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La charge gravifique et le spin de 1’électron classique
par E. C. G. Stueckelberg.
(7. XI.1944.)

§ 1. Introduction.

Nous avons établi, en I et II, une théorie de I’électron en
nous basant sur une électrodynamique linéaire. Dans le présent ar-
ticle, nous envisageons le probléme plus général, ot les équations
du champ peuvent étre non-linéaires. Il nous sera alors possible
de faire intervenir la théorie de gravitation d’EINsTEIN qui, elle
aussi, ameéne a des équations gravifiques non-linéaires.

Les deux résultats sont les suivants: :

1° La charge gravifique de tout systeme est la méme que sa
masse inerte. Ce théoréme fondamental, & ma connaissance, n’a
jamals été démontré. Tout récemment, SCHROEDINGER (1944) a
établi cette équivalence pour un arrangement spécial des tensions
intérieures dans un électron soumis a ’électrodynamique de Born-
InrELD (1934).

2° L’équation fonctionnelle pour la ligne d’univers de 1’électron
x = z(A) permet, pour certaines théories non linéaires, de forme
extrémement singuli¢re, des solutions périodiques en ’absence d un
champ incident. La théorie la plus simple donne pour la ligne
d’univers:

r=y(A)=q+pmti+Re(—1wy)taPexp(—1mwy4) (1,1)

avec
V2R at® =pr& —§gr® ;. (p®) p®) = (¢, ¢¥)=h (a® *, a®)
) (p 5 a,(g)) — (p(s)’ q(s)) o 0
(@, y)=(9* o) —1=(y, ) (1,1a) %)
Dans le systéme de repos (p=0, pt=m), I'électron décrit un
cercle de rayon A,=w; (a* @, a®) avec la vitesse ¢, = (a¥)*, a®)3,
autour de la droite d’univers

r=YA)=q+pm~124 - (1,2)

Nous sommes ainsi amenés & voir dans le spin des particules élé-
mentaires une propriété essentiellement classique.

*) h et m sont, pour l'instant, des constantes quelconques.



22 E. C. G. Stueckelberg.

On peut se demander comment il est possible qu’une théorie
classique permette un mouvement accéléré d’une charge, sans ra-
yonnement. La réponse est la suivante: Cela provient de ce que la
charge libre, due & la polarisation du vide (électrique, gravifique et
champs de soustraction en I et II), reste immobile. Cette polarisa-
tion résulte du fait que les équations du champ sont non-linéaires.
Les effets de dispersion et de polarisation se sont combinés pour
entourer le point chargé e® d’une couche sphérique de charge néga-
tive ¢’ (lim e’ = — e®) et pour distribuer la charge opposée ¢’ = — ¢’
(im ¢”” = €®) uniformément sur un tube annulaire de rayon 2.

Dans 'intérieur de ce tube, la singularité (chargée maintenant
avec la charge libre lim (e® + e') = 0) tourne avec la vitesse ¢,
sans rayonner. La charge ¢’’ ne reste pas au repos, elle tourne sur
le tube. Ainsi, elle produit un courant stationnaire (= ¢’ @’’) en
plus de la charge statique €'’ = ¢®. Tandis que e’ doit étre rigou-
reusement égal a e® pour que le rayonnement disparaisse, o'’ ne
doit pas nécessairement coincider avec w,. La conséquence de cette
rotation est un moment magnétique arbitraire, 1ié & la particule,
comme c’est le cas en théorie des quanta (Paur1 (1933), p. 233).

Aux §§9 et 10, nous avons réussi a développer un formalisme ca-
nonique pour traiter le mouvement de notre électron ponctuel. Les
équations du mouvement de NEwToN (mz =n; 7z=f9) étant rem-
placées par des équations fonctionnelles — fE) [2(2)]=f@eD), le for-
malisme des transformations canoniques infinitésimales

Ft+dt) =F(t)+{H(t), F(t)} di=F (t) +F () dt (1,3)
et son Intégration sur un intervalle temporel 2 T'

(27)

F(+T)=(grF+30{H, Fy+ SEH (i) ) -1) 1)

n’est plus possible. Par contre, une transformation canonique finie
1 h h?
F(+T) = (g F+ r{e Fh+ 51 {o (oo FY ) (1) (15)

peut étre employée, dont le résultat est, dans la limite T'—> co, équi-
valant & la solution asymptotique de I’équation fonctionnelle.

Dans une communication sulvante*), nous démontrons que ce
formalisme peut étre traduit intégralement en théorie des quanta.
La matrice S, introduite par HersenBErG (1944) et par l'auteur
(1944), est reliée au o de (1,5) par S = e~i=

*) (1945) mécanique fonctionnelle et asymptotique (ref: IV).
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En analogie parfaite avec 'Hamiltonienne H en (1,3), nous
démontrons en IV, que 'opérateur « en (1,5) déterminera les col-
lisions entre particules (spectre continu de «) et les états station-
naires des systémes composés de partlcules ¢lémentaires (spectre
discret de «).

§ 2. Les équations du champ.

Par le mot « champ » nous comprenons I’ensemble de tous les
champs existants (électrodynamique, gravitation®), champ de ma-
tiere pondérable (= champ de Dirac, de Proca, ete.)). Nous dis-
tinguons entre potentiel wu, intensité U, (densité de) courant v et
(densité d’) wnduction V. Leurs composantes sont dénombrées par
g, Uy, AVA et Av® (dans 'électrodynamique, elles sont ¢, B, ;.
1 H*# et 1J%).

Nous introduisons deux métriques, g*# et §*#; elles sont reliées

P P = Pt 2,1)

Pour faciliter 1'écriture, nous remplacerons les indices « f par un
seul indice @ écrit en bas. Ces u, seront appelées les compo-
santes du potentiel gravifique. g est appelé ,,champ g*. ¢ est solu-
tion de I’équation homogeéne (2,3b):

Wo:ﬁ = Rcz,B — % 9&}1) (g”vR,uv—— 2 %(g)) (29'?’&)

th B = O (253b)

R,;= R,,s" est le tenseur de Rieman~-Curistorren. W, R, etc.
sont des expressions formées en termes de g et de ses dérivées

0,9, etc. Nous relions 0§ aux 7y = (ix ¢ (coefficients affines) par
Gaﬁ”=%gyy’(aﬁgﬁ?’+ Oﬁ gyfa—dv,gaﬁ) (2,4)

On peut introduire un tenseur ¥2,% (= quatre matrices rectangulaires
4, a) et son inverse y{ V4 pour donner a (2,4) une forme plus ma-

niable:
VQA“OQ UG E(V: dg)A_GAZO (2’5)

Son Inverse est:
0y go — y(;al) 1G,=0 (2,6)
avec
YD A =y D 0B @B, — 8 (gt 58+ BB o) (2,6a)

Conformément aux deux metrlques, nous devons distinguer entre

*) Dans les éq. (2,14) et (2,20) la gravitation n’est pas comprise. Le terme
champ matériel comprend alors fout champ & exception du champ gravifique

Uyp OU Gy p-
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deux dérivées tensorielles d’un tenseur u, quelconque et de son con-
tragrédient v®. La dériwée covariante est définie en métrique g par

Ug)q=0gUg — Ly " Uy

0y =0,1" + v“'e;wﬂ (27)
La dérivée métriqgue (§) est donnée par
Ug,q = Ogltg — ]i, T (2,08)
Les I' resp. I" sont reliés & leur tour aux G (exp. Gs) par
P =Gy "0y (2,9)

Les matrices quadratiques ¢’ resp. ¢, sont définies par la frans-
formation wnfinitésimale

B0 (@) = v (x) + 0% 0%, # B

_ , (2,10)
Ug (T) = Ug (T) — 09, 0¥, " Uy
correspondant a la substitution linéaire et infinitésimale
| T = 4% 4 0a% = 2%+ OTF+ 2% 0 2,11)

Conformément & nos deux métriques, nous avons aussi deux
formes pour les équations du champ.
En métrique g, ils dérivent du principe de variation

0] =03 J =J@+ Jm; JO— [(dm)* ALO; A—|| —gw||-F (2,12)

AL dépend des U, et des %, du champ matériel et des g,. 4 L@
ne dépend que des g, et G4 du champ g. La seule forme qui rend

J@ invariant est (%} ~rayon de courbure de l'univers):

L(g) - g”v(G,u O'T Gv‘ram GPWQ GQ‘EI) + %%g) (2’13)

Les intensités du champ matériel sont reliées au potentiel par un
tenseur p2,* (différent de (2,5)):
Yo 4° Ugla — LTA =0 (2,14)

(Pour le champ électromagnétique (v = ¢, U = B):p2,% = 9%, 57% =
020%" — 0% 65. Pour le champ de Dirac: les y¢,2" sont quadratiques
(yey* + 9*99),¥ = 2¢*26,%). Nous définissons par

0AL™ 9AL™

40°=40,,= “— — 0,505 (2,15)

{En (2,15) la dérivée est & prendre aussi par rapport aux ¢, et aux
0,9, contenus en y et I" de (2,14) et (2,7)) la densité de courant g
vrate de la matiére. En plus,

oA LW oA L@

AFY = Afe— 22
0gy ’ / 09

(2,16)
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sont respectivement 'induction et le courant g (vrai) du champ g.
On obtient, par (2,12), ’équation de gravitation dans la forme
0,(AFy%2 = A (f* + 6% (2,17)

avec les yede (2,5) et de (2,6a). Dans sa forme habituelle, en termes
de (2,3a), elle est:

W= — 0, (2,18)
En termes de 'induction V4 et de la densité du courant v*
4 0AL™ o 04L™
AV =, Av® = o (2,19)

les équations du champ matériel u sont

(Vo) — 2= 0

ou (2,20)
0,(AVyo)e = Av®
Nous allons maintenant établir les équations en métrique §.
Nous définissons d’abord par
| Gy=Gy+ Ty (2,21)
les composantes d’un tenseur U,z”. 1l représente I'intensité gravi-

fique. (2,6), (2,6a) et (2,1) montrent qu’entre U, et u,, il y a une
relation covariante. Son Inverse est

(Youg)a — Us= L4 (2,22)

avec 2, = (2,24). De la Langrangienne 4L®, nous formons un
AL'0(U, w) = ALW — ALw®

fonction du polentiel u et de Uintensité U gravifique. Ensuite, les
équations qui dérivent d’un principe semblable & (2,12) avec

F f (o) AL; AL = AL ¢ AL (2,23)

sont équivalentes & celles de la métrique g, si 'on varie les u, (y
compris maintenant les composantes u*f) et les U, (y compris les
U,s) reliés entre eux par (2,22) avec

Q,4(w, U) = (pel',u—pel" u), (2,24)

en gardant § constant. 2, est différent de zéro pour des champs
u, s1 g et [" figurent en (y2u, ). (£2,= 0 pour le champ électro-
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magnétique). Les équation du champ sont: (2,20) pour le champ
matériel et une équation de la forme (2,20), avec ¥, ala place
de V,* et v* = 0L/0ue, pour toutes les composantes matérielles et
gravifiques. Nous préférons séparer L en (2,23) en termes bilinéaires
L©® et en termes de plus haut ordre L@t

L= LO 4 [nt) . J,0) %(UAgABUB+ %2ua§ab 2s) (2,25)
définissant U, par (2,22) avec 2,=0.

£ est un tenseur symétrique, fonction de §. »~1 est une longueur.
Pour le champ électromagnétique et le champ gravifique, on peut
poser x2—> 0 pour tout probléme dans lequel la courbure de I'uni-
vers n’intervient pas. On peut donner a (2,20) une forme analogue
a (2,22) :

(U, Ep9)e — 22 (ué)a = oo (2,26)

o® est la densité du courant libre

(int) (int)
L1 O B, . s (2,262)
0 Ua 9 0 (09 u’a)

o* (ﬂ’: U) =

L’avantage de la métrique g est d’avoir ramené les équations
de la gravitation et de la matiére & la méme forme tensorielle (2,22)
et (2,26): Au premier membre figurent des expressions linéaires en
% et U. Le second membre contient, sous forme de « densités de
courant libre g» et de « densités de moment libre £», I'influence
exercée par la non-linéarité.

Remarquons que la partie gravifique de GQ(US’?;@)ﬂc s en (2,26)
vaut (par comparaison avec (2,3a) et (2,18)) pour I' et x, ~0

0,(UEHO) = 2(0,0,51,2 + 0 Uys — 050,u%, — 0,0,%

— Gop( Out — 0,0,u*)) (2,27)

ounous avons posé u?, = é("}x)ﬁ u*, 0=¢**0,0,, etc. La divergence
0,0,(UE 9925 =0 (2,28)

disparait identiquement en vertu de la symétrie de (2,27) pour

§ 3. Les lois de conservation du courant gravifique.
Nous distinguons entre des lois de type
Og(AggaQaﬁ) = O (Sal)

contenant la divergence ordinaire et que nous appellerons équa-
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tions de continuité, et des lois, auxquelles nous donnerons le nom
d’équations de continuité covariantes, contenant la diwergence cova-

riante
(92%Oyp)e = 0 (3,2)

Le premier membre de (2,18) satisfait, en vertu de (2,3a), &
I'identité (3,2). L’équation de continuité covariante (3,2) doit donc
étre une conséquence des seules équations du champ matériel, indé-
pendamment de la loi suivant laquelle g varie. En termes de la
divergence ordinaire (3,2) s’écrit:

(A gQ @aﬁ) ‘{" b3 A @ Oﬁg”v = O (3,3)
(3,1) est une conséquence de la symétrie de la partie gravifique
de (2,26) (voir (2,28)) pour autant qu’on se limite & des régions

petites par rapport & l'univers et qu’on y choisit un systéme §=
const. On établit facilement la relation

0 L) (int) o L(#) (nt)
A Oup™ 4 @0&,3 L A (

ourt ¢ (0, urP)

):A@aﬁw 69 (3,4)

entre charge libre et charge vraie. En L' = L@ O [@)(nt) | J,(g)(inty
est la partie non-bilinéaire de la Lagrangienne L'®. (3,1) peut ainsi
étre écrit sous la forme

OQ(A gga@aﬂ) + 09 (“A ue® @aﬁ + jgc(ff}) =0 (8’5)
avec le méme premier terme que (3,2). (3,5) est une conséquence
de I'équation du champ pour matiére et gravitation.

Enfin, une dernitre identité (§©*46,),, = 0 de la forme (3,2)
est valable si 4@ est la « vraie charge gravifique» définie par une
équation (2,15) avec le AL (de (2,23)) et le § & la place du AL
et du g. Pour un ¢ euclidien, la transcription en (3,3) s’exprime par |

0,(49%0,p) + 0,(— Aue? 6,5+ §=A6'%) = 0 (3,6)
parce que les dérivées de 4 L™ par rapport & g*# sont les mémes
que celles de A (L0 © 4 Lo @t par rapport & u*f, 4 6'® est ob-

tenu de AL'@. (3,6) a les mémes deux premiers termes que (3,5).
Toute équation de continuité dans un espace & m dimensions

zl, 22..., z" implique la conservation de lintégrale sur le sous-
espace V' a4 m—1 dimensions
e (am) = [ (a1 Agrg,(at, ... o) (3.7)
14

pendant l'intervalle 2 T
e™g(xn + T) = eMy(an — T (3,8)
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s1 I'intégrand s’annule sur la surface latérale du cylindre n-dimen-
sionnel. Pour z*= {, nous appellons les quatre grandeurs (3,7) e®;
les composantes du quadrivecteur de la charge gravifique (hbre)
contenue dans V.

§ 4. Les lois de conservation pour le courant énergétique.

Dans le principe (2,12), nous ne varions d’abord que la partie
matérielle. La densité du courant énergétique défini par

AT — A V20— 6% Lo + %mxa s Ve=Tye (4,1)
satisfait, en vertu des équations du champ matériel, a
0, (ATem) + A0, 059" =0 (4,2)
La variation des deux intégrales
P@@:f@@MTwmao (4,32)
P, () = 26000() = [(d2)24 6,5 (5,19 (43) -

au cours de la période 2 T envisagée en (3,8) et due a 1’évolution
arbitraire de g, doit étre identique en vertu de (3,3) et (4 2). Nous
les appelons le q%adrwecteuaﬂ de la quantité de mouvement-énergie P
et de (deuz fois) la vraie charge gravifique P i) = 2™ portée par
la matiére contenue en V. Leur dlfference ne peut etre qu'un
vecteur constant. Or, un tel vecteur constant (qui doit étre indé-
pendant de ¢) ne peut étre que zéro dans une théorie covariante.
Done, on a une premiere identité

P(.m)az P(m)oc 0= 92 6(4)(mo)c (4,4)
Si 'on varie w et g en (2,12), la densité énergétique totale A T7,
A L= ALLO W oty g A T8 = AT g p—~88 A LW (4,5
satisfait a I’équation de continuité
. 0,(4T) =0 (4,6)
Les quantités

restent donc constantes si les mémes conditions sont remplies sur
la surface de V' que celles que nous demandions pour la conser-
vation du e*; en (3,8). La comparaison entre (3,5), (3,3) et (4,2)
montre la constance de

- 26®; — 260 | 200) = P (4,8)
et I'identité
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entre le quadrivecteur de quantité de mouvement total P, et (le
double du) quadrivecteur de la charge gravifique libre Py g =2 e®s.

En métrique g, le moment de la quantité de mowuvement M,z
défini par

M () = [ (d2)*4 Q% . 9 (4,10)
0,(A4Q ) =0 (4,11)

est également conservé. Les deux définitions, pour @*;, et @4z =
= Qs+ @4pis, sont: les densités du moment

total % Q aBlg) = {.Cuz Qz'ﬁ— (Eﬁ 2 Q;"a
«orbitaly: Q&= x, T — 2, T%, (4,12)%)
et «intérieurn: Q4 ;5= Vio,zu

§ 5. Le champ gravistatique et la masse gravifique.

Dans ce paragraphe, nous déterminons le champ gravifique
d'un systéme statrionnarre. Par un tel systéme, nous comprenons
une solution de I’équation du champ, dans laquelle la quantité de
mouvement constante P4 est contenue dans un volume V(1 ~4,%)
(systéme de repos P; =0, P, +0). Ceci implique que U,(Z, 1) (et
U 81 x % 0) décroit au moins comme r~—2 pour r= |Z — Z| > A,.
Z est un point quelconque a l'intérieur de V. Pour x» = 0, cette con-
dition implique 0,U(Z,#) =0 pour r > 4,. Le champ est donc
statique.

Discutons le probléme en metmque g : Toute abréviation, par
exemple o* s OU 0%, signifie dés lors §** g, et §**0,,, avec un §
constant (g**= ——1) L’équation (2,26) (avec (2,27)) prend alors
la forme (v, k,1,...=1,2,3):

Jz"(didk (U — tgq) + ozol“fre) = 0 — 39 (e — 0aa)  (5,1)
30;0% uyy = 040 + ¥ (0 — 0a4)

(5,1) ne résulte de (2,26) que si la condition (compatible avec
(2,26)) 0, u*f = 0 (analogue & la condition de LoreNTZ 0,¢*= 0 en
électrodynamique) est imposée au potentiel u*f. Elle ne fait que
limiter le groupe de jauge, qui, en théorie de gravitation, est donné
par ’ensemble de transformations (infinitésimales) des coordonnées
(dans la partie finie de l'espace temps):

wr = a0 () s PP=gP+ 0%y + 079" (5,3)
*) Voir Paor1 (1941).
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(-

a des dx* soumis & [J0y* -+ 0*(0z0%P) = 0. Posant encore 4 =1,
la continuité de g,; montre que

Vv

La deuxiéme équation (5,1) admet le potentiel Newtonien

£y 1
gy (%) = — Fr=

avec la charge gravifique (cf. (3.7), (4.5), (4.7) et (4.3a))

o= [[(@0)%0u = - [(32)? 4000 = 1 [(d7) A TH=3P1=km (5,9
ei4 = eik = O

u 1
( , T termes en ,rn)

comme seule solution dont le potentiel disparait pour r > co. La
charge gravifique e,, dans V est donc proportionnelle (factewr 1/2)%*)
a Uénergie totale P*=m contenue en V. m sera appelé la masse
gravifique du systéme. Dans un systéme d’axes quelconque, m est
défini par

(P, P)= P, P*= —m? m= F*| P*|! (5,6)

§ 6. L’équation de mouvement pour les centres d’énergie et de gravité
du systéme et la masse inerte.

Nous discutons d’abord le systéme stationnaire envisagé au
§ 5. Nous définirons les centres d’énergie et de gravité par

2 (2) = m-lf(d$)3 zi A T4 (%, 2)
ZHA)=m= [ {dx)3 27 2 0% (T, A) (6,1)

dans le systéme de repos & I'époque A= t. On vérifie facilement les
relations (nous écrivons ¢ et Yi pour 2% et Zi et F pour dF [d2)

i) = m—lf(dm)m Tit+ Pi, si Taf 4 Tbo
Yi(2) = m-1 f (dz)3 20t = Pi= 0 (6,2)

*) En unités conventionnelles, le @, (et donec g,;, en (5,1)) contient le facteur
8 7 k%/c? (k= const. de gravitation Newtonienne). Aussi définit-on 1’énergie par
Pt — f (dx)3 o#4. Introduisant alors la masse (gravifique) par P* = mc? et le po-
tentiel Newtonien par 2 @ = w,,, (5,5) prend la forme conventionnelle

4 m 1
D(z) =—Fk % + termes en =y (5,5a)
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en vertu des théorémes de continuité. Le centre de gravité reste
ainsi en repos en vertu de la symétrie de ¢*?. Par contre, le centre
d’énergie peut avoir un mouvement intérieur. Pourtant, dans le

cas stationnaire, j ne s’éloigne jamais « infiniment loin» de Y. (On
remarque 1’analogie entre le mouvement (1,1) et (1,2) de la parti-
cule avec spin.)

Considérons maintenant un systéme quasistationnaire, dont les
% et U ne disparaissent pas sur la surface de V' (a distance r > A,).
Pour r > 00, u est tellement faible qu’a toute décomposition

w = gstat) o g (def) (6,3)

correspond une décomposition de V en V®ab @D Ta théorie est
donc linéaire sur cette surface lointaine. Aussi voulons-nous, dans
le cas x + 0, supposer que (6,3) soit valable déja dans une région r
soumise a

xI>r>A (6,4)

(6,3) est le cas ot une onde incidente ™ déforme le champ du
systeme stationnaire. (Cette déformation (@D est égale & (™), si
la théorie est partout linéaire ou si %4 est infiniment faible.) Aussi
allons-nous soumettre la longueur d’onde de wufded 3

/?'(inc) > Z’D (675)
sur toute la surface. Dans ce cas, on démontre que la relation (6,2)
m Z# (A) = P, () (6,6)

reste valable. Si T4* et 2 p%* ne disparaissent pas sur la surface de
V, les deux définitions (4,8) pour P, et pour P, peuvent dif-
férer. On calcule d’abord la variation de P*. Dans le systéme
de repos, on trouve, aprés quelques transformations,

SP*— 62 95 do, Tix— galstat) ot y,@eD) § 1 (6,7)

avec
oo (stat) — (/)' do, Vaitat) f (dx)® gastat (6,72)*
r 4

Pour établir (6,7), seule la linéarité pour des champs faibles (6,3)
et les conditions (6,4) et (6,5) ont été utilisées. e2®% est la charge
libre statique. Pour le champ gravifique, elle est donnée par (5,5).

Dans un systéme d’axes quelconques, elle vaut ainsi
7 (6,8)

E,m?(stat) s .%_fm, Zcx Zﬁ = %’ Po&(!])

*¥) poi— y4 'yiA“, do, = élément de surface.
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Pour trouver la ligne d’univers, il nous faut le 4 P%,. On peut dé-
montrer (Paurr (1941), équations (14) et (13¢)) que la relation

2 gx = Tef + 9, o0 (6,9)
9 ]toufm s s D flﬁo: _ (V?. a.aﬁ 3 VBgai — Vo 3.2,8) %

existe dans toute région ot les équations de champ sont satisfaites.
Apres des calculs assez longs, se servant de la symétrie u, = g,...)

= Ugyy..y V3=Ve@F)=__T=h) ot de la définition
o ’ ” . ° (1) ° o’ ’ r ’
=0 = (G — 81 0) O 40T () 4

on établit, dans le systéme en repos,

5 PQ @ = e(44...)(stat) n Ugng))gaﬂ (6,10)
Uy = Up..yo= U, est Uintensité tensorielle générale introduite au
§ 3. m est un facteur (= + 1 resp. —2 pour l'électrodynamique

resp. pour la gravitation). (6,10) avec (6,6) se combine en

mZg — n et (stat) [T (def)e (6,11)

m est le méme facteur qu’en (5,5). Il représente ici la masse inerte.

Si le champ incident est purement gravifique et s’il est trop
faible pour «polariser les masses» (U@) - U@9) (6,8) montre que
(6,11) prend la forme

Ze + Gpoe 7, 7., =0 (6,12)

(Nous avons posé G = G(=0)+Um 4 Q (= 0)). Le centre de gra-
vité décrit done une «géodésique de la métrique incidente gt qui
régnerait si le systéme n’était pas présent. C’est la conséquence
de 1’équivalence entre masse gravifique (= 2e,4, dans le systéme de
repos) et masse inerte (P?* dans le systéme de repos), qui fut le
point de départ de la théorie d’EiNsTEINY).

L’équation de la géodésique (6,12) semble étre contraire & I'invariance de
jauge (postulat que les observables physiques sont invariantes par rapport a la

substitution (5,3). Car, contrairement au cas électromagnétique ot Byp est in-
variant par rapport a la substitution @g = @ + Oxy, les intensités gravifiques

*) Remarquons que (6,12) est valable pour tout systéme. Par exemple, la
goutte incompressible (w* = quadrivitesse, p = pression, We 1“ WP+ p“l =0,
w? Wy 1g=0> soumis & w, I” = () n’est qu’un cas particulier d’une théorie d’un
champ & 5 composantes intensives (U 4 et u, = w, et p). Cette théorie est inté-
ressante en ce qu’elle permet des solutions statiques, tandis que toute autre
théorie ou les p différent de zéro pour r —co (ici on a y = w—>0) n’admet des
solutions statiques que si les équations du champ ne sont pas vérifiées en cer-
tains points stnguliers.
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Uqpg” (resp. G) en (6,12) ne le sont pas. Cependant, on peut montrer que le change-
ment intégral de la tangente (nous écrivons I'’équation contragrédiente a (6,12)

+ A4
8%, = f dZ*Gm0) o7 (3) (6,13)
A

est invariante.

En effet, supposons qu’il existe un autre chemin C(4) (non géodésique) reliant
les points a* = Z*(-f A) qui est situé entiérement dans une région glinc) eucli-
dienne (région sans champ gravifique). Ce chemin C(1) permet de comparer les
deux vecteurs Z* (= A). Le théoréme de STokES pour le contour fermé Z(1)— C (1)
(& = surface entourée par ce contour) montre que

02,=— ggdzm(mc; Sz, 0 - fdcr“ﬁ (0,05 704G, YO Z,
zZ—-C 3

@ Z,(4) [ a*P RS - (819)
z

est une grandeur invariante par rapport aux transformations de jauge (5,3). En
(6,14), les termes prop. & G ont été négligés. Pour les inclure, une prolongation
du «champ Z, (Z), & lintérieur de la surface X (entourée par Z(1)— C (1)) doit
étre faite. Le résultat contiendra des puissances et des dérivées du tenseur de
R1EMAN-CHRISTOFFEL RSE(;) 9. Les observables physiques (par exemple la défle-

xion & P* = mdZ*) sont ainsi indépendantes de la jauge des g\ #”

parfaite avec 1’électrodynamique.

en analogie

§ 7. Les singularités du champ.

Les solutions statiques possédent des lignes singuliéres sauf
dans le cas ou les ¢ pour une partie du champ (par expl. pour le
liquide dans la note p. 32) disparaissent & I'infini. Sur ces lignes,
les équations du champ ne sont donc plus valables. (2,20) et (2,26)
contiennent alors une inhomogénéité singuliere

(V790 — 00 =0, (UEH9e — 22 (wé)s — g2 = g9 (T,1)

4w
0@ () = f d7e® 8 (z— 2(2))

0(x) est défini par la relation invariante:

0 zcV’

(“*’),[ (d2)*¢®* (&, ) w (%) = [ e (4(8)) w0 (3 (A(0));72 7"

e représente la charge vraie située au point Z (A(f)). Elle est une

fonction contragrédiente a u, de la ligne d’univers, par exemple

= e2%(A) ou = gg) 2,45 Jusqu'a présent, les lois de continuité
3
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étaient des conséquences des équations du champ. Mais, mainte-
nant, elles ne le sont plus, car

0, T% = 0®% 050, , 0,2 0% =no®e U,y (7,2)

Pour que l'identité entre P* et P, soit établie. il faut que P*soit
formé & partir d'un 1" soumis a:

0, T =0,20% =n0® U, (7,2a)
Pour l'obtenir nous ajoutons a T%; un terme singulier:
T’“.g - Tocﬁ Y Q(S)ammuﬁyr... (7’21))

(Il fautalors que u, satisfasse 41’équation de continuité 0, u%;, =0.)

Pour une ligne d’univers donnée x = z(2), les solutions de (7,1)
sont des fonctionnelles u(x) = u(x)[z(4)] des quatre fonctions z*(2).
La condition de continuité pour x = z:

2t (Z(t))f(d )20, T'% = ne®e (A(f)) Uys (2(A(D), £)[2(4)]=

= (A(t)[2(2)] (7,3)

contient quatre équations fonctionnelles pour les quatre ##(1). Nous

appelons f;(4)[2(4)] la force tofale agissant & I'instant 4 = A(f) sur

la singularité. Une solution particuliere de (7,1) et (7,3) est la droite

# = const. Alors, le champ est statique. Son vecteur P, doit étre
parallele a z

PEav=m z, = m, (7,4)

m est la masse inerte et gravifique, parce que (5,5) et (6,8) sont
restés valables. Les théories linéaires simples donnent pour le fac-
teur de proportionalité m une valeur infinie. Mais des théories
linéaires complexes (faisant intervenir plusieurs champs) (STUECKEL-
BERG (1939), Borp (1940), LANDE et TrHOMAS (1941)), des théories
linéarres limites (WENTZEL (1934), Dirac (1938), et STUECKELBERG
(1944)) et des théories non-linéaires (BorN et INFELD (1934), ScCHROE-
DINGER (1943)) existent, qui donnent, pour m, une valeur finie.
m depend des constantes qu’on a introduites dans ces théories. Con-
sidérons d’autres solutions et cherchons des lignes 2*(1) qui ne
s’éloignent pas infiniment loin de deux droites asymptotiques (1,2)
pour A = + A - -+ oo caractérisées par 8 + 8n constantes p*(+ A),
(4= A), pi(+ A), ¢ (+ A). Les solutions de I'équation du champ
(7,1) sont, aux époques = - T = 2% (4 A) au voisinage fin1 de
2%, le champ stationnaire envisagé au § 5. La décomposition (6,3)

est, & ces époques, rigoureusement possible, car le champ d’ondes
(out (out)

w1 s’est séparé du champ stationnaire. 4 n°

est méme devenu
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infiniment faible sous l'influence de sa dispersion naturelle. Nous
écrivons, toujours & ces deux épogues, avec DIRAC:
(out) (
lim % (4= T) > w ine —{—umt [z( )] (7,5)

out)

Les parties " sont, & ces époques, solutions de I’équation homo-

av
géne. u(ret) sont, & ces deux époques, les solutions inhomogeénes et
stationnaires, provoquées par I'une ou l'autre des branches asympto-
tiques 2 (A = + A) de la ligne.
A des époques fimies, nous définissons par le symbole u (rt) (2)[2(4)]
les fonctionnelles particuliéres, solutions de (7,1) et soumises & 1'une
ou 'autre des deux conditions aux limites:

av

lim 1 (et (£ T) > wuistat (7.,6)

La solution générale % (x), qui satisfait aux conditions aux limites
(7,5), définit & chaque instant deux %@ par:

w(Z) = (8 ino) + U (ret) (7,7)

Ces équations représentent la généralisation de la décomposition
de Dirac (7,5) pour des théories non-linéaires. Nous rappelons les
définitions et relations suivantes pour les potentiels

9 qu(sym) — g (ret) 1 g4(av)
9 qfrad) . g (ret) __ 4(av) (7’8)

Pour les grandeurs non-linéaires, par exemple pour les intégrales
P; ou leurs dérivées, la décomposition est de la forme

ret def mc

»dé (sym) (rad) (sym, rad) (g;ym, }'ad) (a,v’ out) — O*
- (P + pird . p Y+ P + P . 0%) (7,9a)

(pair) (impair)

Elle correspond, terme par terme, a (7,3) décomposé en

e me
i Pﬁ —ne®a (A) (U(sym) g TFead) p. U(d £ out))aﬁ

di
— f(sym) + f(frem) s ]c(def) ]t(self) [z ()‘)] 4 l(def) (7,9)
Aux limites asymptotiques, on a
lim wvm (- T) > ylstat) 4 1 g0y (7,10)
lim (P(sym) + Pfrad) £ ngé;rix;i rad))ﬁ(___h T) =Y 75,3(:{: T)_|_ %Pﬁ(rad)(i T).

(avec PTd (4 T') = Prd (— T)). 7, est la quantité de mouvement

*) Puissances «paires» ou «impaires» en u™®.
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du champ stationnawre entourant z*(+(7,4), pour z, 2, ...+0). Pfd
est celle portée par les ondes émises. L'identité
ret
lim %) (4 T) > e (- T) 4 0 (4 ) (7,11)

et les équations (7,6) et (7,11) permettent d’établir la relation

smivante:
ret

et
lim (P& (+T) — P (1)), =y (+ 1) — 75 (— ) £ P00 (7,12)
qu'on compare avec l'intégrale de (7,9a) et de (7,9). Les deux
premiers termes de la fonctionnelle f en (7,9) sont indépendants de
w9 (z), Leurs intégrales |

+ 4
= hmfd,z FsTm (3) = 5 (4 A) — 71, (— A) — & 7
— b
—lim [ 42 fgeem (1) = P o - (7,18)
: i

doivent ainsi représenter I’augmentation dm; de la constante de
mouvement portée par le champ stationnaire et celle portée par
Ionde émise P§*d. Les développements suivants avec des coef-
ficients constants #,, . et &,,. , dépendant du choix de la théorie,
expriment: que [V et fd sont des fonctionnelles paires et im-
paires de z(4) et que 9 peut &tre développé en termes de fino);

fiem = — (5 — 4y A2(E B 5 (3, 8)) +16n,285(2 — )+
.y '13(77025‘47722}% (Z— ) + ) (3 ’ 2’)

B (ranE + o) (2, 52+ ) (7,14)%)
flfrein) — g2 ((zwz (2,2)) —4&, A2 (77— 2(4(Z
+8('§,'§))+

TR (o (F )+ ) (2, B) + ) (7,15)%)*%)

f(def ine) _ pa (stat) (}.) n UE,IBC) (Z )
+ (termes en 0, U™, 9,0, Ulne), et (U2 (Uln))s,
dépendant de 2, %, ...) (7,16)
Le facteur m de — z (-2, 2)~1 en (7,14) doit étre la méme cons-
tante qu’en (7,4) parce que les considérations du § 5 restent va-

8

*) Dans les théories envisagées (électrodynamique, gravitation), la force f
satisfait 4 D'identité (f, 2) = 0. Cette relation détermine les coefficients numériques
des z en (7,14), (7,15) et (8,8). Les F en (7,14) & (7,16) sont les dérivées par
rapport au temps propre (= F (-3, 5)°%).

**) 8i x=0.
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lables: Comme rien n’a été changé dans les équations du champ
& grande distance r, I’équation (6,11) est encore juste dans la limite
Z="7%=...=0 (cas quasistatique). Cette méme considération limite
nous a obllge a poser la charge totale e (et non e®%) comme fac-
teur de Utn9), ; dans le développement (7,16) de 70 en termes de
Une), Les generahsatlons contenues en (7,9), (7 14), (7,15) et (7,16)
par rapport & notre théorie linéaire en I et & notre théorie limite
en II sont les suivantes:

1° Contrairement a I, les coefficients #;, . des termes non-

v o ) ; ‘ , 5
linéaires en % sont maintenant indépendants des coefficients des

termes linéaires ;. Nous avons montré en II que les 5, pourraient
étre choisis arbitrairement (7 (22,0) =1+ 5, (2w 45)2 9+ =
fonction du modele). La liberté additionnelle dont on dispose dans
une forme non-linéaire de la théorie du champ ¢ = % (et des champs
additionnels @® de II) nous permet de prendre aussi pour les
N.... des constantes arbitraires.

20 La force de freinage f (™ détermine, en (7,13), la quantité
de mouvement rayonnée. Le coefficient de cette force (la longueur
Ag) est ainsi obtenu en calculant 1'énergie du rayonnement dipole de
la charge libre et  Si ’on connait la charge électrique ¢, portée
par un corps, on a e®Bb* — ¢z — ¢®* et conformément a (5,5),
et xf— Ly 5%50 =g, 2* 2#, la théorie de rayonnement (pour la gra-
vitation cf. Paurt (1921), éq.(450) ) détermine 4 mdg= (£&*+3 g f)m~—L
Dans une théorie non-linéaire, cette charge libre se trouve distri-
buée sur une étendue finie. Il en résulte un freinage multaﬂpole, ex-

3% Pour!’ approx1mat10n hnealre,le résultat correspond al équa-
tion (1,17) et (1,19) de II, avec une fonction de modeéle complexe

(922 0)) " = (22 0) + + (20) E@Agw) = 1 + 75 (2 Ao w)? +
+ i Ago(1 + &5 (2Agw)? + ---) (7,17)
a la place du 1+ 5, (2Ag@)2 + --- + iy en 1L Le g (2 A o)

en (7,17) est la nouvelle «fonction de prémonition». (= 2z g, en
1T, équation (1,23)).

§ 8. Discussion des solutions stationnaires.

Les solutions de I’équation fonctionnelle avec U9 = 0 repré-
sentent le mouvement de la singularité dans le cas stationnaire. La
droite (1,2) est une solution possible. Considérons d’autres. solu-
tions: ' '
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19 Si tous les & sont nuls (théorie du champ linéaire), la
droite d’univers est la seule solution car, sinon, pour t= + T,
la solution devient une hyperbole (accélération continuelle vers la
vitesse de lumiére. Cf. Dirac (1938) et II), ce qui est contradic-
toire & la décomposition faite.

20 Pour le modele &;... + 0, par expl. pour
4772 452’1 =—wy 2 ==& === &, =0 (8,1)

on a, comme solution générale, la spirale dunivers (1,1). Discutons
ce cas intéressant et déterminons le moment magnétique du modéle.
Nous calculons d’abord la moyenne de la force (pour 2=y (1,1))
sur une période wy 2
1

Fldefino) _ 8;?3(;20) @) (2,2) %=eY*BEOY)+wlo, 70, BEO 1 ... (82)

et nous trouvons
/’H—wo_l
= %gwof(y -— Y)yd yﬁ — % swo(q”(s)pﬁ(s) _ qﬁ(S)q?(S)) (8,3)

]

7B
H0)

Mais, en (7,16), nous avons vu que d’autres termes, linéaires en

Utino) mais dépendant des %, peuvent s’ajouter a fin9, Les termes
suivants

flaen) — fine) ¢ 22 %% Bl (— 5 z)
+ A2 (La2p (2, 2)+L3%5) 22 2" Bl (— 2, 2) 2 + -

-
2

(8,4)

ne dépendent que de z et z. {, et {; doivent &tre déterminés en
termes de {; pour avoir (fi9 z) = 0. Alors, (8,4) contribue a un
moment magnétique additionnel

1“’(1) Cl(l wo (1m(a(s)* a(s) )M(wﬁ) (8,5)

La quantité de mouvement n* du champ stationnaire ne peut &étre

paralléle qu’au seul vecteur constant Y Le moment intérieur (spin)

0% ne peut dépendre que du seul tenseur antisymétrique constant

(y —Y)»y?f — (y—Y)Py* En termes des constantes de (1,1), ceci

revient & dire que
"

]' ’
e — Youb _YBar 4 % (q*® pf®) — g pr®)  (8,6)
doivent représenter la quantité de mouvement et le moment. Les
scalaires m’ et h' sont, dans le cas général, fonctions de I'ampli-
tude a® du spin.
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On obtient un modéle particuliérement simple admettant (1,1)
s1 'on introduit encore

Moz Ag = oz ’12 2 Wy - (8,7)

Alors, le terme ff;'ym) est une différentielle totale

form = —dog(— 2, 8yl mp=m (2 (1— 2w, 2 (2, ) (— 2, £)72)

w2 E(— 3, )7 (— 4, &) (8.8)

La fréquence wq et le facteur m’ en (8,6) du spin dépendent de
Pamplitude a®.

L’analogie avec la théorie des quanta devient encore plus évi-
dente si I’on remarque que (1,1) est la solution (lim B9 0) de

2% — ya; ))a - (,03 m—2 g*B g

648 — yrmh — phmrs f (yﬁngc) o 55 (8,10)
avec wy? = — wy? (7, ) m—2 Ces équations rappellent nettement la
théorie du spin de DiRAC (STUECKELBERG (1942) Q. d. Ch. équa-
tion (19,4)). Mais, ici, la masse ((m + 4/ —(, 7)) et la fréquence

wgysont fonctions de 'amplitude (¢*), a®) du spm, tandls que b’ = h.
(Il est possible qu'un choix particulier pour les .., & et Cip..
existe, qui rend (a*, @)® constant.) Pour B®9 =0, n* et le mo-
ment M

M# = Lgh + 8gf; L= #inf — by Sgf=0  (8,11)

sont les constantes d’intégration.

Enfin, les considérations de § 1 montrent que g,z doit &tre
statique, dans le systéme de repos. Par contre, le terme en ¢®* de
(7,2b) montre que T"*; ne I'est pas. Donc, le i — Y défini par (6,2)
décrit le mouvement circulaire prévu en (1,1).

Le modele particulier que nous venons de discuter a donc
4 degrés de liberté intérieurs (restreints par (1,1a)). Le modéle général
(avec ;.. et &+ 0) peut avoir 4 n degrés (restreints par certaines
conditions du type (1,1a)).

§ 9. Le formalisme ceanonique pour les champs sans singularité.

Le champ u(x) = u(Z, t) = w (%) (p(t), q(f)), peut étre exprimé
comme fonction de 2 co variables p (k) (t) et q (k) (f), numérotées par
I'indice k=1,2,.... et fonctions de la coordonnée t = z%. Il est
quelquefois avantageux de relier p(k) et q(k) en une variable
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cbmplexe a(k) (éq.(1,1a)). Entre deux fonctions F(p, q) et G(p, q),
on définit par

OF 3G OF 06
.G} =T, G}<->:Z(ap<k) Se 3407 95
06 oF 06 .
hZ( a*(k Da(k)  oa(k) Oa*(k)) (9,1)%)
Ye OF 06
{F.G}= hz((m* W) dak) T dak) Oa*(k))

les parenthéses et antiparenthéses de PorssoN. Le choix particulier
des variables satisfaisant

{Ve(Z, 1), uy(Z', )} = — 0%0(2—7) (9,2)

définit, & une transformation canonique prés, les variables cano-
mques du champ. La substitution infinitésimale (2,10) peut alors
étre obtenue par

F (u,(x)) — F (1, () = —{P )01 4+ M 5 (t) 6 ik, F} (9,3)
Avec dxt=dtet P*= H, (9,3) contient le formalisme Hamiltonien
(1,3) et (1,4). F(t + dt) resp. F(+ T) est ainsi le résultat d’une
transformation (canonique) infinitésimale (1,3) resp. d’une trans-
formation finie (1,4). Elle exprime la valeur finale p (i + dt) resp.

p(+ T) d’une variable en termes des valeurs initiales p(f) resp.
p(—T) des 2 oo variables.

Pour la théorie des champs, la méthode de la variation des
constantes est avantageuse. On définit par

" (& 1) = g (2) (§) = 0 (/) a (k) (t) + @* k) (1) s (0] )
= X5 sa(/)=s (fa); = % () (/2 7) ¥exp (i(k, 2)) (96)%
(k B) = — x2(r); ke3> 05 RATo(k) 7 () — 0% %)

des «constantes» canoniques a(k)(f), qui varient avec t, dés que
la. théorie devient non-linéaire. Les s,(x/k) sont solutions des équa-
tions linéaires (2,22) et (2,26) (2=90=0). La dérivée totale est

e, ) = lim (Oga () (1) + {(H(E), wa(@))}) O]

avec
H() — — [ (d2)* Lo () (1) (9.8)
LAn®) () (1) est 'intégrale formée par les w(x)(t) en (9,6).

*) h est une constante quelconque pour donner aux a la dimension [1]. 7 (k)
dénombre les tenseurs des polarisations z.
**) sommé sur les polarisations 7.
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Chaque transformation finie (1,4) étant une transformation ca-
nonique, il doit exister une grandeur a(p(—1T),..) = a(—T) telle
que la transformation canonique générale finie (1,5) est équivalente
a (1,4). Pour un L% exprimé par la série eL®Y + 2 L® 4 ..., on
trouve (cf. II, éq. (6,20))

o= go'D + 2@ L+ ...
+ 7 )
o=~ [ (d)s L (2) (— T) ' (9,10)
— T

- (=4 [ [ @) Lo, Do) [ @0 1o@) 1
.y 1 = T
e |

Mais, naturellement, des transformations o« finies et irréductibles
existent, pour lesquelles il n’existe pas de H.

Pour en donner un exemple, nous introduisons les deux fonctions DGE) 3

(

composantes Déz,, Dall, et Dy,

D'F) (xa | 2’ 4’) = DE), (z/2) :{ua(m), U A2} 4y (9,11)

L’une d’elles sert & représenter les potentiels et champs retardés et avancés d’une
inhomogénéité quelconque p? en (2,26)

b 2al@ = [ (@2)4D0 (/5)¢" (@) (9,12)%)
+=2

et I'autre permet d’exprimer la moyenne des deux potentiels par I'intégrale com-
plexe dans le plan 2’* le long d’un contour

C)=3(- o—-t|7z| >0 >+ 0+i|t|)+(—0+t|7| >0 >+ ww—1]|T]))
} (ret +av)ga (2) = sym ga (2) = Gmag [ (@2)* D) (a/2)e” (#) (913)
(e)
Pour des champs tensoriels (resp. spinoriels) on a D) (resp. D)= DO ¢
- D) (resp. D)) = DO,
Ainsi, d’une expression o™ du (n+ 2)idme ordre dans les u, on obtient en

“EZ; =f(dm)4ua(x)ulb(x) ..op(u®(z)...op(... u"l’(a:) 5 o)) (9,14)

une expression “Eg)m) du (n+2-—2 m)iéme ordre, si ’on substitue pour m paires

la fonction D);

' uy (2) ... w (2') = D(bl) B (/) (9,15)
| P

op est une opération différentielle (%, 0,, 6#”...) ou intégrale (ret, av) quelconque.

Naturellement, on doit se limiter & des agg?m) qui ne divergent pas.

'

’ 4
*) ...a/Qa:..-a,Qa+..-A/QA
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Les «(— T') définis par (9,10) (ou par les formes plus générales
(9,14)) sont invariants, dans la limite T co. Les fonctions de p, g

PO () = [ (d2)2 T (2) (1) - = XN,
a* (k) a(k) = N (k)
M) (t) = LY + 89 (9,16)

LQ (1) =+ 3 a* (k ( i-o%—kk%)a(k)(t)
SOt) = b3 a* (k) 0y (k1) a (k') (2)

Oira® S a/(-’E/k) = 8o (2 k") 031 (K' [ )

sont les P, et M,;, de la théorie linéaire. Ils transforment donc en
(9,8) toute fonction des u(x)(f’) & t'= const. Or, 'invariance des
«(—T) dans la limite T - oo s’exprime par « —a= 0 en (9,3).
Ceci équivaut & dire
' lim P,(+ T) = P,(—1T)
lm Mz (+T) = M,3(—1T) (9,17)

parce que la transformation des P, et M,; en (1,6) est devenue
I'identité. Nous avons écrit en (9, 17) P, ot M «p Pour PO et MO,

parce quela dispersion naturelleréduit, a ces époques asymptothues
les champs & des intensités infiniment fa1b1es La quantité de mouve-
ment et I’énergie portées par de telles ondes sont identiques a celles
de la théorie linéaire.

avec

§ 10. Le formalisme canonique pour les singularités.

Il est inutile de vouloir chercher des transformations infinitési-
males pour représenter la solution de I’équation fonctionnelle. Par
contre, une transformation finie du type (1,5) existe. Pour la trou-
ver, nous cherchons d’abord la transformation (9,3) pour u(z) (4 T)

aux époques asymptotiques ou la décomposition (7,5) est possible.
(out

La partie u inc) (4 1", solution infiniment faible du probléme homo-

géne, se transforme avec les P© et M© de (9,16). u(“’t)(i T) est
la solution statique caractérisée par les 8 constantes p, g, p'® et ¢®
de la ligne (1,2) (resp. par 4 + n4 constantes dans un modéle plus
compliqué). Les fonctions

Po(—=T) = PO—T) + pu({—T) (10,1)

Muy(—T) = MOQ(—T) + (2.0 — q5P) (= 1) + (P99 — ¢ pP)(—T)
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transforment les deux parties de u, si les p, q et p®, ¢ sont des
variables conjuguées. Tout a(— T), fonction invariante des a( T)
et des (p* q*, a®*) (— T), satisfait & {M,5(— 1), a(— T )} ={P.(—
a(—T)}=0. La transformation «, finie et asymptothue garantlt
ainsi, en vertu de l'invariance, les lois de conservation intégrale,
que nous avons postulées sous forme différentielle pour établir
I’équation fonctionnelle.

Le probleme s’est ainsi réduit & chercher un invariant « qui
correspond & un modéle (9;;.., &;.. et £, ) donné. Ainsi, la série
(r=o@), ¢ =9@)):

+4

hea[p]= — efd}lqo - (10,2)

%1/1 + 4 2 +4
2 _(2 I " % ren _ar ' 2
he oc()[qo][tp]——zezm1_(16”0:}9!6”(2 z)oa¢_jda¢)

&3 «@[@][@][@] = fonctionnelle trilinéaire en ¢, ete.

est équivalente au probléme du mouvement d’une singularité
e = ¢ sans spin d'un champ scalaire u = ¢ (électrodynamique
longitudinale, cf. IT). Les coefficients de Fourier de ¢ (x)(f) (nous
écrirons, en ¢ (9,6), ¢(u) a la place de a (k)) subissent, dans 'appro-
ximation linéaire, les changements :

de(u)=c(p) (+T)—c(u) (=T) = — i(a®g («®)) (u'[ ) ¢ () (-

(10,3)
g(x®) est la fonction matricielle g(a) =1+ gy + g2 + -+ de la
matrice

W (| ) = & 28 (m=1 (' — 1, p)) (10,4

@ (e (14,0 ()74 1, 7D)

Les coefficients de g sont g, = (—1)?/(n+1)!. (10,3) est la formule
(2,6) de IT, écrite de facon covariante pour le modéle quantique. Mais
des termes, bilinéaires en ¢, du type a®2 <2 (9,14) peuvent étre
ajoutés
aple]le] = («®e][e]) (@ [g][¢]) (10,5)
| SA—

R{ap, c(p)} =29 (—1a®)2 (4| u) c(p) ete.

Ils remplacent, dans la série g, les coefficients g, par des constantes
arbitraires. g a ainsi la forme

g(a) = (n(0) + w0 &(2))1 (10,6)

*) Nous écrivons ¢ pour le champ scalaire u.
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avec 1y = & = 1. Dans le systéme en repos, on a «'=21,k*=21,0%).

Ainsi, le o de (10,2) avec les termes arbitraires afZm*?, carac-

térise en (1,5) une transformation finie, qui correspond & la
solution de I’équation fonctionnelle pour le modeéle le plus général
n(2wiy) +10yAE(2why) (défini en (7,17)**)). Une application de
ce formalisme pour I’électron de Dirac a été donnée autre part
par M. Bouvier et Pauteur (1944).

Je tiens & remercier mon ami et collegue, Monsieur J. WEIGLE,
pour la mise au point du présent article.
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