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Ein Beitrag zum Zwei-Nukleon-Problem
von Konrad Bleuler.

(19. III. 1945)

In der Theorie des Mesonfeldes mit starker Kopplung an ein Nukleon besitzt
das Nukleon angeregte isobare Zustände mit höheren Spin- und Ladungswerten.
Auf Grund dieser Annahme werden (unter Vernachlässigung der Tensorkraft) alle
Deuteronzustände mit beliebigem totalen Spin J und „isotopen Spin" K untersucht.

Es ergibt sich, dass die bereits bekannten Zustände J 1, X= 0 und
J 0, K 1 (SS- resp. ^-Zustand des Deuterons) die tiefsten sind. Als nächst
höheren isobaren Zustand erhält man einen 3$-Zustand, dessen Anregungsenergie
zwischen 5 und 30 MeV geschätzt wird. Für die Diskussion der Anisotropie der
Proton-Neutron-Streuung ist bemerkenswert, dass die 3P-Wechselwirkung für
kleine Kernabstände anziehend wird.

§ 1. Einleitung.

Das Deuteron wird auf Grund eines Nukleon-Modells und
eines Wechselwirkungsansatzes behandelt, welche der Mesontheorie
unter Annahme starker Kopplung entnommen wurden. Nach dieser
Theorie1) (wir betrachten die symmetrische Pseudoskalar- oder
Vektortheorie) besitzt das Nukleon innere Freiheitsgrade, welche
durch dieselben Operatoren, die in der Quantentheorie des
Kugelkreisels auftreten, beschrieben werden. Die entsprechenden
Quantenzahlen j,m,n sind hier halbganze Zahlen und haben die
folgende physikalische Bedeutung:

j Spin und zugleich „isotoper Spin",
m Spinkomponente, m — j, + j,

n + \ Ladung, n —j,... + j.

Der Rotationsenergie des Kreisels entspricht die sog. Isobaren-
Energie mit den Eigenwerten

K)'->
b G. Wentzel, Helv. Phys. Acta 13 (1940), S. 269; 14 (1941), S. 633;

15 (1942), S. 685; 16 (1943), S. 222 und S. 551. — J. R. Oppenheimer und
J. Schwinger, Phys. Rev. 60 (1941), S. 150; W. Pauli und S. M. Dancoff, Phys.
Rev. 62 (1942), S. 85; R. Serber und S. M. Dancopf, Phys. Rev. 63 (1943),
S. 143; W. Pauli und S. Kusaka, Phys. Rev. 63 (1943), S. 400; F. Coester,
Helv. Phys. Acta 17 (1944), S. 35.
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Bei der Behandlung des Zweikörperproblems1) geht man von
den Spin- und Ladungsquantenzahlen der beiden Nukleonen jx, m1,
n1,j2,m2,n2 zu den Variablen J, M, K, N, j1; j2 über, wobei:

J Gesamtspin (J 0,1, 2,
M Spinkomponente (M — J, + J),
K Gesamter „isotoper Spin" (K 0,1, 2,

N + 1= Ladung des Deuterons (N — K, + K).

Nach dem Vektoradditionsmodell gelten die Ungleichungen

I h—HI ^ J ^ h + H> I h~h1 ^ K ^ jx + j2. (1)

Im Hamütonoperator H für das Zweikörperproblem wird die
Tensorkraft (Spin-Bahnkopplung) vernachlässigt; dann wird H eine

Diagonalmatrix bezüglich der 4 Quantenzahlen J, M,K, N. Die
entsprechende Untermatrix von H ist dann noch eine Matrix
bezüglich der beiden Spins jx, j2 :

(h?2|ff|h'?20={^ + f[(h + |)^(i2 + l)2-2]}(h?2|i|h'?V)

+ V(r)(j1j2\Q\j1'j2'), (2)

tvobei r den Abstand der beiden Nukleonen, V (r) > 0 das Potential,
Mj, die Protonmasse und A den Laplace-Operator bezüglich der
Relativkoordinaten bedeuten. Die Wechselwirkungsmatrix ü wurde
von Fierz2) in den hier verwendeten Variablen angegeben.

Das Ziel ist nun, die Eigenwerte dieses Hamiltonoperators zu
bestimmen. Dabei kann etwa die Adiabatenmethode (vgl. I, § 3)
verwendet werden, d. h. man bestimmt die Eigenwerte zunächst
für festen Kernabstand r, welcher die Rolle eines Parameters spielt.
Die Eigenwerte W der Matrix (2), worin A null gesetzt wird, sind
dann Funktionen von r (adiabatische Potentialkurven W(r)). Die
Berechnung von W(r) kann in den beiden folgenden Grenzfällen
durchgeführt werden:

1. Für grosse Kernabstände r ist die Wechselwirkungsenergie
klein gegen die Konstante e der Isobarenenergie, so dass erstere
als kleine Störung betrachtet werden kann ; eine einfache Störungs-

V(r)
rechnung ergibt dann W (r) als Entwicklung nach Potenzen von

1) Vgl. § 2 der Arbeit von M. Fierz und G. Wentzel, Zum Deuteronproblem
I, Helv. Phys. Acta 17 (1944), S. 215 (im Folg. als I zitiert).

2) M. Fierz, Über die Wechselwirkung zweier Nukleonen in der
Mesontheorie, Helv. Phys. Acta 17 (1944), S. 181, vgl. Gl. IV, S. 193.
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2. Wenn £ genügend klein angenommen wird, gilt bei kleinen
Kernabständen: e<^F(r). Für diesen Fall haben Fierz und
Wentzel1) nur die Untermatrizen diskutiert, bei denen eine der
beiden Quantenzahlen J und K den Wert null hat ; doch erweisen
sich ihre Methoden auch bei beliebigen Werten von J und K als
brauchbar. Dies wird im Folgenden gezeigt werden; es soll also
für den Grenzfall e <^ V(r) eine allgemeine Formel für die Eigenwerte

W(r) aufgestellt werden.
Die Eigenwertgleichung für W (r) lautet nach (2) :

{-W(r) + i[(h +1)2+ (j, + |)-2]}a„
+ V(r)Z(hh\a\h'H')ah,x 0. (3)

Wh'

Für die folgende Rechnung ist es zweckmässig, die Substitution
einzuführen :

ff=Ji + Ji + l» <5=h-?2; (4)

dabei sind a und ò ganze Zahlen, welche der Bedingung

a + ò gerade Zahl (4a)

genügen. Ferner empfiehlt sich die Transformation

«06= KôVyo~ô > (5)
wobei

Vaö=^r¥(o-K)(a-K+l)...(a + K)(a-J)(a-J+l)...(a+J). (6)

Gleichung (3) lautet dann:

\-W(r)+^ + ò^-A-\)haS+V(r)ZE^ò\^Wò')bo'6'==0- (7)
1 à' a'

Die transformierte Matrix Q hat folgende nicht verschwindende
Elemente :

(cr,ô\ Q\o,ò)= [4cK(K+-l)-(<7+ô+l)(a+ô-l)-(o-ô + l)(a-ô-l)]
[4J(J+-l)-(o+ô+l)(o+ô-l)-(e-ô + l){o-ô-l)]

4(or+d-t-l)(o-+ö-l)(<T-ö + l)(<r-o-l) '

/ », ni„,0 y, (<y+K+l)(a+K + 2)(a+J + l)(a+ J + 2)
(a, d\U\ o+l, d) - (a + ô + 1){a_ô + 1){a+ô + 2Ha_ô+-2y-,

trr A I n I n O M (g-g-l)(g-g-2)(g-J-l)(g-J-2)(a,ô\Q\o-2,ô)= {a_ô_1)(a+d_1)(fl_d_2Ha+ô_2)

x) Vgl. I, § 4 und G. Wentzel, Zum Deuteronproblem II, Helv. Phys.
Acta 17 (1944), S. 252 (im Folg. als II zitiert), vgl. § 2.
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(a à Q\

(a Ò Q\

(a à Q\

(a à Q\

(a à Q\

(a à Q\

a + l,ô + l)=2A(à)

Konrad Bleuler.

(a+K+-l)(a+J+l)
(<7+-ô + l)(o-ô+l){o-ô-l)(o + ô + 2) '

{o-K-l)(o-J-l)*-l.* + l)=24(*)-(jra-_-ï)(â;-o-lj(«r+o + l)(ff-o-2) '

1 » i\_cy A 1 M (a+-K+-l)(a + J + l)a + l,û-l)-ZA(-d) (a_ô + 1)(a+d + ina+d_1){a_ô + 2) '

1 À 1 \ — O A l Â\ (a- K-l){a- J-l)a 1,0-1)-ZA(-Ò) (<J^ô_1)(a_ ö-i){a-S + l)(a+ö-2) '
1

a,ò + 2) B(ò)-

o,ô-2)=B(-,
{a+ô + l){a-ô-l){a+ô + 2)(a-ô-2) '

}' (o-ô + l){o+ ô-l)(a- c5+ 2)(orH Ô-2) ' (8)

wobei
A (ê) y/{K + â + l){K-â)(J+ô + l){J-ô)

B (ô) ^[K*-(ô+l)z][(K+l)Hà+l)2][(J2-(à+V][(J+l)*-(ô+l)*].
(8a)

Infolge der Transformation (5) sind diese Ausdrücke in a rational
geworden, was für die folgende Rechnung erforderlich ist (vgl. § 2) ;

dagegen ist Q nicht mehr hermitisch, da die Transformation (5)
nicht unitär ist.

Der Variabilitätsbereich von è und a ist nach (1) gegeben
dUrCh:

-ôo**Z + *9, da)

wobei
(lb)

è0 K,a0= J+lfür J^K,Ô0= J,cr0=~-K+1 iüvK^J;
zugleich ist die Bedingung (4a) zu erfüllen. Nach Ausweis der
Faktoren A (ô) und B (ô) verschwinden alle Matrixelemente von Q,
welche aus dem Intervall (la) herausführen. Entsprechend (lb)
gilt nach (8) :

K| Q|O-0-2) (a0 + 1 | Q|c-o-1) (a0\ Q\a0-1)= 0;

dagegen sind die Elemente

(<r0 — 21 Q | a0), (<r0 — 11 Q \ a0 + 1), (a0— 1 \ Q | cr0)

von null verschieden. Q ist also nur „halb ausreduziert". (Dies
rührt daher, dass die Koeffizienten yad in der Transformation (5)
für a sS K und a < J verschwinden ; die ursprüngliche Matrix ist
voll reduziert.) Für die folgende Transformation ist es nun
zweckmässig, das System (7) auf alle a Ss 0, welche (4a) erfüllen, zu
erweitern. Dies lässt die gesuchten Eigenwerte W(r) ungeändert,
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doch werden noch weitere Eigenwerte hinzugefügt (sog. „falsche
Eigenwerte", vgl. die entsprechenden Bemerkungen in II, S. 254).
Im erweiterten System dürfen die Matrixelemente

(a\Q\a') mit cr<cr0

willkürlich abgeändert werden. Da Q dabei „halb ausreduziert"
bleibt, werden dadurch nur die „falschen Eigenwerte" geändert.
Dies bildet ein einfaches Kriterium für die „richtigen Eigenwerte".

Nach dieser Erweiterung wird eine Transformation durchgeführt,

welche von der Variablen a auf die kontinuierliche Variable x
führt, analog der Transformation, die im Falle J 0 eingeführt
wurde (vgl. II, S. 255, Formel (10); x=7i+rj):

0^x) -è^Eh^sìn^ì' (9)
a> o
a + ô gerade

mit der Umkehrformel

Kö= ^77~/^a (x) sin^dx. (10)
o

Die Gleichung (7) geht dann über in
2.1

(-W(r) + ~-e)00(x)-e0'ä'(x) + V(r)y(D^(x,x')0d-(x')dx' O,
»' i (11)

wobei

Dä^(x, 0 ^-27 (aô I ÜI ff'0') sin "¥" sin ^T~ ¦ (12)
o o'

Die Summen über a und o' sind dabei über alle positiven ganzen
Zahlen zu erstrecken, welche den Bedingungen „a + ô= gerade,
g' + S' gerade" genügen; è und ò' laufen über alle ganzen Zahlen
im Intervall (la). Die Berechnung von Dd d- wird in § 2 durchgeführt

werden. Das System von Integro-Differentialgleichungen (11)
ist mit dem erweiterten System (7) äquivalent, wenn man die
Eigenfunktionen von (11) gemäss (9) den folgenden Periodizitätsbedin-
gungen unterwirft:

Für ô gerade : <t>6 (x) — <t>d(—x)= <Pd (x + 2n), Periode 2n

für ô ungerade : 0e (x) — &s (— x) — <Pä (x + 2 n), Periode 4 n. (13)

Zur Lösung von (11) können ähnliche Methoden verwendet
werden wie im Falle J 0. Es zeigt sich, dass für s <^V nur der
Verlauf der Eigenfunktionen in der Nähe der Stelle x= n wesent-
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lieh ist. Man erhält deshalb eine erste Näherung durch Entwickeln
des Kernes Dä a> nach Potenzen von | x — n und !' x' — n
bis zur ersten Ordnung in f und £'. Das System lässt sich dann durch
mehrfache Differentiation in die Schrödingergleichung des
harmonischen Oszillators überführen („Harmonische Näherung", § 3).
Von dieser Näherung ausgehend, können die nächst höheren
Potenzen in der Entwicklung von Ds 0. durch eine Störungsrechnung
berücksichtigt werden (§ 4). Dieses Verfahren entspricht einer

Entwicklung der Eigenwerte nach Potenzen von ~y-y- ¦

§ 2. Die Berechnung des Kernes Dä &, (x, x').

Nach (12) und (8) ist Di>v 0 für j Ò — ô' \ > 2; es sind daher
nur folgende 5 Typen von „Matrixelementen" Dô # zu berechnen:

De, ô (x, x') —£(ct, à | Ü | a, è) sin ^- sin ~a

1 V/ si /=»i n s\ • ax ¦ (ff + 2)a;'
+ —2, (o-,<5|ß|o- + 2,ö) sin -y- sin 2

CT

1 ri; s, x\ n s\ ¦ ax • (o-2)x'+ ~2j \p,à\U\o—2,d) sin-^-sm—2
CT

t^ / /\ 1 x~i/ si 7=Ti i s i\ • csx (a+-\)x'
Dd>â±1(x,x)= ~2j (a,à\Q\cT+l,ô±l) sm-ç-sm 2

CT

ax (a-l)x'
H 2j(a>^\ ß|or— 1, <3 ±1) sin -y sin

2

¦D«,a± 2 (^ *') —2J(a> ô\n\o,S ±2) sin ^- sin ~. (14)
CT

Die Summation wird dabei immer über alle positiven er erstreckt,
welche der Bedingung (4a) genügen1).

Zur Berechnung dieser Summen müssen die Ausdrücke für Q,
welche aus (8) zu entnehmen sind, in Partialbrüche bezüglich a
zerlegt werden. Wenn zunächst vorausgesetzt wird, dass ô von den

b Durch die einheitliche Wahl der Summationsgrenzen, welche für die
folgende Rechnung zweckmässig ist, wird in Ds, 0 für ungerades ô (d. h. K, J > 0)
der Term

(1,<5|Ö|-1,<5) sin— sin-5-

hinzugefügt. Dieser Zusatz ist nach der Bemerkung auf S. 321 erlaubt, da er einer
Änderung von (1, ô \ Q \ 1, 6) gleichkommt.
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Werten 0, ± 1, ± 2 verschieden ist, so zerfallen die ü in Brüche
mit linearen Nennern, z. B. :

(a,ò\Q\a,ò)
[K(K+l)-ô(Ô-l)][J(J+l)-ô(ô-l)] i 1 1 \

**"
20'ò-X) \a+ò-l a-ô+l)

[K(K + 1)-Ô(Ô + 1)][J(J+1)-Ô(Ô + 1)) I 1 1 \ ,,,-,
2c5(<S + l) \a-ô-l a+ô+l)' ^ '

Der Term + 1 steht nur in den 3 Matrixelementen (a,ò\Q\a,ò),
(a, ô I Q I a, ± 2, ô), die im Ausdruck für Dä d auftreten. Diese
Terme ergeben zusammengefasst :

wobei D%ö(x,x')=(l + 2cosx')A0(x,x'), (16)

As(x,x')= —£ sin -^ sin ax
2 "xx± ~2~

o^.\)
a+à gerade

y[ô(x—x') —ô(x + x')~\ für ô ungerade,

j [Ô (x- x') -ô(x + x')] für ô gerade. (17)

Hier bedeutet ô (z) die periodische «^-Funktion (Periode 2 n), § (z)
die alternierende ó-Funktion (3 (z) — 5 (z + 2 n) + ò (z + 4 n),
Periode An). Die Beziehung (17) entspricht der Vollständigkeitsrelation

des hier verwendeten Funktionensystems —j=- sin -~— ; es

gilt nämlich für jede Funktion 0s(x), welche den Periodizitäts-
bedingungen (13) genügt:

2ji

JAs(x, x') 06(x') dx'=0ä(x). (18)
0

In der Integralgleichung (11) ergibt deshalb D^a(x, x') den Term

7(r)(l+2cosa;)<Pa(a;). (19)

Der zweite Teil aus (15) liefert in (14) eingesetzt den Ausdruck

r» 1 v/ 1 1 \ ax ax'
o —A —Ts—î .-r sin —3- sm —s— •n^-^Aa^ô-l a-ô + l/ 2 2

CT>U x

CT+o gerade

Die beiden Terme können in eine einzige Summe, die sich von
— co bis + 00 erstreckt, zusammengefasst werden :

s— È2n *-< a+ô-1
CT —¦ 00

o + à — gerade

cos y (x — x') — cosy(a;+/
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Mit Hilfe der Substitution

0+6-1 _ _jl_
2 S_ 2

(s durchläuft bei geradem und ungeradem Wert von ô alle ganzen
Zahlen) und der Summenformel (vgl. II, S. 257)

1 s=.±.c0 airW? i\r \+^j-iür 0<z<2?t,
E(*) ifc E UV =l i... „ .1 (2°)

erhält man in beiden Fällen:

— y für — 2n<z<§,
(Periode 4 n)

S-Y E(x—x')sm.—^-(x—x')-E(x + x')ain—j—(x + x') (21)

In entsprechender Weise können alle anderen Summen, in welchen
ungerade Nenner (a ± ô ± 1) auftreten, berechnet werden. Dabei
ist wesentlich, dass immer zwei einzelne Summen mit Nennern der
Form (er 7 o) und (a — a) mit derselben Funktion von K, J und
ô multipliziert erscheinen (vgl. Formel (8)) ; sie können deshalb
in eine einzige Summe vereinigt und mit Hilfe der Formel (20)
aufsummiert werden.

Anderseits lassen sich auch die Summen mit geraden Nennern
(er ± ô ± 2)1' in derselben Art auf den bekannten Ausdruck

G(z) ^Z^ \-i7i^0<z<2n (22)
s=l (Periode 2 n)

zurückführen.
Auf diese Weise können die „Matrixelemente" (14) unter der

Voraussetzung Ô+-0, + 1, ± 2 berechnet werden. Für die diagonalen

Elemente wird unter Berücksichtigung von (16) :

wobei Dâ,ô(x,x') D% + DXô,

T)i (K(K+1)-Ô(Ô-1))(J(J+1)-Ô[Ô-1))
Uô's 4(5(5-1)

• E(x — x') sin (—s— (x — x')\ — E(x+x') sin (—=— (x+x')j

^ (K(K+1)-Ô(Ô + 1))(J(J+1)-Ô(Ô + 1))
+ 4<?(<S+1)

-E(x-x')sinm^(x-x'))+E(x+x')sm(^-(x+x')'

b In diesen Summen tritt immer ein Term mit dem Nenner Null auf, der
weggelassen wird; dies ist erlaubt, da er dem erweiterten System angehört (vgl.
S. 320).
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{E+Ô)(K+Ô+1)(J+Ô)(J+Ô + D
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4<5(2 <5+l)

E (x-x') sin (a; ^— (x-x') -E (x+x') sin x ^— (x+x')

(K-ô)(K- ô t-l)(J-5)(J-5 + l)

+

+

4(5(2(5-1)

E (x-x') sin (x+—2—(x-x')\ -E (x+x') sin (x+—^- (*+a!')

(Z+5)'K+5-l)(J+5)(./+5-l)
4(5(25-1)

• -6? (a;-as') sin (a;-y (x-x') + G(x + a;') sin (a;- y(x + a;')

(ï-W-«-i)(;-0(j-d-i)
4 5(2 5+1)

-G(x-x')sinL+Y(x-x'))+G(x+x')sm(x+-ï(x+x')) .(23)

(Es gilt wegen der Symmetrie in den beiden Nukleonen DJ 0= D1^^.
Bei den ausserdiagonalen Dd ö, gibt es keine Terme der Form (16) :

Z>o,,= 0, D*,*—-Dì,*- für<5±<5'.

Die Ausdrücke für D0j(5+1 und DJ (S_1 können in einer Formel

geschrieben werden:

A(ö) (K+Ô)(J+Ô)
4 5(2 5 + 1)

n1 n1•^o, ó+l U-6,-ò-\

E(x — x') sin(
2 (x —x') —

— E (x + x') sin (—j- (x + x') + y)

+ (K+a + 2)(J+ò + 2)

4(5 + l)(25 + 3)
— E(x— x') sin

2 (x—-x') g-j

+ E (x + x') sin (—g— (x + x') + -g-

<X-5)(J-5)
45(5 +

-5) !"„, /5+1 x'\
jr— \E (X — X Sin I

2 (X — X + -jj-I

E(x+ x') sin —s— (x + x') 2

(ff-5-l)(J-5-l)
(25 H)H25 1-3)

¦G(x— x') sin (^-H s—(x —x')

¦ G (x + x') sin 4- + -^— (x+x') (24)
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ebenso die Ausdrücke für D\ ä + 2 und D0 o —2

D1 D1
¦L/d, a + 2 -^-ó,-Ó-2

B W 4(25^3) {ITT [^ (*- œ') sin -^- (a;- x')

-E(x + x') sin—s-(x + x')

+ 5 + 2 -G(x-x') sin^(x-x')+67(x+x')sin^(x+x')|J. (25)

Für die speziellen Werte ô 0, ± 1, ± 2 sind diese Formeln
für DJ y zum Teil ungültig. In den Partialbruchzerlegungen vom
Typus (15) treten jetzt auch in er quadratische Nenner auf. Zur
Berechnung der Summen müssen deshalb noch die folgenden
Beziehungen verwendet werden1) :

+ oo

; -OD

cos sz

(s-iVF(2)=i|; cos(s~i)3

m ^E

n — \z\, für — 2t!I 5^2 57
(Periode 4 ti)

(z-7i)
12 fürO^0^27r.

(Periode 2n)

(20a)

(22a)

Es zeigt sich ,dass in (23), (24) und (25) nur diejenigen Ausdrücke
ersetzt werden müssen, in welchen verschwindende Nenner
auftreten.

Für ó=0 erhält man an Stelle von (23) :

Dl,o- K(K+1) + J(J+1) + K(K+1)J(J+1)

E(x —x')sin- -E(x+ x') sin x+ x

K(K+1)J(J+1)
8

K(K-1)J(J-1)

[F (x-x') -F (x+x')] cos ¦cos-
X + X

[H(x — x') — H(x + x')] cos x

(K + .I)(K + J + 1)-2K2J2 E(x—x')sin
x + x ¦E (x+x') sin •'

(K+J)(K+J-1)-2K2J2
[— G(x — x')+G(x+x')]sinx. (23a)

b Die Formeln (20) und (20a) entsprechen den bekannten Fourier-Reihen
für die Euler'schen Polynome der Ordnungen 0 und 1, während (22) und (22a)
die Reihen für die Bernoulli'schen Polynome der Ordnungen 1 und 2 darstellen.
(Vgl. z. B. bei N. E. Nörlcwd, Differenzenrechnung, Verlag Springer 1924, die
Formeln (9), S. 9; (27), S. 24; (77) und (77*), S. 65; (78) und (78*), S. 66.)
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Für ô 1 und ô — 1 müssen in (23) nur die beiden ersten Terme
neu geschrieben werden:

Di1 D^1 ^^^l[-F(x-x')+F(x + x')]
[K(K+l)-2][J(J + l)-2]+ 8

• [-E(x-x') sin (x—x') + E (x + x') sin (x + x')]
+ (23b)

Die weiteren 4 Terme stimmen mit den 4 letzten in (23) überein.
In (24) hat man für ò 0 den ersten und dritten Term zu

ersetzen :

Dl,i Di-i Ä(°){ 2{K+J/"~KJ [E(x7x')-E(x-x')]sinf
+ ^[F(x+x')-F(x-x')]cosf + ...}, (24a)

für ô — 1 den zweiten und dritten Term :

^-1.0 01,0

A(-1)[-*KJ+1+J— [E(x-x')+-E(x + x')]sin4-

+ <Z+1HJ+1L [F(x-x') +F(x + x')] cos-^- + (24b)

Formel (25) ist ungültig für ô — 1 und ò — 2 :

D1_li+1=D1+li_1=^(^j|[F(x + x')-F(x-x')]
+ 67(x + x')sin^-^- G(x — x')sin

X * \, (25a)

^o ^1+2,o -^2L{E(x-x')sin^--E(x + x')sin-^
+ ^[H(x-x')-H(x + x')]Y (25b)

Für alle übrigen Werte von ô bleiben die alten Formeln (23), (24)
und (25) gültig.

§ 3. Die harmonische Näherung.

Mit dem in § 2 berechneten Kern Ds ^(x,x') lautet jetzt das

System (11) unter Berücksichtigung von (19) :

0:(x) + {M^-^(l + 2Cosx)-^ + l\0d(x)

-^E [D\ * (x, x') 0s' (x') dx' 0. (26)
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In dieser Schrödingergleichung tritt, wie in I und II, die „Poten-
Vtialfunktion" — (l + 2cosx) auf, welche (wegen e<^V) ein tiefes

Minimum („Potentialmulde") bei x n besitzt. Man kann daher
zur Lösung ähnlich vorgehen wie bei der Mathieuschen Gleichung:
cos x und D\ ò'(x, x') werden nach Potenzen von f x — n resp.
f' x' — n entwickelt. Hier werden zunächst nur die niedrigsten
Potenzen beibehalten; es zeigt sich dann, dass die nächst höheren
Potenzen nur eine kleine Störung der Eigenwerte bewirken.

Um die Entwicklung von D\ d, (x, x') einfach schreiben zu
können, werden die beiden unstetigen Funktionen C+ und C~
eingeführt :

C±(f,0 -E(f-f)±E(f + 0
-T(Rqn±li+Tl). Ö»r|r|,|f|<». - (27)

Ferner seien Doppelvorzeichen verwendet, da die Entwicklungen
der Ausdrücke der Form

¦ ô~1 i >\sm —2— (x + x

je nach der Parität von ô verschieden lauten : das obere Vorzeichen
soll für ungerades <5, das untere für gerades ô gelten.

Bei der Entwicklung des „Diagonalteils"

D\ô(n + £,n + è'), (3 + 0,1,-1,
bis zur 1. Ordnung in | und f ' erhält man mit dieser Bezeichnung
für die sechs Ausdrückein eckigen Klammern aus (23) der Reihe nach :

izi^ci-rc*), _i±i(fc±-rcT),
\((ò-l)èC±-{6 + \)?C*), \(-(ò + l)CC± + (ò-l)£C*),

ì(-(ó-2)|C7± + ó|'CT), \((ò + 2)!;C±-ò£C*).

Die sechs Terme in (23) können nun zusammengezogen werden;
eine längere Rechnung ergibt den einfachen Ausdruck:

DXô(n+i,n+n^(K+J-l)(K^iC^-{K + J+l){K±^i'C^. (28)

Diese Formel gilt zunächst nur für (5 + 0,1, — 1 ; die entsprechende
Entwicklung des Ausdrucks (23a) für Dq0 ergibt aber

Dl0(n+i,n+n^(K+J-ìm^iC— i*±l±WX±lìrc+ (28ai
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in Übereinstimmung mit Formel (28). Weiter erhält man aus (23b)

(K+J + 1)(K+J) _ jcK(K+l)J(J+l) ,28b>

Es wird aber im Folgenden gezeigt werden, dass alle stetigen Terme
in Dg e' (mit à oder ô' + 0), in dieser Näherung also die konstanten
und linearen Terme, keinen Einfluss auf die Eigenwerte haben,
so dass auch der Ausdruck (28b) durch (28) ersetzt werden kann.

In der Formel (24) für die „ausserdiagonalen Elemente" D] ö + i
und DLdj_a_1, ó + 0, — 1, erhält man nach der Entwicklung für
die vier Klammerausdrücke:

— C~ für <5 ungerade,
-C^, + C*, +Council |

— C+ H für (5 gerade.

Bei der Addition der 4 Terme in (24) heben sich aber die CT-Terme
gerade fort, und es bleibt nur ein stetiger (in £ bzw. £' linearer)
Ausdruck übrig. Dasselbe gilt in den beiden Ausnahmefällen S 0 und
à — 1 nach (24a, b) ; man erhält :

D\e+1 (n + £,7i + £')=D1_^_ò_1
,„> (Z-5-l)(J-5-l) f •(— £') für ò ungerade,

^2 A. (o) ¦

:n(25 + i)(25 + 3) [. (+ |) für Ò gerade, (29)

wobei für ô 0 noch der Term

A(0)^-£, (29a)

für ô — 1 der Term

_A{_1)MK + 1)(J + 1) r (29b)

zu addieren ist.
Schliesslich erhält man für die Entwicklung der beiden

Klammerausdrücke in (25) für D0)0+2 und D_a_a_2 Ò+- — 1,— 2, die
Werte

Ì±i(!C7±-i'C^), i+l(_fC±+fCT)
und nach Addition:

D\s+2(tz + £ ,n + £')= Dle,-e-2¥î0. (30)
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Für den Ausnahmewert ô — 1 gilt nach (25a)

DL1>+1 DU -i m - ^±J^±1L (30a)

und für (5 — 2 nach (25b)

D1_2,o D2i0^0. (30b)

Sieht man von den konstanten und linearen Termen ab, so

folgt:
D\d,(n + £,ii + £')mO, für<5 + <5',

während für ô ô' der Ausdruck (28) gilt. Führt man diese Werte
in (26) ein, so zerfällt dieses Gleichungssystem in (2 K + 1), resp.
(2 J + 1) einzelne Gleichungen. Zur Abkürzung wird gesetzt :

W(r)+V(r)
a ß=yjK{d.h.ß>i)i

(31)

0(n + £)=cp(£), ro=-fcpe(£)d£, r\ -§£cpò(£) ò£.
0 0

/ 52 \Der Term l-g—1)0Ô in (26) wird einstweilen vernachlässigt, da

er sich von derselben Grössenordnung erweist, wie die erst im
nächsten Abschnitt zu behandelnden Störungsglieder. Unter
Berücksichtigung der Definition (27) und der Periodizitätseigenschaf-
ten (13) wird dann:

Für ô gerade (cpö(£) =—cpö(-£)):

?'/(£) + (z-ß*£2) <pa- ß2(K + J-1) (K + J)A fcpä{£')d£' + To
'

o

+ ß*(K + J + 1) (K + J)J£'<pd(£') d£' 0, (32a)
o

für ô ungerade (epä(£)= + cpö(—£)):
i

v cp'/(£) + {x-ß*e*)<pa-ß*([K + J-1)(K + J)£Jcpe(£')d£'
o

Il
\

f£'<pö(£')d£' + rö\=0, (32b)

Differenziert man diese Gleichungen (K + J)-mal, so erhält man
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in beiden Fällen (q>W bedeutet die JV-fache Ableitung von cp;

cp^=cp):
cpf+•>+$+(«. — ßz£2)cpf + J)=0. (33)

Daraus folgt, dass die Funktion

v>ö(i) n{K + J) (34)

mit den Paritätseigenschaften

fe (£) fs (— £) für K + J + ô ungerade,
Va (£) - fa (- £) für K + J + Ô gerade (35)

der Schrödingergleichung des harmonischen Oszillators

f'ä' + (*-ß2£2)fs=0 (36)

genügt. Die Eigenwerte lauten also:

a* ß (2 n + 1 (n ganzzahlig ^ 0). (37)

Da die dazugehörigen Eigenfunktionen die Beziehung (35) erfüllen
müssen, gilt für die Quantenzahlen n und <5 die Bedingung

K + J+ò + n= ungerade Zahl, (38)

wobei — J<ô< + J, resp. — K^ô ^ + K.
(37) und (38) stellen die- Verallgemeinerung der nur für J 0

gültigen Formeln (29) und (31) aus II, S. 260 dar. Die vielfache
Entartung dieser Eigenwerte wird erst in der zweiten Näherung
zum Teil aufgehoben.

Es ist noch zu bemerken, dass die weggelassenen konstanten
und linearen Terme in D;^. (vgl. (28b), (29), (29a, b) und (30a))
in den Gleichungen (32a, b) Zusätze ergeben, welche bei der
Differentiation im Falle K + J ^ 2 herausfallen; für K + J < 2 (d. h.

wegen (la) (5=0) treten solche Terme nicht auf. Zusätze ähnlicher
Form erhält man, wenn gemäss der Bemerkung S. 321 die
Matrixelemente

(a,ò\Q\a',ò'), a < <r0

willkürlich abgeändert werden ; in (26) ergibt dies den stetigen Term

V(r) EEsi*^T ffo ô * (x') 0« (x')dx',

wobei a noch durch (4a) und (la) eingeschränkt ist und fa> ô, s- (x)
willkürlich wählbare Funktionen sind. Nach der Entwicklung erhält
man für K + J ^ 2 in (32a, b) die Zusätze :

ß2£c0 für ô gerade, ß2c1 für ô ungerade.
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(c0 und cx sind dabei willkürliche Konstanten.) Das heisst aber,
dass die Konstanten r% und rj in (32a, b) beliebig abgeändert
werden können. Da die Eigenwerte (37) a* von den „.T-Termen"
unabhängig sind, hat auch die hier betrachtete Abänderung von
Ü keinen Einfluss auf a£; d. h. nach S. 321 : Die Eigenwerte (37)
sind „richtige Eigenwerte".

In II, S. 265 wurde für den Fall J 0 gezeigt, dass aus den
exponentiell abklingenden Oszillatoreigenfunktionen der Gleichung
(36) durch Integration und geeignete Fortsetzung in das ganze
Intervall — ti < £ < +7i Lösungen der ursprünglichen Gleichung (26)
konstruiert werden können; auf diese Frage soll hier nicht
eingegangen werden. Die vorgenommene Entwicklung nach £ und £'
und die darauf beruhende Oszillatornäherung ist natürlich nur
brauchbar, wenn das Intervall, in welchem die Oszillatoreigenfunktionen

fe merklich von Null verschieden sind, klein gegen 1 ist.
Dies bedingt:

n<ß-Y?f. (39)

§ 4. Die Störungsrechnung.

Berücksichtigt man in der Entwicklung von DJ „• die
nächsthöheren Potenzen von £ und £', so erhält man aus (23), (24) und
(25) unter Verwendung der in § 3 eingeführten Bezeichnungsweise1) :

=F

+ ^^{(54 + (52[-5(K2 + J2)-8KJ + 15(K + J)-ll]
+K2J*+ll(K*J+KJ2)-8(Kz+J2)-27KJ+8(K+J)}

+ ~^{-oi + ó*[5(K* + J*) + 8KJ-7(K + J)-l]
-K2J2-7(K*J+KJ2) + 2(K2+J*)+3KJ+2(K+J)\

+ ^^-{ói + ò2[-5(K2 + J2)~8KJ-(K + J) + 5]

+ K2J2 + 3(K2J + KJ2) + 5Kj}
1) Das obere Vorzeichen gilt stets für ungerades, das untere für gerades 5.

Der erste Ausdruck in eckiger Klammer aus (23) ergibt z. B.:

E (!-{') sin izl(£-f')±£(f+ f) sin izl (f+ f') ^-^-(fC± - fCT)

+ -^^-(-|3C±+3|2|'CT-3ff'2C± + r3CT).
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+ ~r^-{-ò*+ Ô*[5(K2 + J*) + 8KJ +9(K + J)-1]
-K2J2+(K2J+KJ2)+2(K2+J2)+3KJ+2(K+J)}, (40)

D\d+1(7c + £,tc + £') Dlä_ä_1^-^-{(K + J-1)£2C^

-2(K + J)££'C± + (K + J + 1)£'*C*}, (41)

D\a+2(7c + £,7t + £') Dlâ_e_2m-§J- {I3t7±-3f2f C*

+ 3££'2C±-£'3C*}. (42)

Dabei sind die stetigen Terme der Form

consW!'*, i + k^3, (43)

weggelassen worden ; dann gelten diese Entwicklungen nach (23a, b),
(24a, b) und '(25a,b) auch in den Ausnahmefällen ô 0, ± 1, ± 2.
Es wird später am Beispiel der „/"-Terme" gezeigt werden, dass
die stetigen Terme auch in dieser Näherung keinen Einfluss auf die
Eigenwerte haben.

Der entwickelte Kern ist nun in (26) einzusetzen; unter
Verwendung der Abkürzungen (31) und nach entsprechender Entwicklung

des cos x wird :

cp'/(£) + («-- — + l-ß2£2 + ß2^) cpö(£)

+ 71

~ß2E f Dlts'(n + £,7c + £')cpy(£')d£'=0. (44)
— n

Dann hat man wieder zum (K + J)-fach differenzierten System
überzugehen; man erhält dadurch die Oszillatorgleichung (33) mit
zusätzlichen Störungstermen. Dabei sollen die „.T-Terme" zunächst
weggelassen werden (vgl. S. 337) ; für K + J 2: 4 fallen diese Terme,
gleichwie die stetigen Zusätze (43), bei der Differentiation ohnedies
immer heraus. Die Gleichungen haben dann für gerades und ungerades

ô dieselbe Form. Nach längerer Rechnung erhält man1) :

1) Zur Durchführung der Differentiation ist es zweckmässig, den Ausdruck

(40) in einzelne Terme wie z. B.

-i-(f3C±-3f2rCT + 3f ^»^-{'»C*)
¦[ôi-ô2(K2 + J2 + K + J-l) + K2J2 + K2J + KJ2 + KJ]

zu zerlegen.
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<pf+J+2>+{*-ßn2)<pf+J)=(~-x) <pf+J)-ß2^<pf+J)

+ ß2 j K(K + l) + JjJ + l)-2S2 | [f ^+,_2)_^Ä+,_3)]

{K+J)(K2+J2-KJ-1)
12 [2{y»^+J-»>_8^+J-*)]

(g+5+l)(g-5)(./+5+l)(J-5'+(g-5+l)(Jt+5)(J-5+l)(J+5) (Ä+J_4)+ 16 Vô

+ ^1 [ï<pf+XJ-2)- f(slY~3)] + ^1 [!<rf-iJ-2) - <tf-Y~3)]

+ 4f ***+J-»+-^^J~*>
• (45)

Die Störungsterme sind hier auf der rechten Seite zusammen-
gefasst. Da ihr Einfluss auf die Eigenwerte a nur in einer ersten
Näherung zu berücksichtigen ist, kann man cpö in diesen Termen
durch Lösungen des ungestörten Systems ersetzen. Zu diesem
Zweck lasse man in (44) alle Terme höherer Ordnung fort (man
erhält dann ein System der Form (32)) und differenziere nur
(K + J—l)- resp. (K + J — 2)-fach anstatt (Z + J)-fach; dies

ergibt bis auf Terme höherer Ordnung für K + J ^ 4 die
Beziehungen :

(^ + ^-ß2£2)9jf+J-^+2ß2[£cp<eK+J-2)-vf+J-^] + 0, (46)

{£* +*-ß2C2)v0K+J~2)+2ß2i2CVaK+J~3)-SVöK+J~i] + - • • =0 i (47)

durch welche die Störungsterme in eckigen Klammern aus (45)
eliminiert werden können. Im Falle der Terme, welche <pd + 1. und
cpe-i enthalten, muss aber die Näherung noch einen Schritt
weitergeführt werden; denn diese Terme geben zwar, wie aus dem
Folgenden hervorgeht, in der ersten Näherung keine Eigenwertstörung,

dagegen zeigt sich, dass sie in zweiter Näherung eine Störung
liefern, die von derselben Grössenordnung ist, wie diejenige der
übrigen Störungsterme in erster Näherung. Man behält deshalb in
(44) noch die Störungsoperatoren niedrigster Ordnung D} ö+1 und

D\s-i (vgl- (41)) bei und geht wieder zum (K + J— l)-fach
differenzierten System über. Damit erhält man wieder die Beziehung
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(46), wobei die Störungsterme niedrigster Ordnung hinzugefügt
sind:

(ijff- + K- ß2 ^2) <P{aK+J~l) + 2 ß2 [f 9>«K+J~2) - 9»f+J""3)]

-Ç- {^W[f^+^)-2^+'-*)] (48)

+ 4(-<5) [£cpf_XJ-*>-2cpf_+J-*] } +

Nun schreibt man in dieser Beziehung ô + 1 an Stelle von ô und ersetzt
damit die Terme [£<p<dI±XJ''2) — <PdI±\J~3)] in (45); dies ergibt:

(~& + *-ß2t2) (<PeK+J) + 4t1 ff+Y^ + -~l 9&-l))

ß2 j A(Ô)A(Ô+1) [f ^+a-3)__ 2^^,_4)]

A(5)^(-5-l) + ^(-5).4(5-1) rs (jf+j-s, o _(*+J-4)l"¦
y L»V(5 ~~*H& J

+ éizJL^ZJ±l) [| y^-«) _ 2 ,,£+'-*>] + (49)

wobei die übrigen Störungsterme aus (45) mit cp6, cps±2 nicht mehr
neu angegeben wurden. In den neuen Störungstermen auf der
rechten Seite von (49) kann nun die ungestörte Eigenfunktion
eingesetzt werden; verwendet man hiefür die Beziehung (47), so erhält
man aus (49) :

d2

a$» *~ß2i2) Xf+J) —ß2{ Mô)^ô+1) cpelY^

^(5)A(-5-l) + .4(-5)^(5-l) iK+j-j)+ 16 <Pö

+ A(-Ô)its+1) r£Y-«} + -..; ' (50)

dabei ist

V(K+J) - W(K+J) Mo) (E+J-l) M-à) IK+J-l)Xa —fò +4 9ô+i I

4 Tä-i

1 i A(Ô)A(Ô + 1) (K+j-2) A(Ô)A(-Ô-1) + A(-Ô)A(Ô-1) (K+j-2)+ 2\ 16 ^+2 + Ï6 n
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Nach der Definition (8a) gilt aber:

A(Ô)A(Ô + 1)=B(Ô),

A(ô)A(-ô-l) =(K+Ô + 1)(K-ô)(J + Ò + 1)(J-ô), (52)

d. h. die Störungsterme in (50) heben sich gegen einige der alten
Terme, die aus (45) zu entnehmen sind, fort. Das System heisst
jetzt:

tf+J+2) + {s,_ß2^)x(K+J) ^_-t) #+,)_i!|l^+„
+ ß2 j K(K + 1) + .HJ + 1)-2Ô2 s [€^j^ _^j^

+ (K+J)^2+J2-KJ^i) r2ç^k+j-z)_gv (k+j-^\. (53)

Die beiden Ausdrücke in eckiger Klammer werden noch mit Hilfe
von (46) und (47) eliminiert, wobei der Faktor £ vor der ersten
Klammer zu beachten ist; dies ergibt:

(-£- + «- ß212) Wf^ (-£ -1) cpf^ -ß2^ cpf^

+ K(K+1) + J(.I + 1)-2Ô2 ^K+J) (54)

mit

Wf+J) y{K+J) + K(K+1) + J(J + 1)-2Ô2 f^+j-i)
+ (g + J)(gi + J»-JgJ-l) yf+J_2> (55)

Auf der rechten Seite von (54) kann nun cpd bis auf Störungsterme
höherer Ordnung durch Wd ersetzt werden; damit sind der erste
und dritte Störungsterm in (54) auf Diagonalform gebracht, während

die Eigenwertstörung des zweiten Terms aus der Theorie der
Mathieugleichung bekannt ist. Man erhält also für die Eigenwerte
in zweiter Näherung:

«i ß(2n + l)+ g(g+l>+^+l>-» _^±l>-_iL. (56)

Dabei gelten für die Quantenzahlen n und ô wegen der
Paritätseigenschaften von Wd (vgl. (55) und (51)) wieder die Bedingungen
(38). Für J=0 (d.h. (5=0) ergibt (56) die bereits bekannte
Formel (44) aus II, S. 264.
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Für K + J < 4 müssen die vorangehenden Rechnungen noch
ergänzt werden; z. B. ergibt der Störungsoperator aus der zweiten
Zeile von (40) in (44) eingesetzt für gerades ô den Ausdruck

const-£sjC-(£,£')cpä(£')d£'= const- £3f<pô(£')d£' + f«TJ
o lo

wobei die Abkürzung (31) verwendet wurde. Der „.T-Term", welcher
bisher nicht berücksichtigt wurde, fällt beim Übergang zum
differenzierten System (45) für K + J < 4 nicht mehr heraus ; dennoch
wird sich zeigen, dass Formel (56) auch in diesem Fall gültig ist.
Da die Werte K + J 0 und K + J=l (d.h. J oder K 0)
schon behandelt wurden (vgl. II, § 2), sollen hier nur die beiden
Fälle

K + J=2,K + J=3 (57)

diskutiert werden. In (45) sind dann rechts die folgenden Terme
hinzuzufügen1) :

Für ô gerade:

ß2 £&+<>-*) [ra°\-(K + J)(K + J-l)—j- {(K + J)(K + J-4) + 3)

+ ~(5(K+J)-ß)
r0 (K+ô + l)(K-o)(J+ô + l)(J-ô) + (K-ô + l)(K+ô)(J-ô + l)(J + ô)

+ ia je
„o B(ô) ro B(-ô) \ ,4_ v

wobei !<*> 0 für N ^ 2, fW 1 für N=l, |W= £ für N= 0,

für ô ungerade:

ß2i(K+J-l)^Ä±L^K+J+1)_SKJ^)+^riK + J^K + J_2)

_ rj (K + Ô + 1)(K-Ô (Jf5 + l)(J-5 +(K- ôrl)(K+ô)(J-ô + l)(J+ô)

-rö\^(K + j-i)~rix^L(K + J-i)
-U+24^- -ru -^-1 • (45b)

x) Die Koeffizienten von §3C^ und i2£'C^ aus (40), welche hier auftreten,
werden in einer für die folgende Rechnung zweckmässigen Form geschrieben.

In (45) und den folgenden Formeln bedeuten qr~*' und qr-~ ' die Integrale:

y(-1)=f<p dr, 9{~2) \<p{~1) (n dr.
0 Ü
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Anderseits sind auch in den Relationen (46), (47) und (48), mit
welchen die Störungsterme in (45) umgeformt werden, die folgenden

,,-T-Terme" auf der rechten Seite hinzuzufügen :

Für (5 gerade:
ß2£(K+J~1)rd°(K + J) (K + J-1),
ß2C(K+J-2) po 'K + J)(K+J—1),

ß2£(K+J-i)\[r*(K + J)(K + J-l)
+ rò\^(K + J)+ ru-^- (K + J)

für ô ungerade ((46) erhält keinen Zusatz):

-ß2£W+J-DrUK + J)(K + J + l),

- ß*£{K+J~v (K + j-i) [r°+1Ä + /?_, -^i^-

(46a)

(47a)

(48a)

(47b)

(48b)

Diese Zusätze sind nun in allen früheren Rechnungen zu
berücksichtigen; dann erhält man in (50) auf der rechten Seite die
„T-Terme" :

-ßt£(K+ J-2) 2(K + J-1)- (K + J)(K + J-1) A(3)A(Ô+1)
16

1 (5+2

A(Ô)A(-S-1)+A(-Ô)A'Ô-1) po A(-ô)A(-ôhl) n0
lö l o

H T« - 1 »-16

(50a)

bzw.:

roxö+i 4ß*-£(K+J-v{[(K + J)(K + J-l)-2(K + J-l)] r" A(ô)

+ r°

2(K + J)- (K + J)(K+J + 1) .4-5)4(5+1)
16

1 (5+2

A(Ô)A(- ô -1) + A(- ô)A(ô-l) ri A(-ô)A(-ô+i) rlra b i Tz ¦* ô-16 lö d-2

(50b)

wobei die Terme aus (45a, b), welche ra und ra±2 enthalten, nicht
mehr neu angegeben wurden. In (50b) verschwindet der Koeffizient
von ra°±1 für die beiden Werte (57) von K + J, während sich die
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übrigen Terme in (50a, b) unter Berücksichtigung von (52) gegen
die entsprechenden Terme aus (45a, b) fortheben. In (53) ist also

nur noch der „/"-Term" aus den ersten Zeilen von (45a) resp. (45b)
hinzuzufügen. Nun wurden nochmale die Relationen (46) und (47)
benutzt; mit den „.T-Termen" (46a) und (47a, b) erhält man
deshalb in (54) die Zusätze:

Für (5 gerade:

ß2T?{ £. £K+J~V g(-K + D+^L+l)-25*. (K + J) (K + J_ 1)

+ ^+j-2)iK+J)(K2+^2-KJ_^{K + Jm + J^)
j_ £(K+J-2)

52
(K + J) (K + J-l)-~{(K+J)(K+J-4)+d]

{5(K + J)-6}]}, (54a)
K.r

4

für ô ungerade:

ß2r/£<K+J-V{ - (g+J>(g3+^-gJ-D {K + J){K + J + 1)

+ ^rL[(K + J+l)-3KJ] + ^(K + J)(K + J-2)}. (54b)

Jetzt verifiziert man leicht, dass die Koeffizienten von ra° resp.

rj für alle nach (57) in Betracht kommenden Werte von K, J und
ô verschwinden ; d. h. (54) und damit die Eigenwerte (56) bleiben
auch bei Berücksichtigung der „.T-Terme" ungeändert.

§ 5. Diskussion der Ergebnisse.

Für die adiabatischen Potentialkurven W(r) des Zwei-Nukleon-
Problems bei Vernachlässigung der Tensorkräfte wurde im Grenzfall

e^ V die folgende Entwicklung nach Potenzen von T/-4-
gefunden (vgl. (56) und (31)) :

W (r) — V(r) + VeV(r) (2 n +1)

T J(J + l) + K(K+l)-d2+ e
n(n+l) 17

(58)
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Dabei sind die Quantenzahlen d und n ganze Zahlen, welche nach
(37) und (38) den Bedingungen

n^O, d^O, d^K, d^J,
K + J + d + n ungerade (59)

genügen. Alle zu d + 0 gehörigen Eigenwerte sind doppelt zu zählen :

Die dazugehörigen Eigenfunktionen können in ô gerade oder
ungerade sein, d. h. nach (4) symmetrisch oder antisymmetrisch in
j-y und j2. Die Quantenzahlen M und N (vgl. § 1) treten in (58)

wegen der Kugelsymmetrie im gewöhnlichen Raum und im „iso-
topen Spin-Raum" nicht auf; die zu einem Wertesystem von K
und J gehörigen Eigenwerte sind deshalb neben der Austauschentartung

noch (2K+1)(2 J+l)-fach entartet.

Aus (58) und (59) folgt, dass man die tiefsten Potentialkurven
W(r) für die kleinen Werte von K, J und n erhält. Es scheint

zunächst, dass man für sehr grosse n I > 16 l/—) noch tiefere Werte
erhalten würde; in diesem Fall ist jedoch die vorangehende Näherung

unbrauchbar (vgl. (39)). Für J K 0 (Mathieu'sehe
Gleichung) ist ersichtlich, dass die Eigenwerte monoton mit n
anwachsen.

Im Grenzfall £ ^> V (grosse Kernabstände) kann W(r) durch

Störungsrechnung [Entwicklung nach Potenzen von—I bestimmt
werden. Die Zuordnung der Eigenwerte in den beiden Grenzfällen
ergibt sich dann aus der Bedingung, dass sich zwei Potentialkurven,
die zu denselben Werten von J und K gehören und deren
Eigenfunktionen in jt und j2 beide symmetrisch oder beide antisymmetrisch

sind, nicht überschneiden dürfen. Aus diesen Kurven
können die Energieniveaus des Deuterons z. B. mit Hilfe des
Adiabatenverfahrens gewonnen werden (vgl. I, § 3 und II, § 3).

Die tiefsten Niveaus1) erhält man nun für J 0, K 1 oder
J— 1,K= 0 mit n= d= 0, welche mit dem 1S- bzw. 3S-Zustand
des Deuterons zu identifizieren sind (vgl. II, § 3). Diese beiden
Niveaus werden erst bei Berücksichtigung der Tensorkraft
aufgespalten. Das Potential V(r) kann so gewählt werden, dass man
die richtige Bindungsenergie des Deuterons erhält. Nun liefert diese

b Vgl. die Zusammenstellung aller Potentialkurven, die für r-> oo zwei un-
angeregten Nukleonen entsprechen, in dem vorläufigen Bericht über diese Arbeit,
Helv. Phys. Acta 17 (1944), S. 405.
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Theorie Aussagen über die Lage der höheren Niveaus, wobei hier
allerdings über die Konstante e im Ausdruck für die Isobarenanregungsenergie

noch verfügt werden kann1).
Ordnet man die Potentialkurven nach ihrer Höhe für V^>e

(kleine r-Werte), so folgt als nächst höhere nach (58) und (59) die
Kurve J K 1, d= 1, n 0. Der von den Spin-Variablen
j1} mx, n1; j2, m2, n2 (vgl. § 1) abhängige Teil der Eigenfunktion
kann hier wegen d + 0 in den Koordinaten beider Teilchen
symmetrisch oder antisymmetrisch sein, so dass das Pauliprinzip
sowohl ungerade wie gerade Bahnmomente (P- und S-Terme) zulässt.
Die P-Kurve mit gerader Spineigenfunktion tendiert für r-> oo

(F->0) gegen das Nullniveau (vgl. Formel (3): jx= j2= \, IF (co)

0, W(r) -r- V(r) + für V <^ e). Die /S-Kurve dagegen, deren

ungerade Spinfunktion für jt= j2= \ verschwindet2), ist dem Ni-
3 3 3

veau W(oo) y e zuzuordnen (jx §, j2 y, bzw. jx y j2= \,
d. h. ein Nukleon ist angeregt, das andere im Grundzustand). Diese

3
*S-Kurve liegt also aussen (r gross) um y e, innen (r klein, V^>e)

aber nach (58) um — oberhalb der 3S-Potentialkurve des

Grundzustandes ; sie muss daher zu einem stabilen isobaren Zustand Anlass
geben, dessen Anregungsenergie nach der Adiabaten-Näherung zwi-

£ 3
sehen y und y e liegen sollte. Dieser Zustand ist ein Spintriplett
(J 1) und gleichzeitig ein Ladungstriplett (K 1, N 0, ± 1),
stellt also Isotopen des Wasserstoffs, Heliums und Neutrons dar.
Nach dem von Coestbr angegebenen Wert der Konstanten £ liegt
die Anregungsenergie dieser Isotopen zwischen 5 und 30 MeV.

Die besprochene 3P-Kurve für J K 1 ist die tiefste von
allen P-Kurven. Sie gibt trotzdem zu keinem stationären Zustand

Anlass, weil sie im Innenbereich (V^>e) um y höher liegt als die

3(S-Kurve des Grundzustandes und überdies noch die Zentrifugalkraft
hinzukommt. Sie ist aber von Bedeutung für alle

Streuprozesse: Proton-Proton- und Proton-Neutron-Streuung. Im
Hinblick auf die bekannte Anisotropie bei der Proton-Neutron-Streuung

ist hervorzuheben, dass die Potential-Kurve des 3P-Zustandes
für kleine r (V<^e) einer anziehenden Kraft entspricht3). Dasselbe

*) e wurde durch Betrachtung der Bindungsenergie schwerer Kerne
abgeschätzt; vgl. F. Cokstkr, Helv. Phys. Acta 17 (1944), S. 35.

2) Vgl. I, Formel (9), S. 220, mit J K 1, also (J + K) gerade.
3) Vgl. die Diskussionsbemerkung von G. Wentzel, Helv. Phys, Acta 17

(1944), S. 407.
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gilt übrigens nach (58) von allen Potentialkurven; hierin kann man
eine typische Auswirkung der isobaren Zustände des Nukleons
erblicken.

Herrn Professor Dr. G. Wentzel möchte ich für die Anregung

zu dieser Arbeit und für die vielen freundlichen Ratschläge
bei der Ausführung derselben herzlich danken.

Der Jubiläumsspende für die Universität Zürich bin ich für
die Gewährung einer Subvention, welche mir diese Arbeit ermöglichte,

zu grossem Dank verpflichtet.
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