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Anisotropie der Proton-Neutron-Streuung und
symmetrische Mesontheorie

von G. Wentzel.
(12. VII. 1945.)

Inhalt. § 1: Problemstellung. §2: Überblick über den Gang der Rechnung.
§ 3 : Diskussion. — Anhang.

§ 1. Problemstellung.

Nach Messungen von Amaldi u. a.1) ist die Proton-Neutron-
Streuung bei höheren Energien (~ 15 MeV) stark anisotrop in dem
Sinne, dass im Schwerpunktssystem grosse Streuwinkel (& ~ n)
relativ selten auftreten (genaueres s. im § 3). Dies ist als Argument
gegen die ladungssymmetrische Theorie der Kernkräfte angeführt
worden, die nach Rarita und Schwinger2) eine Anisotropie im
entgegengesetzten Sinne erwarten lässt; letzteres liegt daran, dass
in den P-Zuständen — die P-Wellen bestimmen ja in erster Näherung

die Anisotropie — die Kernkräfte nach dieser Theorie ab-
stossend oder nur schwach anziehend sind. Dieser Einwand trifft aber
nicht die modifizierte Form der ladungssymmetrischen Theorie, in
welcher dem Nukleon eine Spinträgheit zugeschrieben wird. Für
diese Theorie ist charakteristisch, dass das Nukleon „isobare
Zustände" besitzen soll; die Isobaren-Energie hat die Form einer
Kreiselenergie, und zwar ist der Kreisel in der ladungssymmetrischen

Theorie speziell ein Kugelkreisel (die Hamiltonfunktion ist
invariant gegenüber Drehungen im Raum des isotopen Spins). Die
Anwendung dieser Theorie auf das Zwei-Nukleon-Problem Hess

voraussehen, dass die P-Kräfte bei geeigneter Parameterwahl
systematisch anziehend werden3), und es erhebt sich die Frage, ob dieser

b E. Amaldi, D. Bocciarelli, B. Ferretti, G. C. Trabacche, Naturwiss.
30, 582, 1942, und Rie. Scient. 13, 502, 1942. Vgl. auch die Angaben von F.C.
Champion und C. F. Powell, Proc. Roy. Soc. 183, 64, 1944, die im Rahmen ihrer
— allerdings nicht grossen — Messgenauigkeit die Ergebnisse von Amaldi u. a.
bestätigen.

2) W. Rarita und J. Schwinger, Phys. Rev. 59, 556, 1941.
3) M. Fierz und G. Wentzel, Helv. Phys. Acta 17, 215 und 252, 1944

(vgl. S. 228); K. Bleuler, Helv. Phys. Acta 17, 405, 1944 (vgl. S. 407 und die
dort folgende Diskussionsbemerkung) und 18, 317, 1945.
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Effekt quantitativ ausreichend ist, um als Erklärung für die
beobachtete Streu-Anisotropie dienen zu können.

Wenden wir uns dieser Frage zu, so ist es — wie früher schon
bemerkt wurde4) — unumgänglich, die sogenannten Tensorkräfte
(Spin-Bahn-Kopplung) zu berücksichtigen, da durch diese der
3P-Term stark aufgespalten wird. WTir werden dabei die
allgemeinen Formeln verwenden können, die Fierz für die Tensorkräfte
in dieser Theorie angegeben hat5).

§ 2. Überblick über den Gang der Rechnung.

Die Hamiltonfunktion des Zwei-Nukleon-Systems werde, wie
bei Fierz5). als Matrix dargestellt bezüglich der folgenden
Quantenzahlen :

h>?2= Spinquantenzahlen der beiden Nukleonen,
J, K resultierender Spin und isotoper Spin,

L Bahnimpulsmoment,
I gesamtes Impulsmoment.

Die Hamiltonfunktion H, die in I und K diagonal ist (diese
Variablen werden deshalb als konstante Parameter behandelt),
setzt sich aus folgenden Termen zusammen:
kinetische Energie der Relativbewegung:

XJK 1 l d*
i L(L + 1)\ /• • TT 11 I • '•"' TT'\H W\ d^ —^~) ¦(jihJL\l\]1]2 J L),

Isobaren-Energie der beiden Nukleonen:

ff= Y [(?'1 + y)2+ (?'3 + y)2-2] • (hhJL I1 \hJh'J'L')>

potentielle Energie der skalaren Kraft:
Hs V(r) ¦ (j,j2J | Q | jt'j2'J) ¦ (JL | 1 | J'L'),

potentielle Energie der Tensorkraft:

RT=TJ{r)-{j1j2JL\T\j1'j2'J'L').
(Hierbei ist T' T — ^ ü in der Bezeichnung von Fierz.)

Die Tensorkraft koppelt Zustände mit J' — J 0, ±2 und
L' — L 0, ± 2 miteinander (wobei | J — L | ^ I gj J 7 L). So

enthält die Schrödingerfunktion des hier zu betrachtenden,,3P-

4) Vgl. die unter 3) zitierte Diskussionsbemerkung.
6) M. Fierz, Helv. Phys. Acta 18, 158, 1945.
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Terms" (K 1) ausser der Hauptkomponente J — L= 1 noch
„Beimischungen" mit höheren (ungeraden) J- und L-Werten. Eine
P-Beimischung (L= 1) kann — wegen [ J — L \ ^ I — nur im Falle
1 2 auftreten ; diese Beimischung (J=3, L 1) soll im folgenden
soweit als möglich berücksichtigt werden. Alle übrigen Beimischungen
haben L 2: 3 und dürften wegen der starken Zentrifugalkraft nur
schwach mit der Hauptkomponente J= L 1 gekoppelt sein; sie

werden hier vernachlässigt. Übrigens würde ihre Berücksichtigung
die Potentialkurven nur noch stärker herabdrücken und damit
die Streu-Anisotropie eher noch begünstigen.

Von der Wechselwirkungsmatrix kommen also in erster Linie
die „Diagonalelemente"

J J' 1, L L' 1 (K= 1)

in Betracht. Wenn man für diese Quantenzahl-Werte die FiERZsche
T-Matrix (1. c.5), Gl. (9), (10)) berechnet, so zeigt sich, dass

Ï" T—— ü (als Matrix bezüglich jtj2) folgendermassen durch

die ß-Matrix6) darstellbar ist:

(jj | T'\ jj) C/ - {-1 -1 (jj | Q | jj) + jï^i}
(j -1, j - 1 \T'\ ji)=Cl-^(j-l,j-l \Q\jj)

(j-l,j\T'\ jj) cj ¦ (j. +|) (;-1,7 \0\jj)
(j 7 l,j\T'\ jj) C/.(_j_l) • (j + l,j \Q\jj)

(j, j + 1\T'\ j, j + l) Cj -| (j, j + l\Q\j,j + l)

(j,j + 1 \T'\ j- 1, j) cj ¦ (-|) Cj, j + \\Q\j-l,j)
(j,j-l\T'\j-l,j) cI.(r4j2 + l)-(j,j-l\Q\j-l,j).

Die hier eingehende Konstante cz hat für I 0,1,2 die folgenden
Werte :

1_ _ J_ 1_
5 ' Cl ~ 10 ' C2 ~ _ 50 27(21 + 1)^ 0), (l)

Wir verwenden wie früher3) die Adiabaten-Näherung: Indem
r zunächst als Parameter behandelt wird, haben wir von der
Energie H1 + Hs + HT die Eigenwerte W(r) zu bestimmen, welche

6) Diese findet man bei Fierz, Helv. Phys. Acta 17,181,1944: Gl. IV, S. 193.
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dann die adiabatischen Potentialkurven für das wellenmechanische
Streuproblem liefern:

{-E + ^r(-~& + ^) + W(r)\f(r)-0.
Die Berechnung der Eigenwerte W lässt sich durchführen, wenn
die Isobaren-Energie e sehr gross oder sehr klein ist im Vergleich zu
den Wechselwirkungsenergien V(r), ZJ(r) ; für mittlere e-Werte sind
wir auf eine Interpolation angewiesen.

Der Grenzfall ,,e gross" ist mindestens bei grossen r-Werten
realisiert. Hier können Hs und HT als kleine Störungen zum
Hauptterm 77J aufgefasst werden, und das übliche Störungsverfahren

gestattet die Eigenwerte als Entwicklungen nach Potenzen
von V/s und U/e anzuschreiben. Hier interessieren nur die Zustände,
denen in militer Näherung (Vje, <7/e-> 0, r-> oo) die Quantenzahlen

ji j2 y zugeordnet sind ; denn dies entspricht der Streuung

zweier unangeregten Nukleonen. In der zweiten störungsmäs-
l 3

sigen Näherung müssen noch die Beimischungen jx= y, j2 -~- und3.1. 3ji= -—> Ja y> sowie jx j2 ~^ berücksichtigt werden. Das

Ergebnis lautet:
i 32(6F-5c7Lr)2 + 25(3V+ 2 cTV)2

W=l7(ZV+ 20 ctU)
(- '-^l —

-<W-6W+- V)

Der letzte Term, der nur für 1=2 auftritt, rührt von der

Beimischung J 3, L 1 h'j j2 y) her.

Die Hauptaufgabe betrifft nun den Grenzfall ,,e klein". Hier
werden wir, wegen zu grosser mathematischer Komplikationen, auf
die Berücksichtigung der Beimischung J 3, L 1 verzichten.
Die folgenden Rechnungen gelten also ohne weiteres nur für 7=0
und 7=1; auf den 3P2-Zustand angewendet, liefern sie zu hohe
W-Werte.

Für verschwindende Tensorkraft ist der Grenzfall „e klein"
schon von Bleuler7) behandelt worden und wir werden seinem
Vorgehen folgen. Sei

h - ?2 à, ji + j% +1 a (ò + o gerade).

ô kann die Werte 0, 7 1 annehmen (j ô | ^ J, K). Für ò 0 durch-

') K.Bleuler, Helv. Phys. Acta 18, 317, 1945. Bezüglich der folgenden
Transformationen vgl. die Formeln (4), (5), (6) und (9) bis (13) bei Bleuler.

28
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läuft a die Werte 2, 4, 6, andernfalls die Werte 3, 5, 7,
Von a transformiert man auf eine neue kontinuierliche Variable f :

(ô,s\h\ô',?
ofxc+Ë) r- _—Z, sm

WO

1 y ff(jj+f) r .„ ,„,., ,.r ,,,v o'(n+Ç')2, sin —g [y^o-)]-^ (<5,o-|77| Ó ,<r )bv(o- )]/z • sm-~—-

<72(g2-l)2
y«W —srräi--

Dabei wird:

(Ò, ï\Ht\ô'J') e-(o-\l\ô')-(i\l\ • (-^- + -Ç— 1

(<5,||77Ä|(5',|') ^W-DM,(f,r)8),
(<5,f|77r|ó7<r) U(r) -CW(£,n.

Die Schrödingergleichung des Operators 77J 7 TP + T72" ist also

von der Form:

+ 31

+'27 /[^-^.(f.^+^-^Cf.oj^COdr» o. (3)

Dabei gelten (wegen „d + a gerade") die Paritätsbedingungen:

?>,(-£)= (-l)a+1?>,(). (4)

Die Kerne D6S, in (3) sind bei Bleuler7) berechnet, und die Cdi>

sind mit den gleichen Formeln berechenbar9).

Bei Entwicklung nach Potenzen von £ und £' zeigte sich
im Falle verschwindender Tensorkraft, dass die Gleichungen (3)
durch zweimalige (allgemein (J + K) -malige) Differentiation in
erster Näherung in Oszillatorgleichungen übergehen:

vT® + (« - ß2*2)K(f) ° (ô o, ± i)

(für U=0; ß= |/T/e>l, so dass ç£ + 0 nur für 11 | < 1).

8) Wir schreiben D(S, f) an Stelle von Bleuler's D(ji+|, re + |').
8) Bei diesen Rechnungen war mir Herr Dr. Bleuler behilflich, wofür ich

ihm auch an dieser Stelle besten Dank sagen möchte. In den Bezeichnungen der
BLEULERschen Arbeit7) ist z. B.

<?ii(f,f) ci \âi(er)-jDufr+s,*+P)-ïl*'G-P)+Ptf+s')i\-
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Bei Mitnahme der Terme U- CdS, kommt in entsprechender Näherung :

<PÖ" + (ao — ßl%2) % + Xo <Po + /" (<Pi + <P-i) ° > |

^±1 K-/8fl2)?'±1+4A1(?)+1 + ¦/*ç>0 0;

«0 4(^+^ + 4^7/), c

^=4(F + |C/17), ß\

},0= —ki= n — -2cITJ.

±-lW+V*ClU\i*

V-^U),

(5)

(6)

Die Näherungsgleichungen (5) setzen natürlich ß2, ß2 reell und
^>1 voraus („tiefe Potentialmulde" bei f 0), was im Limes e->0

2 1
erfüllt ist, wenn V > —— ct TJ und F > -^Cj U. Diesen Bedingungen

genügen die TJ- und V-Werte, die wir bei der Diskussion (§ 3) —
auf Grund von S-Term-Daten — annehmen werden.

Nach (5) bewirkt die Tensorkraft eine Kopplung zwischen den
3 Oszillatoren ô 0, ± 1. Eine genauere Abschätzung lehrt aber,
dass die Kopplung zwischen ô 0 einerseits und <5 +j 1 anderseits

in dieser Näherung vernachlässigt, d. h. /.i 0 gesetzt werden
kann11). Definiert man noch

so folgt:
9?i + 9>-i <P, <P\—<P-i= <P,

<PÖ" +(aQ-ß2£2) 90 + ;-o <Po 0,

9"" + («i-ß\P)q>" + h9 =0,

f' + K-^W =o.

(7)

Hier ist noch zu beachten, dass die P-Potentialkurven, die

für r -> oo zwei unangeregten Nukleonen entsprechen (jx j2 —-

zu Eigenfunktionen gehören, die in ji,j2 symmetrisch, d.h. in ô

gerade sind:
<Pi 9>-i. <P 0

10) Die Terme - — <52 + l) in œ0 und a! sind in dieser Näherung zu vernachlässigen.

u) Mit anderen Worten : Der Einfluss dieser Kopplung fällt erst in die nächste
Näherung (Anharmonizitäten), die hier ausser Betracht bleibt. Dabei ist wesentlich,

dass schon in nullter N herung (£ -> 0) die Eigenwerte W0 und W±1 (sie
bestimmen sich durch a0 0 bzw. ax 0) verschieden sind (ihre Differenz ist
4 C/ TJ). — Die Vernachlässigung der Kopplung wäre erst recht erlaubt, wenn
etwa /?i ^> 1 aber ßl < 1 sein sollte (oder gar ß% < 0; dann würden die Oszillationen

d 0 und ô 7 1 in getrennten Potentialmulden stattfinden).
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Es bleiben somit nur die beiden ersten Gleichungen (7), die beide
von der Form sind:

cp"" + (*-ß2£2)cp" + Xcp= 0. (8)

Statt dessen schreiben wir mit den Bezeichnungen

f2ß-i=x, <p{g) u(x), Yj=a- (9)

u""+(a—~x2\u" + ^pru=0. (10)

Im Sinne einer „EuLERSchen Transformation" setzen wir

u(x)=Jdy (x-yY v(y), (11)

wo die Integration in der komplexen ?/-Ebene um den Punkt y x
herum zu führen ist, etwa von y= + oo (oder — oo) ausgehend und
dorthin zurück, wenn das Integral dort konvergiert. Wenn n > — 1,

kann statt dessen von y (L)°° bis zum Punkte y x integriert
werden, dies insbesondere für n= 0,1,2,... In letzterem Falle
folgt aus (11) durch (n 7 1)-malige Differentiation:

U(«+V(x) nlv(x) (wenn n= 0,1,2,...). (12)

Mit (11) wird die linke Seite der Gleichung (10) gleich

njdy (x-y)n-1i{v'"(y) +(a — \y*)v'(y) — -jnyv(y)\

+ j\\-^~n(n-l)\Jdy (x-yY v(y).

Wir wählen nun n so, dass der Koeffizient des zweiten Integrals
verschwindet :

n± \±B, wo P=-j/4 + -^; (13)

dann ist (10) erfüllt, wenn für v(x) gefordert wird:

v'" 7 (a —Tx2j v'—2nxv= 0- (14)

Durch die weitere Substitution
1 i

v e w(x) (15)

folgt:

"' 3 » l 3,1 o\ / 1 ,3 1 \ „w -yjic 7la — Y + yxI w + \ _Ta + T—2"Wjicw 0. (16)
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Ausgezeichnete Werte des Eigenwertparameters a erhält man durch
die Forderung, dass die Gleichung (16) gerade Polynome als
Lösungen haben soll:

w x21 7 bxx2l~2 7 ¦ • • + b^x2 + bl. (17)

Mit diesem Ansatz wird die linke Seite von (16) ein ungerades
Polynom vom Grad 21 + 1, dessen höchstes Glied lautet:

1 3 1,,
dieses verschwindet für

3

2 ~n± + 2l l^pB + 2l (1=0,1,2,...), (18)

und dann können auch die anderen Glieder durch Wahl von blt b2,
fej zu null gemacht werden, so dass (16) mit (17) erfüllt ist.

Im Anhang wird gezeigt werden, dass die a-Werte (18) die einzigen
Eigenwerte unseres Problems sind. Mit (9) und (13) schreibt sich (18) :

a=2/?(lTy4T^ + 2Z) (1=0,1,2,...). (19)

Es ist nun wichtig, den Anschluss an den Grenzfall verschwindender

Tensorkraft herzustellen. Mit U 0,2. 0 wird (10) zur
13 5

Oszillatorgleichung für u", mit den Eigenwerten a -g-, =-> ~9> • • • •

Wir unterscheiden die zwei Fälle

(A) : o=y+2!, u" gerade Oszillator-Eigenfunktion,
3

(B): a= -„ + 21, u" ungerade Oszillator-Eigenfunktion.

Andererseits wird nach (13) für X= 0:

B Y> % 1> n_ 0;

d. h. (18) liefert dieselben Eigenwerte a, wobei das obere Vorzeichen
(n+) dem Fall A, das untere Vorzeichen (nj) dem Fall B zuzuordnen

ist. (Nach (12) ist v u" für n =1, und v' u" für n 0;
mit (A) bzw. (B) wird dann natürlich auch (14) erfüllt.) Nun steht

u für cp0 bzw. für cp 9?] +<£>_!. Auf Grund der Paritätsbedingungen
(4) können wir daher — mit Bleuler — folgern, dass für ô 0

der Fall A und für ô +_ 1 der Fall B auszuschliessen ist; d.h.
es bleiben nur die Eigenwerte

a=l + B + 2lîm ô=0, a=l~B + 2l für «5= ±1. (20)
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Lässt man nun die Tensorkraft von null an anwachsen, so müssen sich
die Eigenwerte stetig ändern, d. h. die Zuordnung (20) bleibt auch
für U + 0 bestehen12) : es gilt in (19) das untere Vorzeichen für
ô 0, das obere für <5 ± 1. Das Ergebnis schreiben wir, indem
wir mit Hilfe von (6) zu den ursprünglichen Bezeichnungen zurückkehren

:

W0= -V-^-CjV + 2]/e ]Jv + l-ClU (l+B0+2l)

wo Pn
1- V 2ctU (21)

W,_l - V7 4 cT lT + 2 /e y V - 4 cj ü (1 - Bx + 21)

wo Bi
2 cj TJ (22)

Von diesen Eigenwerten interessieren hier nur die beiden mit
l 0, und auch von diesen nur der tiefere, d. i. W0 für CjTJ > 0,

W±1 für Cj U < 0. Denn dies ist der Eigenwert, der, wenn man
die Parameter e/V, s/U anwachsen und schliesslich ;> 1 werden
lässt, stetig in den Eigenwert (2) übergehen muss, der im Grenzfall

„e gross" der tiefste ist13).

§ 3. Diskussion.

Zur Vereinfachung seien Treppenpotentiale angenommen : V, U

konstant für r <r0,= 0 für r > r0. Natürlich ist dann auch die
Potentialkurve W(r) eine derartige Treppenkurve, und ihre Tiefe
lässt sich, je nach der angenommenen Grösse von e, nach (2) oder
nach (21), (22) berechnen oder eventuell interpolieren.

Als numerisches Beispiel wählen wir

V= 7 20, U= + 100 (in MeV).

12) Die Funktionen u (11) lassen sich dann immer den Paritätsbedingungen
(4) entsprechend symmetrisieren. — Das bei ganzzahligen iü-Werten eintretende
„Überschneiden" der Eigenwerte (20) mit den aus Paritätsgründen verbotenen
Eigenwerten bleibt natürlich ohne Einfluss auf die Zuordnung (20).

13) Wennman | U\ (ceteris paribus) anwachsen lässt, kann—je nach der Parität

von d und / — der Fall eintreten, dass X < - /32/4 und folglich R imaginär
wird, womit die betreffenden Eigenwerte fortfallen. Wir brauchen jedoch diesen
Fall nicht näher zu untersuchen, da für denjenigen der beiden Eigenwerte (21),
(22), der (bei kleineren j Tl |-Werten) der tiefere ist (d. h. W0 für CjU> 0, W±1
für CjTJ < 0), R immer reell bleibt.
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In der Figur ist, für 7=0,1, 214), der jeweils tiefste Eigenwert W
als Funktion von ]/e dargestellt, wobei die hyperbelartigen
Kurvenzweige rechts der Formel (2), die Geraden links der Formel (21)
bzw. (22) entnommen sind; und zwar gilt (21) oder (22), je nachdem

ob CjTJ > 0 oder < 0 ist; d. h. nach (1) : für 7=1 gilt (21)
(0 0), für 7= 0 und 2 gilt (22) (0= ±1).

w
1=1

10 Vi1

1=2'/
20

1=0

1 1

40-

1=0
-60- ¦

Fig. 1 ").
Die Figur lässt erkennen, dass bei abnehmender Isobaren-

Energie e alle Potentiale vertieft werden, im Sinne stärkerer
Anziehung ; dass aber diese Anziehung in den Fällen 7=1 und 7=2
ziemlich schwach bleibt, wenn man von kleinsten «-Werten, die
nicht ernstlich in Betracht kommen, absieht15). Dagegen erfolgt
im 3P0-Zustand eine kräftige Anziehung, falls e < 30 MeV
angenommen wird. Allerdings ist hier die Interpolation zwischen den
beiden Grenzfällen mit einer Unsicherheit behaftet, die schwer zu
beheben sein wird; doch wird man wenigstens schliessen dürfen,
dass IF(3P0) < — 40 MeV für e < 30 MeV.

Ein so tiefes Potential, mit einer Reichweite r0 ~ 2,8 • 10~13 cm,
hat aber — trotz des geringen Gewichtes des 3P0-Zustandes —

14) Für I 2 ist die ausgezogene Kurve {s gross) unter Berücksichtigung der
Beimischung J 3, L 1 (letzter Term in (2)) berechnet, während in den
punktierten Kurvenstücken diese Beimischung vernachlässigt ist (Formel (2) ohne
letzten Term, bzw. (22)).

15) Dasselbe gilt auch für den Singulett-P-Zustand (K J 0, L I 1),
dessen W-Kurve aus Gl. (40) in Helv. Phys. Acta 17, S. 227, entnommen werden
kann. Die Tensorkraft bleibt hier ohne Einfluss, wenn man die Kopplung mit
den Beimischungen LS 3 wieder vernachlässigt.
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einen genügend starken Einfluss auf die Proton-Neutron-Streuung
bei höheren Energien, um zur Erklärung der eingangs erwähnten
Streu-Anisotropie herangezogen werden zu können18). Rechnet man
mit Treppenpotentialen der Reichweite r0 2,8 • 10-13 cm, und
nimmt man die Neutronen-Energie zu 15 MeV an, so verursacht
ein Potential der Tiefe 40 MeV eine Phasenverschiebung der P-Welle
von rund 80° (gegenüber nur 30° bei 30 MeV Tiefe)17). Infolgedessen

würde die 3P0-Welle allein, wenn man ihr Potential zu
— 40 MeV annimmt und die anderen P-Wellen als zu schwach
vernachlässigt, schon eine recht starke Anisotropie hervorrufen; für
das Verhältnis a (n)/a (n/2) [a(&) Streuquerschnitt als Funktion
des Streuwinkels im Schwerpunktssystem] ergäbe sich ein Wert
von ungefähr 0,617). Dieser kommt dem AMALDischen Messwert1)
0,52 7 0,03 (bei Neutronen-Energien von rund 14 MeV) schon
recht nahe.

Ein genauerer Vergleich, unter Zuziehung der anderen P-Wellen,

dürfte sich erst lohnen, wenn verlässlichere Zahlwerte zugrundegelegt

werden können. Insbesondere ist noch genauer zu
untersuchen, ob die oben angenommenen numerischen Werte von V und
U, zusammen mit einem e-Wert von etwa 30 MeV oder weniger
(vgl. die Figur), auch eine befriedigende Darstellung der S-Poten-
tiale gestatten (wobei die D-Beimischungen natürlich nicht
vernachlässigt werden dürfen). Eine vorläufige Abschätzung (die sich
ebenfalls auf Rechnungen von Herrn F. Villars stützte) hat
gezeigt, dass jene Zahlwerte wenigstens in der Grössenordnung das

Richtige treffen. Etwa notwendige Korrekturen dürften also unsere
Ergebnisse bezüglich der P-Potentiale im wesentlichen bestehen
lassen.

Anhang.

Zum Beweis der obigen Eigenwert-Formeln wäre streng
genommen zu zeigen, dass für die betreffenden IF-Werte — und nur
für diese — normierbare Eigenfunktionen der Schrödingergleichung
(3) existieren. Zur Untersuchung der Normierbarkeit müsste aber
der Verlauf der Funktionen cpô ausserhalb der Potentialmulde
(| | | ~ 71) bekannt sein, was nicht leicht zu erreichen sein dürfte18).

16) Ein stabiler P-Zustand wäre erst bei noch tieferen Potentialen möglich
(mindestens 50 MeV für r0 2,8 • 10~13 cm; vgl. Bethe und Bacher, Rev. of
Modern Physics 8, 82, 1936, Gl. (45d) auf S. 113).

*') Diese Angaben sind der ETH-Diplomarbeit von F. Villars (unveröffentlicht)

entnommen.
18) Bezüglich des einfacheren Falles J 0 vgl. G. Wentzel, Helv. Phys.

Acta 17, 252, 1944, S. 265 bis 267.
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Statt dessen betrachten wir den Funktionsverlauf am „Rande der
Potentialmulde", wo die Entwicklung nach Potenzen von |, £'
noch legitim ist, auf Grund der Näherungsgleichungen (7u.ff.),
indem wir in deren Lösungen £ gegen ± °° gehen lassen. Im Falle
«7=0 waren es die Oszillator-Eigenfunktionen cp" ip, die sich
durch ihr quasi-exponentielles Abfallen nach beiden Seiten vor den
anderen Lösungen auszeichneten. Diese Rolle muss hier von den
Funktionen v bzw. v' übernommen werden, die ja im Limes TJ -> 0,
d. h. n -> 1 bzw. 0, in Lösungen der Oszillatorgleichung übergehen.
Wir werden also zu zeigen haben, dass die a-Werte (18) die
einzigen sind, die sich aus dem Kontinuum herausheben durch ein
ausgezeichnetes asymptotisches Verhalten, nämlich beiderseitigen
quasi-exponentiellen Abfall, der Funktionen v (oder v'). Nachher
ist auf Grund von (11) unschwer einzusehen, dass auch mit Bezug
auf die Funktionen u bzw. die Differentialgleichung (10) keine
ausgezeichneten a-Werte ausser den Eigenwerten (18) existieren.

Für die Lösungen v der Gleichung (14) machen wir den Ansatz :

v(x) e~^** idti^ F(x + ii), (23)

wobei über die Integrationswege in der komplexen i-Ebene noch
zu verfügen sein wird. Unter Verwendung der Identität

fdte~Yt'xf(x + it)= fdte~2t*(x + it+-^)f(x + it) (24)

findet man:
O j X')V

e~T*! ldte~^t'\U-\)F(x + it)-(x + iÌ)F'{x + it)\,

und weiter, immer unter Beachtung von (24):

v'" 7 (a — -jX2)v'—2nxv= \v" + (a~ T^/H ~~ ~2~(n~~ l)x v

-~e~TX j dte~jt'Ua + n-~Yx + it)F(x + it)

— Ua — n —4) + (x + it)2] F'(x 7 it) 7 (x + it) F"(x + it)}

Zur Erfüllung von (14) genügt es also zu fordern:

xF"(x)-[a-n-~ + x2}F'(x) + (a + n-^}xF(x) 0. (25)
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Diese Differentialgleichung hängt mit derjenigen der konfluenten
hypergeometrischen Funktion19) zusammen, wie durch folgende
Substitutionen ersichtlich wird:

i i
\x2j=G(z) e2 z 2M(z), (26)

;
1

/9 1 \ k-m--—-

G"(^(~-f'(^)+ i G(z) 0, (27)

M"(z) + [-^ + ^-^ì-)m(z) 0, (28)

wo

m=Tn—Ta —y, k=~n + ~a-f. (29)

Im Integranden in (23) ist also einzusetzen:

/1 \ --(x+itY /T i if\ — 2m— 1 /1 \
F(x+it) G(-2(x+it)2) ei i^Pi M(j(x + it)2) (30)

wo G und M Lösungen von (27) bzw. (28) sind.

Wird der Fall „2 m ganze Zahl" vorerst ausgeschlossen, so
sind zwei unabhängige Lösungen von (28) (vgl. IFW19), Ziffer 16.1) :

Mk,m(z)

z2 - M(z)-- 0,

k-
3

~" 4

1
n + -^a-

3

8

-lz m+7 y + m-fc + m_fcWY+m-&)
| +l!(l + 2m)?+ 2!(l + 2m)(2 + 2m)

z +•••). t01!

Mt,-m(2)

_7, _m+lj \-m-~k (±.-m-kj(^-m-kj
^

I

e Z V +ÌAlY-2m)Z~{ 2!(l-2t»)(2-2m)
Z2 7 | (32)

Zwei andere Partikularlösungen von (28), die sich zur Untersuchung
des asymptotischen Verhaltens | z | ^> 1) eignen, sind (vgl. WW,
Ziffer 16.31 und 16.41) :

_7
Wk,m(z) e ^^(^O^-1)}, (33)

i
W-l..m(-z) i2

2

(-z)~k{l + 0 (z-i)}, (34)

Mti±m(z) c± Wk>m(z) + c'±W_Km(-z). (35)

In jedem Fall konvergiert das Mntegral in (23), wenn der
Integrationsweg längs der reellen <-Achse ins Unendliche geführt wird.

19) Vgl. Whittaker und Watson, Modern Analysis, Cambridge University
Press, 3. Auflage, Kapitel XVI (im Folgenden als WW zitiert).



Anisotropie der Proton-Neutron-Streuung. 443

Wählen wir in (30) bzw. (23) zunächst die Partikularlösung
MKm (31)20), so ist die Funktion F(x + it) (30) in der «-Ebene,
einschliesslich des Punktes t— ix, regulär ; folglich liefern alle
Integrationswege von t —oo bis £ 7 oo die gleiche Funktion v,
und wir können längs der reellen «-Achse integrieren. Speziell für
| x | ^> 1 kann der Integrand nach fallenden Potenzen von x 7 it,
gemäss (35), (33) und (34), entwickelt werden. Wenn c+ + 0 ist,
liefert W_km(— z) den Hauptterm von v:

-2m-2k-lv(x) ~ fdt e-(<-"/2)!(f—ix)-

v (x) const -x-2n{l + 0(x-2)} (C++-0). (36)

Anders im Falle c'+= 0, wo Mkm(z)= c+Wk m(z). Da (nach WW,
Ziffer 16.41)

r(2TO+i) t,i„-e

r(m-fc+4)
tritt dieser Fall ein für

-{m-k + ^) l=0,l,2,..., (37)2

oder nach (29) für

a=^ — n + 2l. (38)

Dies sind die Eigenwerte (18). In der Tat bedeutet (37), dass die
Reihe (31) abbricht, und dann ist aus (30) und (23) leicht zu ersehen,
dass die betreffenden Lösungen v übereinstimmen mit den in (15),
(17) angegebenen Eigenfunktionen : e~xl/i mal Polvnom vom Grade
2P1).

Wird andererseits Mk_m (32) in (30) bzw. (23) eingesetzt, so

gilt für t ^üix:
F (x +it) const-(t—ix)'im{l+ ...}; (39)

d. h. der Integrand in (23) wird, wenn

-4m+ 0,1, 2,..., (40)

singular am Punkte t= ix. Die zwei Integrationswege, die oberhalb

und unterhalb dieses Punktes von t — oo bis t= + oo

20) Diese Lösung v wird auch erhalten, wenn man in (14) v nach Oszillator-
Eigenfunktionen entwickelt und für diese eine geeignete Integraldarstellung
verwendet.

21) Falls n komplex ist (vgl. Fussnote 13), gibt es keine derartigen Eigenfunktionen

zu reellen Werten von a.
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führen, liefern dann zwei unabhängige Partikularlösungen vlt v2.
Lässt man x gegen 7 oo gehen, so wird v± hauptsächlich durch
den Beitrag einer Schleife bestimmt, die etwa längs der imaginären
t-Achse um den singulären Punkt herum und wieder zurück führt:

-f—x2 4m—1

vi(x~> + °°) const• e i -x {l+0(ar2)}; (41)

für x —*— oo hingegen kann in vx längs der reellen t-Achse
integriert werden:

(const-a;-2'i{l7 0(x-2)} fürcl + O,

Vi(x^-oo)=\ _Lxi a+n_1 (42)
[const-e 4 x 2{l70(x"2)} fürcl=0.

Bei v2 tauschen positive und negative x-Werte die Rollen:

v2 (x) const • Vi (— x) (43)

Wegen des quasi-exponentiellen Anstiegs für x —> 7 oo bzw.
x —> — oo kommt weder vx noch v2 noch eine Linearkombination
für eine Eigenfunktion in Betracht.

Das Gesagte gilt aber nur unter der Voraussetzung (40). Da
ganzzahlige Werte von 2m vorerst ausgeschlossen waren, betrachten

wir zunächst die Fälle

-4m=2l + l, 1=0,1,2,...; (44)

dies heisst nach (29) :

a=4 + « + 2L (45)

Jetzt ist F(x + it) nach (39) bei t=ix regulär; die Schleife,
die für den exponentiellen Anstieg gemäss (41) verantwortlich
war, fällt fort. Unter den Linearkombinationen von Mkm und
Mk_m, die nunmehr in (30) eingesetzt werden können, befindet
sich speziell die Funktion Wk m (z) ; diese kann eine Funktion v
liefern, die beidseitig exponentiell abfällt22). Die a-Werte (45)

22) Hier ist aber zu beachten, dass die Funktion WktW/(z), wie sie bei WW,
Ziffer 16* 12, definiert ist, längs der negativ-reellen z-Achse unstetig ist; infolgedessen

liefert sie für x > 0 und x < 0 im allgemeinen verschiedene Lösungen v,

die sich bei x 0 nicht stetig aneinander schliessen. In den Fällen m — —

{1=0), n 1, 1, |- lässt sich Wk>m(z) nach WW, Ziffer 16 • 5, durch Her-
MiTEsche Polynome ausdrücken; die entsprechenden Funktionen v sind von der
Form: e~x''* mal Polynom vom Grad 2 n—1. Für andere n-Werte jedoch stellt sich
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können somit gleichfalls Eigenwerte der Gleichung (14) sein. Nach
(13) ist aber

^ + n± + 2l l±B + 2l=^--nT + 2l;
d. h. die Eigenwerte (45) der mit n n+ gebildeten Gleichung (14)
sind gleich den Eigenwerten (38) der Gleichung (14) mit n n_
(und umgekehrt). In Bezug auf die Gleichung (10), deren Lösungen
u gemäss (11) mittels des einen oder des anderen n-Wertes
darstellbar sind, liefert also der Fall (44) keine neuen Eigenwerte zu
(18) hinzu. Die zwei so erhaltenen, zum gleichen Eigenwert a
gehörigen Funktionen u sind identisch, wie aus ihrem asymptotischen
Verhalten zu ersehen ist23).

Es bleibt schliesslich noch der Fall, dass 2 m ganzzahlig (+ 0)
wird. Eine der beiden Reihen (31), (32) wird dann unbrauchbar, es
sei denn, dass sie abbricht, bevor die Glieder mit verschwindendem
Nenner auftreten. An die Stelle einer unbrauchbaren Funktion
(MSj_[TO|) tritt jeweils eine Lösung mit logarithmischer
Singularität bei z 0 (t ix)2i), die sicher keine Eigenfunktion v liefert.
Entsprechendes gilt für 2m 0, wo (31) und (32) identisch werden.

Es bleibt also nur Mk\m\ zu betrachten. Ist nun 2m ganz
und Sì 0, so bleibt alles, was oben über die Lösung mit Mkm
gesagt wurde, ohne weiteres gültig; neue Eigenwerte können nicht
auftreten. Sei andererseits

2m=-(l' + l), l'~ 0,1,2,... (46)

Mit Mk _m wird dann F(x + it) nach (39) regulär bei t ix, und
v verhält sich asymptotisch wie x~2n (vgl. (36)), ausser wenn die
Reihe (32) abbricht, was für n 1, 2, 3, der Fall ist ; dann
wird v gleich e_a:2/4mal gerades Polynom in x. Eigenfunktionen v
werden also erhalten für n 1,2,3,..., was zusammen mit (46)
bedeutet :

a j + n+2l'; n= 1,2,3, ..; V 0,1,2,... (47)

Nun ist aber zu beachten, dass im Falle (46) die aus Mk +m

erder exponentielle Abfall nur auf einer Seite ein; so z. B. für m —-, n 0,
QO

wo Wkm{z) die Funktion v / e~x ^ dx ergibt (zur stetigen Fortsetzung bei

X

x 0 dient hier die Partikularlösung v const).
23) Für x-* + oo oder x-s- — oo verschwindet die Funktionu wie e~x ' xa~

während sie auf der anderen Seite im allgemeinen (d.h. ausser für besondere

Werte sowohl von n als von a) wie x T variiert.
24) Vgl. WW, erste Fussnote auf S. 346.
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haltenen Eigenwerte (38) zum Teil ausfallen. Wählt man einen der
a-Werte (38), so ergibt (31) mit (29) für n$0:

Mkm(z) e-i*zm+i (l 7 tut \ % + ö-.m 't1', ; *2*'™v ' I l!((-n) 2\(l-n)(l-l-n)
l(l-l)(l-2)...2-l |^ ^ l\(l-n)(l-l-n). (2-«)(l-n) I "

Wenn hier verschwindende Nenner auftreten, d. h. wenn

»= 1,2,3,... und 1= n + V, wo T= 0, 1, 2,

/3 3 \
so sind die betreffenden a-Werte (38) \0' ~—n+2 l=y + w + 2 l'\
zu streichen. Doch werden sie gerade ersetzt durch die aus Mki _m

gewonnenen Eigenwerte (47). Für «=0 a y+2i schliesslich

wird (wegen y 7 m — k 1 + 2 m) Mk>m(z) e+zl2 zm+i, was

v const ergibt; hier treten die früher erwähnten Eigenfunktionen
(v' ungerade Oszillator-Eigenfunktion) in der Lücke.

Damit ist nachgewiesen, dass alle a-Werte (18) ohne Ausnahme,
und keine andern, Eigenwerte sind in dem Sinne, dass es

zugehörige Lösungen v (oder v') mit beidseitigem quasi-exponentiellem
Abfall gibt.

Zürich, Physikalisches Institut der Universität.
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