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Ein Beitrag zum Zwei-Nukleon-Problem
von Konrad Bleuler.
(19. III. 1945)

In der Theorie des Mesonfeldes mit starker Kopplung an ein Nukleon besitzt
das Nukleon angeregte isobare Zusténde mit hoheren Spin- und Ladungswerten.
Auf Grund dieser Annahme werden (unter Vernachléssigung der Tensorkraft) alle
Deuteronzustinde mit beliebigem totalen Spin J und ,,isotopen 'Spin‘“ K unter-
sucht. Es ergibt sich, dass die bereits bekannten Zustinde J =1, K = 0 und
J=0, K=1 (38- resp. 15-Zustand des Deuterons) die tiefsten sind. Als nichst
héheren isobaren Zustand erhilt man einen 3S-Zustand, dessen Anregungsenergie
zwischen 5 und 30 MeV geschitzt wird. Fiir die Diskussion der Anisotropie der
Proton-Neutron-Streuung ist bemerkenswert, dass die 3P-Wechselwirkung fiir
kleine Kernabstinde anziehend wird.

§ 1. Einleitung.

Das Deuteron wird auf Grund eines Nukleon-Modells und
eines Wechselwirkungsansatzes behandelt, welche der Mesontheorie
unter Annahme starker Kopplung entnommen wurden. Nach dieser
Theorie!) (wir betrachten die symmetrische Pseudoskalar- oder
Vektortheorie) besitzt das Nukleon innere Freiheitsgrade, welche
durch dieselben Operatoren, die in der Quantentheorie des Kugel-
kreisels auftreten, beschrieben werden. Die entsprechenden Quan-
tenzahlen 4, m,n sind hier halbganze Zahlen und haben die fol-
gende physikalische Bedeutung:

9 = Spin und zugleich ,,1q0toper Spm“
m = Spinkomponente, m = — 4, ...+ 7,
n+ 3= Ladung, n=—9,...+7.

Der Rotationsenergie des Kreisels entspricht die sog. Isobaren-
Energie mit den Eigenwerten

2|62 1]

1) G. WENTzEL, Helv. Phys. Acta 13 (1940), S. 269; 14 (1941), S. 633;
15 (1942), S. 685; 16 (1943), S. 222 und S. 551. — J. R. OPPENHEIMER und
J. ScEWINGER, Phys. Rev. 60 (1941), S. 150; W. Pavri und S. M. DANCOFF, Phys.
Rev. 62 (1942), S. 85; R. SErBER und S. M. Daxcorr, Phys. Rev. 63 (1943),
S. 143; W. PavLrr und S. Kusaka, Phys. Rev. 63 (1943), S. 400; F. CoESTER,
Helv. Phys. Acta 17 (1944), S. 35.
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‘Bei der Behandlung des Zweikérperproblems?) geht man von
den Spin- und Ladungsquantenzahlen der beiden Nukleonen 45, m,,
Ny, j2, Mg, Ny zu den Variablen J, M, K, N, j, j, liber, wobei:

J = Gesamtspin (J=0,1,2,...),

M = Spinkomponente (M= —dJ, ...+ J),

K = Gesamter ,,isotoper Spin“ (K= 0,1,2,...),
N + 1= Ladung des Deuterons (N=—K, ...+ K).

Nach dem Vektoradditionsmodell gelten die Ungleichungen
|?1_]2|§J§71+j29 |71le2‘§K§?1+?2 (1)

Im Hamiltonoperator H fiir das Zweikérperproblem wird die Ten-
sorkraft (Spin-Bahnkopplung) vernachlissigt; dann wird H eine
Diagonalmatrix beziiglich der 4 Quantenzablen J, M, K, N. Die
entsprechende Untermatrix von H ist dann noch eine Matrix be-
ziiglich der beiden Spins 4y, Js:

(uda| H i) ={5 + 5| (i +5) + (i +l)2-— 2] biad | 114172
+ V() (de ] 214452), @)

wobei r den Abstand der beiden Nukleonen, V (r) > 0 das Potential,
M, die Protonmasse und A4 den Laplace-Operator beziiglich der
Relativkoordinaten bedeuten. Die Wechselwirkungsmatrix £ wurde
von Fierz2) in den hier verwendeten Variablen angegeben.

Das Ziel 1st nun, die Eigenwerte dieses Hamiltonoperators zu
bestimmen. Dabei kann etwa die Adiabatenmethode (vgl. I, §3)
verwendet werden, d.h. man bestimmt die Eigenwerte zunichst
tiir festen Kernabstand r, welcher die Rolle eines Parameters spielt.
Die Eigenwerte W der Matrix (2), worin 4 null gesetzt wird, sind
dann Funktionen von r (adiabatische Potentialkurven W (r)). Die
Berechnung von W (r) kann in den beiden folgenden Grenzfillen
durchgefiihrt werden:

1. Fir grosse Kernabstande r ist die Wechselwirkungsenergie
klein gegen die Konstante ¢ der Isobarenenergie, so dass erstere

als kleine Storung betrachtet werden kann; eine einfache/Sté)rungs-
(,,.

rechnung ergibt dann W (r) als Entwicklung nach Potenzen von

1) Vgl. § 2 der Arbeit von M. F1ERZ und G. WENTZEL, Zum Deuteronproblem
I, Helv. Phys. Acta 17 (1944), S. 215 (im Folg. als I zitiert).
2) M. Fierz, Uber die Wechselwirkung zweier Nukleonen in der Meson-
theorie, Helv. Phys. Acta 17 (1944), S. 181, vgl. GL. IV, S. 193.
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2. Wenn ¢ gentigend klein angenommen wird, gilt bei kleinen
Kernabstéinden: ¢ << V(r). Fiir diesen Fall haben Fierz und
WEeNTZEL!) nur die Untermatrizen diskutiert, bei denen eine der
beiden Quantenzahlen J und K den Wert null hat; doch erweisen
sich ihre Methoden auch bei beliebigen Werten von J und K als
brauchbar. Dies wird im Folgenden gezeigt werden; es soll also
tir den Grenzfall ¢ <€ V (r) eine allgemeine Formel fiir die Eigen-
werte W (r) aufgestellt werden.

Die Eigenwertgleichung fiir W (r) lautet nach (2):

(=W + 5|+ 5)+ (ot 3)—2]} s
+ V(’")Z(ﬁ?'z | Q11'92)) @55, = 0. 3)

1:ds"

Fir die folgende Rechnung ist es zweckmiissig, die Substitution
einzufiithren : ‘
o=7g1+7J2+1, 6=191—17s; . (4)

dabel sind ¢ und ¢ ganze Zahlen, welche der Bedingung
o + 0 = gerade Zahl (4a)

gentigen. Ferner empfiehlt sich die Transformation

aaa=baa‘\/ Yaos > (5)
wobel

Yos =i (0-K) (0-E+1)...(0+K) (0-J) (6-J+1)...(0+J). (6)

Gleichung (8) lautet dann:
{—W(r) + 02+ 02— 411 b, 1V () 3 X (08| @' ) byy=0. (7)
o o

Die transformierte Matrix Q hat folgende nicht verschwindende
Elemente:

(0,0|Q|0,0)=[4E(E+1)—(0+6+1)(c+6-1)— (- d+1)(c—6-1)]
[4 J(J+1)—(64+6+1)(c+6—1)— (6—6+1)(c—0—1)]

’ 4(6+0+1)(c+6-1)(c—6+1)(c—6-1) ’

(c+K+1)(c+ K+2)(c+J+1)(c+J+2)

(6+0+1)(c-0+1)(c+6+2)(6-0+2) ’

(c-K-1)(6-K-2)(c-J~1)(6—-J-2)
(0—0-1)(c+0-1)(c—0-2)(c+0-2) ’

(0,0| 2]|0+2,0)=

(0,0 Q]|0—2,6)=

1) Vgl. I, §4 und G. WeNTZEL, Zum Deuteronproblem II, Helv. Phys.
Acta I7 (1944), S. 252 (im Folg. als II zitiert), vgl. § 2.
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(c+K+1)(c+J+1)
(c6+d6+1){oc-d+1)o—-0-1)(c+d+2) ’
(6-K-1)(c-J-1)
(6—8—1)(g+ 0-1)(c+d+1)(c—06-2) ’
- (0+K+1)(o+J+1)
(0,0[Q[o+1,0—1)=24(—9) (0—0+1)(o+0+1)(c+0-1)(c—0+2) ’
(6— K—1)(c—J-1)
(64 0-1){c- 6 -1)(c—0+1)(c+6-2) ’
1
(c+d+1)(oc-0—-1)(c+F+2)(6—06-2) °
1
B(—4) (0—0+1)(c+d-1)(c- d+2)(c4 6-2) ’ (8)

(0,0 2]o+1,0+1)=2A4(8)

(6,0| @lo—1,0+1)=24(0)

(0,6 Q|o—1,8—1)=24(—0)

(0,0|Q]|0,6+2)=B()

(6,0|Q|0,0—-2)=

wobel

)=/ E+o+1)(E—0)J+o+1)(J—9),

8) =/ [EP=(0+1) B[ (K+1)2~(6+1) 2] [(J = (0+ 1 2] [ (J+1)>—(0+1) 2%2.3 |

Infolge der Transformation (5) sind diese Ausdriicke in ¢ rational
geworden, was fiir die folgende Rechnung erforderlich ist (vgl. § 2);
dagegen ist Q nicht mehr herm1t1sch da die Transformation (5)
nicht unitér ist. :

Der Variabilitdatsbereich von 6 und ¢ ist nach (1) gegeben

durch: 6, <6< 6, (1a)
g ; O‘(}7 (lb)

WObel K gy= J41tir J2K, 0,— J,0,— K+1 fiir K=J

zugleich ist die Bedingung (4a) zu erfiillen. Nach Ausweis der Fak-
toren A4(d) und B (d) verschwinden alle Matrixelemente von 0,
welche aus dem Intervall (1a) herausfithren. Entsprechend (1b)
gilt nach (8):

(00| 2]0g—2)= (0o + 1| Q] ay—1)= (70| 2| 0y—1) = 0;
dagegen sind die Elemente
(00—2| 2] 0y),(09—1]| 2] 0 +1),(60—1| 2] )

von null verschieden. Q ist also nur ,,halb ausreduziert. (Dies
rihrt daher, dass die Koéffizienten y,; in der Transformation (5)
fiir ¢ = K und ¢ = J verschwinden; die urspriingliche Matrix ist
voll reduziert.) Fiir die folgende Transformation ist es nun zweck-
méssig, das System (7) auf alle ¢ = 0, welche (4a) erfiillen, zu er-
weitern. Dies lisst die gesuchten Eigenwerte W (r) ungeiindert,
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doch werden noch weitere Eigenwerte hinzugefiigt (sog. ,falsche
Eigenwerte®, vgl. die entsprechenden Bemerkungen in II, S. 254).
Im erweiterten System diirfen die Matrixelemente

(¢|R2]0") mit o<o,

willkiirlich abgedndert werden. Da £ dabei ,halb ausreduziert*
bleibt, werden dadurch nur die ,,falschen Eigenwerte‘* gedndert.
Dies bildet ein einfaches Kriterium fiir die ,,richtigen Eigenwerte®.

Nach dieser Erweiterung wird eine Transformation durchge-
fiihrt, welche von der Variablen ¢ auf die kontinuierliche Variable x

fithrt, analog der Transformation, die im Falle J = 0 eingefiihrt
wurde (vgl. II, S. 255, Formel (10); x =z + 7):

D, (x) = V Zb asm (9)

a>o0
o + 0 = gerade

mit der Umkehrformel
2n
1 4
bys= 7;—!@ (z) sin 5" d. (10)
Die Gleichung (7) geht dann iber in

=W(r)+ %?- &) Dy ()~ Dy (x)+V (1) 3] f Dy sz, a') Dy (z')da’ =0,
o9 (11)
wobel

ao(éUIL' —Z (60| Q]0"d) sstm 2

(12)

Die Summen iiber ¢ und ¢’ sind dabei iber alle positiven ganzen
Zahlen zu erstrecken, welche den Bedingungen ,,0 + ¢ = gerade,
¢’ + ¢’ = gerade* gentigen; 6 und ¢’ laufen iiber alle ganzen Zahlen
im Intervall (1a). Die Berechnung von D s wird in § 2 durchge-
fithrt werden. Das System von Integro-Differentialgleichungen (11)
ist mit dem erweiterten System (7) dquivalent, wenn man-die Eigen-
funktionen von (11) gemiss (9) den folgenden Periodizitétsbedin-
gungen unterwirft:

Fir o gerade: @5(x) = — Dy(— x)= DPys(x + 27), Periode 27,
fiir dungerade: @;(z) = — Ps(— ) = — Ps(x + 27), Periode 4. (13)

Zur Losung von (11) kénnen #hnliche Methoden verwendet
werden wie im Falle J = 0. Es zeigt sich, dass fiir e <V nur der
Verlauf der Eigenfunktionen in der Nihe der Stelle x = 7 wesent-

21
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lich 1st. Man erhélt deshalb eine erste Naherung durch Entwickeln
des Kernes Dd, s nach Potenzen von é=x—x und &' =2"—=x
bis zur ersten Ordnung in £ und &’. Das System lésst sich dann durch
mehrfache Differentiation in die Schriodingergleichung des harmo-
nischen Oszillators iberfiihren (,,JJarmonische Naherung®, §3).
Von dieser Néherung ausgehend, kinnen die néchst hoheren Po-
tenzen in der Entwicklung von D; & durch eine Storungsrechnung
beriicksichtigt werden (§ 4). Dieses Verfahren entspricht einer Ent-

wicklung der Eigenwerte nach Potenzen von ]/LV :

§ 2. Die Berechnung des Kernes D; 5 (x,x’).

Nach (12) und (8) ist Dy 5 = 0 fiir | 6 — 6" | > 2; es sind daher
nur folgende 5 Typen von ,,Matrixelementen* D; s zu berechnen:

’

D; s (z, %) =%2(a,6[§|0,6) sin 2 sin =

2
+i2(a,6|§|a+2,a) sinfgsinW_*ff)_w’
*"Z(a 8| 2|o—2,0) si -8z
Dyosr (@,0) = 52 (0,0] Blo+1,821) sin G sin 717
+ 72 (@,8]Blo—1,8£1) sin G sin ",

l

- sin %3 (14)

Dy gy o (i) = ;Z'(a,d]ﬁ]a,ﬁ +2) sin =7 sin =~
Die Summation wird dabel immer iiber alle positiven o erstreckt,
welche der Bedingung (4a) geniigen?).

Zur Berechnung dieser Summen miissen die Ausdriicke fiir Q,
welche aus (8) zu entnehmen sind, in Partialbriiche beziiglich ¢ zer-
legt werden. Wenn zunéchst vorausgesetzt wird, dass é von den

1) Durch die einheitliche Wahl der Summationsgrenzen, welche fiir die fol-
gende Rechnung zweckmaéssig ist, wird in Dy, 5 fiir ungerades é (d.h. K, J > 0)
der Term

ml

’ 1 — .oz,
—;(1,6[9[——1,6)sm? sin —-
hinzugefiigt. Dieser Zusatz ist nach der Bemerkung auf S.321 erlaubt, da er einer

Anderung von (1,6 ] 2]1, 8) gleichkommt.
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Werten 0, + 1, &+ 2 verschieden ist, so zerfallen die @ in Briiche
mit linearen Nennern, z. B.:

(0,0| ]0,8)=
| 4 [EE+D= 8- DI (T +1)- 5(3-1)] 11 )
246(6-1) (o’+8—1 o—0+1
[K(K+1) o+ DT (J+1)—- 6(6+1)] 1 1
25(6+1) (am6—1_0+6+1)’ (15)

Der Term +1 steht nur in den 8 Matrixelementen (¢, 6 | 2 | o, 9),
(0,0| 2|0+ 2,0), die im Ausdruck fir D;, auftreten. Dlese
Terme ergeben zusammengefasst

wobei D§ 5 (x, )= (1+2cosz") ds(x, z), (16)
== 2 sin 2 G; :
o>0
646 gerade
% [6 (x— z') —é (z + )] fiir 6 ungerade,
5 [8(z—a")—d(x +a')] fir & gerade. (17)

Hier bedeutet 6 (2) die periodische d-Funktion (Periode 2 ), § (2)
die alternierende ¢-Funktion (§(2)= —4d(x+2a)= +68(¢ +4n),
Periode 4 7). Die Beziehung (17) entspricht der Vollstindigkeits-

= sin 6233 :
gilt ndmlich- fir jede Funktion @;(z), welche den Periodizitéts-

bedingungen (13) geniigt:

relation des hier verwendeten Funktionensystems es

2m
[4s(2,2) @, (@) da' = B, (). (18)
0
In der Integralgleichung (11) ergibt deshalb DS ; (z, ') den Term
| V (r) (1 + 2 cos ) Py(z). - (19)
Der zweite Teil aus (15) liefert in (14) eingesetzt den Ausdruck

1 1 1 ox oz
S‘Eé)(w §-1 __a~6+1)81n 2 sin —5

o+ 4 gerade

’

Die beiden Terme konnen in eine einzige Summe, die sich von
— 0 bis + co erstreckt, zusammengefasst werden:

s Py 1 [ e
o + ¢ = gerade '
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Mit Hilfe der Substitution

oc+6—1 _ __1_
5 "~ ST

(s durchléuft bei geradem und ungeradem Wert von 6 alle ganzen
Zahlen) und der Summenformel (vgl. II, S. 257)

1 ,..
E(Z)=_1_8=Z+'m sin(S—%)Z _ +?f111'0<2<275, (20)
Bt ot B — - fir — 272 <2<0
: (Periode 4 7)
erhdlt man in beiden Fillen:

S=7 |Ble—a)sin 25 (2—a) ~ B(o+2)sin 5+ (a:+a:’)]. 21)
In entsprechender Weise kinnen alle anderen Summen, in welchen
ungerade Nenner (¢ 4+ d + 1) auftreten, berechnet werden. Dabei
ist wesentlich, dass immer zwei einzelne Summen mit Nennern der
Form (o + a) und (0 — a) mit derselben Funktion von K, J und
0 multipliziert erscheinen (vgl. Formel (8)); sie konnen deshalb
In elne einzige Summe vereinigt und mit Hilfe der Formel (20)
aufsummiert werden.
Anderseits lassen sich auch die Summen mit geraden Nennern
(0 + 6 + 2)V in derselben Art auf den bekannten Ausdruck
Gey== 3 2% 2 tir0<z<2n 22)

s=1 § : (Periode 2 )

zuriickfihren. |

Auf diese Weise kénnen die ,,Matrixelemente‘ (14) unter der
Voraussetzung 6 + 0, 4= 1, 4+ 2 berechnet werden. Fiir die diago-
nalen Elemente wird unter Berticksichtigung von (16):

D; 5 (x,2")=D} s+ Dj 4,

wobel
T (K(K+1)-0(6—-1))(J(J+1)-4d.6-1))
8,8 44(6-1)

. [E (z— ') sin (% (a;—a;’))mE(:cha:’) sin (6;21 (a:+m'))]

(K(E+1)= {6+ 1) (J(J+1)= 6(5+1))
+ 40(0+1)

. [—E(w-—w') sin(a;rl

(x—x') ) +E (z+2') sin ( 6;1 (a:-i—a:’))]

1) In diesen Summen tritt immer ein Term mit dem Nenner Null auf, der
weggelassen wird; dies ist erlaubt, da er dem erweiterten System angehort (vgl.
S. 320).



Beitrag zum Zwei-Nukleon-Problem. 325

(KE+)(K+5+1)(J+OH(J+3+1)
44(20+1)
. [E(x—w’) sin (a:— 6;1 (m—m’)) ~F (x+x’) sin (:B~ 6;1 (:E+33’))J
(K- 68)(E- 8 +1)(J - &) (- 8+1)
46(26-1) |
. [E(:c—m') sin (a;+ %i(x—m’)) ~E(x+«')sin (m—l—a—;l (x+ x’))]
(K+0)'K+6-1)(J+8)(J+-1)
T 46(26-1)
: [MG(SB-" z') sin (w~~g— (m—w’))Jr G(z + z')sin (:E-%(a;+ w'))]

(K-8 (K- 6—-1)(J—8)(J—8-1)
£0(26+1)

|-G (a-a)sin( w5 (2-2') ) +G (042" sin (245 (a+ m))] (29)

-+

G =

_]_

(Es gilt wegen der Symmetrie in den beiden Nukleonen _D}?, e Dfa, _8) -
Bei den ausserdiagonalen D; 5 gibt es keine Terme der Form (16) :

Dg’a': O,‘Dé’al: D%,dl fliI‘ 6 :!: 6’ .

Die Ausdriicke fiir Dj 5., und Dj 5 ; kénnen in einer Formel ge-
schrieben werden:
1 L 1 —
D6,6+1 _D—a,—a—l -

(KE+8)(J+ &
45(20+1)

A(9) |B(z—2) sin (25 (e—2)— )

5\

(o -+ &) = *g—)]

2

—E(z+2') sin(

(K+0+2)(J+d+2) N . {8F1 ) x)
4(0+1)(26+3) [_E($_$)Sln (T(m—~a))——

+B(z+ o) sin (232

(i G —3) "ot é+1 , z
40(0+1) [E(m—x)sm( ) (@— 1) + 2)
~E(z+ 2 sin(% ($+x,)*%')}
= Bl =g= 1) N (T, 841 ,
(20 H1){26 +3) [_G(ﬂf\_—m,) sm(~2—+ 5 (www))

FG(@+ ) sin (5 + 5 (z+2)| |, @)

+

[\V]
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ebenso die Ausdriicke fiir Dj 5, und Dy 5_, :
D$,5+2=Dla,_a-2=

B(9) 4(261+3) { = [E(a:—x’) sin 231 (z—2)

—E(z+') sin”

;1 (x + a:')]

TR [—G(:p—az’) sin%(:p—m')m(mm')sin‘s—fgg(wm')”. (25)

Fiir die speziellen Werte 6 = 0, + 1, 4+ 2 sind diese Formeln

fir Dj 5 zum Teil ungiiltig. In den Partialbruchzerlegungen vom

Typus (15) treten jetzt auch in o quadratische Nenner auf. Zur

Berechnung der Summen miissen deshalb noch die folgenden Be-
ziehungen verwendet werden?):

+ @ 3
F=5 Y 2 a o, fir—22<s<+27,  (20)
§=-m (Periode 4 7)
1 & cos sz (2—:'7,)2
Hid) = — = , fir 0 <2 <2m. 22a,
@) =5 séz 5 in 12 Pt 200 (22a)

Es zeigt sich ,dass in (23), (24) und (25) nur diejenigen Ausdriicke
ersetzt werden miissen, in welchen verschwindende Nenner auf-

treten.
Fir 6 = 0 erhélt man an Stelle von (28):

1 K(EK+1)+J(J+1)+ K(K+1)J(J+1)

=

0,0 2
.[E(m—m')sm *2 _B(z+2)sin ‘“;"5]
K(K+1;J(J+1) [F(z—a')—F (z+2)] [cos x;w +cosx;$,]
+ K(K—liJ(Jml) [H(x—2)—H(x+ 2")] cos
N (K+J)(K+.J;+1)—2K2J2 [E(m»—w’)sinwrm/—E(zc—l—m’)sin m—zx]
* (K+J)(K+thl)_2K2Jz [-G(z—2')+G(z+2) ]sm:c (23a)

1) Die Formeln (20) und (20a) entsprechen den bekannten Fourier-Reihen
fiir die Euler’schen Polynome der Ordnungen O und 1, wéihrend (22) und (22a)
die Reiben fiir die Bernoulli’schen Polynome der Ordnungen 1 und 2 darstellen.
(Vgl. z. B. bei N. E. NorLUND, Differenzenrechnung, Verlag Springer 1924, die
Formeln (9), S. 9; (27), S. 24; (77) und (77*%), S. 65; (78) und (78*), S. 66.)
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Fir 6 = 1 und 0 = — 1 miissen in (23) nur die beiden ersten Terme
neu geschrieben werden:
K+1)J(J+1 ' ’

D%l Dll i = L 1)6( )[—F(:cb—m)»kF(:c—{—m)]
[K(E+1)-2][J (J+1)-2]

8

[—— z—z')sin (z—2') + E(x+ 2')sin (z + o) ]
P (23b)

Die weiteren 4 Terme stimmen mit den 4 letzten in (23) tberein.

In (24) hat man fiir 6 = 0 den ersten und dritten Term zu
ersetzen:

+

D}, =D}, = d(0){ 2 7 1B (et o) —B(z—a')]sin &
+wg—- [F (x+a")—F(z—3a' )]cos—g— e .}, (24a)
fir 6 = — 1 den zweiten und dritten Term: |
Dl—x,o:Dio'—'
A(“‘*l){“— 3KJ+§+J—1 [E($—$’)+E(.’L’+$,)] Sil’l—z“
E+1)(J+1 , , ’
+ EEED [P (—a) + F (2 +2)] cos 5 +...]. (24b)

Formel (25) ist ungiiltig fiir 6 = — 1 und d = — 2:
1)

DL, ED%H,—I ( { [F(z+2")—F(z—a]

+G(w+$’)sin Y G (z—a')sin 257 l, (25a)
Dl,o=D%o=— B(;z) {E(aﬁ—x)sm 5 i —E(x+ 2) sin ;x’

+ % [H(z—2z')—H(z + )] } (25b)

Fiir alle iibrigen Werte von 6 bleiben die alten Formeln (23), (24)
und (25) giiltig.
| § 3. Die harmonische Niherung.

~ Mit dem in §2 berechneten Kern D, y(x, ') lautet jetzt das
System (11) unter Berueksmh‘mgung von (19)

& () + { (4’-— (1+2008:E)—T—I—1}Q‘55($)

(,2") Py () dx" = ‘ - (26)
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In dieser Schrodingergleichung tritt, wie in I und II, die ,,Poten-

tialfunktion g (14 2cos z) auf, welche (wegen ¢<€V) ein tiefes

Minimum (,,Potentialmulde*) bei z = & besitzt. Man kann daher
zur Losung dhnlich vorgehen wie bei der Mathieuschen Gleichung:
cos  und Dj s(x, ') werden nach Potenzen von & = 2 — 7 resp.
&' = &' — m entwickelt. Hier werden zunichst nur die niedrigsten
Potenzen beibehalten; es zeigt sich dann, dass die néchst hoheren
Potenzen nur eine kleine Storung der Eigenwerte bewirken.

Um die Entwicklung von Dj »(x,2") einfach schreiben zu
kénnen, werden die beiden unstetigen Funktionen C+ und C- ein-
gefithrt:

CH(E,EN=H(E—-EYLE(E+E)

_1/E-¥ | E+E s
Ent ) 18l < @

Ferner seien Doppelvorzeichen verwendet, da die Entwicklungen
der Ausdriicke der Form

o 1 )
sin —— (& + @)

je nach der Paritit von 6 verschieden lauten: das obere Vorzeichen
soll fiir ungerades ¢, das untere fiir gerades & gelten.
Bei der Entwicklung des ,,Diagonalteils

Dssm+é&,ma+¢&), 6:0,1,—1,

bis zur 1. Ordnung in & und &’ erhélt man mit dieser Bezeichnung
fiir die sechs Ausdriicke in eckigen Klammern aus (23) der Reithe nach:

(H-l

— g GF), — (£CE—& 07F),
S (=1 ECx— (8 + 1)&'CT), z( (6 + 1) ECE + (8—1)&'C7),
L (~@—9Ect+8807), L(B+2E0E—sECT).

Die sechs Terme in (23) kénnen nun zusammengezogen werden;
eine lingere Rechnung ergibt den einfachen Ausdruck:

(B+J+1)(E+J)
2

(K+J—1)(K+J)

Dg,6(ﬂ+§’n+§,)£ 9

e

£C7. (28)

Diese Formel gilt zunéchst nur fiir  + 0, 1, — 1; die entsprechende
Entwicklung des Ausdrucks (28a) fiir D, ergibt aber

(E+J-1)(KE+J) (E+J+1)(E+J)

2 EO“ 2

D o(n+&, 7482 & O+ (28a)
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in Ubereinstimmung mit Formel (28). Weiter erhélt man aus (28b)

(K+J—-1)(K+.J)

Di,1(ﬂ+§,ﬂ+‘f’)=l)1~1,—1-ﬁ 2 0+
B (K+J+21)(K+J) 5,0__nK<K+18>J(-”1), (28D)

Es wird aber im Folgenden gezeigt werden, dass alle stefigen Terme
in Dj y (mit 6 oder ¢’ + 0), in dieser Niherung also die konstanten
und linearen Terme, keinen Einfluss auf die Eigenwerte haben,
so dass auch der Ausdruck (28b) durch (28) ersetzt werden kann.

In der Formel (24) fiir die ,,ausserdiagonalen Elemente Dy 5 ¢
und D2, 5 ;,0+0,—1, erhdlt man nach der Entwicklung fir
die vier Klammerausdriicke:

’

I—C—— = fiir 6 ungerade,
—CF,+CF,+ 07 undl ,:

—C++ —i—fﬁr d gerade.

Bei der Addition der 4 Terme in (24) heben sich aber die CT-Terme
gerade fort, und es bleibt nur ein stetiger (in & bzw. £’ linearer) Aus-
druck iibrig. Dasselbe gilt in den beiden Ausnahmeféllen 6 = 0 und
0 = —1 nach (24a, b); man erhilt:

Dj s (m+E,m+E)=D, _,
© A (5) (K—6-1)(J-6-1) [-(—¢&) fiir 6 ungerade,
= O T a@e+1)@6+8) |- (+ ) fir 6 gerade, - (29)

wobel fir d = 0 noch der Term

A0) 2L g, (292)
fir 6= —1 der Term
a(HK+1)(J+1) .,
— A1 G £ (29h)

zu addieren ist,

Schliesslich erhilt man fiir die Entwicklung der beiden Klam-
merausdriicke m (25) fir Ds 5,0 und D_5_45 o,d0+—1,—2, die
Werte

: ,
g0t 07, S

(—EC* + & CF)

und nach Addition:

Djarglm+Em+E)=Dy_, 00, (80)
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Fiir den Ausnahmewert é = — 1 gilt nach (25a)

. . AK(K+1)J(J+1)
Degga= iy g B— g

(30a)
und fir 6 = — 2 nach (25b)
D', ,=D; 0. (30b)

Sieht man von den konstanten und linearen Termen ab, so
folgt:
Djy(r+&,7+&)20, tir 6+6,

wahrend fir 6 = 6" der Ausdruck (28) gilt. Fithrt man diese Werte
I (26) ein, so zerfallt dieses Gleichungssystem in (2 K + 1), resp.
(2 J 4+ 1) einzelne Gleichungen. Zur Abkiirzung wird gesetzt:

W (r)+ V(r)

= OV g /T (@ g 1),

(31)

Ol+8= (@), I'\=—[ ps(&)de, I'——[egs(8)8¢.
0 0

Der Term (i

er sich von derselben Grossenordnung erweist, wie die erst im
néchsten Abschnitt zu behandelnden Stoérungsglieder. Unter Be-
riicksichtigung der Definition (27) und der Periodizitétseigenschaf-
ten (13) wird dann:

Fiir 0 gerade (¢,(§) = —@,(—&)):
@ (&) + (2 — B2 gy — B2 (K + J —1) (K + J)¢&

1) ®; in (26) wird einstweilen vernachlassigt, da

£
[ ue)dg + 1
0

&
FBUE 4+ J+1) (K+J)f5’%(§’)d§’: 0,  (32)

fiir 6 ungerade (@s(&) = + @s(—&)): 5
L5 (§) + («—B28%) @s— B2 (K + J — 1) (K + J) sf%(s') &’

&
+ UK +T+1) (K+0)| [£,()ag' + T} (=0, (32b)
0

Differenziert man diese Gleichungen (K + J)-mal, so erhalt man
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in beiden Fillen (¢®) bedeutet die N-fache Ableitung von ¢;
= g):

| QEHIFY 4 (o — BRER) @E + ) = (), (33)
Daraus folgt, dass die Funktion
ps(€) = @) (34)

mit den Paritétseigenschaften
w5 (€)= ws(—&)  fiir K +J + 6= ungerade,

Ps(&) = —ys(— &) tir K+ J 4 6= gerade (35)
der Schrédingergleichung des harmonischen Oszillators
W+ (@ B E) o= 0 36)
gentigt. Die Eigenwerte lauten also:
ab= f(2n+1), (n ganzzahlig = 0). (87

Da die dazugehérigen Eigenfunktionen die Beziehung (35) erfiillen
miissen, gilt fiir die Quantenzahlen » und 6 die Bedingung

K + J + 6 + n=ungerade Zahl, (38)
wobel —J=d=+J,resp. — K= =+K.

(87) und (38) stellen die Verallgemeinerung der nur fiir J = 0
giiltigen Formeln (29) und (81) aus II, S. 260 dar. Die vielfache
Entartung dieser Eigenwerte wird erst in der zweiten Naherung
zum Teil aufgehoben.

Es 1st noch zu bemerken, dass die weggelassenen konstanten
und linearen Terme in Dj 5 (vgl. (28b), (29), (29a, b) und (30a))
in den Gleichungen (32a, b) Zusitze ergeben, welche bei der Diffe-
rentiation im Falle K + J = 2 herausfallen; fir K 4+ J < 2 (d. h.
wegen (la) 6 = 0) treten solche Terme nicht auf. Zusitze ahnlicher
Form erhélt man, wenn gemiss der Bemerkung S. 321 die Matrix-
elemente

(0,0 02]|0,8"), 0 <o,

willkiirlich abgeandert werden ; in (26) ergibt dies den stetigen Term

V R 2” ! ! r
_ 8(?‘);'2 sin %f}‘a,a,y(m)@g(m)dm ,
U .

T o< o,

wobel ¢ noch durch (4a) und (1a) eingeschrinkt ist und f; s & ()
willkiirlich wiahlbare Funktionen sind. Nach der Entwicklung erhélt
man fiir K +J =2 in (32a, b) die Zusitze:

p%& ¢, fir 6 gerade, B2¢, fiir 6 ungerade.
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(¢o und ¢; sind dabei willkiirliche Konstanten.) Das heisst aber,
dass die Konstanten I') und I'} in (32a, b) beliebig abgeéndert
werden konnen. Da die Eigenwerte (37) «? von den ,,I™-Termen*
unabhéngig sind, hat auch die hier betrachtete Ab&nderung von
Q2 keinen Einfluss auf «f; d.h.nach S.321: Die Eigenwerte (37)
sind ,,richtige Eigenwerte.

In II, S. 265 wurde fiir den Fall J = 0 gezeigt, dass aus den
exponentiell abklingenden Oszillatoreigenfunktionen der Gleichung
(36) durch Integration und geeignete Fortsetzung in das ganze In-
tervall — < & < 4+ =z Liosungen der urspriinglichen Gleichung (26)
konstruiert werden konnen; auf diese Frage soll hier nicht einge-
gangen werden. Die vorgenommene Entwicklung nach & und &
und die darauf beruhende Oszillatornédherung 1st natiirlich nur
brauchbar, wenn das Intervall, in welchem die Oszillatoreigenfunk-
tionen w; merklich von Null verschieden sind, klein gegen 1 ist.
Dies bedingt:

(r)
ey (39)

n<ﬁ=]/

§ 4. Die Stéorungsrechnung.

Berticksichtigt man in der Entwicklung von Dj 5 die néchst-
hoheren Potenzen von & und &', so erhilt man aus (23), (24) und
(25) unter Verwendung der in § 3 eingefithrten Bezeichnungsweise?):

(K+J)(K+J-1) (K+J)(K+J+1
2 2

D}, (z+& nt+e) e B(Th L ero=

Y E=
g ot 02 [—B5(K2+J2) —8KJ +15(K +J)—11]

+RK2J2411(K2J + K J?) —8 (K2+J2) — 27K J+8 (K +J) }

g2 Cv :
+ St 2 [5(K2+ I + 8KT —T(K +J) — 1]

— K2 J2—T(K2J+KJ? + 2 (K*+J%)+3 K J+2 (K+J) |

_._i_.

ggac*
+ {a4+ 52 [—5(K2+ J2) —8KJ— (K + J) + 5]

+K2J2 L 3(K2J + KJ?) + 5KJ]

1) Das obere Vorzeichen gilt stets fiir ungerades, das untere fiir gerades d.
Der erste Ausdruck in eckiger Klammer aus (23) ergibt z. B.:

B(e-&)sin 251 ¢ ) £ BEr ) sin oL g1 0 O go g 07

(6_1)3 1 ' nF ’ + ’ F
o (B0 438 0T _3E5 0t 4 £90T)
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3OF
+ £ et o[5(K2+JY + 8K I +9(K +J)—1]

—K2J2+ (K2 J+ K J?)+2(K2+J2)+3K J+2(K+.J)}, (40)

D} oy (m+&,n+E&)=DL, 5, g—r{@)—{(K—l-J—l);szjF
— 2K+ )EECE+ (K+J +1)&20F}, (41)

B(8)

65+2(7H‘5 m+ &)= a s—-2L Ton

{‘ESCi 8525’0? |
+8E£12CE—E3CF}. (42)
Dabei sind die stetigen Terme der Form

const + £&% 1+ k<3, - (43)

weggelassen worden ; dann gelten diese Entwicklungen nach (23a,b),
(24a,b) und (25a,b) auch in den Ausnahmefillen 6 = 0, + 1, £+ 2.
Es wird spéter am Beispiel der ,,I-Terme* gezeigt werden, dass
die stetigen Terme auch in dieser Néherung keinen Einfluss auf die
Eigenwerte haben.

Der entwickelte Kern ist nun in (26) einzusetzen; unter Ver-
wendung der Abkiirzungen (31) und nach entsprechender Entwick-
lung des cos z wird:

(§)+(ocw~+1 BrE2 4 B21) 9, (6
~—ﬂ2§f D} y(m+&,m+E)py(&)dE=0. (44)

Dann hat man wieder zum (K + J)-fach differenzierten System
tiberzugehen ; man erhélt dadurch die Oszillatorgleichung (33) mit
zusétzlichen Stérungstermen. Dabei sollen die ,,/™-Terme** zun#chst
weggelassen werden (vgl. S. 337); fir K + J = 4 fallen diese Terme,
gleichwie die stetigen Zusatze (43), bei der Differentiation ohnedies
immer heraus. Die Gleichungen haben dann fiir gerades und unge-
rades 0 dieselbe Form. Nach langerer Rechnung erhalt man?):

1) Zur Durchfithrung der Differentiation ist es zweckmaéssig, den Ausdruck
(40) in einzelne Terme wie z. B.

% (£3C* 3£ &' (T 4 Bg 20t —_g3(CT)
Jot—o2(Ke+J2+ K+ J-1)+ K2J2+ K2+ KJ2+ KJ]

zu zerlegen.
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2
¢2K+J+2) o (oc— /32 52) (PgK+J) — (‘?T . 1) (K+J) __ ﬁz (p(K+J)

K(K+1)+J(J+1)-2¢2 - o
+52{ : 5[590((51{+J 2)_¢gK+J 3)]
(K+J)(K2+J2—KJ-1) o e
= [25995,1”*’ 3)_3%1:“ 4)]

(E+8+1)(E=0) (J+0+1) (J=8"+(K—6+1) (K +8) (J—8+1) (J+9) pEHT—4
d

T 16

A(0) » A(-6
+ 5 [Eq,gfflrj 2) ‘PT{J 3)]+ (2 ) [Etpfff{" 2) qI£+J 3)

B(d) B(-4) _
+ e oty S g ) (45)

Die Storungsterme sind hier auf der rechten Seite zusammen-
gefasst. Da ihr Einfluss auf die Eigenwerte o nur in einer ersten
Naherung zu berticksichtigen ist, kann man ¢, in diesen Termen
durch Losungen des ungestorten Systems ersetzen. Zu diesem
Zweck lasse man in (44) alle Terme hoherer Ordnung fort (man
erhilt dann ein System der Form (32)) und differenziere nur
(K+dJ—1)- resp. (K+J—2)-fach anstatt (K + J)-fach; dies
ergibt bis auf Terme hoherer Ordnung fir K +J =4 die Be-
ziehungen :

( dd; + a_ﬁzgz) gE+I=1 49 BY[& plE+I—2) _(p(K-l-J 3)] +...=0, (46)

(adgz -I—a—"ﬁzfz) PUETI=2) 1 QB2 (9 E+I=3_B pE+I—4] | —0, (47)

durch welche die Storungsterme in eckigen Klammern aus (45) eli-
miniert werden koénnen. Im Falle der Terme, welche ;. und
@s—, enthalten, muss aber die Naherung noch einen Schritt weiter-
gefithrt werden; denn diese Terme geben zwar, wie aus dem Fol-
genden hervorgeht, in der ersten Naherung keine Eigenwertsto-
rung, dagegen zeigt sich, dass sie in zweiter Naherung eine Storung
liefern, die von derselben Grissenordnung ist, wie diejenige der
iibrigen Storungsterme in erster Niherung. Man behalt deshalb in
(44) noch die Stérungsoperatoren niedrigster Ordnung Dj s.; und
Dj sy (vgl. (41)) bei und geht wieder zum (K + J—1)-fach diffe-
renzierten System tiber. Damit erhdlt man wieder die Bezichung
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(46), wobel die Storungsterme niedrigster Ordnung hinzugefiigt
sind :

d2
( e+ auﬁ2§2) PUE+I=1) 4 9 B2 p(K+T=2) _ (K +I-9)]
B A0) [ g9 298791 48)

—l—A(— [EQD(IHJ 3;_2(;,(K+J 4) }_I_

Nun schreibt man in dieser Beziehung ¢ 4 1 an Stelle von ¢ und ersetzt
damit die Terme [&@{E17~2 — @E+J=3)] in (45); dies ergibt:

A(8) _ A(~ ) Yy
(ot o+ 442 g A2 o)

A(6)A(6+1
— po{ AOEE [eqyrs— 01—

A A(—d—1)+ A(-8) A(6-1) g e
+ . (=) Ald=1] [,;_-(pgKJrJ 3)_Q glE+T 4)]

CA(=8)A(-6+1)
- ; [y — 208} +...,  (@9)

wobel die ibrigen Storungsterme aus (45) mit ¢,, @s. 5 nicht mehr
neu angegeben wurden. In den neuen Storungstermen auf der
rechten Seite von (49) kann nun die ungestorte Eigenfunktion ein-
gesetzt werden ; verwendet man hiefiir die Beziehung (47), so erhilt
man aus (49):

a2 (6 A d+1 —
(Wﬁ—l“ﬁzfz)xssK—FJ)m“—ﬁz{ L ( )QDSSI—{&;J “

A(8) A(— 86— 1)+ A(— ) A(5—1) I

¥ 16

+ A(“‘”‘fé_ﬁﬂ) ¢§E§J”4)}+...; | (50)
dabel 1st
A0 = gD 22 g0 4 S0 gl
n %{ A(a)féﬂn I A(a)A(—a—l);iA(—a)A(a—n PEHI-2)

A(=-0)A(—6+1
(—0) A( )(p(K—;—J 2)} (51)

+ 16 o—
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Nach der Definition (8a) gilt aber:

A(0)A(0+1)= B(d),
A A(—0—1)=(K++1)(K—96)(J+0+1)(J—9), (52)
d. h. die Storungsterme in (50) heben sich gegen einige der alten

Terme, die aus (45) zu entnehmen sind, fort. Das System heisst
jetzt:

52 . ﬁ' £
ng+J+2) " (0(”",'3252) ng+J) — (_4___1) (pgKﬁ—J) . (P(K+J)

K(IK+1)+J(J+1)-24§2 — _
+52{ ( ) 4( 5[5¢2K+J 2)__(PSSK+J 3)]

K+ J)(K*+J2—-KJ-1 -
4 (E+IN i )[2§{pgK+J ) _g g EtI- 4)]}_ (53)

Die beiden Ausdriicke in eckiger Klammer werden noch mit Hilfe

von (46) und (47) eliminiert, wobei der Faktor & vor der ersten
Klammer zu beachten ist; dies ergibt:

a2 52
(d_&f +a—f? 52) P+ - (T _ 1) (K+J) ﬁz . gpg.rH—J)

K(E+1)+J(J+1)—28°
+ + ps 7, (54)
mit
K(E+1)+J(J+1)—28? _
PET) . (K+T) | ( 8( £ g(E+7=1)
(K+J)(K2+J2- KJ-1 -
4+ ( 51 ) (pgK-l-J 2). (55)

Auf der rechten Seite von (54) kann nun @4 bis auf Stérungsterme
hoherer Ordnung durch ¥ ersetzt werden; damit sind der erste
und dritte Storungsterm in (54) auf Diagonalform gebracht, wih-
rend die Eigenwertstorung des zweiten Terms aus der Theorie der
Mathieugleichung bekannt ist. Man erhilt also fiir die Eigenwerte
in zwelter Naherung:

4 8 16 °

Otg=ﬂ(2?’b—]—1)—{— K(K+1)+J(J+1)— 62 n(n+1) 17 (56)

Dabel gelten fir die Quantenzahlen n und é wegen der Paritéts-
eigenschaften von ¥, (vgl. (55) und (51)) wieder die Bedingungen
(38). Fir J=0 (d.h. 6= 0) ergibt (56) die bereits bekannte
Formel (44) aus II, S. 264.
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Fiir K + J < 4 miissen die vorangehenden Rechnungen noch
erginzt werden; z. B. ergibt der Storungsoperator aus der zweiten
Zeile von (40) in (44) eingesetzt fiir gerades 6 den Ausdruck

const - £3 f C-(&, &) gs(&')AE = const - { g3 f 0s(ENAE + gsrg} ,
0 0

wobel die Abkiirzung (31) verwendet wurde. Der ,,I"-Term*, welcher
bisher nicht berticksichtigt wurde, fallt beim Ubergang zum diffe-
renzierten System (45) fir K + J <4 nicht mehr heraus; dennoch
wird sich zeigen, dass Formel (56) auch in diesem Fall giiltig 1st.
Da die Werte K+ J =0 und K+ J=1 (d.h. J oder K= 0)
schon behandelt wurden (vgl. II, § 2), sollen hier nur die beiden
Falle

K+J=2,K+J=3 (57)

diskutiert werden. In (45) sind dann rechts die folgenden Terme
hinzuzufiigen?):

Fir 6 gerade:
525(’{“_2){1“60 —(K+J)(K+J—1)———(;2~((K+J (K +J—4)+3)

Kf
L 6E+7)—6)]

Lo (K+6+1)(K—6)(J+6+1)(J~5)+(K—-6+1)(K+5(I 8+1)(J+9)
8 16

+ I3+ Ip, B (458)
wobel EM=0 fir N =2, &M=1 fir N=1, &¥=¢ fir N=0,
fiir 6 ungerade:

pREE+I-1) {pl{ K+J

—F] (K+6+1)(K—-6(J+0+1)(J -6+ (K- O +1)(K+d)(J-d+1)(J+)

(K+J+1)-3K J) + 2 (K +J) (K + J—2)

16
A
— A ) I 2 s g )
) B(-4
Y W LB “‘“‘“—(16 SF (45b)

1) Die Koéffizienten von £3C= und £2&'CT aus (40), welche hier auftreten,
werden in einer fiir die folgende Rechnung zweckméssigen Form geschrieben.

In (45) und den folgenden Formeln bedeuten (p(_l) und ¢(~? die Integrale:

& &
(p(—l) =f (P(E') dé", (p(“2) =f(p(—1)("{;l) d‘f’-
0 ) 0

22
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Anderseits sind auch in den Relationen (46), (47) und (48), mit
welchen die Storungsterme in (45) umgeformt werden, die folgen-
den ,,I-Terme* auf der rechten Seite hinzuzufiigen:

Fir 6 gerade:
pREEHI-D K +J) (K + J—1), (46a)

BREE+I-2 10 (K + J) (K +J—1), (47a)
pree—n | oK + J) (K fe g1
o Iy T (K - )T 2L (K J)} (48a)

fir 0 ungerade ((46) erhélt keinen Zusatz):

— BREEHI-D VK 4+ J)(K+J+1), (47b)

A(9) 0)

+ry, 2

— FREEHII (K + T —1) [ 19,57 | (asp)
Diese Zusitze sind nun in allen fritheren Rechnungen zu bertick-
sichtigen; dann erhédlt man in (50) auf der rechten Seite die
,,I-Terme‘ :

— pRE®EEI=2) (9 (K 4+ J—1)— re.,

(K+J)(K+J-1) A(d) A(d+1)
s [

AG)A(=0-1)+ A(=0)418-1) g, A(=0)A(=8F1) 1
16 Iy + 16 Lo
+ 3 (50&)
bzw.:
i > A(d)
predrI =0 [(K + J) (K +J—1)—2(K + J—1)] [rgﬂ_r
I A(;b":}
K+.DH)(K+J+1 A6 A(6+1
|2 (& + oy — ELDELIEN 20200 D 1
A(S)A(-0-1)+A(-d) A(6-1 A(=0)A(—-0+1)
L ( )16 ( ) ( )f61+ ( )lé ]'161_2”
+n, (50D)

wobel die Terme aus (45a, b), welche I';und [}, enthalten, nicht
mehr neu angegeben wurden. In (50b) verschwindet der Koeffizient
von I%, fir die beiden Werte (57) von K + J, wihrend sich die
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tbrigen Terme in (50a, b) unter Beriicksichtigung von (52) gegen
die entsprechenden Terme aus (45a, b) fortheben. In (53) 1st also
nur noch der ,,/™-Term‘ aus den ersten Zeilen von (45a) resp. (45b)
hinzuzufiigen. Nun wurden nochmals die Relationen (46) und (47)
benutzt; mit den ,,/-Termen* (46a) und (47a, b) erhalt man des-
halb in (54) die Zusitze:

Fir ¢ gerade:

grrp{ & gmeI- BELDHITINZ2 (g ) (K + T —1)

EE+T—2) (K+J)(K2+J2—K.J-1

i LK+ D) (E+JI—1)

_{.,.
+ KD [ (K 4 ) (K + T —1) — -5 {(K+J) (K +J— 4)+8}
+KTJ{5(K+J)~—6}]}, (54a)

fiir 0 ungerade:

prrpgats—y | XL R (R 4 ) (K + 0 +1)

K+J
4

+ B T 1) 8K+ O (K + ) (K +T—2)).  (54D)

Jetzt verifiziert man leicht, dass die Koéffizienten von I resp.
I} far alle nach (57) in Betracht kommenden Werte von K, J und
¢ verschwinden; d. h. (54) und damit die Eigenwerte (56) bleiben
auch be1l Beriicksichtigung der ,,/-Terme* ungeandert.

§ 5. Diskussion der Ergebnisse.

Fiir die adiabatischen Potentialkurven W(r) des Zwei-Nukleon-
Problems bei Vernachléssigung der Tensorkrifte wurde im Grenz-

fall eV die folgende Entwicklung nach Potenzen von V% ge-
funden (vgl. (56) und (31)):

W(r)=—Vr)+VeV(r) @n+1)

JUJ+)+EK(E+1)—d®  nn+l) 17
—l—a[ : e 2 —ﬁ]+.... (58)
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Dabei sind die Quantenzahlen d und n ganze Zahlen, welche nach
(37) und (88) den Bedingungen

n=0, d=0, d<K, d=<J,
K+ J +d+ n =ungerade (59)

geniigen. Alle zu d + 0 gehorigen Eigenwerte sind doppelt zu zéhlen:
Die dazugehorigen Eigenfunktionen kénnen in ¢ gerade oder un-
gerade sein, d.h. nach (4) symmetrisch oder antisymmetrisch in
j, und §,. Die Quantenzahlen M und N (vgl. § 1) treten in (58)
wegen der Kugelsymmetrie im gewohnlichen Raum und im ,,iso-
topen Spin-Raum* nicht auf; die zu einem Wertesystem von K
und J gehorigen Eigenwerte sind deshalb neben der Austausch-
entartung noch (2K+1)(2J+1)-fach entartet.

Aus (58) und (59) folgt, dass man die tiefsten Potentialkurven
W(r) tir die kleinen Werte von K, J und n erhilt. Es scheint
zunéchst, dass man fiir sehr grosse n (> 16 ]/g) noch tiefere Werte
erhalten wiirde; in diesem Fall ist jedoch die vorangehende Néhe-
rung unbrauchbar (vgl. (89)). Fir J = K = 0 (Mathieu’sche Glei-
chung) 1st ersichtlich, dass die Eigenwerte monoton mit n an-
wachsen.

Im Grenzfall € > V' (grosse Kernabstinde) kann W(r) durch

. \% .
Storungsrechnung ( Entwicklung nach Potenzen von 8—) bestimmt

werden. Die Zuordnung der Eigenwerte in den beiden Grenzfillen
ergibt sich dann aus der Bedingung, dass sich zwel Potentialkurven,
die zu denselben Werten von J und K gehoren und deren Eigen-
funktionen in §; und j, beide symmetrisch oder beide antisym-
metrisch sind, nicht iberschneiden diirfen. Aus diesen Kurven
kénnen die Energieniveaus des Deuterons z. B. mit Hilfe des Adia-
batenverfahrens gewonnen werden (vgl. I, §3 und II, §3).

Die tiefsten Niveaus!) erhélt man nun fir J = 0, K = 1 oder
J=1,K=0mit n = d= 0, welche mit dem 1S- bzw. 3S-Zustand
des Deuterons zu identifizieren sind (vgl. II, §3). Diese beiden
Niveaus werden erst bei Beriicksichtigung der Tensorkraft aufge-
spalten. Das Potential V(r) kann so gewihlt werden, dass man
die richtige Bindungsenergie des Deuterons erhélt. Nun liefert diese

1) Vgl. die Zusammenstellung aller Potentialkurven, die fiir r = co zwei un-
angeregten Nukleonen entsprechen, in dem vorldufigen Bericht iiber diese Arbeit,
Helv. Phys. Acta 17 (1944), S. 405.
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Theorie Aussagen iiber die Lage der héheren Niveaus, wobei hier
allerdings iiber die Konstante ¢ im Ausdruck fir die Isobarenanre-
gungsenergie noch verfigt werden kannt).

Ordnet man die Potentialkurven nach ihrer Hohe fiir Ve
(kleine r-Werte), so folgt als néchst hohere nach (58) und (59) die
Kurve J=K=1, d=1, n=0. Der von den Spin-Variablen
J1s M1, Ny, Jas Mg, Ny (vgl. § 1) abhéngige Teil der Eigenfunktion
kann hier wegen d + 0 ;n den Koordinaten beider Teilchen sym-
metrisch oder antisymmetrisch sein, so dass das Pauliprinzip so-
wohl ungerade wie gerade Bahnmomente (P- und S-Terme) zulésst.
Die P-Kurve mit gerader Spineigenfunktion tendiert fir »-> oo
(V > 0) gegen das Nullniveau (vgl. Formel (3): 5, = jo= %, W (o)

= 0, W(r)= 5 V() +...fir V < ¢). Die S-Kurve dagegen, deren
ungerade Spinfunktion fiir j; = j, = % verschwindet?), ist dem Ni-

3 . . 3 . 3 .
veau W(o0) = 5 € zuzuordnen (j;= %, jp= DL bzw. h=% 3l %y

d. h. ein Nukleon ist angeregt, das andere im Grundzustand). Diese

S-Kurve liegt also aussen (r gross) um% ¢, Innen (r klein, V>>¢)

aber nach (58) um % oberhalb der 3S-Potentialkurve des Grund-

zustandes ; sie muss daher zu einem stabilen isobaren Zustand Anlass
geben, dessen Anregungsenergie nach der Adiabaten-Néherung zwi-
schen -‘-1_ und—z— ¢ liegen sollte. Dieser Zustand ist ein Spintriplett
(J = 1) und gleichzeitig ein Ladungstriplett (K =1, N =0, + 1),
stellt also Isotopen des Wasserstoffs, Heliums und Neutrons dar.
Nach dem von CorsTeEr angegebenen Wert der Konstanten & liegt
die Anregungsenergie dieser Isotopen zwischen 5 und 30 MeV.
Die besprochene 2P-Kurve fir J = K = 1 ist die tiefste von
allen P-Kurven. Sie gibt trotzdem zu keinem stationdren Zustand

Anlass, weil sie im Innenbereich (V> ¢) um —Z— hoher liegt als die

8§-Kurve des Grundzustandes und {iiberdies noch die Zentrifugal-
kraft hinzukommt. Sie ist aber von Bedeutung fiir alle Streu-
prozesse: Proton-Proton- und Proton-Neutron-Streuung. Im Hin-
blick auf die bekannte Anisotropie bei der Proton-Neutron-Streu-
ung ist hervorzuheben, dass die Potential-Kurve des 3P-Zustandes
fiir kleine r (V<< ¢) einer anziehenden Kraft entspricht?). Dasselbe

1) & wurde durch Betrachtung der Bindungsenergie schwerer Kerne abge-
schitzt; vgl. F. CoEsTER, Helv. Phys. Acta 17 (1944), S. 35. ‘

%) Vgl. I, Formel (9), S. 220, mit J = K = 1, also (J+ K) gerade.

3) Vgl. die Diskussionsbemerkung von G. WENTZEL, Helv. Phys, Acta 17
(1944), S. 407.
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gilt iibrigens nach (58) von allen Potentialkurven ; hierin kann man
eine typische Auswirkung der isobaren Zustéinde des Nukleons er-
blicken.

Herrn Professor Dr. G. WENTzZEL mochte ich fiir die Anre-
gung zu dieser Arbeit und fir die vielen freundlichen Ratschlage
bei der Ausfithrung derselben herzlich danken.

Der Jubildumsspende fir die Universitdt Ziirich bin ich fir
die Gewihrung einer Subvention, welche mir diese Arbeit ermog-
lichte, zu grossem Dank verpflichtet.

Zirich, Physikalisches Institut der Universitit.
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