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Zur Verflüssigung von Gaskugeln
von Willy Baumgartner.

(1. III. 1945.)

I. Einleitung.

Die Frage nach den möglichen Aufbauformen und Zustands-
änderungen einer im Gravitationsgleichgewicht befindlichen
Gaskugel hat eine durchaus einseitige Entwicklung erfahren, indem
nur der Übergang im Gebiete höherer Temperatur und die
Konstitution bei ca. 106—107 °K untersucht wurde. Seit den bekannten
Arbeiten Eddington's, die den Strahlungsdruck als wesentliches
Moment einführten, und unter dem Einfluss der Quantentheorie
ist diese Tendenz nur verstärkt worden. Dass das zur Kontrolle
der aufgestellten Theorien nötige empirische Tatsachenmaterial
mindestens in Aussicht stand, konnte nur fördernd wirken. Und
schliesslich ist nicht zu vergessen, dass bei tiefern Temperaturen
(103—104 °K) der Stern infolge der mannigfachen spezifischen
Stoffeigenschaften durchaus nicht mehr ein relativ einfaches Ding
zu sein braucht1). Die möglichen Varianten und Extremfälle häufen
sich, andererseits wirkt die Kompliziertheit der mathematischen
Fragestellungen geradezu abstossend ; denn die soeben angedeuteten
Komplikationen und dann insbesondere ein empfindlicher Mangel
an reellen Erkenntnissen lassen höchstens eine allgemeine Diskussion

— z. B. der auftretenden Differentialgleichungen — als zu
einigermassen plausibeln Resultaten führend erscheinen.

Es soll in dieser Arbeit versucht werden, mit Hilfe einiger
bis heute bekannter Tatsachen über das Verhalten der Stoffe bei
Temperaturen ~ IO4 °K den Übergang einer gasförmigen Kugel in
den flüssigen Zustand zu beschreiben. Im Hintergrund, es sei dies
offen zugegeben, steht der Gedanke der Möglichkeit einer genauem
Beschreibung der Vorgänge, die zur Bildung der heute vorhandenen
Planeten führte. Dabei ist nicht etwa gemeint, dass die Entstehung
des Planetensystems in globo untersucht wird, sondern dass aus
einem anfänglichen, aus irgendwelchen Gründen vorhandenen Ur-
nebel oder Riesengaskugel heraus die Bildung von dichteren Gas-
und sogar Flüssigkeitszentren auftrat.

Schon mancherlei Vermutungen sind geäussert worden, ohne
aber einer strengeren Theorie zu weichen. So ist etwa bekannt die
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Kelvin'sehe Anschauung, nach der die in der Aussensphäre der
gasförmigen Erdkugel sich bildenden Tropfen ins Innere fielen,
sich zuerst durch Verdampfung wieder auflösten, schliesslich aber
doch das Kugelzentrum erreichten. Von diesem Augenblick an
besitzt der Gasball einen flüssigen Kern, der nun weiter wächst.
Es wird also bei dieser Anschauung eine Verflüssigung von
innen heraus in Aussicht genommen. Dementsprechend ist auch
eine solche von aussen her, oder sogar nur aussen, in Betracht zu
ziehen. Man würde in letzterem Fall also einen gasförmigen Kern
und eine flüssige Schale haben. Eine solche Annahme scheinen z. B.
Kuhn und Rittmann2) zu machen, wenn sie schreiben: „Als
Ergebnis erhalten wir offenbar zunächst eine flüssige Schale, die
auf hochkomprimierter Solarmaterie ruht."

Die Frage der Verflüssigung einer Gaskugel wurde von
Mercier3) behandelt, indem mit Hilfe der Dampfdruckabhängigkeit
von der Temperatur diejenigen Teile einer polytropen Gaskugel
bestimmt werden, wo der Gasdruck grösser als der Sättigungsdruck
des Dampfes ist und die sich also verflüssigen. Dabei wird die
Masse der Kugel zu 1027 g angenommen, die Zentraltemperatur zu
6000 °K. Ferner wird die Kugel als aus Metalldampf, hauptsächlich

von Eisen, bestehend angesehen. Das vorwiegende Ergebnis
ist, dass Verflüssigung in den äussern Teilen auftritt. Mercier4)
schreibt: „Si le globe était initialement une masse gazeuse poly-
tropique, des vapeurs métalliques ont dû tout de suite se condenser
dans toute une couche extérieure et se précipiter par conséquent
vers le centre." Und dann5), im Gegensatz zu den Anschauungen
von Kuhn und Rittmann, die die Eisenkernhypothese aufgeben:

et la liquéfaction de vapeurs métalliques, que nous pouvons
qualifier de spontanée, explique qu'un noyau de fer se soit formé".

In Übereinstimmung mit Jeffreys stellt Mercier des weitern
fest, dass die Dauer der Verflüssigung nur gering war, Jeffreys
gibt einige tausend Jahre (vgl. dazu aber Arch, de Genève 59, 82,
1942, wo die Zeitdauer von Jeffreys zu einigen Jahren
abgeschätzt wird).

Betrachten wir eine im Schweregleichgewicht befindliche
Gaskugel. Sie sei in ihren Temperaturverhältnissen so beschaffen, dass
1'. noch keine oder bloss vernachlässigbare Verflüssigung aufgetreten

ist,
2. Strahlungsdruck und Ionisation keine Rolle spielen,
3. ihr Aufbau derjenige einer Emden'schen6)7)8) polytropen

Gaskugel ist.
Zu 1.: Darin ist inbegriffen, dass die leichter kondensierbaren

Stoffe sich in erhöhtem Masse im Innern konzentrieren, d. h. der



Zur Verflüssigung von Gaskugeln. 169

Aufbau der Gaskugel in erster Näherung aus zwei konzentrischen
Teilen von verschiedenem chemisch-physikalischen Verhalten
besteht. Innen wären dann die schwereren Metalle. Diese Differenzierung,

in übertragenem Sinn ein Saigerungsvorgang, ist also
bedingt durch die thermische Instabilität der Gaskugel bei tiefern
Temperaturen — natürlich in Zusammenarbeit mit der Schwere —,
indem eben die Kondensation die Aussenteile einer Gaskugel von
leicht kondensierbaren Stoffen freihält. Und da diese Saigerung
nicht allein auf Gravitationswirkungen beruht, so wird sich auch
ein Einfluss in der nähern Umgebung des Mittelpunktes feststellen
lassen.

Zu 2. : Nach Mercier9) ist als ungefähre Grenze eine Temperatur

von der Grössenordnung 104 °K zu setzen. Ferner ist nach
EdDINGTON10)

l-ß= 0,003 {§f^ißi (1,1)

o _ Gasdruck
Gesamtdruck

0 Sonnenmasse

/u, Molekulargewicht

Für 1 — ß ~ 10-3 und //4 ~ 10« bedeutet dies

M < IO30 g (1,2)

Zu 3. : Ganz abgesehen davon, dass sich hier eine durchgebildete

Theorie vorfindet, ist zu beachten, dass bei den gewählten
relativ niedrigen Temperaturen wieder Konvektionsvorgänge für
die Wärmeleitung massgebend sind. Der Transport von Energie
durch Strahlung ist zu vernachlässigen.

Diese angedeutete Kugel wird sich nun bei Wärmeabgabe und
Entropiezunahme zusammenziehen und dabei heisser werden. Es
ist dies ja das bekannte Paradoxon von H. Lane. Von all den
möglichen Arten dieser Kontraktion werden die Haupteigenschaften
bereits durch die spezielle der gleichförmigen wiedergegeben. Sie
lässt sich definieren als polytrope Zustandsänderung vom Index 4/3
oder der Klasse 3 (kosmogenetische Zustandsänderung oder Kosmo-
genide nach Ritter). Bei einer so verlaufenden Entwicklung ist
unter anderem

V ¦ T~* (1,8)

eine Invariante. Diese letzte Aussage gilt, soweit das Gas ideal ist.
Es stellen sich nun hinsichtlich der Behandlung einer Verflüs-
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sigung zwei Fragen, die, wie man ohne weiteres einsieht, eng
miteinander verknüpft sind:
a) Durch welchen analytischen Ausdruck soll die Kondensation er-

fasst werden, durch eine Zustandsgieichung etwa in v. d. Waals-
scher Form, reduziert oder unreduziert, oder durch Einführung
des Begriffs des Sättigungsdruckes? Das eine Mittel hat mehr
empirischen Charakter, das andere ist aus allgemeinen thermo-
dynamischen Überlegungen herzuleiten.

b) Wenn das Verflüssigungskriterium durch a) einmal festgelegt
ist, so ist zu untersuchen, wie sich ihm gegenüber eine in gleich-
massiger Kontraktion befindliche Gaskugel verhält.

Es werden hier beide in a) angegebenen Wege gebraucht.

II. Diskussion der verschiedenen Anschauungen

Wir nehmen zuerst die v. d. Waals'sche Gleichung zu Hilfe,
und zwar in dem Sinne, dass sie ein einfacher Standardtyp einer
Gleichung ist, die sowohl gasförmigen wie flüssigen Zustand
beherrscht. Um diese Betonung des Beispielhaften zu verstärken,
also spezifische Stoffkonstanten zu unterdrücken, brauchen wir sie
in der reduzierten, etwas anders geschriebenen Form:

(tt + 3 <p2) (3 - <p) 8&<p (2,1)

7r X. tp JL; &=T (2,2)

wo gewöhnlich pk, qk, Tk die Zustandsgrössen beim kritischen
Punkt sind. Hier sollen sie mehr als Parameter auftreten, um den
Zustandsraum p, q, T des in Frage stehenden Gases formelmässig
zu beherrschen. In der Darstellung (2,1) der Zustandsgieichung sind
die wichtigeren Punkte folgende:
oc) Nullstellen des Drucks:

Dabei ist also

Vi 0

9+V81-96©
> 0 (2,3)

9-V81-96© „ „?»= 6 > °

Für 0 >27/32 gibt es nur die eine reelle Nullstelle <px 0.

ß) Pole des Drucks : <p 3 ist für alle Isothermen ein Pol.

y) Wendepunkt : Die Isotherme 0=1 hat an der Stelle <p 1

einen Wendepunkt mit horizontaler Tangente (vgl. Fig. 1.)
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In bekannter Weise führt ein Weg im n — ^-Diagramm, der
einen mit wachsendem cp absteigenden Isothermenast trifft, zu
Verflüssigung. Andrerseits ist die gleichförmige Kontraktion im n — <p-

Diagramm durch die Kurve (vgl. (1,3)):

oder

dargestellt. Dabei ist

p= TqUs (2,4)

n= rv/3 (2,5)

r' r^3 (2,6)

Damit unsere Kosmogenide absteigende Kurvenstücke der
Isothermen trifft, muss J" genügend klein sein.

Es ist vorteilhaft, dass wir die Kosmogenide in dieser Weise
temperaturunabhängig schreiben können. Die Gleichung (2,4) folgt
ja rein aus Schwere-Druckgleichgewichtsüberlegungen; welche
Änderungen die Temperatur erfährt, muss aus der Zustandsgieichung
erschlossen werden (vgl. Emden7), S. 391).

Nun kann man aber weiter mit Hilfe der Theorie der
polytropen Gaskugeln einige Aussagen machen über die Aussicht, dass
eine Gaskugel von gegebener Polytropenklasse, Masse und Radius
sich in diskontinuierlichem Vorgang zu verflüssigen Gelegenheit
hat, trotzdem sie nach Lane heisser wird. Man bestimmt dazu
einfach die Konstante r in (2,4) als Funktion von Masse M, Radius
R und dem Ort, wo das betreffende Teilchen am Anfang der
Entwicklung im Sterninnern stand.

Die Emden'sche Gleichung für die Klasse n lautet8)

*£+• * + <,_„ (2,7)

Dann ist
Q Qzun

p Pz un+1

Die Zentraldichte qz berechnet sich aus

Qi

der Zentraldruck pz aus

1 M
du

- G M*
Pz~ 4jt(«+l) "ß*

di_Y
du/

(2,8)

(2,9)

(2,10)

Der Index 0 soll auf den Randwert hindeuten. G ist die
Gravitationskonstante
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Die Konstante r ist zu bestimmen aus

r=p-Q-W (2,4)
Es ergibt sich:

r= (4 7tyisGM2'su 30(io
WO 0(ß)=^L-v u/ n+l -£2e de

U -2/3 (2,11)

0

Interessant ist insbesondere das Zentrum, dort ist u 1 und man
hat

rz (4:7tyi3GM2^0{io) (2,12)

Der Faktor (Aji)1isG0(£o) -107 hat die Grössenordnung 1 für alle
endlichen Kugeln, d. h. 0 < n < 5. Also ist

rz ~ M2'3 • 10-7 (2,13)

und schliesslich entsprechend (2,6)

*•v•* 7.

vk ¦ 10'

Da für Stoffe, für die man pk und qk kennt, gk ~ 1 g/cm3,
so folgt

M2/3

A'-^IO-7 (2,14)

Für eine genauere Bestimmung von /y wäre noch pk zu
wählen, sowie M. Wir nehmen nun umgekehrt Pz ~ x/2 an, legen
also die Kosmogenide durch das Gebiet der Verflüssigung (vgl.
Fig. 1) und erhalten:

M~pf-1010g, (2,15)

falls pk in cgs-Einheiten ausgedrückt ist.

Nehmen wir, rein versuchsweise, das pk von Wasser

P*,h,o 195 Atm
so ergibt sich

M~1022g
Den kritischen Druck von Metallen schätzen wir zu ca. 104 Atm.
ab, Das würde eine Masse ergeben:

M~1026g
Dies ist nun um Grössenordnungen kleiner als die Masse der Pia-
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neten. Im übrigen ist natürlich dann die Temperatur nicht so hoch,
wie sie gemäss den idealen Gasgesetzen zu berechnen wäre. Auf
alle Fälle sehen wir, dass kleinere Massen zu Verflüssigung geeignet
sind. Ferner erkennt man aus der Figur 1 ohne weiteres, wie die
Kosmogenide zuerst mit wachsendem 93 die Isothermen in Richtung

steigender Temperaturen schneidet, um dann aber wieder für
9?-> 3 zu tiefern zu führen, eine schon z. B. von Véronnet11) des

nähern besprochene Tatsache.

nk

=2

Fig. 1.

Kosmogenide n % 9?4'3

Die oben angegebene Masse von 1026 g scheint also eine maximale

Grenze für Kondensation von Gaskugeln zu bedeuten.
Auf alle Fälle kann man annehmen, dass für grössere Massen
M ~ 1030 g, wie sie die grossen Planeten zeigen, ein direktes
Entstehen aus einer Gaskugel durch Verflüssigung im Innern — und
nicht nach der schon kurz erwähnten Kelvin'sehen Anschauung —
nicht in Frage kommt. Ob sie sich infolge Einbettung in einen
grössern Nebel (Urnebel im Sinn von Laplace) durch Aufsammeln

umliegender Materie nachträglich vergrössern konnten, ist zu
verneinen bei einem Massenverhältnis von 1 :1000. Die 103mal
grössere Masse dieser Umgebung würde die separate Existenz einer
Gaskugel gar nicht zulassen.

Mercier4) hat, wie schon erwähnt, durch Vergleich der
Dampfdruckkurve von Metallen und der Temperatur-Druckverhältnisse
einer polytropen Kugel die Verflüssigungszonen bestimmt, also

diejenigen Teile der Gaskugel, die sich infolge Übersättigung kon-
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densieren. Es soll dieser Vergleich verallgemeinert werden. Wir
gehen hier also auf dem zweiten Weg vor!

Für die Polytropenklasse u gilt

p K Tn+X (2,16)

Möglichkeit zur Verflüssigung ist also sicher vorhanden, wenn die
Kurve (2,16) im p — T-Diagramm oberhalb der Dampfdruckkurve
verläuft. Das ist aber weiterhin für ein um so grösseres Temperaturintervall

0 < T < T0 der Fall, je grösser K ist. Der Polytropen-
exponent n kommt nicht so sehr in Betracht, da er für Kugeln
von endlichem Radius immer < 5 ist. Es gilt

und da

mit9)

K p ¦ T-(»+D

T Tz-u

Gß M
K H n+1

/u Molekulargewicht
31 Gaskonstante 8,31 • 107cgs

so ergibt sich für K
3T+1 (n+1)K ß "(n+1) Ml~n Rn~3

G"
v(£o)

(2,17)

(2,18)

12,19)

wo y(£0)> wie angedeutet, nur von den Randwerten der Emden-
schen Normallösung abhängig ist. y>(Ç0) ist von Null verschieden
und unerheblich für die Grössenordnung von K. In Abhängigkeit
von M und R zeigt sich, dass folgende Verhältnisse günstig sind:
1. für 0 < n < 1: grosse Masse und kleiner Radius, also grosse

mittlere Dichte,
2. für n 1 : kleiner Radius — es besteht Massenunabhängigkeit —,
3. für 1 < n < 3: kleine Masse und kleiner Radius,
4. für n 3 : kleine Masse — der Radius spielt keine Rolle —,
5. für n > 3: kleine Masse und grosser Radius.

Der Bereich, wo also grosse Massen nicht hindernd wirken
ist auch bei diesem Kriterium klein, so klein, dass er wohl nicht
ins Gewicht fällt.

Man wird sich fragen, ob denn die Voraussetzung, dass eine

polytrope Kugel im Zustande der Übersättigung existenzfähig
sei, sie sich nicht rasch verflüssige und in sich zusammenstürze,
zutreffe. Dazu ist aber zu bemerken : Die freiwerdende
Kondensationswärme führt sofort ein Gleichgewicht herbei in dem Sinne,
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dass genau soviel verflüssigt wird, als dabei freiwerdende
Kondensationswärme nach aussen abstrahlt. Dadurch tritt offensichtlich
ein bremsendes Moment auf. Wenn wir uns einigermassen ein Bild
machen wollen von den dabei auftretenden Möglichkeiten und
Vorgängen, so können wir die Ergebnisse der thermodynamischen
Meteorologie12) zu Hilfe ziehen, obwohl ein wesentlicher Unterschied

besteht, indem ein Gemisch von Kondensat (Wasser) und
Gas (Luft) vorhanden ist und letzterer Bestandteil mengenmässig
stark überwiegt. Diese Ergebnisse enthalten zwei wichtige Punkte :

a) Das Wasser fällt nicht von erreichter Sättigung an aus, sondern
bleibt im Trägergas schwebend. Tropfen im Sinne des täglichen
Sprachgebrauches sind sogar an die Existenz von Eiskernen
gebunden (Eiskeimtheorie von Bergeron, Findeisen u. a.13).
Sonst kommt es höchstens zum bekannten feinen Nieselregen.
Die Erklärung liefert bekanntlich ein Kelvin'sches Theorem.

b) Für die Kondensationsvorgänge in der terrestrischen
Atmosphäre spielt der Begriff der Feuchtadiabate14) (H. Hertz,
W. v. Betzold) die ausschlaggebende Rolle. Dabei ist unter
Feuchtadiabate ein Weg adiabatischer Zustandsänderung in
Verbindung mit Kondensation zu verstehen. Je nachdem, ob
das gebildete flüssige Wasser ausfällt oder nicht, spricht man
von irreversibler oder reversibler Feuchtadiabate.

Entsprechend der Verallgemeinerung, die Zöllner und
insbesondere Emden durch die Einführung polytroper Zustandsände-
rungen durchführten, kann man auch bei einer „feuchten" Dampf-
kugel — sie enthält in erheblichem Ausmass Stoffe, die bei geringer
Temperaturänderung ihren Aggregatzustand wechseln — von
verschiedenen „Feuchtpolytropen" sprechen. Da es aber aussichtslos
ist, eine einigermassen überschaubare Darstellung der zuständigen,
der Emden'schen entsprechenden Differentialgleichung durchzuführen,

drehen wir die Frage eben so, dass polytroper Aufbau
vorausgesetzt wird und dann die für die Verflüssigung in Betracht
kommenden Zonen aufgesucht werden. Das ist aber genau das
obige Verfahren.

Die Möglichkeit, wonach sich um einen gasförmigen Kern eine
flüssige Schale bilden kann, ist kaum in Betracht zu ziehen. Denn
wenn eine Verflüssigung auftritt, so entstehen dabei doch Tropfen.
Diese haben aber eine grössere Dichte als das umgebende Gas, sie
sinken gegen das Zentrum. Wenn sie an Ort und Stelle bleiben,
dann bilden sie, solange sie genügend klein sind, eventuell Wolken,
die sich aber nie zu einer zusammenhängenden Flüssigkeitsschicht
ergänzen. Dafür liefern die terrestrischen Verhältnisse deutliche
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Fingerzeige. Es gibt allerdings eine Möglichkeit zur Ausbildung
einer Schalenstruktur, d. h. innen Gaszustand, aussen flüssig. Bei
Rotation nämlich kann die Zentrifugalbeschleunigung gerade die
Schwerewirkung aufheben. Aber das ist nur bei bestimmtem
Abstand vom Zentrum möglich. Dieses Gleichgewicht ist äusserst
labil, und Störungen sind in genügender Anzahl und von genügender
Grösse vorhanden (eruptive Ausbrüche, Fluterscheinungen, Grös-
senänderung des gasfömigen Kerns usw.). Plausible Ergebnisse
zeigt die Diskussion der Kelvin'sehen Anschauung, zu der nun
übergegangen werden soll.

III. Feuchtkugeln (FK)

Die Kelvin'sehe Anschauung erklärt sich den Vorgang der
Verflüssigung folgendermassen*) :

Die in den äussern Teilen der Gaskugel gebildeten
Kondensationsprodukte fallen ins Innere der Kugel und verdampfen dort;
indem die Abkühlung immer mehr nach innen dringt, stossen auch
die Tropfen weiter vor, um schliesslich das Zentrum oder doch
seine Umgebung zu erreichen. Die Abkühlung steht nicht etwa im
Widerspruch mit dem Lane'sehen Paradoxon. Denn einmal wird dies
nicht mehr strenge gültig sein, was bereits oben (S.173) festgestellt
wurde; andrerseits bewirkt gerade der „Regen" eine besonders
starke Abkühlung, die ja nicht durch praktisch unerschöpfliche
atomare Energiequellen wie in grossen Sternen verhindert wird.
Die Tropfen werden während ihrem Fall nach innen verdunsten
und damit eine Dichtevergrösserung der betreffenden Partien
herbeiführen. Fassen wir eine Schale der Kugel mit bestimmtem
Abstand vom Zentrum ins Auge, so werden sie dort so lange
verdunsten, bis der Sättigungsdruck erreicht ist, oder wenn der Druck
bereits anfangs gross genug war, werden sie die Kondensation
erheblich beschleunigen. Denn die in solchen Schichten schon vorher
auftretende Kondensationswärme wurde anfangs bloss durch Kon-
vektion abgeleitet. Diese Konvektionsströme haben zuerst allein
den Grad der Verflüssigung bestimmt. Da aber bereits eine Massengrenze

angegeben wurde, unterhalb deren, bloss auf diese Art,
Kondensation möglich ist, so lässt sich einzig durch Verflüssigung
infolge zusätzlicher Abkühlung gemäss den eben gemachten Ausführungen

eine Erhöhung dieser Schranke erwarten. Dass das in der
Tat der Fall ist, werden wir unten sehen.

*) Genau verhält es sich wie folgt: Kelvin selbst postuliert seine Hypothese
für den Vorgang der Verfestigung der Erde16), Nölke16) überträgt sie in präziserer
Fassung auf denjenigen der Verflüssigung.
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Zu diesem gerade im Zuge befindlichen Material, nach flüssig
oder gasförmig zu „kippen", kommen hinzu Gase, die nicht von
Kondensation betröffen werden. Man wird also ein Gemisch von
beiden haben, und der vorwiegende Bestandteil wird die Temperatur-,

Druck- und Dichteverhältnisse bestimmen. Spezialisieren wir
uns auf den Fall, wo der Gasbestandteil gegenüber dem sich
verflüssigenden zurücktritt und nur als Trägergas die Sinkgeschwindigkeit

der Tropfen beeinflusst, so kann man dann für den Aufbau
der Kugel, d. h. den die äussern Schichten tragenden Druck, gerade
den Dampfdruck verantwortlich machen. Offenbar bildet dasjenige
Element aus all den vorhandenen eine solche Kugel, das

1. bei hoher Temperatur sich kondensiert und
2. in reichlicher Menge vorhanden ist.

Diese Bedingungen erfüllen17) vor allem Silicium und Eisen.
Sauerstoff fällt aus wegen 1.

Die Kugel wird also im wesentlichen aus einem im thermo-
dynamischen Gleichgewicht befindlichen zweiphasigen System
Dampf-Flüssigkeit bestehen. In jedem Raumelement der Kugel hat
man, um den Terminus technicus zu gebrauchen, Nassdampf, jedes
Raumelement ist „feucht". Man könnte auch von einer Nebelkugel
sprechen in Anlehnung an bekannte terrestrische Analoga.

Bei einer diesen Annahmen entsprechenden FK haben wir zur
Bestimmung von p, T, q als Funktion des Radius r drei
Beziehungen :

1. eine hydrodynamische

dr
mit

dP-~9Q (3,D

T

r2g= 4jiGfor2dr (3,2)
o

G ist die Gravitationskonstante 6,68 • 10^8cgs;
2. den Dampfdruck p, gegeben durch die Gleichung von Clapey-
ron-Clausius

dp X

dT T(v"-v"')
Ì Verdampfungswärme

v" spezifisches Volum des Dampfes
v'" spezifisches Volum der Flüssigkeit

(3,3)

3. die Zustandsgieichung:

F(p,T, g)=0 (3,4)
12
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Wir nehmen zur Vereinfachung als Zustandsgieichung die der
idealen Gase und setzen weiter X als konstant voraus. Beide
Voraussetzungen sind natürlich von einer heutzutage nicht näher
abschätzbaren Ungenauigkeit. Unter dieser Voraussetzung und
derjenigen, dass v'" <»", folgt dann aus (3,3)

p= Pe T (3,5)

mit
T,=L=4£ (3,6)

<?=£-£- -££(-!-') In (-fr) (8,7)

Somit ist

In bekannter Weise folgt aus (3,1) und (3,2)

1 d j r2 dp

und also mit (3,7)

w w ^Gq (3,8)r* dr \ Q dr • "- v

r2 ir jx

Wir substituieren

dr\p InGuP
Wi

T
' ' /'-,j^7 „T"/.,)--j^f!-m'°i-g-) W)

ar
[«]

47iG/i2P |

5R2^3 (3,10)

L
^=e v=y (3,11)P

und erhalten

^4-(&--p--4-A + y\ny=0 (3,12)x2 dx \ dx y in y J " a \ ' i

Ausgerechnet ergibt dies

d*y 1 + lnw /dy\2 2 dy / \2 _ ,„,„,

Wir machen keinen grossen Fehler, wenn wir vor das Glied

mit (-T-) eine 2 setzen und so erreichen, dass die Differentialgleichung

vollständig integrierbar ist. Numerische Behandlung und
insbesondere das Studium der Beziehungen dieser Gleichung (3,13)
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mit der für die isotherme Gaskugel gültigen Beziehung18) haben
diese Sachlage bestätigt*). Es ist dann, wie man durch Einsetzen
sofort ersieht:

4H#-1)(^)2 (3'14)

und daraus
dy A a;2/ (y-in. y)2 x 6

B (3,15)

A und B sind Integrationskonstanten. Das Integral links in (3,15)
lässt sich auf ein Exponentialintegral zurückführen. Schreiben wir

x t

Ëï{x)=f~dt (3,16)
e

wo c in den Jahnke-Emde'schen Tafeln (2. Auflage, S. 83) den
Wert ~ 0,37 hat, so bekommt man nach Substitution von y e~~' :

/A-/7ä=T-/t* (8'17)

bis auf eine Konstante. Es folgt als endgültige Lösung

Ê~i(r)—£- ^ + Ç-B (3,18)

Diese zweidimensionale Lösungsschar ist einfach zu überblicken.
Sie hat eine Singularität in Form eines Poles in x 0 ; durch
Wahl von A 0 erhalten wir eine im Endlichen überall reguläre
eindimensionale Schar. Wir treffen also ähnliche Eigenschaften wie
bei der Emden'schen Differentialgleichung an. Nur wird dann dort

*) Ein Verbindungsweg ist folgender:
Durch die Transformation

1 T
lny= - "0- ® 17

geht (3,12) über in
1 dl 1 d&\ 1 —

"

x2 dx y 0 dx)+ <P
e * - °

Da uns nur das Gebiet 0 < 0 < 1 interessiert, setzen wir

1 -— % a
-Ç- e * ~9 =e

Für | \/n x erhalten wir sofort

d2Q 2 du a
dÇ2 +T dÇ + e =0'

die Differentialgleichung der isothermen Gaskugel.
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durch die sog. Polytropentemperatur ein weiterer Parameter frei.
Hier dagegen ist für A 0 etwa durch Wahl der Zentraltemperatur
alles bestimmt.

Indem wir die genauere Diskussion der allgemeinen Lösung
auf später verschieben, behandeln wir zunächst den Fall A 0,
der im Zentrum regulär ist, eine dort verschwindende Ableitung
hat (î/4=0!) und den wir als vollständige FK bezeichnen (VFK).
Setzen wir also A 0 und bestimmen B durch Wahl der
Zentraltemperatur, so erhalten wir

x= V6V*W-*(f|)
2,45\/<P(t)-#(t,)

Dabei ist

l (3,1.9)

0{r) Ëï(r) ~ (3,20)

Nun gilt nach Jahnke-Emde (2. Auflage, S. 80)

!Ï(t) -^H(t) (3,21)

1 2 1 1

fl(t) ^1+ — + 4r

t> 1 1

Nach (3,17) ist

(3,22)

L
•* /TI (3,17a)

oder also für T->0: t-> oo. Aber dann gilt asymptotisch

0(r) -^ (3,23)

d.h.
T

* ~ 2.45 • ~ (3.24)

Es gibt also im Endlichen keine Nullstelle der Temperatur. Uns
interessieren weiter die Grössen p, T, Q,r, M(r). Man findet leicht:

p Pe~r
LT
T

Für die Masse hat man

5RL Te"

(3,25)

r x

M(r) 47ijer2dr=-4^-~fy\nyi*dè
0 0
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Mit Hilfe von (3,12) ergibt sich sofort

M(r)
4:71 Pfi
5RLab \ y

und schliesslich wegen (3,14), (3,19)

£* dy\*
In y di Jo

M(r)- 47lP/i V24 0(X

Für ein r ^> 1 hat man hier

M(r) const x

Endlich ist r zu erhalten aus

&(Tr.

t/2

3/2

X OL~L X
K 4nG P/*2

(3,25a)

(3,26)

(3,27)

(3,28)

Für die weitere Auswertung der VFK gehen wir über zur
Frage der Bestimmung von P, L, p. Besonders interessant werden
natürlich Kugeln aus schwer verdampfbaren Stoffen sein, die mit
grossem Prozentsatz am Aufbau der Planeten beteiligt sind. Dies
ist der Fall, wie oben (S. 177) angedeutet, etwa bei Eisen. Den
Wert von p wählen wir entsprechend zu p 57; bekanntlich sind
ja Metalldämpfe einatomig. Die Abhängigkeit der VFK von p ist
durch die Dichte (q ~ p), die Masse (M ~ p~2) und den Radius
(r ~ p'-1) dargestellt. Weiter ist die Masse ~ P^1'2. Eine Unsicherheit

in der Bestimmung von p und P, die übrigens bei höherer
Temperatur ausgeprägter ist als bei niedrigerer, wirkt sich also
nicht stark aus.

Die Konstante L, im wesentlichen die Verdampfungswärme
(vgl. 3,5, 3,6) hat dagegen einen sehr starken Einfluss, da sie im
Exponenten steht. L ist bekanntlich, bei festem p, eine mit
wachsender Temperatur abnehmende Grösse; im kritischen Punkt ist
sie sogar Null. Um uns über diese Temperaturabhängigkeit — die
von p vernachlässigen wir — ein Bild zu machen, sei nach den
Critical Tables19) der Dampfdruck von Zink und Kadmium
angegeben :

"log pCd -111 -^— 1,203 10 log T + 12,107

10logpZn=-127
52,23

1,203 10log T + 12,184

p wird dabei in Tor gemessen.
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Die Abhängigkeit ist also ziemlich stark, für Eisen dürfte sie
etwas kleiner sein.

Gegenüber der Bedeutung von L durch Auftreten im
Exponenten spielt sein Vorkommen in der Grösse a eine
untergeordnete Rolle.

Es seien nun für einige Elemente die Grössen P und L
angegeben19) :

Element L P

Kohlenstoff 6,49-10«
3,72-10«
3,72-10«
2,04-102
3,13-103

4,0-109
3,1-10'
4,0-10'
9,0-105
9,9-1012

Nickel
Silicium (fest)
Magnesium

P ist so bestimmt, dass der Druck in Tor herauskommt.

Es werde noch kurz die Einwirkung der Beimischung von
andern Stoffen auf die Grössenverhältnisse der VFK besprochen.
Weil die Voraussetzung eines Phasengleichgewichtes das Vorhandensein

von Kondensat in jedem Raumelement bedeutet, so nehmen

wir von dieser Kondensatdichte, sowie der Trägergasdichte an,
dass beide proportional der Dampfdichte sind, also

Q Kond + Träger ~ " ' Q

ist, und dass ihr Vorhandensein sich nur gravitations- und massen-
mässig auswirke. Dann bedeutet dies für a eine Multiplikation mit
(1 + x)il2, für die Masse eine solche mit (1 + x)~112, d. h. eine kleinere

Kugel mit kleinerer Masse. Die VFK wird eben so stark
verkleinert, dass auch die Vergrösserung der Dichte nicht hinreicht,
um gleiche Masse wie ohne Beimengung zu erhalten. Überhaupt
ist gerade die Frage der Beimischung anderer Stoffe ein Faktor,
der uns veranlasst, die Massenbestimmung nur auf Zehnerpotenzen
als zuständig anzusehen.

Man findet nun gemäss (3,28)

aFe= 3,43-10^9 cm-1.

Für den in Gleichung (3,26) auftretenden Faktor

m=4s7lPß -

ergibt sich
•"l at La3 y

9WFe=2,38-1026c7.

(3,29)

(3,30)

(3,31)
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Die Kugel ist nur sehr schwach durch die Zentraltemperatur
beeinflusst, sowohl was die Masse wie was den Radius betrifft. Dabei

ist natürlich ein genügend grosser Randwert von t, d.h. genügend

kleiner Randwert der Temperatur vorausgesetzt. Der Begriff
„Randwert", ebenso weiter unten derjenige der „Randtemperatur",

soll sich auf die äussersten Teile der VFK beziehen. Wir
stellen also fest, dass die Zentraltemperatur einer sich verflüssigenden

Gaskugel, sobald sie unterhalb der kritischen Temperatur liegt,

r°K

16000

12000

8000

4000

x—T Diagramm

20 40 12060 80 100

Fig. 2.

kein Hindernis für eine stabile VFK darstellt. Dies kommt, wie
man am x- T-Diagramm ersieht (Fig. 2), daher, dass in der Hauptsache

die VFK nahezu isotherm ist und so der Einfluss der
Zentraltemperatur unterdrückt wird ; denn diese Fastisothermtemperatur

ist weitgehend unabhängig von den zentralen Verhältnissen.

T œ für Tg <10 M m-1 für tz < 10

15 3.19-102 4,95-101
16 4,88 7,01
17 7,55 1,01-102
18 1.18-103 1,49
19 1,83 2,16
20 2,85 3,17
21 4,46 4,71
22 7,01 7,06
23 1,10-10« 1,05-103
24 1,73 1,57
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T x für rz < 10 If 5ÖT1 für t2< 10

25 2,75 2,41
26 4,35 3,66
27 6,89 5,52
28 1,10-105 8,62
29 1,73 1,27-10«
30 2,77 2,00

Ein interessantes Ergebnis bietet die Diskussion der Massen
in Abhängigkeit von x und damit von t bzw. T dar. Wir erhalten
hier folgendes Bild (vgl. Tab. für M 9JI"1) :

yo r in cm M in g

2320 1,42 -1011 1,67-IO28
2060 3,44 3,55
1860 8,31 7,55
1690 2,04-1012 1,68-IO29
1550 5,05 3,74
1430 1,27-1013 8,71
1330 3,21 2,05-IO30
1240 8,08 4,76

Man ersieht:

1. Die auftretenden Massen nehmen mit abnehmenden Randtemperaturen

monoton zu.
2. Sie sind von der Grössenordnung der Planetenmassen, wenn wir

dasjenige Temperaturgebiet als Rand annehmen, in dem der
Schmelzpunkt von Eisen liegt; denn einmal sind die Planetenmassen

folgende:

Merkur 2,4 1026g Jupiter 1,9-1030 g
Venus 5,0 1027g Saturn 5,7-IO29g
Erde 6,0 1027g Uranus 9-IO28g
Mars 6,6 1026g Neptun 1 -IO29 g

Andrerseits ist die Schmelztemperatur von Eisen ungefähr
1530° K.

Innerhalb der Fehlergrenzen treffen wir also auf das Richtige.
Besonders gut stimmen die Massen der grössern Planeten. Die
kleinen sind aber entweder in der Nähe der Sonne (Merkur) oder
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in der Nähe von Jupiter (Mars), wo ja die Planetoiden schon lange
die Verwunderung der Astronomen hervorgerufen haben, die gerade
zwischen ihm und Mars liegen.

Man kann die Überlegung etwas feiner gestalten, wenn man
die mittleren Dichten in Betracht zieht:

Venus 0,94 Saturn 0,12
Erde 1,00 Uranus 0,25
Jupiter 0,24 Neptun 0,24

Venus und Erde haben also eine vier- bis sechsmal grössere
mittlere Dichte. Das Vorhandensein einer ausgedehnten Gasatmosphäre

ist bei Jupiter und Saturn sehr wahrscheinlich. Diese die
Gashülle konstituierenden, schwer verflüssigbaren Stoffe werden
in der VFK verteilt gewesen sein. Teils als Trägergas, teils als
zusätzlicher Massenfaktor, teils als nach aussen abschirmender
Mantel haben sie vielleicht eine gewissermassen ruhige Ausbildung
der VFK gewährleistet und sowohl die bei den angegebenen
Randtemperaturen etwas instabilen Verhältnisse — Nähe anderer
Planeten, rasch fortschreitende Kondensation — gesichert. Wo diese
schirmende Hülle fehlte oder in nur geringem Masse vorhandene
war, musste der Aufbau schon bei höheren Temperaturen, also
näher beim Zentrum, gestört und durch diesen „Abschneidepro-
zess" die Masse kleiner werden.

In bezug auf die räumliche Ausdehnung lässt sich folgendes
erkennen: Bei einer Masse von ~1030g ergibt sich ein Radius von
~ 1013 cm. Berechnen wir aus der für Polytropen gültigen
Gleichung (2,18) den Radius für M 1030 g, Tz IO40, p ~ 50, so

ergibt für 0 < n < 4

r ~ 5 • IO12 cm

Es ist dabei zu bedenken, dass die Ausdehnung der VFK eher
zu gross berechnet wurde, sowohl weil für L die obere Grenze
genommen wurde, als auch wieder der Trägergaseinfluss zu
berücksichtigen ist.

Man versteht von hier aus ebenfalls, warum in Sonnennähe
keine grossen Planeten stehen. Wenn nämlich die Sonnenmasse zu
1033g angenommen wird, die Masse eines Planeten zu 1029 g und
sein Radius im Zustand der VFK z. B. zu 1012 cm, so ergibt eine
leicht durchführbare Abschätzung für die Minimaldistanz Sonne-
Planet, damit eine geschlossene, d. h. von der Sonne nur in zweiter
Näherung gestörte Kugel möglich ist, den Wert von IO9 km. Die
äussersten Planeten — von Pluto wird abgesehen — haben auch
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tatsächlich eine Masse von 1029 g. Ihre Ähnlichkeit lässt sich auf
Grund der ungestörten Ausbildung einer VFK plausibel machen.

Aus dem eben angezogenen ist auch zu schliessen, dass, wenn
überhaupt die Verflüssigung nach Kelvin erfolgte, dies dann zu
einer Zeit geschah, in der die'Planeten bereits separates Dasein
hatten und nicht mehr in einem Mutternebel mit vergleichbarer
Gesamtmasse eingebettet lagen. Der relativ am besten mit den

vorangegangenen Ausführungen vereinbare Ursprungstyp ist eine
Gaskugel. Wie diese entstanden ist, bildet eine andere Frage. Die
Rotationsgeschwindigkeit darf allerdings im Dampfzustand nicht
zu gross sein ; infolge des Erhaltungssatzes des Drehimpulses lässt
sich das auch widerspruchsfrei in das Ganze einfügen (vgl. Nölke16),
S. 53). Für die Dichte hat man nach (3,25)

g 0,76 re-T gern-3 (3,32)

und für den Druck, ebenfalls nach (3,25) :

p 4,13-1010e-*Dyncm-2 (3,33)

Die weitgehende Unabhängigkeit der Grössen- und
Massenverhältnisse der VFK von der Zentraltemperatur begründet eine
für die Anwendung auf reale Sachverhalte günstige Tatsache. Oben
(S. 181) wurde ja die Temperaturveränderlichkeit der Konstante L
aus (3,5) festgestellt. Aber gerade diejenigen Temperaturgebiete,
die für den Aufbau der VFK massgebend sind, fallen in das
Intervall 1000—3000°, also erstens in einen relativ kleinen Bereich
und zweitens in einen, wo L experimentell bestimmt ist. Der starken

Auswirkung einer Unsicherheit im Werte von L wird so
weitgehend entgegengewirkt. Wir erkennen weiter, aus gleichen Gründen,

dass auch die Anwendung des idealen Gasgesetzes auf den
in Nähe der Kondensationstemperatur befindlichen Dampf die
Resultate der Berechnung nicht zu sehr fälschen wird. Die Dampf-
dichte g der VFK ist ja, bis aufs Zentrum, klein. Frappant ist
die Wirkung der Veränderlichkeit der sog. spezifischen Wärme
eines Dampfes gemäss den Überlegungen von Clausius. Emden
hat in seinem einschlägigen Buch6) dieser Tatsache einen kurzen
Abschnitt gewidmet (S. 395), der sehr anschaulich die Sachlage
skizziert und deshalb hier auszugsweise angeführt werden soll.
Er schreibt:

„Wird ein Volum gesättigten Dampfes adiabatisch komprimiert,

so wirken während dieser Veränderung zwei Umstände
gegeneinander. Die Volumverminderung an sich hat Kondensation
zur Folge, die Temperaturerhöhung an sich wird überhitzen und
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weitere Dampfaufnähme ermöglichen. Soll dabei der Dampf einen
thermodynamischen Weg zurücklegen derart, dass er stets gerade
gesättigt bleibt, so muss, wenn die Volumverminderung die
Temperaturerhöhung A T überwiegt, zur Verhütung der Kondensation
ein bestimmtes Wärmequantum A Q zugeführt, im Falle die
Temperaturerhöhung überwiegt, ein bestimmtes Wärmequantum AQ

entzogen werden. Dieses Verhältnis -pjr, die Wärmekapazität des

Dampfes auf diesem bestimmten Weg. kurz als „Wärmekapazität
des gesättigten Dampfes" bekannt, kann 0 sein".

„Würde die Erdatmosphäre ausschliesslich aus Wasserdampf
bestehen, so können aufsteigende Strömungen zu Wolkenbildung
führen. In einer Erdatmosphäre aus Dampf des Äthyläthers, dessen

Wärmekapazität > 0 ist, wurden aufsteigende Ströme überhitzten
Dampf liefern; eine Wolkenbildung könnte nur durch absteigende
Ströme eintreten, falls in der Höhe die Dämpfe, etwa durch
Wärmeausstrahlung, ihren Entropiegehalt vermindert hätten. In diesen
beiden Atmosphären würden sich viele meteorologische Vorgänge
mit entgegengesetztem Vorzeichen abspielen. In einer geeignet aus
Äther- und Wasserdampf gemischten Atmosphäre brauchten weder
auf- noch absteigende Ströme zu Wolkenbildung zu führen."

Genauer handelt es sich um folgendes20) :

Die spezifische Wärme y eines Gemisches von I Gramm Dampf
und (1 — |) Gramm Flüssigkeit ist

y= (l-£)c, + £h;

cp ist die spezifische Wärme der Flüssigkeit bei konstantem Druck,
h diejenige des Dampfes. Und für h gilt nun die Gleichung

dì. X

n= cv + -jf y
so dass y in der Tat ^ 0 sein kann, negativ insbesondere für kleine
T. Der Umschlagspunkt T0 von y ist für ein | ~ 1, wie es bei der

FK angenommen wurde, gegeben durch (-pp Ol:

io cv

Unterhalb T0ist y|~i<0. Aufsteigende Ströme ergeben also
Kondensation für ein T <T0.

Für Eisen ist X 1,3 • 108 cal/g, c„ ~ 0,2 cal/g grad21), also

T0 ~ 8 • IO3 °
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Im weitaus grössten Teil der FK erleiden also nur aufsteigende
Gasmassen Kondensation, wie es auch vorher angenommen wurde.

Aus Gründen der Kuriosität und zur Erhellung einer bekannten
Regel sei schliesslich die Masse einer aus Wasserdampf bestehenden

VFK mit einer Zentraltemperatur Tz ~ 500° K und
Randtemperatur TB ~ 300° K angegeben. Für die Konstanten P und
L werden die Werte gewählt:

P= l,59-1012cgs; L= 5,29-1030
Man erhält

Mh2o ~ 4 • 1027 g

Der Unterschied ist nicht gross, aber die Fähigkeit von Eisen,
grössere Massen zu bilden, tritt doch deutlich hervor. Die
Randtemperatur wurde auch hier in der Nähe des Schmelzpunktes
genommen. Dass die Kugeln nicht stark voneinander abweichen
beruht auf der angenäherten Gleichheit von TBisen und rUß für
phasenmässig äquivalente Temperaturen. Es macht sich hier das
Theorem der übereinstimmenden Zustände und im speziellen die
Regel von Pictet-Trouton bemerkbar.

IV. Ergänzende Schlussbemerkungen

Die allgemeine Lösung der Differentialgleichung derFK (3,12)
lautete :

A r2
0{r) A + JL_B

v ' x b

Wenn man nun beachtet, dass für 0(r) die Relationen gelten

(4,1)

<Z>(T) o(^)fürT^0
<P(t) o(-£-Wt->-oo

so erhält man folgende Aussagen:
1. Wenn B bei festem A wächst, so herrschen im gleichen

Abstand x vom Mittelpunkt höhere Hitzegrade.
2. Bei festem B nimmt mit wachsendem A die Temperatur ab,

bei A 0 tritt die VFK auf.
3. Für A 4= 0 existiert keine im Zentrum physikalisch realisierbare

Lösung. Für A < 0 wird dort die Temperatur unendlich, für
A > 0 hat man ein Temperatur- und damit Druckmaximum
im Abstand

xm i/%A (4,2)

Der Druck nimmt von hier an nach innen wieder ab.
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Die Bemerkung, dass um einen andersgearteten Kern — etwa
polytroper oder flüssiger Natur — sich eine FK-Schale anfügen
lässt, führt uns weiter22). Dabei ist die Bestimmung der
Grenzflächenverhältnisse Kern--F.K-Schale verschieden je nach Kernart.
Haben wir ein gasförmiges Zentrum, so werden wir vor allem
Druckgleichheit an der Grenzfläche verlangen. Dadurch ist
allerdings bloss eine dynamische Stabilität erreicht, dagegen nicht eine
thermische. Je nachdem nämlich der Randdruck des Kerns grösser
oder kleiner ist als der Dampfdruck bei der betreffenden
Grenztemperatur, muss die FK- Schale an der Innenseite eine höhere oder
tiefere Temperatur haben als der Kern. Natürlich ist realiter eine
Übergangsschicht vorhanden, die eigentliche „Verflüssigungszone".
Dazu kommt die Bedingung, dass die Schwerebeschleunigung beim
Übergang von Kern zu FK-Schale sich stetig ändere. Dies führt,
wie man mit Hilfe von (3,1)(, (3,10), (3,11), (3,14) und (3,28) ersieht,
zu folgender Gleichung für die Konstante A

Ä f(l-f) (4,3)

Dabei bedeuten x0, q0 die der Grenzfläche entsprechenden Werte
von x und q in der FK-Sch&le; ~qk ist die mittlere Kerndichte.
Man erkennt:

Es sind Lösungen mit A > 0 zu erwarten. Für diese ist

3 A < x\

Das ist wichtig. Denn das Maximum der Temperatur liegt ja bei
Lösungen mit A > 0 an der Stelle

also nicht innerhalb der FK- Schale, und ist somit unschädlich.
Als zweite Bedingung bei flüssigem Kern wird man, um eine

Vergrösserung desselben zu sichern, d. h. seine Verdampfung zu
verhindern, verlangen, dass die Randtemperatur höchstens gleich
der angrenzenden FX-Temperatur sei. Das ergibt eine Ungleichung
für die Konstante B.

Die beiden Konstanten sind also bei gasförmigem Kern
vollständig festgelegt, bei flüssigem im Variationsbereich eingeengt.
Für die Masse der Gesamtkugel findet man analog wie in (3,25a)
die Beziehung:

M=M0 + m \—p- %X (4,4)

wo M0 Kernmasse, M Gesamtmasse.
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Wenn konstante Totalmasse vorausgesetzt wird, und sich x0
sowie t0 (r0 Wert von r an der Grenzfläche) ändern, so ist dies
auch bei xR sowie rR der Fall, wo etwa xR den Radius derjenigen
Kugel bedeutet, innerhalb welcher M enthalten ist. Allein x0 und
t0 selbst stehen in Beziehung zueinander, etwa gemäss einer Em-
denpolytropen. Dadurch wird eine allgemeine Diskussion dieses
Radius xB von der speziellen Kernstruktur abhängig gemacht.

Eine wichtige Frage ist die nach der thermischen Stabilität
der Temperaturverteilung in Abhängigkeit vom Radius. Hier ergibt
sich für das Verhältnis e von wirklichem, d. h. FFK-Temperatur-
gradient, zu adiabatischem

(—)
„_ \ a-t ÌVFK x 1

(4 5)*IdT
\ ar 'ad

x Verhältnis der spez. Wärmen.

Für e > 1 herrscht bekanntlich Instabilität: ein spontan sich
nach „oben" in Bewegung setzendes Gaselement steigt weiter.

Man erkennt, dass für

T >

Stabilität vorhanden ist. Bei Berücksichtigung der bekannten
Werte von x ergibt dies die Aussage, dass nur der zentrale Teil
der VFK Konvektionsströmungen zulässt. Diese Bemerkungen
basieren allerdings auf dem trockenadiabatischen Gradienten. Da
die feuchtadiabatischen — mit reversibel und irreversibel feucht-
adiabatischem Gradient als Extremfällen (vgl. S. 175) — immer

*) Beweis: Für einen adiabatischen Vorgang ist

oder, mit (3,1) und
T const • p "

p -qT,
(—)
\ dr )ad

xr-i ß x-i » 2mr,[Mm-n
* »»- * mamG x2

Anderseits ist infolge (3,18) und (3,20), (3,25)

/dT\ _
O.L

_T

\ dr )vfk~ 3

woraus sofort s folgt wegen (3,19), (3,26) •
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kleiner sind, so muss damit gerechnet werden, dass noch in weiteren
Gebieten der VFK Instabilität vorhanden ist. Aber diese
Instabilität ist letztlich begründet in der Kondensationswärme des in
aufsteigenden Strömen verflüssigten Dampfes : diese aufsteigenden
Dampfmassen bleiben gesättigt und entsprechen also immer noch
den Annahmen über die Konstitution der VFK; die Erhaltung
der letzteren ist damit gesichert.

Eine Schwierigkeit bedeutet die Tatsache, dass die VFK nicht
endlich ist. Sie lässt sich wohl beheben durch folgende überschlägige
Rechnung: Erstens kann man die durch Überschreiten einer
hyperbolischen Geschwindigkeit

V 2 G M,

pro Jahr von der Masse Mr innerhalb der Kugel mit Radius r
verlorene Teilmasse bestimmen23). Für eine VFK mit Mr 1,68 • 1029g
und r 2,04 • 1012 cm ist die Randtemperatur 1690°. Sie bestehe
aus Eisen mit p 57. Dann beträgt der Massenverlust

A M ~5- IO27 g/Jahr

Ermittelt man andrerseits die zur Abstrahlung der gesamten
Verdampfungswärme M • X bei der angegebenen Randtemperatur von
1690° K nötige Zeit t*, so erhält man

t ~ 1/2 Jahr

Diese Zeit — sie wird natürlich nur grössenordnungsmässig stimmen
— ist sehr kurz. Der Massenverlust im FFK-Stadium wird dadurch
in erträglichen Schranken gehalten.

Auffällig sind weiter die infolge der Fastisothermstruktur auch
in äussern Schichten auftretenden Hitzegrade. Sie lassen eine
Entgasung der Materie verständlich erscheinen. Dass gerade die Wahl
des Schmelzpunktes von Eisen als Randtemperatur die richtigen
Grössenordnungen der Massen ergibt, ist wohl zufälliger Natur;
denn hier ist dann auch die Ausdehnung gross genug — von der
Grössenordnung der heutigen Planetenabstände —, um die
Störungen durch Nachbarmassen übermächtig werden zu lassen.

*) Gemäss der Beziehung

MX
t--

4 n r2 a Tt*
Mit a Stefan'sche Konstante ~ 5-10"5 cgs grad""4, Te« 2 T« 2«).
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Die Möglichkeit einer stetigen Reihenfolge stabiler FK- Schalen
mit wachsendem Ausmass, als Hülle eines gasförmigen bzw. flüssigen

Kerns, lässt erkennen, dass die in diesen Ausführungen
diskutierten Anschauungen eine zumindest dynamisch stabile Entwicklung
der Kondensation einer Gaskugel aufzeigen. Indem die Tropfen —
es sei hier festgestellt, dass das nur als rohe Umschreibung zu werten
ist*) — immer näher ans Zentrum gelangen können, ist damit auch
ein Vordringen der Fif-Region gegen den Mittelpunkt hin
verbunden, bis schliesslich die VFK entsteht. Da diese für die
zentralen Teile kaum mehr zuständig, sie andrerseits weitgehend
unabhängig von den dortigen Verhältnissen ist, so soll über die Vorgänge
im Zentrum bei der Kondensation einer Gaskugel nichts weiter
ausgesagt werden. Nur sei darauf aufmerksam gemacht, dass der
Kern mit seiner kleinen Masse gemäss den in Abschnitt II gemachten
Überlegungen sich direkt verflüssigen kann. Die in ihm vorhandenen

extremen Bedingungen machen das nur wahrscheinlicher.
Eine Synthese der beiden Möglichkeiten zur Kondensation

wird das Richtige treffen:
Zuerst einmal erfolgt Verflüssigung von aussen bis in die Nähe

den Zentrums, dann besorgt eine direkte den Rest. Es bildet sich
ein flüssiger Kern, der mit weiterschreitender Abkühlung sukzessive
wächst bis zu seiner vollen durch die Masse M bestimmten Grösse.
Im Leben eines Planeten bedeutet die Verflüssigung eine nur kurz
dauernde, aber wichtige Episode.

Die vorliegende Arbeit ist unter Leitung von Herrn Professor
A. Mercier entstanden, dem ich für fördernde Diskussionen bestens
danke.

Seminar für theoretische Physik der Universität Bern.
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