die Differentialgleichung (10) keine
ausgezeichneten a-Werte ausser den Eigenwerten (18) existieren.

Fir die Losungen v der Gleichung (14) machen wir den Ansatz:

1

2 _E_z
v(c)=e * fdte 2" Pz i), (23)

wobei tiber die Integrationswege in der komplexen f-Ebene noch
zu verfiigen sein wird. Unter Verwendung der Identitat

"%“ o *%fz ; 9 ) :
dte zf(x+it)y= [dte (m+z.t+w)f(m+zt) (24)

findet man:
r 1 2) Y
v+ (G—E—JJ V=

2o Ll .
e fdte 2 [(a-—-%)F(w—{—a}t)w(w—i—qlt)F’(m—i—@t)],
und weiter, immer unter Beachtung von (24):

1 1 1 / 1
Fr g 2t = |’ e R iy _—
v+ (Ct | T )’U B nrov [‘U + (a, | o )’D] 2 (n 1).’15?)

1
1 =Lt

.Y fdt6—%t2[(a+n_%)($+u)F(a;+7;t)

—l(a—n—3) + (@ +i)% F'(@+it) + (a+1D) Fr(z+it)] .

Zur Erfillung von (14) geniigt es also zu fordern:

2B (@) —{o—n— 5+ F'(0) + (a+n—3)aF()=0.  (25)
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Diese Differentialgleichung héngt mit derjenigen der konfluenten
hypergeometrischen Funktion!®?) zusammen, wie durch folgende
Substitutionen ersichtlich wird:

11
F((B)=G(%w2):G(Z)=BZ . M), (26)

1

ke m— =

’r 2 1 ’ 2
G (2) + (m”ﬁ——l)a(z) —2 G(g)=0, 27)

1,k mz_é
M@\ -2t M=o, (28)
WO

mz%n—%ﬂm——é—, k=-i—n+%a—%. (29)

Im Integranden in (23) ist also einzusetzen:
1
. . — (x+it)® 1\ —2m—1 / .
F(a+it) =G (5 (a+it)?) e * (""\jTit) M(3 (@+ib?) (30)
wo G und M Lésungen von (27) bzw. (28) sind.

Wird der Fall ,,2 m = ganze Zahl** vorerst ausgeschlossen, so
sind zwel unabhéngige Losungen von (28) (vgl. WW19), Ziffer 16.1):

ML m (Z)

m%z m+% —“12—+m-k (;+m»~k) (~2~+m—k)
BRI L V1T e = T Rt T Ew AT R T R O CD
M, _n(2)

g il ;——m—k (%—~M—~k)(~gﬁ—~m—~k)
=e "2 A igsemt T mpmemenzmy 2| (32)

Zwel andere Partikularlosungen von (28), die sich zur Untersuchung
des asymptotischen Verhaltens (| z|> 1) eignen, sind (vgl. WW,
Zitfer 16.31 und 16.41):

1

Win(d)=e 2 2H{1+0(1)}, (33)
Weim(—2)= (—2) {140 (=)}, (34)
My, (@)= Wy () + € Weg i (—2). (85)

In jedem Fall konvergiert das f-Integral in (23), wenn der Inte-
grationsweg langs der reellen {-Achse ins Unendliche gefiihrt wird.

19) Vgl. WHITTAKER und WaTsoN, Modern Analysis, Cambridge Umversmy
Press, 3. Auflage, Kapitel XVI (im Folgenden als WW zitiert).
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Wahlen wir in (30) bzw. (28) zunichst die Partikularlosung
M, ,, (81)%9), so ist die Funktion F(z + if) (30) in der {-Ebene,
einschliesslich des Punktes ¢ = 1z, regulér; folglich liefern alle Inte-
grationswege von {= —oo bis {= +oo die gleiche Funktion v,
und wir konnen léngs der reellen ¢-Achse integrieren. Speziell fiir
| | > 1 kann der Integrand nach fallenden Potenzen von z + 4t,
geméss (35), (33) und (34), entwickelt werden. Wenn ¢/ +0 ist,
liefert W_, ,,(—2) den Hauptterm von v: :

v(x) Nfdt e—(t—ézfz)*(t_,,;m)—zm—z k=1
v(x)=const- x~2"{1+0(x~2)} (¢} =0). (36)

Anders im Falle ¢/, = 0, wo M; ,(2)=c. W w(2). Da (nach WW,
Zitfer 16.41)
' I'2m+1)  jia

N I"(m—k-k;) ,
tritt dieser Fall ein fiir
—(m_k+~;—):l:o,1,2,..., (87)
oder nach (29) fiir
a= 5 —n+2l. (88)

Dies sind die Eigenwerte (18). In der Tat bedeutet (37), dass die
Reihe (31) abbricht, und dann ist aus (30) und (28) leicht zu ersehen,
dass die betreffenden Losungen v tibereinstimmen mit den in (15),
(17) angegebenen Eigenfunktionen: e~*"* mal Polynom vom Grade
2121,

Wird andererseits M, _, (32) in (30) bzw. (28) emgesetzt SO
gilt fir {t Qix:

F(z+if)=const- (f—iz)~*m{1+...}; -~ (89)

d. h. der Integrand in (23) wird, wenn
—4m$0,1,2,..., (40)
singular am Punkte {= 12. Die zwei Integrationswege, die ober-

halb und unterhalb dieses Punktes von t= — oo bis = + oo

20) Diese Losung v wird auch erhalten, wenn man in (14) v nach Oszillator-
Eigenfunktionen entwickelt und fiir diese eine geeignete Integraldarstellung ver-
wendet.

1) Falls n komplex ist (vgl. Fussnote 13), gibt es keine derartigen Eigenfunk-
tionen zu reellen Werten von a.
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fihren, liefern dann zwel unabhingige Partikularlésungen v,, v,.
Lasst man z gegen + oo gehen, so wird »; hauptséchlich durch
den Beitrag einer Schleife bestimmt, die etwa lings der imaginéren
t-Achse um den singulidren Punkt herum und wieder zuriick fiihrt:

= a2

+—z 4m—1
vy(x— +oo)=const-e * -z {1+0(z3}; (41)

fiir £ — — oo hingegen kann in »; lings der reellen t-Achse inte-
griert werden:

I const-x~2{1+0(x2)} fiir ¢_+0,

01 (x—> —o0)= LU T (42)
lconst-e o P{140(z ¥} fircl=0.
Bei v, tauschen positive und negative z-Werte die Rollen:
vy (@) = const - v, (— x) (43)

Wegen des quasi-exponentiellen Anstiegs fiir x— +oco bzw.
x —> —oo kommt weder v; noch v, noch eine Linearkombination
fir eine Eigenfunktion in Betracht.

Das Gesagte gilt aber nur unter der Voraussetzung (40). Da
ganzzahlige Werte von 2m vorerst ausgeschlossen waren, betrach-
ten wir zunéchst die Falle

—4m=21+1, 1=0,1,2,...; (44)
dies heisst nach (29):
a= 5 +n+2l. (45)

Jetzt ist F(xz + 1f) nach (39) bei =12 reguldr; die Schleife,
die fiir den exponentiellen Anstieg gemiéss (41) verantwortlich
war, fallt fort. Unter den Linearkombinationen von M, ,, und
M, _,,, die nunmehr in (30) eingesetzt werden konnen, befindet
sich speziell die Funktion W, ,(2); diese kann eine Funktion v
liefern, die beidseitig exponentiell abfillt?2). Die a-Werte (45)

22) Hier ist aber zu beachten, dass die Funktion W ,,(2), wie sie bei WW,
Ziffer 16-12, definiert ist, lings der negativ-reellen z-Achse unstetig ist; infolge-
dessen liefert sie fiir £ > 0 und z < 0 im allgemeinen verschiedene Losungen v,

die sich bei x = 0 nicht stetig aneinander schliessen. In den Fillen m = ke

4
(l=1), B= %, 1, % >« « - lasst sich Wy ,,(2) nach WW, Zitfer 16 - 5, durch HER-
MITEsche Polynome ausdriicken; die entsprechenden Funktionen v sind von der
Form: ¢4 mal Polynom vom Grad 2 n— 1. Fiir andere n-Werte jedoch stellt sich
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konnen somit gleichfalls Eigenwerte der Gleichung (14) sein. Nach
(18) 1st aber

5 Hny+2l=1 L R+2l=> —n_ +2l;

d. h. die Eigenwerte (45) der mit n = n_ gebildeten Gleichung (14)
sind gleich den Eigenwerten (38) der Gleichung (14) mit n= n_
(und umgekehrt). In Bezug auf die Gleichung (10), deren Losungen
% gemdss (11) mittels des einen oder des anderen n-Wertes dar-
stellbar sind, liefert also der Fall (44) keine neuen Eigenwerte zu
(18) hinzu. Die zwel so erhaltenen, zum gleichen Eigenwert a ge-
horigen Funktionen % sind identisch, wie aus threm asymptotischen
Verhalten zu ersehen ist23).

Es bleibt schliesslich noch der Fall, dass 2m ganzzahlig (+ 0)
wird. Eine der beiden Reihen (31), (32) wird dann unbrauchbar, es
sel denn, dass sie abbricht, bevor die Glieder mit verschwindendem
Nenner auftreten. An die Stelle einer unbrauchbaren Funktion
(M, _ s tritt jeweils eine Losung mit logarithmischer Singu-
laritdt bei 2 = 0 (f = 12)24), die sicher keine Eigenfunktion v liefert.
Entsprechendes gilt fiir 2m = 0, wo (81) und (32) identisch wer-
den. Es bleibt also nur M, |, zu betrachten. Ist nun 2m ganz
und = 0, so bleibt alles, was oben tiber die Losung mit M, ,,
gesagt wurde, ohne weiteres giiltig; neue Eigenwerte konnen nicht
auftreten..Sei andererseits

Om=—(I'+1), U'=0,1,2,... (46)

Mit M, _,, wird dann F'(z + +t) nach (39) regulér bei ¢t= iz, und
v verhalt sich asymptotisch wie 2" (vgl. (86)), ausser wenn die
Reihe (32) abbricht, was fir n=1,2,8,... der Fall ist; dann
wird v gleich e~*/*mal gerades Polynom in z. Eigenfunktionen v
werden also erhalten fiir n = 1,2, 8, ..., was zusammen mit (46)
bedeutet:

3 . '
=g +nt2l;n=1,2,8,..;0'=0,1,2,... (47
Nun ist aber zu beachten, dass im Falle (46) die aus M, ., er-
der exponentielle Abfall nur auf einer Seite ein; so z. B. fiir m = — %, n =0,
wo W ,,(2) die Funktion v = f A G ergibt (zur stetigen Fortsetzung bei
z = 0 dient hier die Pa.rtlkula.rlosung v = const).

23) Fiir z — + o0 oder z— — oo verschwindet die Funktion u wie e
wihrend sie auf der anderen Seite im allgemeinen (d.h. ausser fiir besondere

—zt/4 xa-5/2’

. (= Za
Werte sowohl von % als von a) wie & © variiert.
24) Vgl. WW, erste Fussnote auf S. 346.
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haltenen Eigenwerte (88) zum Teil ausfallen. Wahlt man einen der
a-Werte (38), so ergibt (31) mit (29) fiir n £ 0:

l 1(1-1)
Tia=n) * T 210=m)(=1=m) *

L(I=1)(1-2)...2-1 \
T T i ion. . eona-n 4

2

My, (2) = emd2gmti ‘1 +

Wenn hier verschwindende Nenner auftreten, d.h. wenn

n=1,2,8,...und l=n+0U, wolI'=0,1,2,...,

so sind die betreffenden a-Werte (38) (a=—2——n+2 l= —g— +n+2 l')
zu streichen. Doch werden sie gerade ersetzt durch die aus M;, _,,

gewonnenen Eigenwerte (47). Fiir n = O(a Sy z) schliesslich

wird (wegen l+m—k=1+2m M, (2) = et42 gmtl  was
g p) k, m

v = const ergibt; hier treten die frilher erwihnten Eigenfunktionen
(v" = ungerade Oszillator-Eigenfunktion) in der Liicke.

Damit ist nachgewiesen, dass alle a-Werte (18) ohne Ausnahme,
und keine andern, Eigenwerte sind in dem Sinne, dass es zuge-
horige Losungen v (oder »') mit beidseitigem quasi-exponentiellem
Abfall gibt.

Ziirich, Physikalisches Institut der Universitit.
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