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Zur Spin-Bahnkoppelung
zweier Nukleonen in der Mesontheorie
von Markus Fierz.

(21. I1. 1945.)

Zusammenfassung. Mit Hilfe friiher entwickelter Methoden wird die der sog.
Tensorkraft entsprechende Matrix, die sich aus der symmetrischen Mesontheorie
mit starker Koppelung ergibt, berechnet (§ 1). Die fiir den Deuteron-Grundzustand
massgebenden Matrixelemente werden explizit angegeben. Die Moglichkeiten, das
zugehorige Kigenwertproblem niherungsweise zu behandeln, werden kurz disku-
tiert (§ 2). Die fiir die Berechnung des Quadrupolmomentes notwendigen Matrix-
elemente von ¢,? werden angegeben (§ 3).

In der Mesontheorie mit starker Koppelung treten angeregte
Zustéinde der Nukleonen (Proton-Neutron) mit hoheren Werten
von Spin und Ladung auf (Isobaren). Da die Wechselwirkung
Ubergiinge zwischen den angeregten Zustinden zur Folge hat, ist
schon das Zweikorperproblem in dieser Theorie recht verwickelt.
Pavrr und Kusakal) haben daher bel ihrer Diskussion des Zwei-
korperproblems die Isobaren lediglich durch eine Stérungsrechnung
berticksichtigt. Dies setzt voraus, dass die Isobaren-Anregungs-
energie ¢ geniigend gross ist. Fiir den Fall, dass diese Voraussetzung
nicht zutrifft, haben Frerz und WEeNTZEL?) ein Rechenver-
tahren entwickelt, wobeil jedoch die sog. Tensorkraft, die eine Spin-
Bahnkoppelung der Nukleonen zur Folge hat, vernachlassigt wurde.
Dies ist ber physikalischen Anwendungen unzuléssig; denn die
Tensorkraft 1st fir das Quadrupolmoment des Deuterons mass-
gebend und auch bel der Streuung von Neutronen in Wasserstoff
wesentlich.

In der vorliegenden Arbeit soll daher vor allem die der Tensor-
kraft zugeordnete Matrix mit den Drehimpulsquantenzahlen als
Variablen berechnet werden. Hierbei beniitzen wir das gleiche
Rechenverfahren und dieselben Bezeichnungen, wie bei der Be-
rechnung der Matrix £, die fir die Spinkoppelung der ,,skalaren®
Wechselwirkung massgebend 1st3).

1) W. Pavr1 und S. Kusara, Phys. Rev. 63, 400 (1943).

%) M. F1erz und G. WENTZEL, Helv. Phys. Acta 17, 215 (1944). — G. WENT-
ZEL, ebenda 17, 252 (1944),

8) M. Fierz, Helv. Phys. Acta 17 181 (1944). Diese Arbeit wird im folgenden
als (A) zitiert.
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§ 1. Die Matrix der Tensorkraft.

Das Potential der Tensorkraft kann in folgender Gestalt ge-
schrieben werden?):

Up=TU (r) Ze ¢, {Zm(l) o2 — .Q} (1)
(@,k 1—1,23)

Die beiden Nukleonen sind durch die Indices (1) und (2) unter-
schieden. U (r) 1st eine Funktion des Abstandes r der beiden Nu-
kleonen; e ist der Einheitsvektor in ihrer Verbindungsrichtung.
z{), 219 sind Operatoren, die den Spin- und Ladungsfreiheitsgraden
zugeordnet sind. Wir denken sie uns in der in (A, II.13) ange-
gebenen Form dargestellt. £ ist der in (A) behandelte Operator
5 af)afl.

Wir wollen (1) als Matrix in den Drehimpulsquantenzahlen
darstellen. Diese sind:

Die Spinquantenzahlen der beiden Nukleonen

115 725
die Quantenzahlen der Spinsumme und des gesamten isotopen
Spins (der Ladung)
J, K.
Es gilt
|27 < J, K <jy+is-
Weiter treten wegen der durch (1) hervorgerufenen Spin-Bahn-

koppelung auf:
Die Quantenzahl des Bahnmomentes

L
und diejenige des gesamten Impulsmomentes
1

| J=L] g I d + L

£ 1st diagonal in I und L und wird durch die Formeln (A, IV)
gegeben. Wir haben daher noch den Operator

T= )¢ a)) «ff (2)
ik, 1

Es gilt

als Matrix in den obigen Variablen darzustellen.

%) Siehe z. B. G. WENTZEL, Helv. Phys. Acta 16 (1943) 551. §15. Unsere m%
entsprechen dort den Grossen Sg;’g. Siehe auch Paurr und KusaAxka, L. c.
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Im Sinne der in (A) verwendeten Schreibweise setzen wir

1
& = \/Mfﬁ-(LlBle—l )+ L—1|Bi| L) e )
) kann geméss (A, II. 18) mit Hilfe der Operatoren d{"), b, b{1)*. ..
dargestellt werden. Wir nennen

(J1 | dy | 71) = (jy | f§}) l 11)
Gl beld—1) = (o [P —1)
1| Dx] s+ 1) = Ga [ P )7+ 1
Dann gilt zufolge (A, III)
(71 | f%) [71) = (a | w(J,59) | 52")(J | De | J)

(71IU(J j2) | 72) (| Bi | (4)
—liBlJ:]l 3.72|?1

Entsprechend gilt fiir d}f’, b2, b = fi2

(7.2”};2)[?-2' (2 | u(J, 7.1)|7.2’ (JIDk’J)
— (2 [ v (J,90) | 72") (J| Be| J —1)
—(J—=1[Bi| ) Galw (J,51)] 7). (5)

Dabei sind die Faktoren %, v, w durch folgendes Schema definiert:

=0 IW=h—1 n=nh+1

(Glw (J,92) |1)| T, 015 92) | 8(J 715 92) | s(J, 91+ 1, 75) (6)
Gl v, 92) 1720 90T, 91, 92) | 8y 51, 09) | 7(J, 51 + 1, 7o)
Gulw, 92 170190, 715 02) |7 (T 71, 92) | BT, 00 + 1, 55)

(f,g,r,s,tsind durch die Formeln (A. III) gegeben.)

Wenn wir die Matrix T berechnen, indem wir (3), (4) und (5)
beniitzen, so treten, dhnlich wie bei der Berechnung von £ in (A)
die drehinvarianten Ausdriicke

(L|B|L—1)(J|Deld) =34 4,(I,L,J)
(L|By|L—1)(J | By|J—1) =} 4,(I, L, J)
(L] Bo|L—1)(J | B |J +1)= $ 4,(I, L, J)

auf. Auf Grund der in (A) durchgefiithrten Rechnung gilt

Ay(I, L, J)={[II+1) — (L—J) (L—J —1)]
[(L+J)(L+ J+1)—I(I+1)]}#

L, J) =—{[I*— (L—J —1)%] [({+1)*— (L—J—1)?]}}

L, J) = {[I>— (L+J)*] [(1 + 1) — (L +J)7]}*

(7).

-

Ag(1
4,1,
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Man moge dabei beachten, dass hier 45 per definitionem nega-
tiv ist. Abgesehen davon sind die 4; die gleichen Funktionen wie
in (A, IV).

Der auf die Ladung beziigliche Teil der Matrix T' rithrt von
den Faktoren h{", b, ), ¢ in x; her. Diese ergeben in den
Matrixelementen von T folgende Faktoren:

WORE = § 4,(K, 11, 55) = 3 (1, 72 | A(K) [ 11, 72)
Cgcl)hgcz) =3 Az(K: jp J2) =3 (1, jz i A(K) I 7.1 —1, 72)
1
1
2

(1

I

A : 0 ! - 8
0 P= % Ag(K, 1, 2) =3 (1, Jo | A(K) [ 72— 1,52+ 1) ®)
0(1)5(2)‘ 3 44(K, 71, 2) (f1»j2|A(K) ij1_1’72_1)

Bis auf das Vorzeichen von A4, sind die 4, wieder die in (A, IV)
angegebenen Funktionen.

it

if

Wir setzen nun noch zur Abkiirzung
1

- 1 .o e 1
“(,0) = g7y s 20 i D =el—4.0) = T 7==

Dann konnen wir die Matrixelemente von T auf Grund der For-
meln (A,IL 13) und (2) bis (8) folgendermassen schreiben:

s Ly gus e | T Ly gy 52') = § ¢ (fas 12) @ ey 727) -
1 g2 | AK) [1',557) - (0, Ly gy, ga | GUD) [ B s ) (9)

Dabei haben die G(I) folgende Bedeutung:

(J,L,?'l,izlGlJ L,js 7)) = -
: s AL L, D) AL L+1, )
[(71]“(“]:?2),?1 72"“’(‘] ?1 [72 {(2L+1)(2L 1)+(2L+1)(2L+3)}
A2(I, L, J) Az (1, J, L)
~( v (432[ 91) (Galw (J, 51)] 72) [21,1(1 2L- 1)+(2L§-1)(2L+3)}
e n| 43U, L, J)
=1 |w( +1,94,) ) 1117 (G2 | o( J+1s?1)l72){(21431)(21,_"1)"'
4 ANLL+1,7+1)
. o 2L+1)(2L+3) }]
J> Ly g1, 52 | G| I, L2, 4y, ') = L (10)
elinvainaics Wl vy i2) 1) G [ (T, 00) [ 32)
' AZ(I’L+ 1’ J)A2(I:L ci 25 J)
—{0u 2,72 [70) G | w(T, 1) [ 7)) +
T w+1,4) [31)Ge |0 (T+1,5) | 32) } -
A3(I:J: L)A4(I’J;L+2)]

11
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. L, 51,92 | G|+ 2, L, 47, 55) =

2
— A, (L, L, YA,(I,J+2, L)
(2 L—1)(2 L+3) 73\ 5 A Ty TIET
(71 [w(T+1,99)] 11) Gz [w (T +2, §1)] 72)
(J:L:jlyj2IGIJ+23L+23:"1’57'2’):
1
_(2L+3)\/(2L+1)(2L¢5)A4(I’J_JF.I’L?LI)' o
- A (1, J+2,0+2) (5, |w(J+1,72)| ) (?2“’0(‘]4’2,71’) “2’)
(J5L57'15j2‘G\J+23L—2:'j1”'j2’):
1 P
_(2 L%])'\/(,‘ZL-{»-‘I) @ L-3) A3(15 L-: J)A3 (IJL_l’ J+1)
w1, 0 | 1) G | w(d 42, 417) | 42

Die durch (9) und (10) definierten Matrixelemente sind, abge-
sehen von ihren konjugierten, die einzigen, welche nicht wver-
schwinden. Es gelten demnach die Auswahlregeln:

Al =AK=0
Aj =0, +1
AJ=0,+2; AL=10,+ 2

Weiter bestehen zwischen den Quantenzahlen die Ungleichungen

<I<J+L; |j1—7|<J, K <j;+ 74,

Der Hamilton-Operator des Zweikorperproblems wird diagonal
in K und I und hat fiir festes K und I folgende Gestalt:

2
?%(‘“oarﬁ (L+1)+ C (G + )24 (j, + _2}),_ |
(J L ?1,?2|1 7, L’ 7'1', ffz’) (11)
+ (V) —=3U@))01 2] 21753, L|1]J, L
+U(.T)(J L ?1}?21 TIJ, L’ jl :72)

Hier ist M die Nukleonmasse, » der Abstand der beiden Nukleonen,
¢ die Isobarenenergie. (- | 2 | -) und (- | T'| -) sind noch Funktionen
von J und K bzw. von I und K

H =

Die Eigenfunktionen von H sind Funktionen von 7, 9§y, 2, J
und L:

F:F(j13j25’]: L,’I") (12)

Die Normierungsgleichung lautet

delF(hs]z,J Llr=1. (13)

1, 12
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§ 2. Zur Theorie des Deuteron-Grundzustandes.

Dem Deuteron-Grundzustand entspricht i der hier zur Dis-
kussion stehenden Theorie eine Wellenfunktion mit

I=1,K=0,J=1,8,5...,L=0,2,4...

Wegen den zwischen den Drehimpulsquantenzahlen bestehenden
Ungleichungen ist j; = j=7 und J =L 4+ 1.

Dadurch ergeben sich fiir die Matrix T' gewisse Vereinfachun-
gen, indem, je nachdem J = L 4+ 1, nur folgende Uberginge auf-
treten konnen:

J, L
J=L+1:J,L<—>\dJ,L+2
J+2, L+2
J, L _
J=L—1:J,L<—» {J+2,L
J+2, L+2

wobel gleichzeitig 45 = 0, 4+ 1 sein kann.

Das dem Grundzustand des Deuterons entsprechende Eigen-
wertproblem 1st aber gleichwohl noch so kompliziert, dass eine
strenge Losung unmoglich sein diirfte. Man ist daher auf Nahe-
rungen angewlesen. PAurr und Kusakal) haben angenommen, die
Isobarenenergie sei so gross, dass Zustdnde mit § > ®/, praktisch
nicht angeregt sind und haben diese deshalb vernachléassigt. Die
Terme mit 7 = 3/, haben sie iiberdies nur durch eine Stérungsrech-
nung berticksichtigt. Will man iiber ¢ von vorneherein keine An-
nahme machen, so darf man die Werte von 4 nicht beschréanken.
Wohl aber darf man die Zustdnde mit grossen Werten von L und
J vernachléssigen, und zwar auf Grund der folgenden Uberlegung:

Erfahrungsgemiss ist das Quadrupolmoment des Deuterons
verhiltnisméssig sehr klein, was mit der kleinen Reichweite der
Kernkrafte zusammenhéngt. Man wird daher erwarten, dass die
Zustéinde mit L > 4, zufolge der starken Wirkung der Zentrifugal-
kraft bei kleinen Abstédnden r, praktisch keine Rolle spielen. Hs
gentigt deshalb, die Zustidnde mit

L=0,J=1; L=2,J=1und J=3

zu beriicksichtigen.
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Die den Ubergéingen zwischen diesen Zustéinden entsprechen-
den Matrixelemente von 7' — § 2 sind in der nachstehenden Ta-
belle zusammengestellt (I = 1, K = 0).

J L?' !]I L/ ]'I (J, L’ j I T—%‘Q | JI’ L!’ ?'/)
Lo | nag | Y2 ()
Fi ] rerl 15 j(j+1)
. A2 4/
1,0,7 1,2,?—1 _]3—'*“*—‘?—
1,0,j-1| 1,2, \/_zﬂz__l_
15 ]
1 —1)(j+2)(2j-1)(2]+3
1,0, 3.2, ] _VG-1D(+2)25-1)(2j+3)
5\/3 j(j+1)
; ; (-1 2)(27-3)
1,0,79 3,2,7—-1 _3 2?+1
11 D(G+2)(2j+3
1,0,i-1| 3,2, _ ____]/(H ) (j+2)(2j+3)
54/3 7 29-1
; ; 1 1
1,2, 1,2, e
7 SIS (2+ 7’(7’+1))
) . 1 4521
1,27 1,2,9-1 BET 7W
1,2, 3,2, 1 3#1_\/'1'22'12'3
45 » 95 ] 35 V 3+ VU DG+2)27-1)(27+3)
: - (j-1(-2)(2;-3)
1524 3,2,j~1 ]f ]/ T
. 1)
1,2,i-1| 3.2, ]f V7+ (G1+2)(27+3)
29-1
2’. 2 5‘
52 . 35(3 +7(?+1))
3,2,9 3,2,;—-1| - = - V(4 72— 9) (4 j2—16)
’ 105 j:\/4?'2_1

Aus der Tabelle siecht man, dass die in J und L diagonalen
Matrixelemente sich durch eine Linearkombination aus der Ein-
heitsmatrix und der Matrix

(o7 L1, 7)
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darstellen lassen. Es ist ndmlich, wie in (A) gezeigt wurde, fiir
K=0:
J(T+1)

o[ R1J,9) = 1 =550y

(J,iQ|d, —1)= YEP-TIEP-T+1))

2j4/42-1
daher
: 1 o1 1 y
(1’2’7‘T_§‘Q|1’2’7):_555’_”—"(1’7 I‘Q|1!7)
. 1 g 135 (14)
(832’?lT“'"g"‘Q[8’2’7’):§5‘6ﬁ’_"m'5'(3’7lg‘gyf)

Wenn man also das hier gestellte Problem mit den von Fierz und
WenNTzEL?) entwickelten Methoden behandeln will, so ergibt sich
folgende Mdoglichkeit:

Die Diagonalelemente (14) von T — 1 £ kann man, beziiglich
threr Abhéngigkeit von § streng beriicksichtigen; die anderen Ma-
trixelemente wird man jedoch, im Sinne einer Storungsrechnung
durch ihre Erwartungswerte beziiglich § ersetzen. Man gelangt so
zu einem Problem, das grosse Ahnlichkeit mit dem von RAriTa
und SCcEWINGER®) behandelten besitzt. Auf die mathematische Be-
handlung des so entstehenden Gleichungssystems kann jedoch im
Rahmen dieser Arbeit nicht eingegangen werden.

§ 3. Das Quadrupolmoment des Deuterons.

Das Quadrupolmoment des Deuterons ist definiert als Erwar-
tungswert des Operators

= Grifen— &) (15)

im Zustande I, M, = I, wobei M; die z-Komponente des gesamten
Impulsmomentes bedeutet. Um diesen Erwartungswert zu berech-
nen, muss die Matrix e2 in den Drehimpuls-Variablen gegeben sein.
Mit Hilfe der entwickelten Rechenmethoden findet man fiir die
hier interessierenden Matrixelemente

(I,L| |1, L) = g7 { I**(I,L, J) + (2 I+1)r*(I+1, L, ) }+

1
trzrne T (8 L, D+ @ I+ #(1+1, L+1, )} (16)

%) W. Rarrra und J. ScHWINGER, Phys. Rev. 59, 436 (1941).
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1

2L+3)V/(2L+1)2L+5)

{11, L+ 1, J)s(I, L +2, )

+ @ I+1)t(I+1, L1, J) (141, L+2, )} (17)

(I, L|eg| I, L+2)=

Daraus folgt fiir das Deuteron, falls wieder Zustéinde mit L >4
vernachlissigt werden

Q:;_/‘Tsz{\—l/gF(j: 1,0,r) F(,1,2,7)

1 . 1 :
—~2~6~Fz(y,1,2,7‘)———7617’2(7,3,2,7')}. (18)

Basel, Physikalische Anstalt der Universitit.
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