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Zur Spin-Bahnkoppelung"
zweier Nukleonen in der Mesontheorie

von Markus Fierz.
(21. IL 1945.)

Zusammenfassung. Mit Hilfe früher entwickelter Methoden wird die der sog.
Tensorkraft entsprechende Matrix, die sich aus der symmetrischen Mesontheorie
mit starker Koppelung ergibt, berechnet (§ 1). Die für den Deuteron-Grundzustand
massgebenden Matrixelemente werden explizit angegeben. Die Möglichkeiten, das

zugehörige Eigenwertproblem näherungsweise zu behandeln, werden kurz diskutiert

(§ 2). Die für die Berechnung des Quadrupolmomentes notwendigen
Matrixelemente von ez2 werden angegeben (§ 3).

In der Mesontheorie mit starker Koppelung treten angeregte
Zustände der Nukleonen (Proton-Neutron) mit höheren Werten
von Spin und Ladung auf (Isobaren). Da die Wechselwirkung
Übergänge zwischen den angeregten Zuständen zur Folge hat, ist
schon das Zweikörperproblem in dieser Theorie recht verwickelt.
Pauli und Ktjsaka1) haben daher bei ihrer Diskussion des

Zweikörperproblems die Isobaren lediglich durch eine Störungsrechnung
berücksichtigt. Dies setzt voraus, dass die Isobar en-Anregungsenergie

e genügend gross ist. Für den Fall, dass diese Voraussetzung
nicht zutrifft, haben Fierz und Wbntzbl2) ein Rechenverfahren

entwickelt, wobei jedoch die sog. Tensorkraft, die eine Spin-
Bahnkoppelung der Nukleonen zur Folge hat, vernachlässigt wurde.
Dies ist bei physikalischen Anwendungen unzulässig; denn die
Tensorkraft ist für das Quadrupolmoment des Deuterons
massgebend und auch bei der Streuung von Neutronen in Wasserstoff
wesentlich.

In der vorliegenden Arbeit soll daher vor allem die der Tensorkraft

zugeordnete Matrix mit den Drehimpulsquantenzahlen als
Variablen berechnet werden. Hierbei benützen wir das gleiche
Rechenverfahren und dieselben Bezeichnungen, wie bei der
Berechnung der Matrix ü, die für die Spinkoppelung der „skalaren"
Wechselwirkung massgebend ist3).

W. Pauli und S. Kusaka, Phys. Rev. 63, 400 (1943).
2) M. Fierz und G. Wbntzbl, Helv. Phys. Acta 17, 215 (1944). — G. Wbntzbl,

ebenda 17, 252 (1944).
3) M. Fierz, Helv. Phys. Acta 17,181 (1944). Diese Arbeit wird im folgenden

als (A) zitiert.
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§ 1. Die Matrix der Tensorkraft.

Das Potential der Tensorkraft kann in folgender Gestalt
geschrieben werden4) :

UT=U{r)Z^{Z4I4l-ìàikQ\ (i)
i, k l l }

(i, k, 1 1, 2, 3.)

Die beiden Nukleonen sind durch die Indices (1) und (2)
unterschieden. U(r) ist eine Funktion des Abstandes r der beiden
Nukleonen; e ist der Einheitsvektor in ihrer Verbindungsrichtung.
xh> xu sm(^ Operatoren, die den Spin- und Ladungsfreiheitsgraden
zugeordnet sind. Wir denken sie uns in der in (A, IL 13)
angegebenen Form dargestellt, ü ist der in (A) behandelte Operator
y r(D r(2)
4-i ^ik ^ik -

%,K.Wir wollen (1) als Matrix in den Drehimpulsquantenzahlen
darstellen. Diese sind:

Die Spinquantenzahlen der beiden Nukleonen

H,i%>

die Quantenzahlen der Spinsumme und des gesamten isotopen
Spins (der Ladung)

J,K.
Es gilt

\j1-j2\<J,K<jx+j2.
Weiter treten wegen der durch (1) hervorgerufenen Spin-Bahnkoppelung

auf:
Die Quantenzahl des Bahnmomentes

L
und diejenige des gesamten Impulsmomentes

I
ES gilt ITTI T TT&

| J — L| <I< J + L

ü ist diagonal in I und L und wird durch die Formeln (A, IV)
gegeben. Wir haben daher noch den Operator

T=E^k4l^ (2)
i,k,l

als Matrix in den obigen Variablen darzustellen.

4) Siehe z.B.G.Wentzel, Helv. Phys. Acta 16(1943)551. §15. Unsere x("]

entsprechen dort den Grössen Sv'. Siehe auch Pauli und Kusaka, 1. c.
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Im Sinne der in (A) verwendeten Schreibweise setzen wir

e*: ^i2 ¦(L|B*|L-1) + (L-1|BÎ|L) (3)

a;W kann gemäss (A, IL 13) mit Hilfe der Operatoren d^, b£\ b^*...
dargestellt werden. Wir nennen

(h I 4 | h) öi | /i1» | h)

(hl^lh-l)=(hl/i1)lh-l)
(hl^|h + i)=(hl/i1)h" + i).

Dann gilt zufolge (A, III)
(3i\tf\h')=(h\u(J,h)\jx')(J\Dk\J)

+ (h\v(J,j2)\h')(J\Bk\J-l) (4)
+ (J-l\Bt\J)(jx\w(J,j2)\jx').

Entsprechend gilt für äf, bf, b[2)* ff>

(3z\W\Jz)= ih\u(J ,n)\j2') {J \Dk\J)
-(h\v(J,h)\j2')(J\Bk\J-l)
-{J-l\Bl\J){j2\w{J,j,)\j2'). (5)

Dabei sind die Faktoren u,v,w durch folgendes Schema definiert:

h'=ii ?V=h-i h'=?'i + l
(h\u(J,j2)\jxr) f{J,h,h) S(J,J1,J2) s(J,Ji + l.î'a)

Oi KJ, ?2) 1 ?Y) g(J,ji,J2) t(J>h>h) »•(J»h + l.Ja)

(jx\w{J,j2)\jx') g(J,ii,J2) r{J,ii,h) t(J>h + 1,?ü)

(6)

(f,g,r,s,t sind durch die Formeln (A. III) gegeben.)
Wenn wir die Matrix T berechnen, indem wir (3), (4) und (5)

benützen, so treten, ähnlich wie bei der Berechnung von Q in (A)
die drehinvarianten Ausdrücke

(L\Bk\L-l){J\Dk\J) =\A2(1,L,J)
(L | Bk j L - 1) (J | Bk | J - 1) i 4,(1, L, J)
(L | £* | L - 1) (J | E; I J + 1) \ AA\lt L, J)

auf. Auf Grund der in (A) durchgeführten Rechnung gilt

^(1, L, J) ~ { [1(1 +1)-(L-J)(L-J-1)1
[(L + J)(L+J+1)-1(1 + 1)]}*

43(I, L, J) =-{[I-2-(L-J-l)2] [(I+l)2_(L_J-l)2]}i Ì ^ ]

44(J,L,J) {[P-(L + J)2][(I + 1)2-(L + J)2]}*.
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Man möge dabei beachten, dass hier A3 per definitionem negativ
ist. Abgesehen davon sind die Ak die gleichen Funktionen wie

in (A, IV).
Der auf die Ladung bezügliche Teil der Matrix T rührt von

den Faktoren hkx\ hf\ ckl\ c[2) in xik her. Diese ergeben in den
Matrixelementen von T folgende Faktoren:

W-li^.h.j^K/i.j.MWIh.Ji)
W i MK, h, u) i (jx, j2 \A{K)\jx-i, n)
c?el®=lA3{K,jx,j2)^l{jx,j2\A{K)\jx-\,j2+\)
c[1)cì)-ìMK,h,h)^ìtix,n\HK)\h--i,H-*)

(8)

Bis auf das Vorzeichen von A3 sind die Ak wieder die in (A, IV)
angegebenen Funktionen.

Wir setzen nun noch zur Abkürzung
1

*
1

Dann können wir die Matrixelemente von T auf Grund der
Formeln (A,II. 13) und (2) bis (8) folgendermassen schreiben:

(J, L, jx, j2\T\ J', L', jV, jV) l a.(jx, jx')a.(j2, j2') ¦

• öi, J, I 4 (Z) | ?1', ?V) • (J, L, jx, h | G (I) I J', L', jx', j2') (9)

Dabei haben die G(I) folgende Bedeutung:

(J,L,j1,j2\G\J,L,j1',j2')
'/•i a -m-A,-,i ,t • ,m • ,A A\(I,L,J) A\(l,L+l,J)\

r i /t -w • >\t- i /t-/mwx( 4!(/, i, J) Al(I,.J,L) }

-öib(J,?2)lh0ö>(^h0i^{(2L;iK2L_1) + (2L+1)(2L+3))

- öi i to(j+i, ?2) i hOöi i t>(j+i,hOi yi/){(2ffl;(a/_)1)+
^i(j,£+i,j+i) j
(2L+l)(2L+3) /

(J.^.h»J»|ö| J,L+2,/1',j2')
(2L+3)vAtïH2ÏT5) ^1 I M(J' ?a) I M (?'2 I ^'^ I ^ ¦

¦ A2(I,L + 1,J)A2(I,L + 2,J)
-{Öi I * (J, /,) | ;V) 02 I w(J, //) | /,') +

+ Öi I to (J + 1, j2) | ?V) 021 « (J + 1, jV) I jV) } •

•43(I,J,L)44(I,J,L + 2)]

(10)

11



(10)
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(J, L, jx, j2 | G | J + 2, L, jY, jV)
2

¦~(2L-1H2L+3Ï ^s(-f> £> J)44(I, J + 2, L)
öil«(J+i,?2)lh')Ö2k(J+2,h')hV)

(J,L,j1,/,|G|J + 2,L+2,j1',jV)
J_ AJI,J+1,L + 1).

(2 L+3)\/{2 L+l)(2 L + 5)
4V y

¦At(I, J+2 ,L+2) Öi |w (J+l, ?2) | ?V) • Ö» h (J+2, h') h')

(J,L,j1,j2\G\J + 2,L-2,jx',j2')
7

1

=43(I, L, J) 43 (I, L - 1, J+l) •

(2L-l)V(2i+l)(2i>-3) 3 ; V

• öi | « J + 1, ?2) I ji) 02 | « J + 2, h') | ?V).

Die durch (9) und (10) definierten Matrixelemente sind,
abgesehen von ihren konjugierten, die einzigen, welche nicht
verschwinden. Es gelten demnach die Auswahlregeln:

AI AK= 0

Aj =0, ±1
AJ= 0, ±2; AL= 0, ± 2

Weiter bestehen zwischen den Quantenzahlen die Ungleichungen

| J - L | < I < J + L ; | jx - j, | < J, K < jx + j2

Der Hamilton-Operator des Zweikörperproblems wird diagonal
in K und I und hat für festes K und I folgende Gestalt:

#=Ì(-^ + ^^+|{Oi + i)2+02 + l)2-2})
• (J, ÌMi,?2| 1 \J',L',jx',j2') l, (u)

+ (7(r) - i t/(r)) öi, ja | Û | h', ?V) (J, L | 1 | J', L') +
+ ü(r)(J,L,,-1,,-8|T|J',L',j1',7V)-

Hier ist M die Nukleonmasse, r der Abstand der beiden Nukleonen,
e die Isobarenenergie. (• | Q | •) und (• | T \ •) sind noch Funktionen
von J und K bzw. von I und K.

Die Eigenfunktionen von H sind Funktionen von r, jx, j2, J
und L:

F=F(jx,j2,J,L,r) (12)

Die Normierungsgleichung lautet
CO

S S [dr\F(jx,j2,J,L,r)\*=l. (13)
i.i. .1 L yji, h J, L 0
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§ 2. Zur Theorie des Deuteron-Grundzustandes.

Dem Deuteron-Grundzustand entspricht in der hier zur
Diskussion stehenden Theorie eine Wellenfunktion mit

I=l,iï=0,J=l,3,5...,L=0,2,4...
Wegen den zwischen den Drehimpulsquantenzahlen bestehenden
Ungleichungen ist jx j2 j und J L +_ 1.

Dadurch ergeben sich für die Matrix T gewisse Vereinfachungen,

indem, je nachdem J L +_ 1, nur folgende Übergänge
auftreten können:

(J,L
J L + 1 : J, L -<—> J, L+2

{ J+2,L+2
(J,L

J= L —1 : J,L<—* \ J+2,L
\J+2,L+2

wobei gleichzeitig Aj= 0, ± 1 sein kann.

Das dem Grundzustand des Deuterons entsprechende
Eigenwertproblem ist aber gleichwohl noch so kompliziert, dass eine
strenge Lösung unmöglich sein dürfte. Man ist daher auf
Näherungen angewiesen. Pauli und Kusaka1) haben angenommen, die
Isobarenenergie sei so gross, dass Zustände mit j > 5/2 praktisch
nicht angeregt sind und haben diese deshalb vernachlässigt. Die
Terme mit j 3/2 haben sie überdies nur durch eine Störungsrechnung

berücksichtigt. Will man über e von vorneherein keine
Annahme machen, so darf man die Werte von j nicht beschränken.
Wohl aber darf man die Zustände mit grossen Werten von L und
J vernachlässigen, und zwar auf Grund der folgenden Überlegung :

Erfahrungsgemäss ist das Quadrupolmoment des Deuterons
verhältnismässig sehr klein, was mit der kleinen Reichweite der
Kernkräfte zusammenhängt. Man wird daher erwarten, dass die
Zustände mit L > 4, zufolge der starken Wirkung der Zentrifugalkraft

bei kleinen Abständen r, praktisch keine Rolle spielen. Es

genügt deshalb, die Zustände mit

L=0,J=1; L= 2, J= 1 und J=3
zu berücksichtigen.
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Die den Übergängen zwischen diesen Zuständen entsprechenden

Matrixelemente von T — \ ü sind in der nachstehenden
Tabelle zusammengestellt (I \,K= 0).

JL J'L'f (J,L,j\T-\Q\J',L',Y)

1,0,

1,0,

¦1,0,

1,0,

1,0,

1,0,

1,2,

1,2,

1,2,

1,2,

1,2,

3,2,

3,2,

-1

1,2,7

1,2, j

1,2,7

3,2, j

3,2,7

3,2,;

1,2,7

1,2,7

3,2,7

3,2,7

3,2,7

3,2,7

3,2,7 -1

2 + -
1

15 \
'

7(7 + 1)

\ß Vi'-1
Tö 7

\/¥ Vf
15

1

1

;

V(j'-l)0+2)(2j-l)(2j + 3)

5 V3 O+i)
1 \th-1)0- 2) (2 -3)

5 V^ 27 + 1

1 i n/0+i)0'+ 2) (2 + 3)

5 \/3
1 («\

7
V

1 \

27 -1

15 V+
1 Vi

15

O'+i)/
2-l
i

iVl:?7T+-T)V0--l)0+2)(2 7-l)(2 7+3)

Ll/Ä 1 -|/(7rï)(7-2)(2 7-3)
15 V 3

'
7 K 2 7 + 1

Ll/Z * -|/(7 + l)(7 + 2)(2 7 + 3)
55 P 3

'
?' K 2 7-135

16 /1
35 V 3

4

;0y
105 jVif-1 V(4 72-9)(4j2-16)

Aus der Tabelle sieht man, dass die in J und L diagonalen
Matrixelemente sich durch eine Linearkombination aus der Ein-
heitsmatrix und der Matrix

(J, i\o\J, Ï)
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darstellen lassen. Es ist nämlich, wie in (A) gezeigt wurde, für
K= 0:

n ¦ i n i t -\ 1 •/(-/+!)
{J,i\Q\J,1)=l~-mTT)

u. j\Q\ j. j-1) vv?-jw?--y+m
27'V4;2-1

daher

(l,2,j|r-4û|l,2,,") |^—i-(l,j|Û|l,j')"3 I ¦"-' ' I 5 " 15

Tß I 3, 2,j') 3gd„/—jQg,(8,2,j|T —i-û|8,2,j') â^-i (3,j|ß|3,f)
(14)

Wenn man also das hier gestellte Problem mit den von Fiebz und
Wbntzbl2) entwickelten Methoden behandeln will, so ergibt sich
folgende Möglichkeit:

Die Diagonalelemente (14) von T — ifi kann man, bezüglich
ihrer Abhängigkeit von j streng berücksichtigen; die anderen
Matrixelemente wird man jedoch, im Sinne einer Störungsrechnung
durch ihre Erwartungswerte bezüglich j ersetzen. Man gelangt so

zu einem Problem, das grosse Ähnlichkeit mit dem von Rarità
und ScrfwiNGBR5) behandelten besitzt. Auf die mathematische
Behandlung des so entstehenden Gleichungssystems kann jedoch im
Rahmen dieser Arbeit nicht eingegangen werden.

§ 3. Das Quadrupolmoment des Deuterons.

Das Quadrupolmoment des Deuterons ist definiert als
Erwartungswert des Operators

Q=|r2(e2_l) (15)

im Zustande I, MT I, wobei MT die «-Komponente des gesamten
Impulsmomentes bedeutet. Um diesen Erwartungswert zu berechnen,

muss die Matrix e2 in den Drehimpuls-Variablen gegeben sein.
Mit Hilfe der entwickelten Rechenmethoden findet man für die
hier interessierenden Matrixelemente

{I, L | e2 | 1, L) -j^zri J2s2(J,L, J) + (2 I+l)r2(Z+l, L, J)}+

+ 4(i,+1i)2-l {I*s*(I,L+l, J) + (2I+l)f»(/+l,L+l,J)} (16)

6) W. Rarita und J. Schwinger, Phys. Kev. 59, 436 (1941).
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1

(I,L|ef[I,L + 2)
(2L+3) \/(2L+l)(2 7>+5)

¦{Ps{I,L + l,J)s(I,L + 2,J)
+ (2 I+l)t{I+l, L+l, J) r(Z+l, L+2, J)} (17)

Daraus folgt für das Deuteron, falls wieder Zustände mit L > 4

vernachlässigt werden

Q Z fr*dr\V^F(j,1,0,r)F(j,1,2,r)

-^F2ö,l,2,r)-~F2ö,3,2,r)j. (18)

Basel, Physikalische Anstalt der Universität.
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