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Mécanique fonetionnelle

par E.C. G. Stueckelberg.
(27. 1. 1945.)

Résumé. — Les théories de ’électron classique, proposées par DIrac*) et par
Pauteur*) d’une part, et la théorie des grandeurs observables associées aux parti-
cules élémentaires, proposée par HEISENBERG*) d’autre part, permettent d’établir
une mécanique fonctionelle. Dans la forme classique (= non quantifiée), les forces
sont des fonctionnelles de I'histoire, donnant un formalisme canonique. Celui-ci
permet de traduire cette mécanique en théorie quantifiée. Pour caractériser un
probléme par une matrice S, on doit faire appel & deux principes de correspon-
dance (P.C.). L'un est le P.C. habituel, ot 'on passe & la limite 2~ 0 ou N - o
(N = nombre d’Avocapro). L’autre P.C. considére la limite (de la théorie clas-

sique ou quantique) pour les vitesses v = % infiniment petites (comparées a c=1)

ou pour un certain temps fondamental 7, = 4,/c tendant vers zéro. Les forces
deviennent, dans cette limite, les forces de la mécanique rationnelle.

Cette mécanique permet ainsi de traiter tous les problémes**) de la physique
atomique (collisions, radiation, ete.), y compris ceux de la théorie des états sta-
tionnaires qu’on rencontre dans des systémes formés de particules élémentaires.

§ 1. — Méecanique fonctionelle et mécanique rationelle.

Par hastoire, nous comprenons 2n fonctions F (f), G(f), . . ., qui
nous indiquent les valeurs de 2n grandeurs observables F, G, . .
pour toute époque f.

Par mécamique, nous entendons 2n fonctions F (t +T;F,@,....)

(—T),G...des 2n+1 variablest + T,F(— T), G(— T), . .. Elles
représentent: la durée ¢t + T (qui s’est écoulée entre l’époque quel-
conque t et une époque matiale t = — T) et les 2n valeurs F (— T), . . .
initiales des observables. Les lois de la mécanique s’expriment par
les 2n équations (fonctions historigues)

Pitj —F 4B F, &, ero) [~ T (1.1)
Les 2n fonctions 0, F, ... en |
Fi)y=0,F(t+T,F,G,..) (= T),G(t)=--- (1,2)
sont appelées les forces. Soit *
Py=02F(t+T,F,G,..) (-T) | (1,3)

*) Pour la bibliographique, voir STUECKELBERG, Helv. Phys. Acta 18, 21
(1945) (réf. I1I). (Les deux publications antérieures sur 1’électron ponctuel sont
citées par I et II).

**) A Texclusion de la ,,catastrophe infrarouge® en dectrodynamique.
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une deuxiéme dérivée. Alors il est toujours possible d’éliminer en
(1,2) les 2n + 1 grandeurs t + T, F(— T),G(— T), ... par les 2n
+ 1 éq. (1,1) et (1,3)*). On obtient ainsi 2n éq.

Fty=f,(F,G,....F)(t), G=g,(F,G,...., ) ®),... (1,4

dans lesquelles les forces f,, . .. & I'instant £ sont des fonctions des
2n observables F, G, ... & ce méme instant, et de la deuxiéme dé-

rivée I d’une (ou de plusieurs*)) d’entre elles.
Dans certains cas particuliers, I’élimination des 2n grandeurs

F(—T),...en (1,2) & I'aide de (1,1) donne dé&ja des forces
F(t)=foo(F,G,..) (1), G=goo(F,G,..)(1),... (1,5)

indépendantes de t + T'. Une mécanique (1,1) réductible a (1,5) est
appelée mécanique rationnelle; c’est un cas particulier de la méca-
nique générale (1,4) qui est une mécanique fonctionnelle. Dans ce cas,
général, la force (1,4) a I'instant f, ne peut pas étre donnée comme
fonction de la constellation F (t), G (%), . . . des observables, mais elle
dépend, non seulement de cette constellation, mais encore 1mpli-
citement de I’histoire contenue en F (f). Une élimination & 1’aide de
plusieurs ou méme de toutes les dérivées supérieures F, F,...donne
4 (1,4) une forme explicitement fonctionnelle**).

Ft)=f,[F(),G@),...], G{t)=--- (1,6)

(fol- - -] est une fonctionnelle des 2n fonctions historiques). Dans
certains cas (1,6) permet un développement

F(t):fOO(F5G:') (t)"{'ZOfOI(FsG: FaGs)
Ao Tog s G sn o 5 Gynsadly Gy ins)desvn (kY5
en termes d’un parametre 1,***), tel que pour des « mouvements

lents » (F/F < ;1) la partie fonctionnelle de la force (fy;-,) peut
étre traitée comme une perturbation.

La différence entre la mécanique fonctionnelle (traduite par ex.
en (1,4)) et le cas particulier de la mécanique rationnelle (réduite
a (1,5)) est fondamentale:

En effet 'intégrale générale de la mécanique rationnelle (1,5) est
identique & I’histoire (1,1) exprimée en termes des 2n valeurs ini-

*) En général, une seule équation (1,3) ne suffit pas pour éliminer {+ T de
toutes les forces. Alors on doit avoir recours aux G = 02 ¢,
**) La fonctionnelle peut aussu etre écrite en termes des
(—-1) (=2) -
(f) = fdt'F(t F=

***) Nous posons ¢ = 1.
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tiales F(— T) ... Comme époque initiale — T', n’importe quelle
époque t = — T peut étre choisie. La connaissance des 2n fonctions
de force (1,5) est donc équivalente & la connaissance des 2n fonctions
hastoriques. ,

Par contre 'intégrale générale du systéme fonctionnel (1,4) ne
peut étre donnée que dans la forme:

Al
A

F)=F(+T; F(—-T+7); F,G,...), G(t)=... (1,8)

Elle dépend donc des valeurs F'(— T') prises & I’époque initiale, et
en plus de F (— T + 7) pris & une certaine époque — T+ 7 (— T + 7
ne peut étre identifié avec — T [c.-a-d. 7= 0] que si F'(— T) n’est
pas identiquement nul). Ce n’est alors qu’apres avoir déterminé

F(-T+7)=02F(z; F,G,...) (=T (1,9)
pour cette époque — T' + 7 que la substitution de (1,9) en (1,8)
nous redonne la mécanique (1,1).

La connaissance des 2n fonctionnelles de force (1.4) ou (1,6)
n’est donc pas équivalente & la connaissance des 2n fonctions histo-
riques. Il faut une (ou plusieurs, si les G interviennent) condition
supplémentaire. Nous verrons plus tard qu’il existe un choix parti-
culier des variables (§ 2) pour lesquelles les conditions supplémen-
taires sont _

ll,imF(—|-T)=11'imG(+T):---=0 (1,10)
si ’époque initiale est choisie & lim(— T') > — co. Les équations
fonctionnelles (1,6), les conditions initiales et les conditions finales
(1.10) sont alors équivalentes & ’histoire (1.1).

Si le développement (1,7) est possible, un premier principe de
correspondence entre mécanique fonctionnelle et mécanique rationnelle
peut étre énoncé:

Une mécanique fonctionnelle ((1,6) et (1,10)) correspond & une
mécanique rationnelle (1.5) si, dans la limite Ay—> 0, la relation

z]iﬂﬂofo [ (), G@E),...]0) >Tee I, G,...) (D) (1,11)
existe entre la force fonctionnelle f, 1. . .] et la fonction de force fy (. . .) .

§ 2. — Mécanique quasipériodique et mécanique asymptotique.

Nous appéllerohs systéme élémentaire un systéme dont I’his-
toire est quasipériodique

Y, =@ Yp =

F (1) :%Q(Z ZwF,, v vy OXD (—itZﬂ’vi wi)), G)=... (2,1)

n=1 rp=1
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Un cas particulier se présente, si quelques-uns des w; tendent vers
zéro. Alors il existe, parmi les 2n observables F'(t), G(f), ... des
observables Z,(f) du type

Y, (0)=Y,0)+V;(0)f; Vi(t)=V:(0) (2,2)

V:(0) a pris la place des w;. Il y a au minimum 2x3 de ces obser-
vables (= endroit et vitesse du centre de gravité). Comme les
constantes en (2,2), les F, et w; en (2,1) sont des fonctions
des valeurs vmitrales F (0), G(0), ... (pour = 0).

Nous appellerons systéme non elementawe un systéme apemo-
dique, par exemple:

F)=F(-T)

e—wl—et+twti

P (2,3)
L’observable F'(f) passe de sa valeur initiale F'(—T') & une valeur
finale F'(+T)= —F (—T). Les deux époques 41" sont en général
+ co. Le résultat asymptotique de I'histoire d’un tel systéme

F+T) =F(F(-T), G(=T),..)=F(F,G,..)(-T) 24

portera le nom de mécanique asymptotique. Il représente le cas limite
de (1,1) ou F devient indépendant de t+ T=2 T pour T - co.

Nous allons démontrer que, pour tout systéme elementaire, 1l
existe une Hamiltonienne H (t)= H (9 (f), q (t)) fonction de 2n varia-
bles les canoniques P, (t) et g, (f) telle que, pour les observables
F(t), G(), ..., les relations

Fity=F(t,p1(8),...3.0), F)y=0, F) +{H®), F()} (2,4)

solent vérifiées. Mais le H n’est pas uniquement déterminé par
(2,1) et (2,2). Ce n’est que la condition supplémentaire de la cova-
riance relativiste qui détermine le H (4 une constante prés): Si
x* = 2* + 01* est la transformée de z*, cette condition demande
que la transformée F' de F' s’exprime par

F—F=0F =—-{P,év, F} O (2,5)
avec H= P*et 67t = df. P, doit étre un quadrivecteur. En géné-
ral, le procédé suivant permet de trouver un H: Avec V', = |F, |

exp (+1 2 v, p,;), on introduit 27 fonctions des F(0), (O) .. les w;
et les ¢,=g@;(F (0),...). Alors, on définit n variables w; (ou ¢; pour
(2,2)) par

W= g+ ot (ou ;=2 (0)+ V, ). (2.6)

Ensuite, on cherche n fonctions J,;(F(0), ...) (oup,= p,(F(0),...)
telles que SH Ty VH(.. )

o B0 (o v, ).
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Il est toujours possible de trouver de ces fonctions J; et w;. Les
2n fonctions J; et @; permettent d’éliminer les F(0)... en F,
On trouve alors, avec (2,4), la méme relation pour F qu’on obtenait
en différentiant I en (4,1) par rapport & .

Nous donnons quelques exemples:
1. Particule élémentaire sans spin.

Position Y, et vitesse V, en (2,1) sont les 6 observables (¢ =1 a 3). En vertu
de Y; = §,, la variable conjuguée doit étre p, = P; pour que (2,5) soit vérifiée.

La forme quadrivectorielle demande que | P |2— H2 = P, P% = — m2 soit un sca-
laire. Donc on a, & cette constante (et au signe +) pres
T . O0H pe
H — 2 o t. i = = e— >
+v mE+ p,; P +pz19, v 05, @ (2,8)

2. Systeme planétarre.

Si, en plus de la coordonnée du centre de gravité (Y, en (2,2)), le systéme
posséde des points remarquables (1) & coordonnées y('“’ =Y,+ 1'(‘” ")(t et fr(") (£)
sont des variables intérieures pour lesquelles (2,1) est valable Prenons le cas le
plus simple olt on n’a qu'un seul r; et une seule période w; = w’. Alors (2,1) de-
vient 7; = Re(—10 )— a(s) 'exp (— w’t) et H ne peut dépendre des J; que par I'in-
termédiaire de m2. Le seul scalaire qu’on puisse former & partir des aff) est ai“") a9,
L’invariance nous a obligés & compléter a(s)¢ par un a()4 (et 72(¢) par un r4(f)).

’

4
Or, avec un J = hagf)*a(S)az 2)Jy, on trouve pour les fréquences w,= w
1

=0H[0J,= oV1- | V 2. @ est la fréquence invariante o = dm/0J (fonction de
l'amplitude J = h agf)* a®%), Le systéme planétaire le plus simple est donc identique
& notre particule avec spin en 111 (éq. (1,1)).

| 3. Onde linaire réelle.

Soit ut = +4/x%2+ %[> = u*(f) les fréquences w, de (2,1). Alors les F()
sont les ¢,(Z;t) = @,(x). Ils peuvent étre exprimés en termes des
sa(x/p) = (2 V ut)F exp (i(u, 2)) = s(u/2),*
par¥®) ' :
@a(@) = W (sq(@lp) e () + e(p)* s(p/),) (2,9)
Les variables canoniques sont $(f)—44(f) = V2 hé(f) = V2 he(u) exp (—1putt).

Ce choix seul (& des transf. canoniques prés) détermine un P, covariant
Py = XN (u)hpy avec N(u) = e(u)*c(n).
4. Onde linéaire complexe.

Si L*) dépend de deux potentiels v, ) et g, (2) de méme covariance, on peut
les relier en un w, = ua (- LUy @) complexe. D'un L= L(w* w,U*, U) réel (avec
Oi=9" Wejq» AVA=04 LjoU, complexes) dérive une théorie 6f(d:c)4AL— 0),
qui admet, en plus des g5, T% et @*#7 discutés en II1, la continuité 0, o* = 0
d’une densité de courant etectmque ,

¢* = 2h 1 Jmag (V' 4y *%w,) ; (2,10)

*) V est le volume de périodicité infini. La sommation sur u est comprise.
*
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et la conservation du scalaire

N () =f(dw)3 0% (%, 1), - (2,11)

Pour des champs faibles, les «observables » linéaires et complexes sont
(@) = (2 W (s, (e/k)alk, +)+a(k,—)* s(kfa),) (2:12)
En analogie parfaite avec duw = — {Paér“, w} , la grandeur AN transforme w en

w = e¥w suivant dw— —'{thS ¥ w} Pour des champs faibles, ’'Hamiltonienne
doit encore une fois étre le H = P4 '

Py=2%2 X N(k,t)hk, (2,13)
. » k T='+, —
le scalaire N est la somme
N=XY ¥ N(k71)7. (2,14)
E =+, —

Nos histoires quasipériodiques sont caractérisées par 2n para-
metres (p. ex. les J; et les ¢; (= w;(t = 0)). J; et @, sont les variables
canoniques P;(0) et §,(0) pour un temps donné (t= 0). Passant
par une transformation canonique, & des variables p,, ¢; quelcon-
ques, les séries F(f, p, q) définies par

F(t,ﬁ (t):q (t)): —(}TF (¢, p, Q}"‘ -;—r{tH(p, 9. F{,p, Q)}+ e (2’15)

::F(tspl' ) 'Qn) 3 G(tsf)(t)’ q (t)): e
expriment les observables F'(f), . .. etc., en termes d’une transforma-
tion canonique tH(p; ...q,) opérée sur une fonction

F(t, py---q) (2,16)

de t et de 2n paramétres canomques. Ces derniers représentent 1’état
de systéme a ’époque t= 0.
Dans nos exem”ples 1 et 2, ils sont
Y, =q+m1lp, A (2,17)
r, = Re (—iw)1a exp (~iwl). (2,18)
Dans les exemples 3 et 4 (éq. (2,9) et (2,12)), les p et ¢ (reliés dans des aa(s), a(k,t)
ou ¢(u)) par

V2ha=p—iq (2,19)
sont ces 2 n (n= oo pour les ondes réelles, = 2 oo pour les ondes complexes)
parametres complexes. Les N(...) en (2,13) et (2,14) sont

N(k,7) = alk,7)*a(k,7), N(u) = c(u)*e(u). (2,20)

§ 3. — La collision entre des systémes élémentaires.

Siles m= n, + my + ...ny paires des variables en (2,16) se
décomposent d’une maniére telle que les 2n premiéres paires des
variables p ;(t) et q;(f) ne dépendent que des n, premiers parametres

*) Notations de IIT pour la densité Lagrangienne.
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p: et q;, les 2n, deuxiémes paires de variables des n, deuxiémes
paires de parametres etc., la mécanique quasipériodique est sépa-
rable. Nous parlons alors d’un systéme formé de N systémes élémen-
taires. Nous distinguons deux cas: 7

19 8i ’histoire d’un tel systéme a d’abord la forme quasipério-
dique (pour tout f < — T situé antérieurement & = — T'), si elle
devient apériodique pendant I'intervalle fini — T' <t < + T et si
elle redevient de nouveau quasipériodique pour toute époque
t > + T postérieure a t= + T, nous appelons cette histoire une
collision entre N systémes élémentavres sans réaction chimique.

20 Si, postérieurement & t= + T, ’histoire redevient quasi-
périodique, mais si la séparation doit se faire dans N’ (n= n,
+ My + . .. mys) autres paires de variables canoniques, nous appe-
lons cette histoire une collision enfre N systémes élémentaires qua
deviennent, sous Uinfluence d’une «réaction chimique», N’ autres
systémes élémentaires.

(Ex. 1 et 2: En termes du temps propre 4, le systéme planétaire est com-
posé de 4(1+ u) systémes élémentaires. En termes de temps ordinaire (m = une
constante caractéristique du systéme), le systéme planétaire est un seul systéme
élémentaire. Ex. 3 et 4: L’onde réelle & f polarisations indépendantes se compose
de N = [ oo systémes, I'onde complexe de N = 2 f «© systémes*).)

Dans le premier cas, les parameétres canoniques, qui furent
des constantes p= p(— T) et ¢g= q(— T) pendant l'intervalle
— oo <t < —T, et qui seront de nouveau des (autres) constantes
p=p(+T)+p(—1T) et gq=q(+ T)+q(— T) évoluent pendant
Pintervalle 2T suivant une histoire apériodique (1,1).

Leur histoire est en général engendrée par une mécanique fonc-
tionnelle (1,4). Prenant le symbole F' pour p,q, on peut ainsi for-
muler la condition supplémentaire exprimée en (1,10) de la maniére
suivante: L’histoire se termine par N systémes élémentaires dans un
état final (F(+T)) avec F(+T) = 0.

Dans le deuxiéme cas, une transformation canonique p, =
Py (Py - - - qn) ete. existe, telle que la condition (1,10) doit &tre im-
posée pour les F'(+ T'). Les deux cas engendrent ainsi une trans-
formation canonique :

F (+T) = (gr F+ 7 {a: F}+ o for. {o, F}}+ ) (- T)
| = F,(F,G....) (- T) 8,1)

qui exprime les valeurs finales p(+ T) en termes des valeurs ini-
tiales p(— T). (a(— T) et F(— T) sont des fonctions des p, (— T
..+ qo(— T)). L'invariance de « par rapport au groupe de LORENTZ

*) Ce N n’a, pour l'instant, rien & faire avec le N en (2,14).
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nous assure la conservation de la quantité de mouvement-énergie
P, et de son moment M*# (et des N en (2,14), si nous postulons son
Invariance par rapport au groupe de jauge).

Ezemple 5. Une seule particule: Soit g(inc)(z) une fonction scalaire de quatre
coordonnées a2%(ax = 1 4 4), qui ne difféere de zéro que dans un domaine x fini.
Soit 2* = 2*(4) une ligne d’univers traversant ce domaine et qui est une droite
2%(A)=y*(4) (2,17) a Pextérieur du domaine. Alors, il existe une transformation o qui
relie les 8 paramétres p*, ¢*(+ A) aux p*, ¢*(— A). Si « est un invariant, les gran-
deurs P* = p* sont conservées P*(+ A) = P*(— A). L’histoire (2* et 2*= ﬁ“(ﬁ.;
p*(— A), ¢*(— A)) peut étre exprimée en termes des paramétres variables p*=p*(4)
et ¢* = q*(1) en (2,17). Le o(— A) général en (3,1) est une fonctionnelle

a(—A) = o [pine) (y(4; p*(— A); ¢*(-A4)))] . (3,2)

L’élimination des p*(— ) en (1,1) fournit une équatione fonctionnelle (1,7). Le
choix particulier de o« donné en III (10,2) donne un résultat asymptotique qui
est égal & la solution de la mécanique rationnelle.

(m— e pline) (2)) 3 o = €(0a pine) + 2 Gin0) (2) . (3,3)

Exemple 6. Deux particules: Si la fonection g(inc)(x) donnée en (3,2) et (3,3)
est elle-méme fonctionnelle invariante d’une autre ligne 2% (A1), on a une méca-
nique fonctionnelle de I'interaction entre deux particules. Soit 4(x— z’) une fonc-
tion invariante de = et de z’. Alors toute théorie (3,2) avec la fonctionnelle

«(-4) w[fd/(”A(y(Ap —4),.0- g0, g0 (-a),.0)] @4
=a(p ... V(-4

donnera des lignes, ol
P — pac & er(1)0:

sera conservé. Il existe un choix particulier, tel que le résultat asymptotique, de
I’équation (3,3) avec la force fonctionnelle dérivant de
+0
g9 (z) = ¢ j A2 A (z- 20 (1D)) (3,5)
— 00

coincide avec (3,4). Pour que la théorie soit symétrique dans les deux particules,
il faut que 4(x) = 4(— x). Un tel 4 invariant permet toujours en (3,5) un déve-
loppement de LaAPracE

egm9(2) = ey symyg,(efy) f a2 (a— M (Am))) (3,6)
o)
Sym, ,Q(l) (z).est le potentiel symétrique (111, éq. (9,13)) d’une éq. d’onde ([]— »2)
Q=- 9(1). La force (3,3) pour z est maintenant fonctionnelle de 2(1)(;|.(1)) et vice
versa. On peut écrire (3,3) en termes de
= (m—eep@®(2))1a; 7=edgp() (3,7)

(inc)

et y faire un développement (1,7) de la fonction @ en termes du parameétre de

retardation (e = e, m = m(l))
I 3,8
°=F dam 15:%]
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Exemple 7. Particule et champ. La théorie de I'exemple précédent est con-
traire & nos observations de causalité macroscopique. Pour le voir, considérons
le cas ou 'une (ou les deux) particules interagissent par des lois analogues, avec
une troisiéme particule 22 (2(2)). Le (p(inc) (2(2)), qui agit sur le 2@ est le potentiel
symétrique produit par z. Or, celui-ci se compose, & des époques lointaines, de
la partie statique, qui ne s’étend qu’a une distance finie IE(Z) e | = 702 X
(rad)

~ K
et d’une partie radiative, qui se propage, sous forme d’onde ¢'™*%, dans tout l’es-
pace. L’onde avancée, contenue ainsi en sym . g(l), rencontrera et accélérera 2(?

& une époque t antérieure (100 — ¢~ 02 & Pépoque #90 de la rencontre entre
2 et 2\ qui fut la cause de ce phénoméne. Pour éviter cette réaction du futur
sur le passé, on introduit le champ @(x) comme un nouveau systéme, composé de
de n = oo systémes élémentaires (éq. 2,9). Alors, on établit de cette maniére une
théorie qui, pour 4,—> 0, donne le méme résultat que (3,7) pour I'interaction entre

+ oo
les particules (si I'on y substitue e@@®?(z) = X € Teb () 6&3 f daWé(. . .)). Mais

) —o00
elle contient, pour des A, finies, le rayonnement des ondes (x), étudié en 11 et IIL.

Exemple 8. Théorie du champ non linéaire: Nous avons, en III, éq. (10,3) et
(10,4), donné le changement dc(u’) = c(u’)(+ T)—c¢(u’)(— T), produit par l'in-
teraction entre une onde ¢ incidente, caractérisée par les parameétres ¢(u)(— 1)
et une particule, caractérisée par p*(— T). Le résultat, pour des champs faibles,
est Ueffet Thompson-Doppler corrigé pour le freinage. Considérons maintenant un
champ & trois composantes g, Uy eb g (W= ) — W(z)) avec un « donné par:

&2 (@ [w* w] g 9+ «® [w* w* wuw]) (- T)

= g2 h™2 % f (dx)t (w*wcpz—— 2 x(i,)(w* @ ret(w)(w @)+ conj) (3,9)

| -2 x(i,) w*w ret((p)(w* w)).
Le changement dc(u’) vaut, pour des champs faibles.
Se(w) = —i(e2 a®g(e® a®)) ('[p) 6%, e g e(wall, T)*alk)  (3,10)
avec '
620 (1 [u) = 22 W (A4 k'~ (ud+ 1%))

(s8R @ V (s s Bt (L4 (s ) 5, (' B) (e, o)) (3.11)

g(x) est la méme fonction matricielle qu’en IIT (10,6)*). Le résultat représente

Peffet Compton produit par N (k,+) électrons de qte. de mouvement p, = hk,
et de charge ¢=¢h?, si 'on pose dans | de(u’) |2 pour le produit

a(k,+)*a(k,+)= N(k,+) (3,12)
et pour tout produit avec k' +k et v/ = +
a(k',v)a(k,2')* — 1. (3,13)

*) Les coefficients sont arbitraires dans la méme mesure qu’en III (10,6),
si I'on introduit des

o aff 0 wpe] = o [wrupol fadut ugsl.
| |
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§ 4. — Les états stationnaires du systéme composé.

La mécanique asymptotique de la collision entre deux parti-
cules z et 20, caractérisée par la fonctionnelle (3,2) et la méca-
nique fonctionnelle (3,3) (avec (3,4) resp. avec (3,5)) ne sont pas
équivalents: En plus des solutions apériodiques (qui correspondent
aux solutions de la mécanique asymptotique, (3,3) possede d’autres
solutions. Un certains nombre de ces solutions doivent étre éliminés,
parce qu’elles contredisent nos hypotheses fondamentales (p. ex.
la possibilité de décomposer ¢ en @et 4 @) (ITI)). Mais parmi
ces autres solutions il peut exister des solutions quasipériodiques,
admettant les hypothéses fondamentales. On s’en apercoit en consi-
dérant I'approximation non relativiste de (8,7). Elle n’est autre
chose que la mécanique rationnelle d’'un systéme avec |

H=HO®+HO (4,1)
ou HO = 2m)=1(|p |2+ | pW |2) + 2m est I'énergie cinétique et
HO (g - q") =3 ey Hp) (1—7Y) (4,2)
@

est I’énergie potentielle, développée sous forme des potenfiels de
Yukawa:
H{) (=—e? (4dnr)~texp (—xgT). (4,3)

Si les constantes ¢ = e, ef) e 2 en (4,2a) donnent lieu & une
attraction, un systéme planétaire est possible (orbites liés, parti-
cule capturée). La variable intérieure r est quasipériodique en deux
fréquences. Un raisonnement de continuité montre que de ces orbites
peuvent subsister en théorie relativiste. Ainsi, il ne suffit pas de
donner «, mais on doit connaitre, soit I’équation fonctionnelle des
forces, soit I'histowre explicite pour foute combinaison possible des
dtats imitiaux (y compris ceux de ces états quasi-périodiques). Pour
deux particules et pour le potentiel symétrique, les principes de
conservation montrent qu'une telle capture ne peut jamais se pro-
duire. Les résultats de la mécanique asymptotique suffisent ainsi
pour décrire nos observations des collisions entre deux particules.

Par contre, la mécanique causale, décrite par le champ ¢, per-
met des transitions & des orbites liées, méme pour deux particules
entrant en collision. Elles tournent en spirale autour de leur centre
de gravité et émettent des ondes ¢. Pour arriver & un résultat quasi-
périodique, 1l faut faire appel 4 une théorie non linéaire de ¢, dans
laquelle des états stationnaires existent ou la charge libre (o + 0@
+ o) est statique, méme si les charges vraies p© + o ne le sont
pas (cf. III). Ces orbites stationnaires sont caractérisées par leur
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moment intérieur §: leur énergie (= H < 2m dans le systéme au
repos) et par les deux « phases » ¢,;(0) des w,(t). L’ensemble de ces
constantes sera appelé p’ et q'. Le systéme planéfarre, résultant de
la capture, finira ainsi par se trouver dans un de ces états quasi-
périodiques p’ = p’(+ T) ... Mais la transformation « semble asso-
cier & tout état imitial p*(— T)...q W (— T) un résultat final
p*(+T) ... O (+T). Pourtant il est évident que (8,8) n’admet
certainement pas ce résultat pour des particules suffisamment
lentes ou la capture doif se faire. La seule possibilité est alors que
la somme (8,1) ne converge pas pour ces états initiaux. Dans ce
cas, 1l faut exprimer déja 1’état initial en termes de ces autres
variables p’, qui prendront pour t+ T les valeurs constantes

N
p'=p" (+ T)(= S, H, g, (0) et @,(0) du systéme composé). Nous
verrons plus tard (§9), que ce probléme important se résoudra trés
simplement en théorie quantifiée.

§ 5. — La méeanique quantifiée.

Aux observables F' correspondent, en théorie des quanta, des
opérateurs linéaires, qu’'on peut représenter sous forme de matrices
F(ufu’). Un vecteur unitaire ¥ (t) (ou @ (f)) & composantes ¥ (t; u)
(ou @ (f; u)) permet d’en former l'espérance mathématique.

Fy=(D (). FO(t))=D(t;u) F (M//«?')kgD (t;u'). (5,1)
L’évolution de @ doit suivre une loi
O()=S+T)2(-1) (5,2)

ol S(t.'—l— T)(u/u') est une matrice unitaire représentant une rofa-
tion finie dans l'espace hermitien aux axes u. Il existe alors un

opérateur I (t+T;F,d,...), fonction de { + T et des opérateurs
F,dq,... tel que

Fit)=(® (-T), F(+T; F,..)0 (-T)=F@+1);...) (= 1). (53)
En termes de S(t+ T'; F,G,...) ce I s’exprime par
FE+T;F,G,..) =S~ ¢+T)FS (t+T) (5,4)

(5,8) permet d’énoncer un second principe de correspondance (histo-
rique) entre mécanique quantique et classique, si (5,4) permet le
développement des esp. math.

Fity=F@+1T; F, G,..) (—1)
—Ft+T,F.G,..) (- T)+hF (+ T, F, G..) (- T)+--- (5,5)
en termes d'un parametres h. Les F;(..) (—T') sont fonctions de
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i+ Tetde F(—T), G(—T), etc. Ce P. C. s’énonce comme suit:
A une mécanique quantifiée (5,2) correspond une mécanique classzque
(1,1), s1, dans la limite h > 0, la relation

im SRS (+T;F,G,...) (—T)>F, (+T; F,G,..) (- T) | (5,6)

existe entre les esp. math. de S-'F'S et la fonction historique
classique F, (1,1).

En particulier, la mécanique quantique devient rationnelle, si
(5,4) et I'opérateur

— (0,8 YFS8+81F9,8=0, Ft+T;F,G,..) (57

permettent d’éliminer les F,G, ... en termes des ﬁ, G‘, ... dans
une éq. opératorielle de forme (1,5). Omettant alors les ~ (car on
peut alors se rapporter & un temps { = — T quelconque), ces rela-
tions opératorielles sont:

F=f.,(F,G,..) (5,8)

et le P. C. prend alors la forme

lim f.o (F,G,..) () > foo (F,G,...) () (5.9)

h—0

du P.C. (rationnel) entre la mécanique quantique (rationnelle, de
HEISENBERG-SCHROEDINGER) et la mécanique classique (rationnelle,
de NEWTON).

(5,7) exige que S ait la structure e~ t*7 ¢+ HF.G...)  (52) se
réduit alors & la mécanique rationnelle de SCHROEDINGER
D (t) = — 72_ H((F,G,..)d({ (5,10)

pour @. Cette mécanique quantifiée est nécessairement conserva-
trice. Elle permet d’établir une correspondance entre les systémes
quasistationnaires (2,4) et (5,10) par

lim H(F,G,..) > H (F,G,..)
e = (5,11)
hm fbh‘l[F, G] >{F,G}.

Un P.C. fonctionnel peut étre obtenu en éliminant ¢ + T et

et les I, G, ... de (5,7) 4 'aide de (5,4) et des définitions F=0 F
(analogues a (5 7)). La force fonctionnelle et opératorielle est:

F=f(FG,...F) (5,12)
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en analogie parfaite avec (1,4). Si le développement (1,7)
F=f.oF,..)4Af.4 (F, ...F)+... (5,13)

est possible, on peut énoncer un P.C. (quantique) entre mécanique
(quantique) fonctionnelle et mécanique (quantique) mmonnelle par
la relation opératorielle

lim f (F,G,..) > f.o (F,G,...) | (5,14)

Ae—0

En particulier, I’application & des collissions permet de formuler
un P.C. asymptotique entre la mécanique asymptotique quantifiée
et la mécanique asymptotique rationnelle. Pour pouvoir I’énoncer,
nous deéfinissons d’abord par

D (t)y=eiEOt - (5,15)

les constantes d’intégration ¥ (u). Elles remplaceront les pi Y 9
du § 2. (F= (¥,F¥)avec F=F(p,...q,) et 0.F=0). Le S en

P (+T) =S¥ (—T) (5.16)
qui correspond & (3,1), peut toujours &tre mis sous forme de
S=e-i#f® = (5(0) -~ 5 aé(@)(n(@)+5aé@)? (517)%

en termes d’un opérateur hermitien «. Nous envisageons le cas ou
la série opératorielle

FFG,..) =" F+—1~T®[aﬁF]+ _i[aB i[aBF]]+... (518)

permet le developpement suivant (pour les esp. math.)

FF.G,..) L) = By (F,G,. )+hF1 (F,G,..)+... (5,19)
Alors ce P.C. asymptotique est
lim FF,G..)>F,(F G,..) (5,20)
—0

Exemple 8: Si I'on pose o = £2a/®) en (3,9) et si les opérateurs a*, a et c*, ¢
satisfont a

j_ % —_ i ’ % — i ’ 4
Fla% a]= 1 [*, )=~ - 8(k/R) 5z’ 7)
le résultat asymptotique est (3,10) avec
i i
9@) =(n()+ 5 2&() -

*) B,n et & sont des séries f = 1+ fyo+ o2+ .., p=1+..,§=1+...
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(Les opérateurs «() [ . ..] ont, par définition, tous les a*,..c* ... & gauche des
@...,c...,car les o L@ 3 5l o) (@ . . .] tiennent compte des autres termes).
I | ‘

Les conditions (3,12) et (3,13) sont maintenant automatiquement réalisées.
On définit | de(u’) |2 par c(u)*c(uw)(+ T), vu que c(u)*c(p’)(—T)= 0 pour
1+ p. Le résultat de cet effet Compton correspond (dans la limite k- 0) a I'effet
Thompson (si on néglige le changement de fréquence de effet de Doppler) pour
le modéle général de I'électron introduit en II et III. (III, (10,4).)

§ 6. — Etablissement d’une mécanique fonctionnelle quantifiée.

En général, les observations sur des collisions entre des sys-
temes élémentaires sont des observations asymptotiques. On observe
les constellations initiales ¥ (—T) = ¥ (—T;... N (k,7)...N(u)...)
et finales ¥ (+T) des particules élémentaires**), Ces expériences
déterminent la matrice S d’une mécanique asymptotique telle que

Dte—T =it BOt Y T)= @0

g gzl (0) :p—1 (0) (6’1)
D(t>+T)=e it Bt Y (L Ty = g-ir " 8O g (T,

Mais au moins pour les forces & grandes distances une mécanique
fonctionnelle doit exister. Dans ces cas, en effet, I’évolution spatio-
temporelle de la collision peut étre observée (p.ex. la déflection
d’un rayon cathodique ou d’un rayon « par un champ é. m.). Cette
meécanique fonctionnelle doit, dans la limite 4, 0, correspondre
a son tour a la mécanique rationnelle de SCHROEDINGER

O (t)=—ih-' (HO - HO) (1) . (6,2)

HO est la somme des Hamiltoniennes des systémes isolés. H() est
I’énergie perturbatrice responsable pour les collisions.

Pour trouver une mécanique fonctionnelle correspondant &4 un
S donné, nous remarquons que S a la forme

(S—1) (4" 1) =278 (0 — ) AD Wy, (63)
H© g été réduite & ses axes principaux (o' = w(p"))
HO(u"[py =h o' o(u" /). (6.4)

Soit A" (u"'[u') une matrice satisfaisant a (6,3) qui n’a pas de
singularité infiniment prés de I’axe réel dans le plan w’. (Une telle
matrice 4" (+) n’est en général pas univoquement déterminée par
le S en (6,3)). Cet A™) permet de définir un opérateur

B () = lim (i (0" — (o +i7)) 14D (u"]u).  (65)
7—> 4+ 0

**%) plus exactement leurs amplitudes de probabilité.
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Nous étudions les fonctions

B @0 (t; 1) =

E —zwt | ‘
=fd fdw o=y AP W) P (=T W) (66

La somme sur les états u’ a été écrite sous la forme

— [aw fw do’ ©)

( f du (avec [ ] d ,u] == cm) est une abréviation de la somme, conte-
nant la densité des états, et des sommes sur les spins, etc., des
systémes élémentaires.

Pour ¢t <0 resp. £>0, le chemin de I'intégration do’ de
0> + o peut étre déformé en une demi-droite 0 - -+ ¢ oo resp.
0 - — 1 c0 suivant I’axe imaginaire plus les résidus positifs resp.
négatifs situés dans le premier resp. quatriéme quadrant du plan
o’. Dans les limites t= - T > 4 o0 et v T > + 0, seul le résidu
de o' = "’ — it donne une contribution. On a alors, en vertu
de (6,3)

lim BMH@O (< T -0

T—

. v 1 (0) (618)
lim B @O (t>+1T) > (S—1)e~i+ ' H tyf( .

T—> w

La fonction de SCHROEDINGER
Sl)= (14 B i sn o) (69)

est ainsi une histoire compatible avec (6,1).
En analogie parfaite avec § 1, nous formons la «force»

D (t) = (—ih-1 (1+BH) HO 4t BH) =i 12O 4+D & (—1T) . (6,10)
(N\bus avons, pour des raisons ultérieures, remplacé en (6,9)

B+) = lim et B(+) - (6,11)

T +0 : \
en nous limitant & des temps ¢ finis). Contrairement & l’histoire
classique du § 1, I'histoire quantique comprise en (6,9) et (6,10)
permet 'élimination simultanée de t + T ¢t des valeurs initiales
@ (— T). La mécanique fonctionnelle a ainsi toujours la forme de
SCHROEDINGER (6,2). L’opérateur X =— 1h~1HO est déterminé par

ih-1 [HO, BH)] + 7 BH) = X(1 + BH))= A=) (6,12

14
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(6,12) peut étre résolu en termes du A (6,5) par la série

— iR HO (4 ') = X (")
= AW () — AP (" ") (i (0" — (' + i7") AN (w7 )
+ A () (i (0 — (0 + )T AS ()

(i (0" — (0 + i0"") AP (6" fu’) — . .. (6,13)

La «force» @(t) = f(D(f)) en (6,2) est, explicitement, I’expres-
sion d’une mécanique rationnelle. Mais, aux dénominateurs de HO
en (6,18) correspondent des intégrations sur le passé de DO (f).
Cecit nous montre que, implicitement cette force

o) =1 (@ fdt o)

en (6,2) est de nature fonctmnnelle.

Nous sommes maintenant en mesure d’appliquer notre P.C.
entre mécanique fonctionnelle quantifiée et mécanique rationnelle
quantifiée. D’abord, on doit se rappeler que la solution d™un, pro-
bléme rationnel (I’éq. de ScHROEDINGER (6,2)) peut étre donné dans
la forme (6,9) st HO®(t =« — T) = 0. Avec la substitution (6,11),
on trouve pour le A™) en (6,5) la série en X = —sh-1HO

A (') = X )+ X ) (0 — (@ +i0) X
X () (0 — (o + )X ) (o
— (o' + 1)1 X (p"[p") + . .. (6,14)

(différente de (6,18) parce que I'on a toujours o’ dans les dénomina-
teurs). Dans |’évaluation de (6,7), on doit tenir compte du fait que
A'"#) (différent de A"+ (u"'/u")) a maintenant des singularités infini-
ment pres de P'axe réel o’. Mais, en décomposant les termes en
fractions partielles, on trouve (par ex. pour la deuxiéme approxi-
mation)

lim BHO OO (t; u'") = 26 (0" — o) X (" [u)) et ¥ (— T; ')

t—>+o00 o0
+fdﬁ'ofd“"(Fi(m'_(iw-n")) @7 (0" e ~7)
1 1
+ (0" — (@ +ile —17) —i(w’-(w’”“‘i’f”’)))
X(p"[p") X (p" [p") et W (=T 5 p') + ... (6,15)
Pour t > + oo, seuls les résidus .. — 17 donnent une contribution.

On a deux termes. Si 7'’ + '/, deux possibilités se présentent. Pour

rre

" —7">+0,1la Sommefd /}”’fd ' et dans le second terme
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est nulle, parce que "' —17"">—0. Pour 7" —7""> 40, le
deuxiéme terme contribue un re31du qui, ajouté au premier terme,
change le signe du demi-résidu contribué par le détour autour de
o' = o' —10 dans le premier terme*). Dans la limite > oo,
les singularités prés de ’axe réél w’ ne donnent pas de contribu-
tion et (6,8) reste valable. La méme démonstration peut étre faite
pour les termes supérieurs. Le P.C. s’énonce alors ainsi:

A une mécanique asymplotique quantifiée, caractérisée par un
opérateur umtaire et mnvariant S correspond une mécamque ration-
nelle de SCHROEDINGER, avec —iH = —1HY + h X, s, dans la

limite 4y >0, S —1 a la structure

lim (8 — 1) (" /u’) > 2o (0" — o) (X + X® X

0 : r ? 6 16
Sk +XOX®X +..) "y SR

F @ G est une multiplication symbolique définie en termes de
o', par

(FS @)(u" [y = lim F (" [u""") (i~ (o & 7)1 G (""" [”")
T—>+0 (6,17)

rree

(6,17) est une somme sur u'’’’ ou le parcours de sommation a été
détourné dans le quatrieme (+ 17) ou le premier (—17) quadrant

du plan complexe o (u'"’’) pour éviter la singularité o’’’ = o’. Par
les multiplications symboliques
—1 y
FxG=}FaeG+FoaG) (6,18)

FoG=3F®G—FoG)

on définit la valeur principale de la somme (6,17) et la moitié du
résidu autour de o'’’’ = '), On a en particulier

(FOG) ([ = 4 F (") 2 ("= o) G "™ (6,182)

Exemple 9: Collision, due & Uinteraction de Coulomb- Yukawa, entre deux
particules (diffusion de Rutherford).
Nous cherchons un § = §(a), fonction d’un opérateur hermitien
o« = 2@+ s4ocg))+£60z§6;+ (6,19)
tel que (6,16) soit satisfait dans la limite m = hs(@w) —> o (particules « infiniment »
lourdes allant «infiniment lentement») avec un opérateur dans ’espace de confi-

guration e

lim X(qg) 7@ —-1g()qr)_=2 *%

HWW( 1) > — i m (7079 (6,20)**)

*) Enfin, pour v/ = 7/, on définit des sommes sur u”” par les valeurs prin-

cipales (= les moyennes entre 7"~ 17"’ = 1. 0) et 'on obtient encore une fois le
méme résultat. '

**) & cause de (3,8,) la limite 4, —> 0 s’exprime dans ces exemples par Ry ™ ©

(k restant fini). '
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H 8;) est défini par (4,3). Nous allons démontrer que la série (5,17) en o avec un
a[w* w*ww] quadrilinéaire en w* et w dont le e2a(?) est donné par (3,9) et dont

les e"‘+2oc££')+ 2 sont les termes n fois contractés w . .. w’ (11T (9,14)) en:
|

64ocg;— w8 gt x(w) h™ f (dz)yw*w w ret, (fw* ret(w)(w ret /('r,lv*w))) +ow s

aﬁa% ——4¢° x{w) h™~ f(da;) w* %u ret . (w* ret,(w)(fiu ret(w)(tlu*
| I
rety,, (wret, (w* w))))) +
€ “E% = e ' (6,21)

permet de satisfaire au P.C. (6,16). Définissant un oz(?c—’,al"/z, 5 dans I’espace de

configuration de deux particules iy 1 (pas d’antiparticules) par

w= XXX Za*(,+)a* (U, +)alk+)al+) (B TR D+ ... (6,22)%
FTET
on trouve, avec (k—k")2 = (k- k', k— k)
— 2%, Tk, ) = 2w (B4 + 14— (K + 1) X, (&, Ul%, D) (6,23)
2
X 2 Tk D 02 o= > > > —1 %(w) 1
@SVl ) =120 p E T VT e (b= ')2+ gy

et
— fet (2)(?, Uk, 1) = 27 8 (/4 + 12— (kt+19))

9774 1
PAPID. (i Bl == 7
k” III (2 2 (k“l‘l-—-ki )2+%(wz)

X (k7 1[k, ) (6,24

etc. Dans la limite envisagée, les dénominateurs en agé}} (dus a ret(w)) tendent vers
(k+1-F")2+ x(w2) = x(u?) + |7”‘2-— (Ft+10-F"%2 > 2 () (k74404 — (Kt +14)
Le o défini en (6,19) tend ainsi vers
lim (—do)(p'fp) > 270 (0 — @) (X+ X x X+ Xx Xx X+ ...)(n[n) (6,25)

( )—>oo

" est ici 'espace de configuration des impulsions g = (hk ; hl) des deux particules
¥ et | avec w(pu) = k*+ 1% (6,25) est un opérateur antihermitien.

Le choix particulier = & = 1 en (5,17) donne, pour §— 1’. la série

S-1=—in(1+5a) = (~i+ 5 (—ia+(g) (-iwtt ... (620

Dans la limite, cette série s’exprime, en vertu de (6,18a), par
lim (S—-1)(u'/u)=>276(0—0)(X+XxX+..

“ F(X+XxX+.. )0 (X+XxX+..)+...) (6,27)
=2nd(0—w)(X+(Xx X+ XQOX)
+(XXxXxX+XOXxX+XxXOX+XO0OXOXN)+...)

qui est identique & (6,16) (voir la définition des produits symboliques (6, 18))
Un S(x) avec £ = =1 en (5,17), dont les termes quadrilinéaires sont
donnés par les séries (6,19) et (6,21), correspond ainsi, dans la limite 4, > 0 (c¢’est-

*) + ... signifie des termes éventuels contenant ¢ en (6,21) et des termes
contenant des a(k,—).
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a-dire en négligeant les effets de retardation), a I'interaction d'un H() dont 1’élé-
ment de matrice est 1’élément de Yurawa:

1
() - -)—--_ _ s e _
thX(Q)_>H"(<P)(M VIt = = 5 0T Eed llc—t?|2+x(2¢)z
[aqye [(aqeye o @FTOTLIO 4o (7070 (6:28)
' ")

Exemple 10 : Colliston entre trois part@cules L’élément de matrlce dans 1'es-
pace de configuration
@hX( )( T m’/i?,
> [ [ [ (@) @qens(dgy v-re &5 7O+ (6,29)
(HY) (2)+ B (%) + B, (129)) = HO (K, V,m'[k, T, m)
décrit I'interaction entre trois particules a qte. de mouv. Kk, hi et hm. Notre ol

a déja la structure voulue. Mais il faut ajouter & (6,19) des termes &" ag’;}_ 5> hexa-
linéaires en w* et w ((6,21) (n—4) fois contracté))

o [w¥w*w*www] = a(k’,+ ) a(l’,+ )*a(m’,+)*
alk,+)a(l,+)a(m,+) o (&, V, m' [k, L, m) (6,30)
avec
et alt) = 2 (K A+ U4+ mA— (kA + 14+ md))

1 A
X TC’, o 9 L4 - X %’ I’I k1 (6’32)
(2)( m/ 3m) (k'f‘t—k”) TJ{(Q:) (‘2)( / )

- I

Alors, l'opérateur — 4o (u’/u) dans P'espace de configuration k, [, m tend encore
une fois vers (6,27) avec 'opérateur X(3) de (6,29).

Exemple 11. Collision entre N particules. En généralisation de 1’exemple
précédent, on doit ajouter au o du probléme de N—1 particules des termes
ocg?_(z N-2))’ 2 N-linéaires en w* et w.

§ — 7. La théorie du continu elassique

L’exemple étudié au paragraphe précédent pour un N trés
grand est 'vmage atomique du continu macroscopique de la matiére,
On passe a l'vmage du vrai continu en faisant tendre ce nombre
N (= nombre-d’Avocapro) vers 'infini tout en gardant Nh fini,

Nous remarquons alors que les termes contractés aff) peuvent
étre obtenus des «® en transposant tous les a* d'un w (ou w*)
a droite des a. Formellement, ceci s’écrit

e”'(a(") ~ af%) = g g™

transposé (m/2) pairs
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Comme les a* et a sont, dans la limite N - co, proportionnels & \/
on peut énoncer le P.C. suivant:

S
lim & (oa* +3 alh) > & o™ (1 & SN ) (7,1)

I N—0 m

Si 'on fait intervenir des «f?) du type

+7
; K
g2 oc%:—«szx(w)f(dm) u,*@[vret u;l* w=—Kh£101 dt N e2x, log o (7,2)
s Y

les facteurs y{v) deviennent en (7,1) des coefficients infinis. Ils
expriment les effets dus a la fameuse « énergie propre » des parti-
cules élémentaires dans ’ancienne mécanique. Mais, dans la limite
N > o0, nous avons la liberté de faire tendre lim N ~k log (K/ x(w))
- 0. On arrive ainsi & la mécanique asymptotique d’un vrar continu
classique w, caractérisée par son L

o = lim (e2 @ + g4a® +...) (7,3)

N—>o0

(les a* et a & leurs places naturelles).

On peut démontrer qu un « existe tel que (7,3) et est la forme
asymptotique d’une mécanique fonctionnelle d'un champ complexe
clas31que exprimée par lequatlon fonctionnelle

(O — (%@ —eh 2 @ [w]) )Wz() (7,4)

La fonctionnelle g[w] est alors la moyenne du potentiel avancé et

retardé, solution de } - '

1 3

(O—x2) b 2 g=—ch oy, w*wte?h 2 gu*w (7,5)

Cette mécanique est conservatrice pour. P, (4+ T) = X N(k,7) k,

en analogie parfaite avec ia théorie des deux particules au § 8. La

dispersion naturelle a réduit a ces deux époque l'intensité w des

paquets d’onde & des amplitudes infiniment faibles. Le potentiel

@[w] symmétrique produit ‘dans la théorie (7,4) et (7,5) les mémes

phénomeénes acausals (action des potent1els avancés) que dans la
théorie des particules en § 3.

Pour remédier a ce défaut, il faut introduire le champ ¢ comme
une observable physique indépendante de w. En termes des coetfi-
cients a*, @ et ¢* et ¢ (f) ou des « constantes » a*, a, ¢* et ¢ de (2,9)
et (2,12), cette théorie rationnelle des trois champs @ et w = uy, —1 u
est canonique. Son HO en (4,1) est

HO — ¢ HO L g2 H®
1
ceHO —_ch™ 2 %(w)f(dm)s pw* w; e2HO = %82 h—lf(dx)3(p2w*w(7,6)
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Un tenseur T* = T #* satisfaisant & la loi de continuité 0, T*= 0
existe. Pour trouver «(f) en termes de HU(f) dans

Py~ (G FE D+ (O D, F=T+..) @7
on doit résoudre
2 0 (l) + 7 {—a(t), 0 ()} +
+ogr{ el {—al), 4@} +...= HO@®  (7,8%

a(t) (— T) est I'intégrale [dt' 0y o(t') d'un 0, () (—T), qui dépend
_p
des observables F' (—T) & I’époque initiale. a == o (+T)(—T) est
alors le « = a(— T') de la mécanique asymptotique.
§ 8. — Théorie du rayonnement quantique.

Le procédé classique de (7,7) nous fournit les termes
3

o = —eh 2 x(w)f(dx)4qow*w (8,1)

le e20® de (3,9), etc., qui dépendent de ¢. Les termes linéaires
en ¢ et, au maximum, quadrilinéaires en w* et w sont (8,1) et

5
e2al®=—2e3h 2 xf, / dx)* (w* @ rety, (wret, (w*w) + conj))

— @ (WO | @+ (8,2)
D’autres termes sont obtenus par contraction sur w*...w" des
a®, ete. Ils ont la forme e

&5 aff) = % (Y +A+@ 4 @ HO+@ 4 (@A +E+D) (8,3)

Dans I’espace p de la configuration de deux partieules (k et 1) et
du nombre de protons N (u), (8,1) définit 'opérateur

Y&, T .. N@' ..k L N@® .
=i Xe@( ... N@) ...[..N@)..)QVu)+

(Op1m% Or 7 + 0%,% 0p,7,7) + con] (8,4)

En termes de cet opérateur, la série (8,1) + (8,2) -+ (8, 3) etc.,
(linéaire en @) tend vers

lim (—( oc(l) +..))> 276 (0 — w) (8,5)

w——b-OO

(Y+(XxY+YxX)+ (Y><X><X+X><Y><X+X><X><Y) ) )

*) HO(t) est le HO) de (7,6) avee ¢(f) et w(f)..
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avec w = k@ + I + Y N(u) ut. Le choix { = 5= 1 détermine un
S —1, qui correspond a

lim (8 — 1) (/) > 276 (0" — ) (4F)
+l+Xo+XoXo+..)YQ+0X+..)
+14+Xe+..)0(YOY+2YOXOY+YxXOY+YO XXY

e X+ )+ )W) (8,9)

A est Popérateur défini en (6,27). En termes de opérateur
1+ B{P cette expression prend la forme

lim (S—1) (u'/) > 270 (0" — ) (A{D +(1+B(+>)Y(1+B(+))
+ (1+B{M Y(1+EB{D) O 1+B{D )Y(1+B(+)) ) (p' ) (8,6)

\Tous avons ajouté & « des termes anti-hermitiens du type — 12

(o) — cx(2 = or“) ete. qui contribuent 2 Y o X o Y au troisiéme terme
de (8,5) nécessaire pour obtenir (8,6).

Les éléments de matrice de (8,6), contenant Y & une puissance
impaire, contribuent une expression linéaire en ¢(u) ou ¢(u)*. Ils
sont la mesure pour 'amplitude de probabilité de I'absorption et
de Uémassion d’'un seul quantum, & qte. de mouvement hu, lors d’une

rencontre des deux particules hk et hl (rayonnement de freinage).
Les termes multilinéaires en ¢*..c...¢* ... provenant du Y ...0

.Y...0...Y en (8,6), donnent la mesure pour 1'émaission.
successwe de plusieurs quanta et les corrections pour 'amortisse-
ment dues & une réabsorption (freinage de rayonnement). Pour
obtenir ’émission simultanée de plusieurs quanta, on calcule d’abord
par le raisonnement de correspondance avec la théorie du continu
classique, d’autres termes multilinéaires en ¢. Les bilinéaires en ¢
sont le £2a® de (3,9) plus
et [u*u*wwee]=

s ol Jy=0 %,3)'/. (d w)4 (’w* @ I‘et(w) (w ref(¢) (w* ret-(w) (w 99)))
+ w* pret, (wrety, (wret, (w* ¢)))
+w* g ret,, (w* ret, (wretg,) (w qo)))) ' (8,7)
et des agg; etc. Dans la limite non relativiste, ces termes se ré-
duisent a l’adjonction d’un _
lim (—0) (p'/p) > 2 2 6(0" — o)
(YD) (YY) X (Y x X Y)+ X (YY) + .. ) (w/p)

(...x ...) est le produit symbolique du Y (8,1) avec lui-méme,
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mais ot tous les ¢* sont & gauche des ¢. On peut aussi I’écrire dans
la forme

> 270(0 —o)(...(1+BH) Y (14+B{H)
(LB Y (14BN + .. )W) (89)

Ces termes décrivent la diffusion d’un quantum (hx - k') par un
systéme matériel composé de deux particules en collision et I'émis-
sion et 'absorption simultanée de deux quanta hu et hu' par un
tel systeme.

§ 9. — Les états stationnaires du systéme composé

Un probléme de ScHROEDINGER (6,2) permet des solutions
stationnaires

I (9,1)
Pour les trouver, on peut procéder suivant la méthode des pertur:
bations de Born. On développe ¥, en pulssance de 'opérateur
X=—1h"1HO. Soit ¥{) une solution propre du probléme non

perturbé avec 'énergie hwy,. Alors, on vérifie facilement que les
constantes

substituées en (9,1), forment une solution de (6,2). Elle est com-
posée de I'onde non perturbée ¥ et d’une onde sphérique émer-
gente BN P ou incidente BO)¥Y®. De méme les constantes

¥, = (1+ B)¥Y (9,3)

forment une solution ol les moitiés de ’onde sphérique incidente
et émergente s’ajoutent & ¥(9. On sait que toute onde non per-
turbée ¥'© peut &tre décomposée en deux parties:

PO = PO PO 9,4)

¥ (1) est une onde qui, dans ’espace de configuration 8 N-dimen-
sionnel des N particules ou quanta, ne contient que des ondes sphé-
riques émergentes et ¥ {)-~ est entidrement composé d’ondes spéri-

ques incidentes. Soit R2=g'[§(n)\2 le rayon dans cet espace*).
Soit & I’ensemble des 3 N — 1 angles et soit P; (#) les harmoniques
sphériques dans cet espace. Alors, le développement suivant est
possible dans la limite asymptotique spatiale

lim w0 (R 9) > BRI Ve= EPE D5 (9,5)

*) Espace & nombre de dimensions variable, si des particules ou quanta
sont créés.
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u = (v; 1) est I'indice dénombrant les axes dans l’espace hermitien
correspondant. Un raisonnement analogue & (6,8) dans le plan com-
plexe de la longueur » du «vecteur d’onde» pu= (v;{) donne le

résultat
lim B(+)T(° IR ; 19‘)—>0

R— ¢
RIEHOOB (+) (?)’ NR;F)>(S—1DHPOH(R; P (9,6)*
Dans la limite asymptotique, on peut donc écrire pour (9,2)

lim ¥;, > P8 + S¥LH (9,7)
Ceci signifie:

A toute mécanique asymptomque temporelle Y+ T1T)=S¥Y-1T)
caractérisée par S, correspond une mécanique fonctionnelle, dont les
élats stationmarres sont décrites a des distances asymptotiques spatiales,
en termes de U'onde ¥ ) du probléme non perturbé si 'on y change la
phase de la partie émergente P+ en S¥ 0.

Nous avons ainsi démontré I’équivalence entre notre mécanique
et la théorie des grandeurs observables de HEISENBERG [1944].

La nouvelle signification de 1 + B*) en (9,2) permet une inter-
prétation alternative de (8,6) et (8,9). Un élément, p. ex. le terme

278 (o — ) (1 + B{H) ¥ (1+ B) (w']u) 9.8)
de la série (8,6) était une mesure de la probabilité de transition
d'un état w;,= (k;, l;;...04...) (o les deux particules avaient

des quantités de mouvement Tmz et hTi) 4 un autre état u;'= (7«5{,7{ ;

.17, ...) (o0 un quantum hpu’ est présent et ou les particules
se trouvent dans les états hk,” et hl;). Ces deux états sont caracté-
risés par des

T(O)( %(6 7-5 l() l+6k() l l() k) N(,)"'

et !P((U)( = 2" %(a,c, % Yo e By, s

Introduisant les fonctlons![’(ui’ = {1+ Bt P, on s’aper-
colt que 1’élément (9,8) peut aussi étre compris comme mesure de
la probabilité de transition entre deux états (9,2) ou les deux
particules sont dans des ondes y (@™, g®) solutions de (6,2)
représentant un état stationnaire du’ spectre continu d'un atome
‘d’Hydrogene*) accompagné de 1’émission ou de ’absorption d’un
quantum. La conjuguée complexe de ¥(; ., étant. (9,2) ¥( .,
= Yf 01 + Xo+ XeX0), on s’apercoit que (9,8) représente la

*) Cette condition demande que les énergies w = w(v [) soient positives.

. *¥) formé de deux particules identiques % et I, ’attirant suivant un lim HO >
g2 (4mr)ytexp (— xr).
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>

transition d’un état ¥, ,,(@®;q®) aun état ¥, ,(q@%, g9, p).
Ceci est naturel, parce que, dans I’état initial, les particules
« entrent » comme des ondes planes, tandis que, dans 1’état final,
elles « sortent » sous forme d’ondes planes. Aux autres termes de
(8,6) et (8,9) on peut donner cette méme forme

S—1DNp —lp+)>2n0(0 —0)(... Y +YO Y +...
+(YxY)+..)(u' —/p+) (9,9)

Les produits symboliques sont & effectuer sur des états intermé-
diaares de (6,2) (des ¥y, .y, des ¥, _, ou des ¥, ). (9,9) définit
ainsi une matrice S(u’ — /u +) dans 'espace hermitien des solu-
tions de '« atome d’hydrogéne ». Ce nouveau S décrit 1’émission,
I’absorption, la diffusion, etc., de la lumiére (champ ¢) par un
systéme matériel (par ex. nos deux particules de 'catome d’hydro-
géne»). Le P.C. détermine (9,9) & des termes de retardation prés.
En plus, le modeéle de l'oscillateur de dispersion est le modéle clas-
sique, si I'on considére S comme fonction d’un seul o exprimé par
la série des i) et des aft), parce que S(x) doit étre la fonction
avec £ = 1= 1 pour que le P.C. exposé au § 7 soit valable. Si
I'on ne dispose pas d’un P.C., on peut concevoir un S («®, aff) .. .)
tel que le rayonnement et la diffusion soient ceux du modéle général
traité en II.

Il est important de remarquer que le passage (9,2) correspond
a un changement des axes p a de nouveaux axes (u, +) (ou (¢, —)
ou (u, x)) dans 'espace hermitien. On a substitué au systéme com-
plet des ondes planes p un nouveau systéme (u, +). Il n’est pas dit
que ce nouveau systéme soit complet. Pourtant, la matrice (8,6)
et (8,9) ou (9,9) est déterminée en termes de 4™ (méme sans
passer & la limite). Elle détermine ainsi toutes les transitions dans
le spectre continu de '« atome ». Si les nouveaux axes (u, +) sont
mcomplets (ce qui est toujours le cas si le probléme de ScuroE-
DINGER correspondant admet, en plus des solutions du continu (9,2),
de nowvelles solutions d’'um spectre discret), on peut compléter la
matrice S en (9,9) par des éléments qui expriment des transitions
de (u, +) & ces nouvelles solutions et des transitions entre ces nou-
velles solutions. Formellement, ceci s’exprime en substituant &
(9,2) une transformation unitaire compléte

¥ = ¥ 20
qui comprend, outre les éléments X¢), .= (1+ B™)(u/u’), des

éléments 2), . Ces derniers expriment les solutions ¥, du spectre
discret en termes d’une série de Fourier (en k et [ (= u’)). Les
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produits symboliques en (9,9) doivent maintenant étre effectués
dans le systéme complet de ces nouveaux axes ((u, +) et n).

Pour les transitions dans le spectre discret, on obtient ainsi
la théorie de dispersion et de la largeur de raie exposée en Il pour
un modeéle général.

Il est important de remarquer que cette maniére de compléter
S reste arbitraire, parce que le A{" et le H") en (6,2) ne semble
pas étre univoquement déterminés en termes de S. Mais le P.C.
entre méc. asymptotique et méc. rationnelle n’admet qu’un seul
HO (& des termes de retardation prés), qui correspond au champ ¢
macroscopiquement observable. Si par contre le champ ¢ n’est pas
macroscoplquement observable (comme c’est le cas pour le champ
des forces nucléaires), le HU n’est pas nécessairement déterminé
en termes de S. La seule chose qu’on puisse alors dire ¢’est qu’un
champ nucléaire correspond & des quanta (mésons) observables.
Mais le freinage et la diffusion des mésons ne suffisent pas néces-
sairement pour nous renseigner sur la forme du HU), responsable
des niveaux des noyaux atomiques.

Note ajoutée aprés la rédaction de Uarticle.

Dans les M.S. de deux articles récents III et IV (& paraitre
dans la Zs. f. Phys. [1945]) et dans un exposé au séminaire de phy-
sique théorique & Zurich, M. HEISENBERG a complété sa théorie
proposée en (1943) I et II. Il montre qu’on peut calculer les va-
leurs propres hw, du spectre discret par une prolongation analy-
tique de S, sans passer par les 4 et X = — 1hHO comme nous
I'avons fait. Ce résultat est trés important, parce qu’il montre que
I’arbitraire contenu dans notre matrice 4 (u’/u) (1.e. la prolongation
de S(p'[p) & des régions o' — o + 0) est identique & Parbitraire du
prolongement analytique de S (E’, ok .) pour des vecteurs d’ondes

k complexes. Or, si I'on admet ’hypotheése qu’en physique des fonc-
tions non analytiques n’ont pas de signification, cette comparaison
entre nos deux formes de la mécanique montre que tout comporte-
ment dans le fini (spatial ou temporal) est entiérement déterminé
par le comportement asymptotique.

En d’autres termes, si plusieurs histoires (1,1) aménent exacte-
ment au méme état final, elles ne peuvent se distinguer que par
des fonctions non analytiques.

Geneve, Institut de Physique de I'Université
Lausanne, Laboratoire de Physique de I'Université
Décembre 1944.
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