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Mécanique fonctionnelle
par E. C. G. Stueekelberg.

(27. I. 1945.)

Résumé. — Les théories de l'électron classique, proposées par Dirac*) et par
l'auteur*) d'une part, et la théorie des grandeurs observables associées aux particules

élémentaires, proposée par Heisenberg*) d'autre part, permettent d'établir
une mécanique fondionelle. Dans la forme classique non quantifiée), les forces
sont des fonctionnelles de l'histoire, donnant un formalisme canonique. Celui-ci
permet de traduire cette mécanique en théorie quantifiée. Pour caractériser un
problème par une matrice S, on doit faire appel à deux principes de correspondance

(P.C.). L'un est le P.C. habituel, où l'on passe à la limite Ä-> 0 ou 2?->- oo

(N nombre d'AvoGADRo). L'autre P.C. considère la limite (de la théorie clas-

sique ou quantique) pour les vitesses v — infiniment petites (comparées à c=l)
ou pour un certain temps fondamental t0 X0/c tendant vers zéro. Les forces
deviennent, dans cette limite, les forces de la mécanique rationnelle.

Cette mécanique permet ainsi de traiter tous les problèmes**) de la physique
atomique (collisions, radiation, etc.), y compris ceux de la théorie des états sta-
tionnaires qu'on rencontre dans des systèmes formés de particules élémentaires.

§ 1. — Mécanique femotionelle et mécanique rationelle.

Par histoire, nous comprenons 2« fonctions F(t), G(t), qui
nous indiquent les valeurs de 2n grandeurs observables F, G,

pour toute époque t.

Par mécanique, nous entendons 2nfonctionsF(t + T; F, G,

{-T),G... des 2n + 1 variables t+ T,F(- T), G(— T), Elles
représentent: la durée t + T (qui s'est écoulée entre l'époque
quelconque t et une époque initiale t= — T) et les 2n valeurs F (— T),
initiales des observables. Les lois de la mécanique s'expriment par
les 2n équations (fonctions historiques)

F(t) F0(t+T,F,G,...)(-T) (1.1)

Les 2n fonctions dtF, en

F(t) dtF(t+T,F,G,...)(-T),G(t)=... (1,2)

sont appelées les forces. Soit

F (t) d?F (t+ T,F, G,...) (- T) (1,3)

*) Pour la bibliographique, voir Stueckelberg, Helv. Phys. Acta 18, 21

(1945) (réf. III). (Les deux publications antérieures sur l'électron ponctuel sont
citées par I et II).

**) A l'exclusion de la „catastrophe infrarouge" en dectrodynamique.
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une deuxième dérivée. Alors il est toujours possible d'éliminer en
(1,2) les 2n + 1 grandeurs t+ T,F{— T),G{— T), par les 2n
+ 1 éq. (1,1) et (1,3)*). On obtient ainsi 2n éq.

F (t) /0 (F, G,....F) (t), G=g0(F,G,...,F)(t),... (1,4)

dans lesquelles les forces f0, à l'instant t sont des fonctions des
2n observables F, G, à ce même instant, et de la deuxième
dérivée F d'une (ou de plusieurs*)) d'entre elles.

Dans certains cas particuliers, l'élimination des 2n grandeurs
F(— T), en (1,2) à l'aide de (1,1) donne déjà des forces

F(t) f00(F,G,...)(t), G g00(F,G,..)(i),... (1,5)

indépendantes de t + T. Une mécanique (1,1) réductible à (1,5) est
appelée mécanique rationnelle; c'est un cas particulier de la mécanique

générale (1,4) qui est une mécanique fonctionnelle. Dans ce cas,
général, la force (1,4) à l'instant t, ne peut pas être donnée comme
fonction de la constellation F(t), G(t), des observables, mais elle
dépend, non seulement de cette constellation, mais encore
implicitement de l'histoire contenue en F(t). Une élimination à l'aide de

plusieurs ou même de toutes les dérivées supérieures F, F, donne
à (1,4) une forme explicitement fonctionnelle**).

F(t) f0[F(r),G(r),...], G(t) (1,6)

(/0[. .] est une fonctionnelle des 2n fonctions historiques). Dans
certains cas (1,6) permet un développement

F(t) fm(F,G,...)(t) + X0f0X(F,G,...F,G,...)
+ X02f02(F,G,...F,G,...F,G,...) + (1,7)**)

en termes d'un paramètre X0***), tel que pour des «mouvements
lents » (F/F ^Xq1) la partie fonctionnelle de la force (/0,->o) Peut
être traitée comme une perturbation.

La différence entre la mécanique fonctionnelle (traduite par ex.
en (1,4)) et le cas particulier de la mécanique rationnelle (réduite
à (1,5)) est fondamentale:

En effet l'intégrale générale de la mécanique rationnelle (1,5) est
identique à l'histoire (1,1) exprimée en termes des 2n valeurs ini-

*) En général, une seule équation (1,3) ne suffit pas pour éliminer t+ T de

toutes les forces. Alors on doit avoir recours aux G dt2 G,
**) La fonctionnelle peut aussi être écrite en termes des

(-D (r (-2)
F (t) j dt'F(t'), F

-T
***) Nous posons c 1.
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tiales F(— T) Comme époque initiale — T, n'importe quelle
époque t — — T peut être choisie. La connaissance des 2n fonctions
de force (1,5) est donc équivalente à la connaissance des 2n fonctions
historiques.

Par contre l'intégrale générale du système fonctionnel (1,4) ne
peut être donnée que dans la forme:

F(t) F(t+T;F(-T+r);F,G,...), G(t)=... (1,8)

Elle dépend donc des valeurs F(— T) prises à l'époque initiale, et

en plus de F (— T + t) pris à une certaine époque — T + t (— T + r
ne peut être identifié avec — T [c.-à-d. t 0] que si F(— T) n'est
pas identiquement nul). Ce n'est alors qu'après avoir déterminé

F(-T+r) d2F(r;F,G,...)(-T) (1,9)

pour cette époque — T + x que la substitution de (1,9) en (1,8)
nous redonne la mécanique (1,1).

La connaissance des 2n fonctionnelles de force (1.4) ou (1,6)
n'est donc pas équivalente à la connaissance des 2n fonctions
historiques. Il faut une (ou plusieurs, si les G interviennent) condition
supplémentaire. Nous verrons plus tard qu'il existe un choix particulier

des variables (§ 2) pour lesquelles les conditions supplémentaires

sont

limF(+T)=limG(+T)=--- 0 (1,10)

si l'époque initiale est choisie à lim(— T) ->— co. Les équations
fonctionnelles (1,6), les conditions initiales et les conditions finales
(1.10) sont alors équivalentes à l'histoire (1.1).

Si le développement (1,7) est possible, un premier principe de

correspondence entre mécanique fonctionnelle et mécanique rationnelle
peut être énoncé:

Une mécanique fonctionnelle ((1,6) et (1,10)) correspond à une
mécanique rationnelle (1.5) si, dans la limite Xo^»0, la relation

lim/0[F(«'), G(t'),...](t) ->/00 (F,67,...) (t) (1,11)

existe entre la force fonctionnelle /0 [. .] et la fonction de force /00

§ 2. — Mécanique quasipériodique et mécanique asymptotique.

Nous appellerons système élémentaire un système dont l'histoire

est quasipériodique
v. — (x> vn=oa

F(t)=9te[E---E F> ...*„exp(-^2\«>i) >G(i) (2,1)
V, =1 vn=l 1
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Un cas particulier se présente, si quelques-uns des Wj tendent vers
zéro. Alors il existe, parmi les 2n observables F(t), G(t), des
observables Z^t) du type

Y, (t) Y, (0) + Vt (0) i; V, (t) Vt (0) (2,2)

Vi (0) a pris la place des tot. Il y a au minimum 2 x 3 de ces
observables endroit et vitesse du centre de gravité). Comme les

constantes en (2,2), les Fn^ et iot en (2,1) sont des fonctions
des valeurs initiales F(0), G(0), (pour t 0).

Nous appellerons système non élémentaire un système apériodique,

par exemple:
p—vit— P+ vit

F(t) F(-T)ee_mt+ee+mt. (2,3)

L'observable F(t) passe de sa valeur initiale F(—T) à une valeur
finale F(+T) — F (—T). Les deux époques ±T sont en générali oo. Le résultat asymptotique de l'histoire d'un tel système

F(+T)=F(F(-T), G(~T),...) F(F,G,...)(-T) (2,4)

portera le nom de mécanique asymptotique. Il représente le cas limite
de (1,1) où F devient indépendant de t+ T 2 T pour T-^-oo.

Nous allons démontrer que, pour tout système élémentaire, il
existe une Hamiltonienne H(t)= H(p(t), q (t)) fonction de 2n variables

les canoniques p( (t) et g8 (t) telle que, pour les observables
F(t), G(t), les relations

F(t) F(t,p1(t),...qn(t)),F(t) dtF(t)+{H(t),F(t)} (2,4)

soient vérifiées. Mais le H n'est pas uniquement déterminé par
(2,1) et (2,2). Ce n'est que la condition supplémentaire de la cova-
riance relativiste qui détermine le H (à une constante près) : Si

xa x* + ÓTa est la transformée de x"-, cette condition demande

que la transformée F de F s'exprime par

F^F òF=-{Paòx*, F} (2,5)

avec H P4 et ór4 ôt. Pa doit être un quadrivecteur. En général,

le procédé suivant permet de trouver un H: A\ecFVi^= \FVl_ J

exp (+iUvi<pl), on introduit 2n fonctions des F(0), G(0) les Wj
et les fi^qiiCFfò), Alors, on définit n variables w{ (ou qt pour
(2,2)) par

Wi cpi+coit (ou qt= Zt (0) + Vi t). (2,6)

Ensuite, on cherche n fonctions J,(F(0), (oup4= pi(F(0),
telles que
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Il est toujours possible de trouver de ces fonctions Jt et wt. Les
2n fonctions J, et <pt permettent d'éliminer les F(0) en i*",x...
On trouve alors, avec (2,4), la même relation pour F qu'on obtenait
en différentiant F en (4,1) par rapport à t.

Nous donnons quelques exemples:

1. Particule élémentaire sans spin.
Position Y{ et vitesse Vt en (2,1) sont les 6 observables (i 1 à 3). En vertu

de Yf qt, la variable conjuguée doit être pf Pt pour que (2,5) soit vérifiée.
La forme quadrivectorielle demande que | P|2-.ff2=PaP<1'=-m2 soit un
scalaire. Donc on a, à cette constante (et au signe i) près

ÒH p*H ±Vm2 + pi p* ; Y1 —- jj-. (2,8)

2. Système planétaire.

Si, en plus de la coordonnée du centre de gravité (Y( en (2,2)), le système
possède des points remarquables (p) à coordonnées y^= Yt + r^"\ r^\t) et r^1 (t)
sont des variables intérieures pour lesquelles (2,1) est valable. Prenons le cas le

plus simple où on n'a qu'un seul r( et une seule période iot co'. Alors (2,1)
devient r{ 5Re(-itt)')_1 af'exp (- co't) et H ne peut dépendre des Jt que par
l'intermédiaire de m2. Le seul scalaire qu'on puisse former à partir des aj' est a^'a^s'a.
L'invariance nous a obligés à compléter a(s)* par un a(»H (et r*(t) par un r«(()).

n 4
Or, avec un J ha^'*a(s)" £Ja, on trouve pour les fréquences cot- co'

i
dHjdJt= eu v 1- | V [2. co est la fréquence invariante co Om/dJ (fonction de

l'amplitude J ha^'*a^s'a). Le système planétaire le plus simple est donc identique
à notre particule avec spin en III (éq. (1,1)).

3. Onde linéaire réelle.

Soit fi* +Vx2+ | Ji |2 j«4© les fréquences cot de (2,1). Alors les F(t)
sont les q>a(x ; t) <pa(x). Ils peuvent être exprimés en termes des

»a W<") (2 TV)"* exp {i(fi, x)) s(fi/x)a*
par*)

cpa(x) hi(sa(xlfj,)c{/t)+ c(/i)*s(plx)a) (2,9)

Les variables canoniques sont p(t)-iq(t) \/2 hc(t) V2 hc(fi) exp {-ifi*t).
Ce choix seul à des transf. canoniques près détermine un Pa covariant
Pa= ZN(/j,)hfxa avec N{/ji) c(fi)*c{fi).

4. Onde linéaire complexe.

Si L*) dépend de deux potentiels ua ^ et ua (2) de même covariance, on peut
les relier en un wa ua /^ — iua (2) complexe. D'un L L(w*, w,U*, V) réel (avec

UA= yeAaw.a,AVA=dALIdUA complexes) dérive une théorie (ôf(d x)* AL= 0),

qui admet, en plus des g «, T"» et Qf^v discutés en III, la continuité daoa 0

d'une densité de courant électrique

ea=2h-^maS(V*Ay/awa) (2,10)

*) V est le volume de périodicité infini. La sommation sur ji est comprise.
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et la conservation du scalaire

N(t)=f{dx)3Q*(x,t). (2,11)

Pour des champs faibles, les « observables » linéaires et complexes sont

wa(x) (2hft{sa(xlk)a(k, + + a(k,-)*s{klx)a) (2>!2)

En analogie parfaite avec ôw — iPaòra, wj, la grandeur hN transforme w en

w e%xw suivant ôw= -Vh,Nôx, w}- Pour des champs faibles, l'Hamiltonienne
doit encore une fois être le H P«

Pa S S N(k,r)hka (2,13)
* T=+, -le scalaire N est la somme

* E S N(k,r)r. (2,14)
k T + —

Nos histoires quasipériodiques sont caractérisées par 2n
paramètres (p. ex. les Ji et les <p{ iof (i 0)). Jj et (pt sont les variables
canoniques Pi(0) et ç»(0) pour un temps donné (t 0). Passant
par une transformation canonique, à des variables p;, 2« quelconques,

les séries F(t, p, q) définies par

F(t,p(t),q(t))=^ïF(t,p,q}+^J{tH(p,q),F(t,p,q)}+... (2,15)

F(t,px...qn), G(t,p(t),q(t))=...
expriment les observables F(t),... etc., en termes d'une transformation

canonique tH(px qn) opérée sur une fonction

F(t,px...qn) (2,16)

de t et de 2n paramètres canoniques. Ces derniers représentent l'état
de système à l'époque t 0.

Dans nos exemples 1 et 2, ils sont

Ya=1a+^1paX (2,17)

ra= ^(-io))-1«^ exp(-iö)A). (2,18)

Dans les exemples 3 et 4 (éq. (2,9) et (2,12)), les p et g (reliés dans des «a a(k,r)
ou c(fi)) par

V~2ha p-iq (2,19)

sont ces 2 « (m oo pour les ondes réelles, 2 œ pour les ondes complexes)
paramètres complexes. Les N(. en (2,13) et (2,14) sont

N(k,r) a(k,r)*a(k,T), N((i) c{p)*c(fi). (2,20)

§ 3. — La collision entre des systèmes élémentaires.

Si les n % + n2 + nN paires des variables en (2,16) se

décomposent d'une manière telle que les 2n premières paires des
variables p t(t) et g»(i) ne dépendent que des nx premiers paramètres

*) Notations de III pour la densité Lagrangienne.
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Pi et q{, les 2n2 deuxièmes paires de variables des n2 deuxièmes
paires de paramètres etc., la mécanique quasipériodique est
separable. Nous parlons alors d'un système formé de N systèmes élémentaires.

Nous distinguons deux cas:
1° Si l'histoire d'un tel système a d'abord la forme quasipériodique

(pour tout t < — T situé antérieurement à t — T), si elle
devient apériodique pendant l'intervalle fini — T < t < + T et si
elle redevient de nouveau quasipériodique pour toute époque
t > + T postérieure à t + T, nous appelons cette histoire une
collision entre N systèmes élémentaires sans réaction chimique.

2° Si, postérieurement à t + T, l'histoire redevient
quasipériodique, mais si la séparation doit se faire dans N' (n nx,
+ n%> + nN,) autres paires de variables canoniques, nous appelons

cette histoire une collision entre N systèmes élémentaires qui
deviennent, sous l'influence d'une « réaction chimique », N' autres
systèmes élémentaires.

(Ex. 1 et 2: En termes du temps propre X, le système planétaire est composé

de 4(1 + fi) systèmes élémentaires. En termes de temps ordinaire (m une
constante caractéristique du système), le système planétaire est un seul système
élémentaire. Ex. 3 et 4: L'onde réelle à / polarisations indépendantes se compose
de N f œ systèmes, l'onde complexe de N 2 f oo systèmes*).)

Dans le premier cas, les paramètres canoniques, qui furent
des constantes p=p(—T) et q=q(—T) pendant l'intervalle
— oo < t < — T, et qui seront de nouveau des (autres) constantes
p p{+ T) £ p(— T) et q q(+ T) $ q{— T) évoluent pendant
l'intervalle 2T suivant une histoire apériodique (1,1).

Leur histoire est en général engendrée par une mécanique
fonctionnelle (1,4). Prenant le symbole F pour p,q, on peut ainsi
formuler la condition supplémentaire exprimée en (1,10) de la manière
suivante : L'histoire se termine par N systèmes élémentaires dans un
état final (P(+T)) avec F(+T)= 0.

Dans le deuxième cas, une transformation canonique p^
Vi'iVi • • ¦ In) etc. existe, telle que la condition (1,10) doit être
imposée pour les F'(+ T). Les deux cas engendrent ainsi une
transformation canonique

F(+T) (-l}vF+^{«,F}+£{*,{«,F}}+...)(-T)
F0(F,G,...)(~T) (3,1)

qui exprime les valeurs finales p(+ T) en termes des valeurs
initiales p(— T). (a(— T) et F{— T) sont des fonctions des px{— T)

qn( — T)). L'invariance de a par rapport au groupe de Lorentz
*) Ce N n'a, pour l'instant, rien à faire avec le N en (2,14).
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nous assure la conservation de la quantité de mouvement-énergie
Pa et de son moment M*P (et des N en (2,14), si nous postulons son
invariance par rapport au groupe de jauge).

Exemple 5. Une seule particule: Soit <p(inc)(x) une fonction scalaire de quatre
coordonnées xa(a. 1 à 4), qui ne diffère de zéro que dans un domaine x fini.
Soit x01 za (X) une ligne d'univers traversant ce domaine et qui est une droite
2a (X)= yx (X) (2,17) à l'extérieur du domaine. Alors, il existe une transformation a qui
relie les 8paramètres p^^i + A) aux pa,ga(-/l). Si a est un invariant, les
grandeurs Pa= pa sont conservées P*( + A) P*(-A). L'histoire (z" et 2a=Pa(A;
pa( — A),qa(-A)) peut être exprimée en termes des paramètres variables p°-=ftx(X)
et q* qa(X) en (2,17). Le &(- A) général en (3,1) est une fonctionnelle

a(-A) *[<p(toc){y(X;p«(-A);q*(-A)))]. (3,2)

L'élimination des pF(-A) en (1,1) fournit une équatione fonctionnelle (1,7). Le
choix particulier de a donné en III (10,2) donne un résultat asymptotique qui
est égal à la solution de la mécanique rationnelle.

(m-e<p(inc)(z))za e(dacy(inc) + iaç>(inc))(Z). (3,3)

Exemple 6. Deux particules: Si la fonction çp(inc)(x) donnée en (3,2) et (3,3)
est elle-même fonctionnelle invariante d'une autre ligne z^a(X^), on a une mécanique

fonctionnelle de l'interaction entre deux particules. Soit A(x- x') une fonction

invariante de x et de x'. Alors toute théorie (3,2) avec la fonctionnelle

+ 00

a (-.4) a [fdX^A(y(X,pa(-A),..)-y{1)(X<-1\ p<r>«(-A), .))] (3,4)

a(pa ...q(1}a){-A)
donnera des lignes, où

P*=pa + pWa

sera conservé. Il existe un choix particulier, tel que le résultat asymptotique, de

l'équation (3,3) avec la force fonctionnelle dérivant de

ç,(inc)(;r) e J d)(\)A ^_ 2(i)(X(D)) (3;5)
— oo

coïncide avec (3,4). Pour que la théorie soit symétrique dans les deux particules,
il faut que A(x) A( — x). Un tel A invariant permet toujours en (3,5) un
développement de Laplace

+ 00

evm(x) 27«w syi%)(i|/ <u(1)<5(*-*(1)(a(1)))) (3,6)
*{$>) — °°

sym, - g '(*) est le potentiel symétrique (III, éq. (9,13)) d'une éq. d'onde (D - *2)

tp — g* '. La force (3,3) pour 2 est maintenant fonctionnelle de z"' (A'') et vice
versa. On peut écrire (3,3) en termes de

è {m-eep^ig))-1^; A e d<p(iws)(z) (3,7)

et y faire un développement (1,7) de la fonction ç/mc' en termes du paramètre de

retardation (e o>, m m"')
1 g2

h TT li (3>8)
3 4nm
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Exemple 7. Particule et champ. La théorie de l'exemple précédent est
contraire à nos observations de causalité macroscopique. Pour le voir, considérons
le cas ou l'une (ou les deux) particules interagissent par des lois analogues, avec

une troisième particule «®(A®). Le cp^^iz®), qui agit sur le z® est le potentiel
symétrique produit par 2. Or, celui-ci se compose, à des époques lointaines, de

la partie statique, qui ne s'étend qu'à une distance finie | z'2'- 2 | r02' — xT\
et d'une partie radiative, qui se propage, sous forme d'onde ç)'rad', dans tout
l'espace. L'onde avancée, contenue ainsi en sym, g' ', rencontrera et accélérera z( '

à une époque t antérieure (i'01' — t <~ r'02') à l'époque v01' de la rencontre entre

z et z"' qui fut la cause de ce phénomène. Pour éviter cette réaction du futur
sur le passé, on introduit le champ çp(x) comme un nouveau système, composé de
de n 00 systèmes élémentaires (éq. 2,9). Alors, on établit de cette manière une
théorie qui, pour A0->- 0, donne le même résultat que (3,7) pour l'interaction entre

+ 00

les particules (si l'on y substitue eç>(lnc>(rï) S f/^ret, (93. fdX^ô{. Mais

—00
elle contient, pour des A0 finies, le rayonnement des ondes cp(x), étudié en II et III.

Exemple 8. Théorie du champ non linéaire: Nous avons, en III, éq. (10,3) et
(10,4), donné le changement ôc(fi') c{p')(+ T)- c(/j,')(- T), produit par
l'interaction entre une onde cp incidente, caractérisée par les paramètres c(p.)(— T)
et une particule, caractérisée par pa(~ T). Le résultat, pour des champs faibles,
est l'effet Thompson-Doppler corrigé pour le freinage. Considérons maintenant un
champ à trois composantes cp,u^. et u,2Aw= u,-^ — iu,2A avec un a donné par:

e2(oc \w*w]cpcp + a>2'[w*w*wtu])( — T)

ethr2— f (dx)* (w*wçp2~ 2 x^{w*cpret,Jw<p) + conj) (3,9)

- 2 »^ w* w ret(ç)) (w* w)).

Le changement ôc(fi') vaut, pour des champs faibles.

òc(p') ~i(e2 «MjleW«»))^) ôp+^ ^+^dT,Tc(p)a(k',r')*a(k,r) (3,10)

avec
£2a(2) (fi'f/i) £22jrâ(Ja'«+r«-(iu«+fc«))

(k' « *•)-* (2 v (Z«^«)*)-1 d + di', /*) >2 ((/>fc) (M))"1) (3,11

g {a.) est la même fonction matricielle qu'en III (10,6)*). Le résultat représente
l'effet Compton produit par N(k, + électrons de qte. de mouvement pa= hka
et de charge e eh?, si l'on pose dans | ôc(p') |2 pour le produit

a{k, + )*a(k, + N(k, + (3,12)

et pour tout produit avec k' £ k et t' £ +

a{k',T')a(k',r')* 1. (3,13)

*) Les coefficients sont arbitraires dans la même mesure qu'en III (10,6),
si l'on introduit des

£ aL! [»*»»] e ce ' [w* wcp<p]e a™ [p* w cp œ]u I 1 I
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§ 4. — Les états stationnaires du système composé.

La mécanique asymptotique de la collision entre deux particules

z et 0(1), caractérisée par la fonctionnelle (3,2) et la mécanique

fonctionnelle (3,3) (avec (3,4) resp. avec (3,5)) ne sont pas
équivalents : En plus des solutions apériodiques (qui correspondent
aux solutions de la mécanique asymptotique, (3,3) possède d'autres
solutions. Un certains nombre de ces solutions doivent être éliminés,
parce qu'elles contredisent nos hypothèses fondamentales (p. ex.
la possibilité de décomposer cp en ç?(ret) + ç?(def) (III)). Mais parmi
ces autres solutions il peut exister des solutions quasipériodiques,
admettant les hypothèses fondamentales. On s'en aperçoit en
considérant l'approximation non relativiste de (3,7). Elle n'est autre
chose que la mécanique rationnelle d'un système avec

H H<ro + ff<> (4,1)

où ff(0) (2m)_1([p [2 + [ pW |2) + 2m est l'énergie cinétique et

<p

est l'énergie potentielle, développée sous forme des potentiels de
Yukawa :

H|À M - e2 (4 n r)-i exp (- x(<p) r). (4,3)

Si les constantes c{q>) eM ejJJ e~2 en (4,2a) donnent lieu à une
attraction, un système planétaire est possible (orbites liés, particule

capturée). La variable intérieure r est quasipériodique en deux
fréquences. Un raisonnement de continuité montre que de ces orbites
peuvent subsister en théorie relativiste. Ainsi, il ne suffit pas de
donner a, mais on doit connaître, soit l'équation fonctionnelle des

forces, soit l'histoire explicite pour toute combinaison possible des

états initiaux (y compris ceux de ces états quasi-périodiques). Pour
deux particules et pour le potentiel symétrique, les principes de

conservation montrent qu'une telle capture ne peut jamais se
produire. Les résultats de la, mécanique asymptotique suffisent ainsi
pour décrire nos observations des collisions entre deux particules.

Par contre, la mécanique causale, décrite par le champ cp, permet

des transitions à des orbites liées, même pour deux particules
entrant en collision. Elles tournent en spirale autour de leur centre
de gravité et émettent des ondes <p. Pour arriver à un résultat
quasipériodique, il faut faire appel à une théorie non linéaire de cp, dans
laquelle des états stationnaires existent où la charge libre (q 4= (?(0>

+ qM) est statique, même si les charges vraies o^ + g(2> ne le sont
pas (cf. III). Ces orbites stationnaires sont caractérisées par leur
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moment intérieur S, leur énergie H < 2m dans le système au
repos) et par les deux «phases » 95,(0) des wt(t). L'ensemble de ces
constantes sera appelé p' et q'. Le système planétaire, résultant de
la capture, finira ainsi par se trouver dans un de ces états quasi-
périodiques p' p'(+ T) Mais la transformation a semble associer

à tout état initial pa(— T) g"*
(1> (— T) un résultat final

pa(+T) .q*W(+T). Pourtant il est évident que (3,3) n'admet
certainement pas ce résultat pour des particules suffisamment
lentes ou la capture doit se faire. La seule possibilité est alors que
la somme (3,1) ne converge pas pour ces états initiaux. Dans ce

cas, il faut exprimer déjà l'état initial en termes de ces autres
variables p', qui prendront pour t + T les valeurs constantes

p p {+ T)(= S, H, cpx(0) et q>2(0) du système composé). Nous
verrons plus tard (§ 9), que ce problème important se résoudra très
simplement en théorie quantifiée.

§ 5. — La mécanique quantifiée.

Aux observables F correspondent, en théorie des quanta, des

opérateurs linéaires, qu'on peut représenter sous forme de matrices
F(pfp'). Un vecteur unitaire W(t) (ou 0(f)) à composantes •?(£; p)
(ou 0(t; p)) permet d'en former l'espérance mathématique.

F(t) (0 (t). F0(t)) 0(t; p) F (p/p1) 0(t;p'). (5,1)

L'évolution de 0 doit suivre une loi

0{t)= S{t+T)0(-T) (5,2)

où S(t+ T)(pjp') est une matrice unitaire représentant une rotation

finie dans l'espace hermitien aux axes p. Il existe alors un

opérateur F (t+T; F, G, fonction de t + T et des opérateurs
F, G, tel que

F(t) (0(-T),F(t + T;F,...)0(~T))=F(t + T};...)(-T). (5,3)

En termes de S(t + T;F,G, ce F s'exprime par

F(t + T;F, G,...)=S-i(t + T)FS.(t + T) (5,4)

(5,3) permet d'énoncer un second principe de correspondance (historique)

entre mécanique quantique et classique, si (5,4) permet le

développement des esp. math.

F (t) F (t+T; F, G,...) (-T)
F0(t+T,F,G,...)(-T)+hFx(t+T,F,G,...)(-T) + (5,5)

en termes d'un paramètres h. Les Ft(..) (— T) sont fonctions de



206 E. C. G. Stueckelberg.

t + T et de F(— T), (?(— T), etc. Ce P. C. s'énonce comme suit:
A une mécanique quantifiée (5,2) correspond une mécanique classique
(1,1), si, dans la limite fo->0, la relation

lim s-ìFS (t+T; F, G,...) (-T) ->F0 (t+T; F,G,...)(-T)h^O (5,6)

existe entre les esp. math, de S~1FS et la fonction historique
/\

classique F0 (1,1).
En particulier, la mécanique quantique devient rationnelle, si

(5,4) et l'opérateur

F (otS-1)FS + S~1FdtS dtF(t + T;F,G,...) (5,7)

permettent d'éliminer les F, G, en termes des F, G, dans
une éq. opératorielle de forme (1,5). Omettant alors les ~ (car on
peut alors se rapporter à un temps t — T quelconque), ces
relations opératorielles sont:

F f.0(F,G,...) (5,8)

et le P. C. prend alors la forme

lim f.0(F,G,...)(t)+fM (F,G,...)(t) (5,9)

du P. C. (rationnel) entre la mécanique quantique (rationnelle, de

Heisenberg-Schroedinger) et la mécanique classique (rationnelle,
de Newton).

(5,7) exige que S ait la structure e-i*-Ht+T)iH.F,&,..^ (5j2) se

réduit alors à la mécanique rationnelle de Schroedinger

0(t) -\H(F,G,...)0(t) (5,10)

pour 0. Cette mécanique quantifiée est nécessairement conservatrice.

Elle permet d'établir une correspondance entre les systèmes
quasistationnaires (2,4) et (5,10) par

lim H(F,G,...) -># (F,G,...)
h^° (5,11)
limiTi-1^', G]^(F,G\.

Un P.C. fonctionnel peut être obtenu en éliminant t + T et

et les F, G, de (5,7) à l'aide de (5,4) et des définitions F d2 F
(analogues à (5,7)). La force fonctionnelle et opératorielle est:

F f(F,G,...F) (5,12)
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en analogie parfaite avec (1,4). Si le développement (1,7)

F f.0(F,...)+X0f.x(F, ...F) + (5,13)

est possible, on peut énoncer un P.C. (quantique) entre mécanique
(quantique) fonctionnelle et mécanique (quantique) rationnelle par
la relation opératorielle

lim/(F, G,...) ->/.0(F,G,...) (5,14)

En particulier, l'application à des collissions permet de formuler
un P. C. asymptotique entre la mécanique asymptotique quantifiée
et la mécanique asymptotique rationnelle. Pour pouvoir l'énoncer,
nous définissons d'abord par

0(t) e-iBio)tY (5,15)

les constantes d'intégration W(p). Elles remplaceront les px. qn
du § 2. (F (W, FW) avec F=F(px...qn) et dtF =0). Le S en

W(+T) SW(-T) (5,16)

qui correspond à (3,1), peut toujours être mis sous forme de

S e-i«ß(a) _^ (a) _^_a| («))<, (a) + -i a|-(a))-i (5,17)*)

en termes d'un opérateur hermitien a. Nous envisageons le cas où
la série opératorielle

F(F,G,...) ±rF + ±i[*ß,F] + ±i[xß,i[zß,F]] + (5,18)

permet le développement suivant (pour les esp. math.)
/\ —

F(F,G,...)=F0(F,G,..) + hFx(F,G,...) + (5,19)

Alors ce P.C. asymptotique est

lim F (F,G,...) -> F0(F,G,...) (5,20)

Exemple 8: Si l'on pose a e2a'2l en (3,9) et si les opérateurs a*, a et c*, c

satisfont à

{[«", à] -¦-jLrv*,„]_-.! ô(k'/k) ô(t'/t)
le résultat asymptotique est (3,10) avec

Éf(cc)=(j?(a)+ Y<xf(a)

*) ß,r) et f sont des séries ß l + ß1x + ß2a.2+ n =1+ .,1= 1 +



208 E. C. G. Stueckelberg.

(Les opérateurs a(«) [cp .] ont, par définition, tous les a*, c* à gauche des

a c car les a'"' [çp .] a'B '[cp .] tiennent compte des autres termes).
I I

Les conditions (3,12) et (3,13) sont maintenant automatiquement réalisées.
On définit | ôc(fi') \2 par c(fi')* c(li')(+ T), vu que c (li')* c {//)(- T) 0 pour
/j.' #: /x. Le résultat de cet effet Compton correspond (dans la limite h -> 0) à l'effet
Thompson (si on néglige le changement de fréquence de l'effet de Doppler) pour
le modèle général de l'électron introduit en II et III. (III, (10,4).)

§ 6. — Etablissement d'une mécanique fonctionnelle quantifiée.

En général, les observations sur des collisions entre des
systèmes élémentaires sont des observations asymp to tiques. On observe
les constellations initiales W(—T) ^(—T; N (k,r) N(/*)...)
et finales W(+T) des particules élémentaires**). Ces expériences
déterminent la matrice S d'une mécanique asymptotique telle que

0(t^-T/=e-i»-lH{o)tW(-~T) 0^(t)
(P(ì>+T)=rirlrf)(!?(+T) e-ir,j|,)|Sr'(-T).

Mais au moins pour les forces à grandes distances une mécanique
fonctionnelle doit exister. Dans ces cas, en effet, l'évolution
spatiotemporelle de la collision peut être observée (p. ex. la deflection
d'un rayon cathodique ou d'un rayon a par un champ é. m.). Cette
mécanique fonctionnelle doit, dans la limite X0 -> 0, correspondre
à son tour à la mécanique rationnelle de Schroedinger

0(t) -ih-i(W°ï + H^)0(t). (6,2)

H®) est la somme des Hamiltoniennes des systèmes isolés. H' > est
l'énergie perturbatrice responsable pour les collisions.

Pour trouver une mécanique fonctionnelle correspondant à un
8 donné, nous remarquons que S a la forme

(S—1) (p"lp')= 2 n è (co" - co') A(+) (p"lp). (6,3)

iP°) a été réduite à ses axes principaux (w" &>(,«"))

H <°> (p"lp) =hw"ô (p"lp). (6,4)

Soit A"(+,>(p"lp') une matrice satisfaisant à (6,3) qui n'a pas de

singularité infiniment près de l'axe réel dans le plan co'. (Une telle
matrice ^4"(+) n'est en général pas univoquement déterminée par
le S en (6,3)). Cet ^4<+> permet de définir un opérateur

B<+) (p"/p')= lim (i (w" -(„' + ir)))-1 AM (p"Ip). (6,5)
T^r +0

**) plus exactement leurs amplitudes de probabilité.
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Nous étudions les fonctions

_<+> 0<°> (t; p")
CO

<V/dm' -t(n,'-(m»-w)) ^(+V7/)y(-T;/)• (6.6)
0

La somme sur les états p' a été écrite sous la forme
OO

£ fdp'fda>' (6,7)
/*' o

(Jdp (avec [/^/t]= cmj est une abréviation de la somme, contenant

la densité des états, et des sommes sur les spins, etc., des

systèmes élémentaires.")
Pour £< 0 resp. t > 0, le chemin de l'intégration dm' de

0 -> + oo peut être déformé en une demi-droite 0 -> + i oo resp.
0 -»— i oo suivant l'axe imaginaire plus les résidus positifs resp.
négatifs situés dans le premier resp. quatrième quadrant du plan
co'. Dans les limites t ±T^±oo etrT^ + O, seul le résidu
de to'= co" — ir donne une contribution. On a alors, en vertu
de (6,3)

lim _<+><p(°)(f<-T) ->0
r^ °° (6 8)
lim B(+ï0®(t> + T)^(S — l)e-ih~ln(o)tW(-~T).

T-+ oo

La fonction de Schroedingbr

0 (t) (1 + B<+>) e-^"1 h(0) ((+t) 0 (- T) (6,9)

est ainsi une histoire compatible avec (6,1).
En analogie parfaite avec § 1, nous formons la «force»

O (t) (- ih-i (l+B<+>) B<°> + tB<+>) e-^-la(0)<(+r> 0 (-T). (6,10)

(Nous avons, pour des raisons ultérieures, remplacé en (6,9)

B<+> lim eTjB<+> (611)

en nous limitant à des temps t finis). Contrairement à l'histoire
classique du § 1, l'histoire quantique comprise en (6,9) et (6,10)
permet l'élimination simultanée de t + T et des valeurs initiales
0(— T). La mécanique fonctionnelle a ainsi toujours la forme de
Schroedinger (6,2). L'opérateur X —ih~1H^ est déterminé par

ih-1 [fi«», B(+>] + tB<+> X(l + _<+>) ^(+> (6,12)'
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(6,12) peut être résolu en termes du A (6,5) par la série

— ih-1HU(i*"l/*') X(p"/p')
A<+)(p"/p') - A(+)(p"fp'") (»(_'" - (w' + ir"')))-* A(+)(p'"lp')

+ AW (p"jp"") (»(_"" - (ft)'" + ir"")))-1 AW (p""\p")
(*(_'" - (co' + ir'") AW (p'"\p) - (6,13)

La «force» <&(£) f(0(i)) en (6,2) est, explicitement, l'expression

d'une mécanique rationnelle. Mais, aux dénominateurs de H^
en (6,13) correspondent des intégrations sur le passé de 0'-°'>(t).
Ceci nous montre que, implicitement, cette force

t

0(t) f[0(t),fdt' ...0(t'),..)
— oo

en (6,2) est de nature fonctionnelle.
Nous sommes maintenant en mesure d'appliquer notre P.C.

entre mécanique fonctionnelle quantifiée et mécanique rationnelle
quantifiée. D'abord, on doit se rappeler que la solution d'un
problème rationnel (l'éq. de Schroedinger (6,2)) peut être donné dans
la forme (6,9) si W0(t < — T) 0. Avec la substitution (6,11),
on trouve pour le AW en (6,5) la série en X —i/i_1fi()

A'W(fi"lft')=X(p"lp')+X(p"lp'")(i(co'"-(m'+ir'")ylX(p'"lp')
+ X(p"/p"")(i(m""-(m' + ir"")))-1X(p""/p'")(i(co'"
- (co' + ir'")))-1X(p'"fp') + (6,14)

(différente de (6,13) parce que l'on a toujours co' dans les dénominateurs).

Dans l'évaluation de (6,7), on doit tenir compte du fait que
A'W (différent de A"W ^"/p')) a maintenant des singularités infiniment

près de l'axe réel o/. Mais, en décomposant les termes en
fractions partielles, on trouve (par ex. pour la deuxième approximation)

lim BW0(o)(t- n») _ 2tiô(co" - co') X (p"jp) er* m'( W (- T; p')
t^+oo pò

f dp' f dm' \ rj—-, -7—r,—¦ „,. • ; „ | - 77-^-J nJ \-i(a> -(co -ir' i(co -(co + i(% -x
0

+ ¦

+

i (co"- (co'" + i (r" - t'")) -i(co'-(co'"-i r'"))
X(p"lp'")X(p'"lp')e-im'tW(- T; p') + (6,15)

Pour i-> + co, seuls les résidus — ir donnent une contribution.
On a deux termes. Si r'" $ r", deux possibilités se présentent. Pour

t'" — t" -> + 0, la somme[dp"'[dm'"e-i'°"/t dans le second terme
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est nulle, parce que t" — t'"-)—0. Pour r" — t'"-> + 0, le
deuxième terme contribue un résidu qui, ajouté au premier terme,
change le signe du demi-résidu contribué par le détour autour de
co"'= co" — iO dans le premier terme*). Dans la limite £->oo,
les singularités près de l'axe réel m ne donnent pas de contribution

et (6,8) reste valable. La même démonstration peut être faite
pour les termes supérieurs. Le P.C. s'énonce alors ainsi:

A une mécanique asymptotique quantifiée, caractérisée par un
opérateur unitaire et invariant 8 correspond une mécanique rationnelle

de Schroedinger, avec — iH — iH^ + hX, si, dans la
limite X0 -> 0, S — 1 a la structure

lim (S - 1) (p"lp) -> 2 7iô(m" -m')(X + X®X
A°"° +X®X®X + ...)(p"jp')

(6 16)

P © G est une multiplication symbolique définie en termes de
ft)', par
(F® G)(p"lp'")= limF(p"/p"")(im""-(m' ±ir)))-1G(p""/p'")

*-+° (6,17)

(6,17) est une somme sur p"" où le parcours de sommation a été
détourné dans le quatrième (+ ir) ou le premier (— ir) quadrant
du plan complexe m(p"") pour éviter la singularité m"" m'. Par
les multiplications symboliques

FxG=i(F®G + FQG)\
F®G= i(F®G-F®G)\ [ ' '

on définit la valeur principale de la somme (6,17) et la moitié du
résidu autour de m"" m'). On a en particulier

(F®G)(p"jp'") \F(p"lp"")2nô(m""- m')G(p""fp'"). (6,18a)

Exemple 9: Collision, due à l'interaction de Coulomb-Yukawa, entre deux
particules (diffusion de Rutherford).

Nous cherchons un S S (a.), fonction d'un opérateur hermitien

«=^»+ ^»+^1+... (6,19)

tel que (6,16) soit satisfait dans la limite m hx(w) -> oo (particules « infiniment »

lourdes allant «infiniment lentement») avec un opérateur dans l'espace de
configuration

lim X(5(i),g(2)) _+_ih-i_()(j |(i)_£-<2)|) (6,20)**)
*(w)^°°

*) Enfin, pour t'" t", on définit des sommes sur fi" par les valeurs
principales les moyennes entre t'"-t"-> _ 0) et l'on obtient encore une fois le
même résultat.

**) à cause de (3,8,) la limite A0 -> 0 s'exprime dans ces exemples par x<a-, ->¦ oo

(h restant fini).
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H\L est défini par (4,3). Nous allons démontrer que la série (5,17) en a avec un
a[w*w*ww] quadrilinéaire en w* et w dont le £2a'2> est donné par (3,9) et dont
les £n+2afc+2' sont les termes n fois contractés w w' (III (9,14)) en:

£4a(2)=~2£4*fw) h~S f(dxfw*w ret(?) (w* iet{w)(wret{(f){w*w)))+

r
' '

£6«(4) -4£6'<w 7'-4 (dxfic*w ret(v) (w* ret(w) (w ret(ç)) (w*

ret(w) (wret((f)(w* w)))))+
Ë8 «§j

'

_ _ (6.21)

permet de satisfaire au P.C. (6,16). Définissant un a(/c', V' j k, t) dans l'espace de

configuration de deux particules k, l (pas d'antiparticules) par

« E E E Ea*(k',+ )a* (l',+ )a(k, + )a(l,+ )oL(k',Jjk,X) + (6,22)*)
P f ï î

on trouve, avec (k— k')2 (k-Y, k—k')

-î'eV2)(I',Î7£ <7= 2 jî(5(fc'4+r4-(fe4+i4))Z(2)(fc',T7K, I) (6,23)
2

Xflnt*',?/*,!) i«2fe ,* r,r "l7"1 /
(M,) ~ • T,—m ~<2' ' k+l,k+l Vfc'«i'«fc«J« (k-k')2 + x(ç)

et

- is« <$}(*', f/*, î) 2 « <5 (fc'4 + T*- (fc*+ /*))

r 2" xm *', T'/«", T") -1^1 - ; i- zm *", r/fc, T) (6,24
F"?' u * (k+l-k")2+«(4 u

etc. Dans la limite envisagée, les dénominateurs en ocU (dus à ret,^) tendent vers

(*+1- fc")2 + V) *M+ l*"l2- (fc4+ li- fe"4)2"> 2 x(») (&"4+ r'4^ (fc4+ '*)>

Le a défini en (6,19) tend ainsi vers

lim (-ia)(fi'lfi)->27iô(co'-co)(X + XxX+XxXxX+...)((i'lpi) (6,25)
*(w)^°°

/K est ici l'espace de configuration des impulsions ^ (hk ; hl) des deux particules
/c et / avec co(/i) fe«+Z«. (6,25) est un opérateur antihermitien.

Le choix particulier n f 1 en (5,17) donne, pour 8—1, la série

S-l -ia(l + ya)_1=(-ia)+y(-ta)2 + (^2(-ia)3+... (6,26)

Dans la limite, cette série s'exprime, en vertu de (6,18a), par
lim (S-l)(fi'l!i)->27iô(co'-co)(X + XxX+

x(w)-+°°
+ (X + XxX+ O (X+Xx X+ ...)+...) (6,27)

2)i(î((i)'-((i)(X+(IxX+ZOI)
+ (XxXxX+X®XxX+XxXOX+XO^OX)+

qui est identique à (6,16) (voir la définition des produits symboliques (6,18)).
Un S1 (a) avec £ r\ — 1 en (5,17), dont les termes quadrilinéaires sont

donnés par les séries (6,19) et (6,21), correspond ainsi, dans la limite A0 ->• 0 (c'est-

*) + signifie des termes éventuels contenant cp en (6,21) et des termes
contenant des a(k,—
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à-dire en négligeant les effets de retardation), à l'interaction d'un fiO dont
l'élément de matrice est l'élément de Yukawa:

aXm->Ä<> ,(«'F/*Ï)= -«V^'+T'.î+T ,r -,«-""V""""'--" y "*'+*',*+* |J_«'|2 +^
(w1))3 A^(2))3^,ei(r*'"'*'"<1)>+(Î'_1:*(2)))H<) (l3(1>-î(2)J)

y j i2 »
(6,28)

Exemple 10: Collision entre trois particules: L'élément de matrice dans
l'espace de configuration

ihX,s)Oc',î',m'lK,î, m) E ihX(2)(k',l'lÎc,î)ô~, -
Perm '

-> Jj f(dqW,3(dq(2Tis(dqm)sy~sei «*'+*> «(-1)) + '- > (6,29)

(fl{^ (r12) + fi^ (r13) + Ä^ (r2")) _( (ft', I',m'fcî,m)

décrit l'interaction entre trois particules à qte. de mouv. hk,hl et Am. Notre a'2'

a déjà la structure voulue. Mais il faut ajouter à (6,19) des termes sn a>"_4) > hexa-
linéaires en w* et w ((6,21) (n—4) fois contracté))

a [w*î«*w*M)«w] a(k',+ )*a(l', + )*a(m', + )*

a(k, + )a(l, + )a(m,+ a (ft', l', m'/K, l, m) (6,30)
avec

s« <x(«) 2 ji<5(ft'« + i'«+ m'«- (ft« + Z« + m«))

x(2)(ft', m'/ft", m) 2 ft"« ; 5- Xm(ft",T'/fc,T) (6,32)U (k+l-k")2 + x(ç) (2>'

Alors, l'opérateur —ia.(fi'l/i) dans l'espace de configuration k, l, m tend encore
une fois vers (6,27) avec l'opérateur X,3> de (6,29).

Exemple 11. Collision entre À" particules. En généralisation de l'exemple
précédent, on doit ajouter au a du problème de N — 1 particules des termes

a(n-(2.w-2))' 2 iV-linéaires en w* et w.

§ — 7. La théorie du continu classique

L'exemple étudié au paragraphe précédent pour un N très
grand est l'image atomique du continu macroscopique de la matière.
On passe à l'image du vrai continu en faisant tendre ce nombre
N(= nombre d'AvoGADRo) vers l'infini tout en gardant Nh fini.

Nous remarquons alors que les termes contractés <x,("> peuvent
être obtenus des «<") en transposant tous les a* d'un w (ou w*)
à droite des a. Formellement, ceci s'écrit

P». (n(n) i „(m) "\ „B „(n)c r ~ (m) I transposé (m/2) pairs
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Comme les a* et a sont, dans la limite W.-> oo, proportionnels à -y/iV^
on peut énoncer le P.C. suivant:

lim en (*n +Z *}&) ¦> e" «(n) U + sX{â,N~ (7,1)

Si l'on fait intervenir des aW du type
+ T

e2 af|>= —e2?<2 / (da;)4 w,*M)retw;* w-=— lim dt N e2 x^log— (7,2)
¦^

I I K-+œ_lT *w

les facteurs #H deviennent en (7,1) des coefficients infinis. Ils
expriment les effets dus à la fameuse « énergie propre » des particules

élémentaires dans l'ancienne mécanique. Mais, dans la limite
N-> co, nous avons la liberté de faire tendre lim iV-1 log (Kjx^)
-> 0. On arrive ainsi à la mécanique asymptotique d'un vrai continu
classique w, caractérisée par son

<x= lim(£2a(2>+£4a<4> + (7,3)
^^oo

(les a* et a à leurs places naturelles).
On peut démontrer qu'un a existe tel que (7,3) et est la forme

asymptotique d'une mécanique fonctionnelle d'un champ complexe
classique, exprimée par l'équation fonctionnelle

(D-(xH-erïyM)>=0 (7,4)

La fonctionnelle <p[w] est alors la moyenne du potentiel avancé et
retardé, solution de

(D — x,2)) h"2 cf= — eh~xX(w) w*w+e2h~z <pw*w (7,5)

Cette mécanique est conservatrice pour Pa.(± T) E N(k,r)kx
en analogie parfaite avec ia théorie des deux particules au § 3. La
dispersion naturelle a réduit à ces deux époque l'intensité w des

paquets d'onde à des amplitudes infiniment faibles. Le potentiel
<p[w] symmétrique produit dans la théorie (7,4) et (7,5) les mêmes

phénomènes acausals (action des potentiels avancés) que dans la
théorie des particules en § 3.

Pour remédier à ce défaut, il faut introduire le champ cp comme
une observable physique indépendante de w. En termes des coefficients

à*, a et c* et c (t) ou des « constantes » a*, a, c* et c de (2,9)
et (2,12), cette théorie rationnelle des trois champs cpetw= ucrj —i W(2)

est canonique. Son H^ en (4,1) est

H()=efil)+e2#(2)
eHU=-eh~2 X(w) j(dx)z <pw*w; e2H® ^e^h-1 [(dx)3cp2w*w(l,%)
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Un tenseur T*ß= Tß* satisfaisant à la loi de continuité da T«ß=0
existe. Pour trouver a(t) en termes de H<->(t) dans

F(t) (t5T^(- T) + {a(t)(-~ T), F(- T)} + (7,7)

* «(*) +JV {-«(*), àtx(t)} +

on doit résoudre

l!
+ -^{- a (t),{- «(<), d(a(0} + flO(0 (7,8)*)

a(i) (— T) est l'intégrale j dt' dv cc(t') d'un dt a\t) (—T), qui dépend

des observables F (—T) à l'époque initiale, a a(+T)(—T) est
alors le a a(— T) de la mécanique asymptotique.

§ 8. — Théorie du rayonnement quantique.

Le procédé classique de (7,7) nous fournit les termes

eoc(i) — eh~2 x(wJ (dx)i<pw*w (8,1)

le e2a(2) de (3,9), etc., qui dépendent de cp. Les termes linéaires
en cp et, au maximum, quadrilinéaires en w* et w sont (8,1) et

£3 K(3) _ 2 e3 -fa 2 xfw)J (dx)4 (w* cp ret(w) (w ret(v) (w*w) + conj))
e(S)(œ<l) + (2) + oc<2)-r(l)) (8,2)

D'autres termes sont obtenus par contraction sur w* w' des

a®, etc. Ils ont la forme I 1

e5 ajg e5 (ag|+(2>+(2) + oc$+(1)+(2) + a$+®+«) (8,3)

Dans l'espace p de la configuration de deux particules (fe et l) et
du nombre de protons N(p), (8,1) définit l'opérateur

Y(%',ì';...N(p)' ...fi, ï;...N(p)..)
te^cG«) N(p'Y .../... #£') .)(2 F^4)-i

fà+ZI <¥,î + ô%',% ôï+ï,7) + coni (8>4)

En termes de cet opérateur, la série (8,1) + (8,2) + (8,3) etc.,
(linéaire en <p) tend vers

lim (—»(«(i)+ ...))-> 2nô (cu' — co) (8,5)
X(w)-Voo

(Y+(ZxY+YxI)+(YxIxI+IxyxI+XxIxY)+...)>7/*)
*) Ä()(«) est le Ä(> de (7,6) avec ç>(<) et w(t).
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avec co fc(4) + i(4> + ENÇp) p*. Le choix f r\ 1 détermine un
S — 1, qui correspond à

lim (S - 1) (p'/p) -> 2 nò (m' - m) (_J+>

+ (1+X®+X®X® + ...)Y(1 + ®X+...)
+ (1 + X@+...)(Y0Y + 2Y0X0Y+YxX0Y+Y0XxY

+ ...)(l + ®X+...) + ...)(p'/p) (8,5)

AW est l'opérateur défini en (6,27). En termes de l'opérateur
1 + BW cette expression prend la forme

lim (S-l) (p'/p) -> 2nô(m' - m) (A<+) + (l + _<+>) Y(l+B<+>)
+ (1 +_<+)) Y(l+£<+>) O (1+BW)Y(1+SW) + .)(p'/p) (8,6)

Nous avons ajouté à <x des termes anti-hermitiens du type — i2
(c/fi'i y a(2)

~2~
a(1) e^c- 1ui contribuent 2 Yo^oYau troisième terme

de (8,5) nécessaire pour obtenir (8,6).
Les éléments de matrice de (8,6), contenant Y à une puissance

impaire, contribuent une expression linéaire en c(p) ou cÇjîi)*. Ils
sont la mesure pour l'amplitude de probabilité de l'absorption et
de l'émission d'un seul quantum, à qte. de mouvement Kp, lors d'une
rencontre des deux particules hk ethl (rayonnement de freinage).
Les termes multilinéaires en c* c c* provenant du Y o

Y .o Y en (8,6), donnent la mesure pour l'émission
successive de plusieurs quanta et les corrections pour l'amortissement

dues à une réabsorption (freinage de rayonnement). Pour
obtenir l'émission simultanée de plusieurs quanta, on calcule d'abord
par le raisonnement de correspondance avec la théorie du continu
classique, d'autres termes multilinéaires en cp. Les bilinéaires en <p

sont le £2a<2> de (3,9) plus
e4 a(4> [w* w* w w cp cp]

— 2eih-3 x%J (dxy (w* cp ret(w) (wret(ç) (w* ret(w) (w cp)))

+ w*cp ret(M) (w retw (w ret(w) (w* cp)))

+ w*cp ret(w) (w* ret(?) (w ret(w) (w <p))fj (8,7)

et des a(S etc. Dans la limite non relativiste, ces termes se
réduisent à l'adjonction d'un

lim (— io.) (p'/p) -> 2 7iô(co' — co)

(YxY)+((YxY)xX+(YxXxY)+Xx(YxY))+ .){p'fp)

.x est le produit symbolique du Y (8,1) avec lui-même,
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mais où tous les c* sont à gauche des c. On peut aussi l'écrire dans
la forme

->2 7iô{m'-m)(...((l+BW)Y(l + BW)
x(l+BW)Y(l+B<+)))+ .)(p'/p) (8,9)

Ces termes décrivent la diffusion d'un quantum (Kp-> Kp') par un
système matériel composé de deux particules en collision et l'émission

et l'absorption simultanée de deux quanta Kp et Kp' par un
tel système.

§ 9. — Les états stationnaires du système composé

Un problème de Schroedinger (6,2) permet des solutions
stationnaires

0(i)=e-l^tWii) (9,1)

Pour les trouver, on peut procéder suivant la méthode des pertur^
bâtions de Born. On développe W@ en puissance de l'opérateur
X — i Ji-1fi(>. Soit W$ une solution propre du problème non
perturbé avec l'énergie hWuy Alors, on vérifie facilement que les

constantes

y(f,±)=(l + B<±>)ÎPg? (9,2)

substituées en (9,1), forment une solution de (6,2). Elle est
composée de l'onde non perturbée W®] et d'une onde sphérique émergente

B'+'ÎF^ ou incidente BWipffi. De même les constantes

y(,x)=(i + BW)y$ (9,3)

forment une solution où les moitiés de l'onde sphérique incidente
et émergente s'ajoutent à S7^. On sait que toute onde non
perturbée ï7*0* peut être décomposée en deux parties:

¥$=¥§-'> +¥$+) (M)
^li)'+) est une onde qui, dans l'espace de configuration 3 JV-dimen-
sionnel des N particules ou quanta, ne contient que des ondes sphé-
riques émergentes etï^--* est entièrement composé d'ondes spéri-

N
ques incidentes. Soit R2 =_'I5("M 2 ^e rayon dans cet espace*).
Soit # l'ensemble des 3 N — 1 angles et soit Pt (&) les harmoniques
sphériques dans cet espace. Alors, le développement suivant est
possible dans la limite asymptotique spatiale

lim yg. ±)(„;#)-> Pl(&)R2-3»e± *'sV$ ±](v;l) (9,5)

*) Espace à nombre de dimensions variable, si des particules ou quanta
sont créés.
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p (v; l) est l'indice dénombrant les axes dans l'espace hermitien
correspondant. Un raisonnement analogue à (6,8) dans le plan
complexe de la longueur v du « vecteur d'onde » p= (v ; l) donne le

résultat
lim BW¥(o,-)(R;&)^Ç)

R^ oo

lim _<+> ¥§• +) (R ; &) -> (8 - 1) V®' +> (E ; t?) (9,6)*
ii^ oo

Dans la limite asymptotique, on peut donc écrire pour (9,2)

lim¥a,+)+¥$-) + S¥(°>+) (9,7)
Ceci signifie:

A toute mécanique asymptotique temporelle W(+ T) SW(—T)
caractérisée par S, correspond une mécanique fonctionnelle, dont les

états stationnaires sont décrites à des distances asymptotiques spatiales,
en termes de l'onde WB du problème non perturbé si l'on y change la

¦phase de la partie émergente ï'i?'4'" en SW$'+Ï.
Nous avons ainsi démontré l'équivalence entre notre mécanique

et la théorie des grandeurs observables de Heisenberg [1944].
La nouvelle signification de 1 + B(+) en (9,2) permet une

interprétation alternative de (8,6) et (8,9). Un élément, p. ex. le terme

2 nô (w' - _) (1 + B<+>) Y (1 + B<+>) (p'/p) (9,8)

de la série (8,6) était une mesure de la probabilité de transition
d'un état pt= (kt, lt; 0^. (où les deux particules avaient
des quantités de mouvement hkt et hlf) à un autre état p/= (k/, l/ ;

ljg/, (où un quantum h'p' est présent et où les particules
se trouvent dans les états hk/ et hl/). Ces deux états sont caractérisés

par des

KÌ W 2_i(%) * % n + % ,i% /s) • • A, n ay ¦ ¦

ety$d(p) 2-i(ôp&rk... )--ài,Nfry
Introduisant les fonctions W, .j+)= (1 + BW)}[f<P) on s'aperçoit

que l'élément (9,8) peut aussi être compris comme mesure de

la probabilité de transition entre deux états (9,2) où les deux
particules sont dans des ondes ï7^...) (q^, gw) solutions de (6,2)
représentant un état stationnaire du spectre continu d'un atome
d'Hydrogène*) accompagné de l'émission ou de l'absorption d'un
quantum. La conjuguée complexe de îf(i> +) étant (9,2) Wfa +)

yW(l + X®+ XqXq), on s'aperçoit que (9,8) représente'la

*) Cette condition demande que les énergies co= co(v;l) soient positives.
**) formé de deux particules identiques ft et l, s'attirant suivant un lim Ä* ' ->

e2 (4 n r)-1 exp - xr).
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transition d'un état ï/<Wj+) (q{k) ; q{!)) à un état ¥Vf, _> (§W> ì(l)> 71)-

Ceci est naturel, parce que, dans l'état initial, les particules
« entrent » comme des ondes planes, tandis que, dans l'état final,
elles « sortent » sous forme d'ondes planes. Aux autres termes de
(8,6) et (8,9) on peut donner cette même forme

(S-l)(p'-/p + )-+2nô(m' -w)(. Y + YqY +
+ (YxY) + ...)(p'-/p+) (9,9)

Les produits symboliques sont à effectuer sur des états intermédiaires

de (6,2) (des W{^ +), des W{^ _} ou des ï^x))- (9,9) définit
ainsi une matrice S(p'—/p +) dans l'espace hermitien des
solutions de 1'« atome d'hydrogène ». Ce nouveau S décrit l'émission,
l'absorption, la diffusion, etc., de la lumière (champ 9?) par un
système matériel (par ex. nos deux particules de 1'« atome d'hydrogène»).

Le P.C. détermine (9,9) à des termes de retardation près.
En plus, le modèle de l'oscillateur de dispersion est le modèle
classique, si l'on considère S comme fonction d'un seul a. exprimé par
la série des a("> et des ofâ\, parce que S (a.) doit être la fonction
avec £ v 1 pour que le P.C. exposé au § 7 soit valable. Si
l'on ne dispose pas d'un P.C., on peut concevoir un S(a(2), a|4>

tel que le rayonnement et la diffusion soient ceux du modèle général
traité en IL

Il est important de remarquer que le passage (9,2) correspond
à un changement des axes p à de nouveaux axes (p, +) (ou (p, —)

ou (p, x dans l'espace hermitien. On a substitué au système complet

des ondes planes p un nouveau système (p, +). Il n'est pas dit
que ce nouveau système soit complet. Pourtant, la matrice (8,6)
et (8,9) ou (9,9) est déterminée en termes de AW (même sans
passer à la limite). Elle détermine ainsi toutes les transitions dans
le spectre continu de 1'« atome ». Si les nouveaux axes (p, +) sont
incomplets (ce qui est toujours le cas si le problème de Schroe-
dinger correspondant admet, en plus des solutions du continu (9,2),
de nouvelles solutions d'un spectre discret), on peut compléter la
matrice S en (9,9) par des éléments qui expriment des transitions
de (p, +) à ces nouvelles solutions et des transitions entre ces
nouvelles solutions. Formellement, ceci s'exprime en substituant à
(9,2) une transformation unitaire complète

yw y(0 E(%
qui comprend, outre les éléments 2>')(^+)= (1 -r- B(+)) (pfp), des
éléments E{f')(ny Ces derniers expriment les solutions W(n) du spectre
discret en termes d'une série de Fourier (en k et l p')). Les



220 E. C. G. Stueckelberg.

produits symboliques en (9,9) doivent maintenant être effectués
dans le système complet de ces nouveaux axes ((p, +) et n).

Pour les transitions dans le spectre discret, on obtient ainsi
la théorie de dispersion et de la largeur de raie exposée en II pour
un modèle général.

Il est important de remarquer que cette manière de compléter
S reste arbitraire, parce que le AW et le H^ en (6,2) ne semble

pas être univoquement déterminés en termes de S. Mais le P.C.
entre méc. asymptotique et méc. rationnelle n'admet qu'un seul
H{) (à des termes de retardation près), qui correspond au champ cp

macroscopiquement observable. Si par contre le champ cp n'est pas
macrbscopiquement observable (comme c'est le cas pour le champ
des forces nucléaires), le H^ n'est pas nécessairement déterminé
en termes de S. La seule chose qu'on puisse alors dire c'est qu'un
champ nucléaire correspond à des quanta (mésons) observables.
Mais le freinage et la diffusion des mésons ne suffisent pas
nécessairement pour nous renseigner sur la forme du H^, responsable
des niveaux des noyaux atomiques.

Note ajoutée après la rédaction de l'article.

Dans les M. S. de deux articles récents III et IV (à paraître
dans la Zs. f. Phys. [1945]) et dans un exposé au séminaire de
physique théorique à Zurich, M. Heisenberg a complété sa théorie
proposée en (1943) I et II. Il montre qu'on peut calculer les
valeurs propres hm^ du spectre discret par une prolongation analytique

de S, sans passer par les AW et X= —ihH^ comme nous
l'avons fait. Ce résultat est très important, parce qu'il montre que
l'arbitraire contenu dans notre matrice A (p'/p) (i.e. la prolongation
de 8 (p'/p) à des régions m' — m 4= 0) est identique à l'arbitraire du

prolongement analytique de S(k', ./k, pour des vecteurs d'ondes

k complexes. Or, si l'on admet l'hypothèse qu'en physique des fonctions

non analytiques n'ont pas de signification, cette comparaison
entre nos deux formes de la mécanique montre que tout comportement

dans le fini (spatial ou temporal) est entièrement déterminé
par le comportement asymptotique.

En d'autres termes, si plusieurs histoires (1,1) amènent exactement

au même état final, elles ne peuvent se distinguer que par
des fonctions non analytiques.

Genève, Institut de Physique de l'Université
Lausanne, Laboratoire de Physique de l'Université

Décembre 1944.
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