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La charge gravifique et le spin de l'électron classique
par E. C. G. Stueekelberg.

(7. XI. 1944.)

§ 1. Introduction.

Nous avons établi, en I et II, une théorie de l'électron en
nous basant sur une électrodynamique linéaire. Dans le présent
article, nous envisageons le problème plus général, où les équations
du champ peuvent être non-linéaires. Il nous sera alors possible
de faire intervenir la théorie de gravitation d'EiNSTEiN qui, elle
aussi, amène à des équations gravifiques non-linéaires.

Les deux résultats sont les suivants:
1° La charge gravifique de tout système est la même que sa

masse inerte. Ce théorème fondamental, à ma connaissance, n'a
jamais été démontré. Tout récemment, Schroedinger (1944) a
établi cette équivalence pour un arrangement spécial des tensions
intérieures dans un électron soumis à l'électrodynamique de Born-
Inbeld (1934).

2° L'équation fonctionnelle pour la ligne d'univers de l'électron
X z(X) permet, pour certaines théories non linéaires, de forme
extrêmement singulière, des solutions périodiques en l'absence d'un
champ incident. La théorie la plus simple donne pour la ligne
d'univers :

X y(X) q + p m-1 X + 9îe(— ico0)-1 a(s>exp(— im0X) (1,1)
avec

\/2h a* W p«(«) — i g« M ; (pM p(»)) (q(>)) q(>)) h (a<s> *, a<s>)

(p, a*»*) (pW, gto) 0 ; (p, p) — m2

(y,y) (a^*,a^-l^(y,y) (1,1a)*)

Dans le système de repos (p 0, pi m), l'électron décrit un
cercle de rayon Xc a>~1 (a*(s), a<s>) avec la vitesse cc (a(s>*, a(s))*,

autour de la droite d'univers

x=Y(X) q + pm~1X (1,2)

Nous sommes ainsi amenés à voir dans le spin des particules
élémentaires une propriété essentiellement classique.

*) h et m sont, pour l'instant, des constantes quelconques.
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On peut se demander comment il est possible qu'une théorie
classique permette un mouvement accéléré d'une charge, sans
rayonnement. La réponse est la suivante : Cela provient de ce que la
charge libre, due à la polarisation du vide (électrique, gravifique et
champs de soustraction en I et II), reste immobile. Cette polarisation

résulte du fait que les équations du champ sont non-linéaires.
Les effets de dispersion et de polarisation se sont combinés pour
entourer le point chargé e(s> d'une couche sphérique de charge négative

e' (lim e' — e(s>) et pour distribuer la charge opposée e" — e'

(lim e" e(s)) uniformément sur un tube annulaire de rayon Xc.

Dans l'intérieur de ce tube, la singularité (chargée maintenant
avec la charge libre lim (e(s> + e') 0) tourne avec la vitesse cc

sans rayonner. La charge e" ne reste pas au repos, elle tourne sur
le tube. Ainsi, elle produit un courant stationnaire e" m") en
plus de la charge statique e" e(s). Tandis que e" doit être
rigoureusement égal à e(s> pour que le rayonnement disparaisse, co" ne
doit pas nécessairement coïncider avec œ0. La conséquence de cette
rotation est un moment magnétique arbitraire, lié à la particule,
comme c'est le cas en théorie des quanta (Pauli (1933), p. 233).

Aux §§ 9 et 10, nous avons réussi à développer un formalisme
canonique pour traiter le mouvement de notre électron ponctuel. Les
équations du mouvement de Newton (mè n; n f(-in<i>) étant
remplacées par des équations fonctionnelles —/<self'[2(A)] /(def), le
formalisme des transformations canoniques infinitésimales

F{t+d t) =F{t) + {H (t), F (t)} dt=F{t) +F (t) dt (1,3)

et son intégration sur un intervalle temporel 2 T

F(+T) (^tF+^{H>F}+^{h,{H,F}) + ...)(-T) (1,4)

n'est plus possible. Par contre, une transformation canonique finie

F(+T) (^F+±{*,F}+^{k,{*,F}} + ...)(-T) (1,5)

peut être employée, dont le résultat est, dans la limite T->- oo,
équivalant à la solution asymptotique de l'équation fonctionnelle.

Dans une communication suivante*), nous démontrons que ce
formalisme peut être traduit intégralement en théorie des quanta.
La matrice S, introduite par Heisenberg (1944) et par l'auteur
(1944), est reliée au a de (1,5) par S e_iot.

*) (1945) mécanique fonctionnelle et asymptotique (ref : IV).
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En analogie parfaite avec l'Hamiltonienne H en (1,8), nous
démontrons en IV, que l'opérateur a en (1,5) déterminera les
collisions entre particules (spectre continu de a) et les états stationnantes

des systèmes composés de particules élémentaires (spectre
discret de a).

§ 2. Les équations du champ.

Par le mot « champ », nous comprenons l'ensemble de tous les

champs existants (électrodynamique, gravitation*), champ de
matière pondérable champ de Dirac, de Proca, etc.)). Nous
distinguons entre potentiel u, intensité U, (densité de) courant v et
(densité d') induction V. Leurs composantes sont dénombrées par
ua,UA, AVA et Ava (dans l'électrodynamique, elles sont <px, B^ß,
1 iîa^ et 1J«).

Nous introduisons deux métriques, g""5 et g*ß; elles sont reliées

Par: pe=$*ß+v*ß (2,i)

Pour faciliter l'écriture, nous remplacerons les indices a ß par un
seul indice a écrit en bas. Ces ua seront appelées les composantes

du potentiel gravifique. g est appelé „champ g", g est solution

de l'équation homogène (2,3b):

Waß Baß-i g(-D (jrB„,-2 »w) (2,3a)

Waß=0 (2,3b)

Baß Bayßv est le tenseur de Riemann-Christobfel. IF, B, etc.
sont des expressions formées en termes de g et de ses dérivées

dag, etc. Nous relions dg aux GA Gaßv (coefficients affines) par

G,/ Wv'(d«9ßy' + dß 9y'a-àY.g,p) (2,4)

On peut introduire un tenseur yQA quatre matrices rectangulaires
A, a) et son inverse y'"1'"1 pour donner à (2,4) une forme plus ma-
lliable:

Y'Aadtg,-GA {y,dg)A-GA 0 (2,5)

Son inverse est:
àega~r(^AGA=o (2,6)

avec
y(-1\aA'=y[-1\(aß)(a'ß'^=^{fß'^+g^'0-y) (2,6a)

Conformément aux deux métriques, nous devons distinguer entre

*) Dans les éq. (2,14) et (2,20) la gravitation n'est pas comprise. Le terme
champ matériel comprend alors tout champ à l'exception du champ gravifique
u«ß ou 9ap-



24 E. C. G. Stueekelberg.

deux dérivées tensorielles d'un tenseur ua quelconque et de son con-
tragrédient va. La dérivée covariante est définie en métrique g par

v ,8 d va + va' r ,a

La dérivée métrique (g) est donnée par

Ue;a= àgUa — fQ/ua, (2,08)

Les T resp. F sont reliés à leur tour aux G (exp. G) par

rea6 Ge/</ (2,9)

Les matrices quadratiques cr/resp. cr^" sont définies par la
transformation infinitésimale

va(x) P"(i)+e"ff",/«v;
'

««(a;) m0 («) — ^VT"»
correspondant à la substitution linéaire et infinitésimale

xa= X* + ôxa X« + ÒTa + x*'ô y>a,a (2,11)

Conformément à nos deux métriques, nous avons aussi deux
formes pour les équations du champ.

En métrique g, ils dérivent du principe de variation

ÔJ=0; J=J(») + J(»); J()= J(dx)iAL{); A=\\-gi"\\-i (2,12)

AUm) dépend des UA et des ua du champ matériel et des ga. AL(a)
ne dépend que des ga et GA du champ g. La seule forme qui rend
J(»> invariant est rayon de courbure de l'univers):

g"v{GuJ GVT" - G„S GeS) + 4J} (2,13)

Les intensités du champ matériel sont reliées au potentiel par un
tenseur ysAa (différent de (2,5)) :

YeAaueia-UA= 0 (2,14)

(Pour le champ électromagnétique (u <p, U B): yeAa' ye(0ißf

^lPlt ~ ^«'^1- Pour le champ de Dirac: les yeaa' sont quadratiques
[yeyk + y*yQ)aa' 2<j;,9(5aa'). Nous définissons par

AW-Afi dALim)
à

dAL(m)
(2 l'i)AO -AOlxv=-fg~-dl7JW (Alo)

(En (2,15) la dérivée est à prendre aussi par rapport aux ga et aux
dgga contenus en y et r de (2,14) et (2,7)) la densité de courant g
vraie de la matière. En plus,

AF^^l; Af ^- (2,16)
àgA ' 1 àga ^ ' I
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sont respectivement l'induction et le courant g (vrai) du champ g.
On obtient, par (2,12), l'équation de gravitation dans la forme

de(AFye)a A{f + &a) (2,17)

avec les ye de (2,5) et de (2,6a). Dans sa forme habituelle, en termes
de (2,3a), elle est:

Waß - eaß (2,18)

En termes de Yinduction VA et de la densité du courant va

dALim) „ dAL{m)
AVA- Ava (2,19)

(2,20)

les équations du champ matériel u sont

{VQÌye)a — va 0

ou
de(A Vye)a Ava

Nous allons maintenant établir les équations en métrique g.
Nous définissons d'abord par

Ga GA + UA (2,21)

les composantes d'un tenseur Uaßv. Il représente l'intensité gravifique.

(2,6), (2,6a) et (2,1) montrent qu'entre UA et ua, il y a une
relation covariante. Son inverse est

(re«eî) U4= QA (2,22)

avec QA (2,24). De la Langrangienne AL(g\ nous formons un

ÂL'^(U,u)= ALW — ÀLM

fonction du potentiel u et de l'intensité U gravifique. Ensuite, les

équations qui dérivent d'un principe semblable à (2,12) avec

J - J {dt lAL : AL AL'(g) + AL{mi (2,23)

sont équivalentes à celles de la métrique g, si l'on varie les ua (y
compris maintenant les composantes uaß) et les UA (y compris les
Uaßv) reliés entre eux par (2,22) avec

U) {yereu~y*reu)A (2,24)

en gardant g constant. QA est différent de zéro pour des champs
ua si g et /'figurent en (yeuQ\)A. (ÛA 0 pour le champ électro-
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magnétique). Les équation du champ sont: (2,20) pour le champ
matériel et une équation de la forme (2,20), avec Vg.f à la place
de Ve\A et va dL/du", pour toutes les composantes matérielles et

gravifiques. Nous préférons séparer L en (2,23) en termes bilinéaires
L(0) et en termes de plus haut ordre L(int)

L= L<°> + L<int>; L<°>= i{UdiABUB + x2uJ<*>ub) (2,25)
définissant UA par (2,22) avec QA 0.

o

I est un tenseur symétrique, fonction de c/. x'1 est une longueur.
Pour le champ électromagnétique et le champ gravifique, on peut
poser j<2->- 0 pour tout problème dans lequel la courbure de l'univers

n'intervient pas. On peut donner à (2,20) une forme analogue
à (2,22)

(2,26)(U iyQ)a— x2(u£)a=Qa

Qa est la densité du courant libre

int) a r(int)
(2,26a)ea(u, u) — de

dua eà(deua)

L'avantage de la métrique g est d'avoir ramené les équations
de la gravitation et de la matière à la même forme tensorielle (2,22)
et (2,26) : Au premier membre figurent des expressions linéaires en
u et U. Le second membre contient, sous forme de « densités de
courant libre q» et de «densités de moment libre Q», l'influence
exercée par la non-linéarité.

Remarquons que la partie gravifique de dQ(UÇye)ap en (2,26)
vaut (par comparaison avec (2,3a) et (2,18)) pour r et x(g) ~ 0

àe{~UÌy°) 2(dadßu*+ D uaß - dßd,u\ - dadxu'-ß

-^(?«/-dA«"')) (2'27)

oùnousavons posé u^= g("^ß ulß, D= g'"dltdr, etc. La divergence

dada(Viy')"ß=0 (2,28)

disparaît identiquement en vertu de la symétrie de (2,27) pour
«M °-

§ 3. Les lois de conservation du courant gravifique.

Nous distinguons entre des lois de type

àe^êsaeJ o (3,i)
contenant la divergence ordinaire et que nous appellerons èqua-
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lions de continuité, et des lois, auxquelles nous donnerons le nom
d'équations de continuité covariantes, contenant la divergence cova-
nante

(g°«&Je[=o (3,2)

Le premier membre de (2,18) satisfait, en vertu de (2,3a), à

l'identité (3,2). L'équation de continuité covariante (3,2) doit donc
être une conséquence des seules équations du champ matériel,
indépendamment de la loi suivant laquelle g varie. En termes de la
divergence ordinaire (3,2) s'écrit:

ö8(^f0lf) + |lö^pf=O (3,3)

(3,1) est une conséquence de la symétrie de la partie gravifique
de (2,26) (voir (2,28)) pour autant qu'on se limite à des régions
petites par rapport à l'univers et qu'on y choisit un système g
const. On établit facilement la relation

o / r) Tiff) (ta*) à Tiff) (tat) \
A6aß=A0aß+A (3,4)

entre charge libre et charge vraie. En L'<9>= L<«,><0>+L(6')(lnt), U")^
est la partie non-bilinéaire de la Lagrangienne L'(a). (3,1) peut ainsi
être écrit sous la forme

de{Age«0aß)+de(-Aue«&aß + ÄQ%) 0 (3,5)

avec le même premier terme que (3,2). (3,5) est une conséquence
de l'équation du champ pour matière et gravitation.

Enfin, une dernière identité (gexA 0aß)\Q- 0 de la forme (3,2)
est valable si A © est la « vraie charge gravifique » définie par une

équation (2,15) avec le AL (de (2,23)) et le g à la place du ZlL<m>

et du g. Pour un g euclidien, la transcription en (3,3) s'exprime par

àe (à g** 0aß) + àe Auea0aß+ g«*Â 0 (3,6)

parce que les dérivées de A L'm> par rapport à ga^ sont les mêmes

que celles de zî(L<m> <°> + L(m) <int>) par rapport à u«ß. À 0'^ est
obtenu de AL'(3,6) a les mêmes deux premiers termes que (3,5).

Toute équation de continuité dans un espace à n dimensions
X1, X2 xn implique la conservation de l'intégrale sur le sous-
espace Lan — 1 dimensions

eW(xn) J'(dx)n-1AgnaQxß{x1, : xn) (3,7)
v

pendant l'intervalle 2 T
e<%{xn + T) eW^« - T) (3,8)
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si l'intégrand s'annule sur la surface latérale du cylindre n-dimen-
sionnel. Pour xn= t, nous appelions les quatre grandeurs (3,7) e*4^
les composantes du quadrivecteur de la charge gravifique (libre)
contenue dans V.

§ 4. Les lois de conservation pour le courant énergétique.

Dans le principe (2,12), nous ne varions d'abord que la partie
matérielle. La densité du courant énergétique défini par

A T* <«> A V«08u - 0%A L<"»> + d(lZ'm) d,qa ; V« V y* (4,1)

satisfait, en vertu des équations du champ matériel, à

de (A T*%) + Ae^dpgr-O (4,2)

La variation des deux intégrales

PW(f) J{dx)3ATi<«)(5, f) (4,3a)

P%(f) 2 ewo-o(f) y{dx)*A g*«0aß (x, t) (4,3)

au cours de la période 2 T envisagée en (3,8) et due à l'évolution
arbitraire de g, doit être identique en vertu de (3,3) et (4,2). Nous
les appelons le quadrivecteur de la quantité de mouvement-énergie P(™>

et de (deux fois) la vraie charge gravifique P^j 2e(4)(m)/3 portée par
la matière contenue en V. Leur différence ne peut être qu'un
vecteur constant. Or, un tel vecteur constant (qui doit être
indépendant de g) ne peut être que zéro dans une théorie covariante.
Donc, on a une première identité

P(»') P(*"»(,)=2«(4)« (4,4)

Si l'on varie u et g en (2,12), la densité énergétique totale A Taß

A T"ß A{T^ml+ T«wß) ; A Ta^= AF« dß g-ò« A L<«" (4,5)

satisfait à l'équation de continuité

de(A Teß) 0 (4,6)
Les quantités

Pß=Pß™+Pß™ (4,7)

restent donc constantes si les mêmes conditions sont remplies sulla

surface de V que celles que nous demandions pour la conservation

du ewß en (3,8). La comparaison entre (3,5), (3,3) et (4,2)
montre la constance de

2eWß 2eW^ß + 2e^ß Pm (4,8)
et l'identité

Pß=Pß(g)=2e(% (4,9)
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entre le quadrivecteur de quantité de mouvement total Pß et (le
double du) quadrivecteur de la charge gravifique libre Pß(g) 2e(4)(3.

En métrique g, le moment de la quantité de mouvement Maß^
défini par

Maß(t)=f(dx)*ÄQ\ß(x,t) (4,10)

d,(ÄQ\ß) 0 (4,11)

est également conservé. Les deux définitions, pour Qxaßit) et Qxaß

— QXaß(Z) + Q\ß(S) > sont: les densités du moment

total : Q aß ^ xx 2 gxß xß 2 ç>xa

« orbital» : Q\ß(L) xa T\ ~ xß T'a (4,12)*)
et «intérieur»: Q*aß(S) V1aaß u

§ 5. Le champ gravistatique et la masse gravifique.

Dans ce paragraphe, nous déterminons le champ gravifique
d'un système staiionnaire. Par un tel système, nous comprenons
une solution de l'équation du champ, dans laquelle la quantité de

mouvement constante Pß est contenue dans un volume F(F~A03)
(système de repos P{ 0, P4 £ 0). Ceci implique que UA(x t) (et
ua si X 4= 0) décroît au moins comme r-2 pour r \ x —«| ^>A0.
3 est un point quelconque à l'intérieur de Y. Pour x 0, cette
condition implique dtU(x t) 0 pour r ^>20. Le champ est donc
statique.

Discutons le problème en métrique g : Toute abréviation, par
exemple Qxß ou öa, signifie dès lors $aa'(?a'aet gx*'da,, avec un g
constant (g44=—1). L'équation (2,26) (avec (2,27)) prend alors
la forme (i, k, l, 1, 2, 3) :

£(dAW — «44) + d^w«) — VgAQi1 — ôu) (5,i)

I d, d* m44 P44 + I (e/ — e44)

(5,1) ne résulte de (2,26) que si la condition (compatible avec
(2,26)) da uap 0 (analogue à la condition de Lorbntz da y* 0 en
électrodynamique) est imposée au potentiel uap. Elle ne fait que
limiter le groupe de jauge, qui, en théorie de gravitation, est donné
par l'ensemble de transformations (infinitésimales) des coordonnées
(dans la partie finie de l'espace temps) :

x«= x*+ òxa(x) ; f-P f-P+òaòxp+àlìòxa (5,3)

*) Voir Pauli (1941).
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à des ô%a soumis à nàtf1 + da(dßö%ß) 0. Posant encore A 1,
la continuité de oa/3 montre que

o*4 0 et J{dx)sQik 0 (5,4)
v

La deuxième équation (5,1) admet le potentiel Newtonien

». lie luu{x) — -j— (~ + termes en4:7i \ r r"
avec la charge gravifique (cf. (3.7), (4.5), (4.7) et (4.3a))

e44=f{dx)s6M ~J(dx)3giaeai -lJ{dxf A T\=\P*^ m (5,5)

^ile 0

comme seule solution dont le potentiel disparaît pour r -> oo. La
charge gravifique e14 datis T7 esi donc proportionnelle (facteur 1/2)*)
à l'énergie totale P*= m contenue en V. m sera appelé la masse
gravifique du système. Dans un système d'axes quelconque, m est
défini par

(P, P) PaP*= -m2; m= P^P^n1 (5,6)

§ 6. L'équation de mouvement pour les centres d'énergie et de gravité
du système et la masse inerte.

Nous discutons d'abord le système stationnaire envisagé au
§ 5. Nous définirons les centres d'énergie et de gravité par

z1 (A) m-1J{dx)7txiA T44 (5, A)

Z*{X) m-i-J^dx)3 x1 2 o44 (5, A) (6,1)

dans le système de repos à l'époque X t. On vérifie facilement les

relations (nous écrivons y1 et Y* pour zi et Zi et P pour dP / d A)

y^X) m^J{dx)3A T^ï P\ si Ta" t î7"0

Y*(A) m-1 Z" (d œ)3 2 g*4 P* 0 (6,2)

*) En unités conventionnelles, le 0aß (et donc gik en (5,1)) contient le facteur
8 n k2jc2 (k const, de gravitation Newtonienne). Aussi définit-on l'énergie par

g44. Introduisant alors la masse (gravifique) par P4 me2 et le
potentiel Newtonien par 20 uu, (5,5) prend la forme conventionnelle

0 x) =-. — k — + termes en -^- (5,5 a)
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en vertu des théorèmes de continuité. Le centre de gravité reste
ainsi en repos en vertu de la symétrie de Qaß. Par contre, le centre
d'énergie peut avoir un mouvement intérieur. Pourtant, dans le

cas stationnaire, y ne s'éloigne jamais «infiniment loin» de Y. (On
remarque l'analogie entre le mouvement (1,1) et (1,2) de la particule

avec spin.)
Considérons maintenant un système quasistationnaire, dont les

u et V ne disparaissent pas sur la surface de V (à distance r ^> A0).
Pour t go, u est tellement faible qu'à toute décomposition

u «<stat> + t(<def> (6,3)

correspond une décomposition de V en F<stat> + T7(def). La théorie est
donc linéaire sur cette surface lointaine. Aussi voulons-nous, dans
le cas x 4= 0, supposer que (6,3) soit valable déjà dans une région r
soumise à

x-1p>r^>X0 (6,4)

(6,3) est le cas où une onde incidente w(inc) déforme le champ du
système stationnaire. (Cette déformation w(def) est égale à t6(inc), si
la théorie est partout linéaire ou si w,(inc> est infiniment faible.) Aussi
allons-nous soumettre la longueur d'onde de w.(def) à

*tfno> > K (6>5)

sur toute la surface. Dans ce cas, on démontre que la relation (6,2)

mZ«(X) P«,g)(X) (6,6)

reste valable. Si T4a et 2 g4a ne disparaissent pas sur la surface de

V, les deux définitions (4,3) pour Pa et pour Pa(g) peuvent
différer. On calcule d'abord la variation de Pa. Dans le système
de repos, on trouve, après quelques transformations,

ôP*=-ôl (ßdOiT*«^ e«(stat>«)«Mo(def) sx (6,7)

r
avec

ea(stet) =(f) deftVa 1 <stat> J{dx)sQa<stat) (6,7a)*
r V

Pour établir (6,7), seule la linéarité pour des champs faibles (6,3)
et les conditions (6,4) et (6,5) ont été utilisées. ea(stat) est la charge
libre statique. Pour le champ gravifique, elle est donnée par (5,5).
Dans un système d'axes quelconques, elle vaut ainsi

^(stat) im K z„ \ Paw zß (6>8)

*) Vgi VAyiAa, dat= élément de surface.
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Pour trouver la ligne d'univers, il nous faut le àPfg). On peut
démontrer (Pauli (1941), équations (14) et (13c)) que la relation

2e«P= Ta" + dxfaßX (6,9)

2 faßx _ 2 fß* (V'- haß + VßaaX — T7a ct^) m

existe dans toute région où les équations de champ sont satisfaites.
Après des calculs assez longs, se servant de la symétrie ua M(ai8y---)

M(^y....)> ye(a/»...)= _ya(ep...) et de la définition

ô;:' °;(aß..fß'-}= °gv*' O +<(...)...+-
on établit, dans le système en repos,

ôPe(g) e(**-)(rt.t) nUg£>)eM (6,10)

UA U(a---)e Î7ae est Vintensité tensorielle générale introduite au
§ 3. n est un facteur + 1 resp. — 2 pour l'électrodynamique
resp. pour la gravitation). (6,10) avec (6,6) se combine en

mZ« n efl<stat> (70(def)e (6,11)

m est le même facteur qu'en (5,5). Il représente ici la masse inerte.
Si le champ incident est purement gravifique et s'il est trop

faible pour «polariser les masses» (<7(def)-> U(inc)) (6,8) montre que
(6,11) prend la forme

~Ze + G<™^ZaZß 0 (6,12)

(Nous avons posé G<inc> G(= 0) + l7<inc> + Ü 0)). Le centre de gravité

décrit donc une «géodésique de la métrique incidente c/inc)» qui
régnerait si le système n'était pas présent. C'est la conséquence
de l'équivalence entre masse gravifique 2 e44 dans le système de

repos) et masse inerte (P4 dans le système de repos), qui fut le

point de départ de la théorie d'Einstein*).
L'équation de la géodésique (6,12) semble être contraire à l'invariance de

jauge (postulat que les observables physiques sont invariantes par rapport à la
substitution (S,3). Car, contrairement au cas électromagnétique où Baß est
invariant par rapport à la substitution <fa= fa + àax> les intensités gravifiques

*) Remarquons que (6,12) est valable pour tout système. Par exemple, la

goutte incompressible (wa quadrivitesse, p pression, wß * tiP+ 0,

wo j 0 0 soumis à * 0) n'est qu'un cas particulier d'une théorie d'un
champ à 5 composantes intensives (UA et ua= wa et p). Cette théorie est
intéressante en ce qu'elle permet des solutions statiques, tandis que toute autre
théorie où les y diffèrent de zéro pour r -»oo (ici on a y n'admet des
solutions statiques que si les équations du champ ne sont pas vérifiées en
certains points singuliers.



La charge gravifique et le spin de l'électron classique. 33

Uaßv (resp. G) en (6,12) ne le sont pas. Cependant, on peut montrer que le changement

intégral de la tangente (nous écrivons l'équation contragrédiente à (6,12)

+ A

ÔÊe= f dZ«G<™\eaÈa(A) (6,13)
-A

est invariante.
En effet, supposons qu'il existe un autre chemin C(Â) (non géodésique) reliant

les points Za(±A) qui est situé entièrement dans une région gönc)
euclidienne (région sans champ gravifique). Ce chemin C(A) permet de comparer les

deux vecteurs Za (^ A). Le théorème de Stokes pour le contour fermé Z(X) — C(X)
(27 surface entourée par ce contour) montre que

ÔZQ -$âZ«G^%°Zam - f d<y«ß(daGß;-ößGae°)^Za
z-c s

mZa(A) J'dcffR^g* (6,14)

s
est une grandeur invariante par rapport aux transformations de jauge (5,3). En
(6,14), les termes prop, à G2 ont été négligés. Pour les inclure, une prolongation
du «champ Ze (Z),» à l'intérieur de la surface 27 (entourée par Z(A) — C (X)) doit
être faite. Le résultat contiendra des puissances et des dérivées du tenseur de

Rieman-Christoffel i£™Cg Les observables physiques (par exemple la déflexion

»SP™ mòZa) sont ainsi indépendantes de la jauge des </inc) uv en anai0gje
parfaite avec l'électrodynamique.

§ 7. Les singularités du champ.

Les solutions statiques possèdent des lignes singulières sauf
dans le cas où les y pour une partie du champ (par expl. pour le
liquide dans la note p. 32) disparaissent à l'infini. Sur ces lignes,
les équations du champ ne sont donc plus valables. (2,20) et (2,26)
contiennent alors une inhomogénéité singulière

(Ve[ ye)a ~va dg (Ulye)a— x2 (ul)a — q" e(s)ffl (7,1)

+ 00

e(s)a (x) Jdle^" ô(x — z{À))

ô(x) est défini par la relation invariante:

0 ;zcV
{aX)aQW (X,t) W {X) i

V'
(X{t))J{dx)sQ^a(x,t) w(x)

e^a(X{t))wÇz mt)));zDV

e(s)œ représente la charge vraie située au point z (A(f)). Elle est une
fonction contragrédiente à ua de la ligne d'univers, par exemple

eia(A) ou E(e)zazß. Jusqu'à présent, les lois de continuité
3
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étaient des conséquences des équations du champ. Mais, maintenant,

elles ne le sont plus, car

àa T*ß 0w« dß ua da 2 ß«ß n qM» Uaß (7,2)

Pour que l'identité entre Pa et P"ff) soit établie,, il faut que Pa soit
formé à partir d'un T'aß soumis à:

daT"ß=da2^ß=n^'VaP (7,2a)

Pour l'obtenir nous ajoutons à Taß un terme singulier:

T"ß= T-ß-ne^'-ußll^ (7,2b)

(Il faut alors que ua satisfasse à l'équation de continuité da u*ßy__ 0.)
Pour une ligne d'univers donnée x z{X), les solutions de (7,1)

sont des fonctionnelles u(x) u(x)[z(X)] des quatre fonctions za(X).
La condition de continuité pour x z :

i« (A(*))]{dx)* da T"„ ««<•)• (A(f)) Ua(5 (1 (A(f)), t)[z(A)]

/,(A(t))[*(A)] (7,3)

contient quatre équations fonctionnelles pour les quatre 2a(A). Nous
appelons (A) [2 (A) ] la force totale agissant à l'instant A A(i) sur
la singularité. Une solution particulière de (7,1) et (7,3) est la droite
2a const. Alors, le champ est statique. Son vecteur Pa doit être
parallèle à z

p<stat>= mza 7Ca (7,4)

m est la masse inerte et gravifique, parce que (5,5) et (6,8) sont
restés valables. Les théories linéaires simples donnent pour le
facteur de proportionalité m une valeur infinie. Mais des théories
linéaires complexes (faisant intervenir plusieurs champs) (Stueckel-
berg (1939), Bopp (1940), Lande et Thomas (1941)), des théories
linéaires limites (Wentzel (1934), Dirac (1938), et Stueckelberg
(1944)) et des théories non-linéaires (Born et Infeld (1934), Schroe-
dinger (1943)) existent, qui donnent, pour m, une valeur finie.
m dépend des constantes qu'on a introduites dans ces théories.
Considérons d'autres solutions et cherchons des lignes zcl(A) qui ne
s'éloignent pas infiniment loin de deux droites asymptotiques (1,2)
pour A ±/l-> ± 00 caractérisées par 8 + 8n constantes pa(± A),
ga(± A), p4s)(± A), qis)(± A). Les solutions de l'équation du champ
(7,1) sont, aux époques t= ± T z* (i A) au voisinage fini de
za, le champ stationnaire envisagé au § 5. La décomposition (6,3)
est, à ces époques, rigoureusement possible, car le champ d'ondes

/out\ /out\
MUnc/ s'est séparé du champ stationnaire. u, inc' est même devenu
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infiniment faible sous l'influence de sa dispersion naturelle. Nous
écrivons, toujours à ces deux époques, avec Dirac:

/out\ / av\
lim u ± T) -> u[ inc; + u w; [z fi)] (7,5)

/out\
Les parties w^inc' sont, à ces époques, solutions de l'équation homo-

gène. MVreW sont, à ces deux époques, les solutions mhomogènes et
stationnaires, provoquées par l'une ou l'autre des branches asympto-
tiques z fi J ± A) de la ligne. ,av>

A des époques finies, nous définissons par le symbole u 'ret' (x) [zfi) ]
les fonctionnelles particulières, solutions de (7,1) et soumises à l'une
ou l'autre des deux conditions aux limites:

/av\
lim u (ietl ± T) -> M(stat) (7,6)

La solution générale u(x), qui satisfait aux conditions aux limites
(7,5), définit à chaque instant deux ii(def) par:

u (x) u ™> + u{iet> (7,7)

Ces équations représentent la généralisation de la décomposition
de Dirac (7,5) pour des théories non-linéaires. Nous rappelons les
définitions et relations suivantes pour les potentiels

2 w(sym) M(ret) + u(hy)

2 «(«d) ^(ret) M(av) (^g)

Pour les grandeurs non-linéaires, par exemple pour les intégrales
Pp ou leurs dérivées, la décomposition est de la forme

*_ ^p(BYm) + p(rad) + p<Wad>) ± P<™f> + PKm' out^= 0*) (7,9a)

Elle correspond, terme par terme, à (7,3) décomposé en

^Pß=n ew a fi) (l7(sym) ± U(rad> + ü(d°f °^)aß

fßsjm) ± ffein) + /]sdef) /(self> [> fi)] + /(def) 0 C7-9)

Aux limites asymptotiques, on a

lim u^™> (± T) -> w<stat> + iM<rad> (7,10)

lim (P(sym)+ p(rad) + P<^^)ß(±T)->nß(±T)+ |P/ad>(± T)-

(avec P(rad) (+ P) P(rad) (— P)). 71,3 est la quantité de mouvement

*) Puissances «paires» ou «impaires» en î/rad)-
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du champ stationnaire entourant 2™ (4= (7,4), pour z, "z, 4= 0). P<™d>

est celle portée par les ondes émises. L'identité

lim u^ (± T) -> w<stat> (± T) + w<rad> (± T) (7,11)

et les équations (7,6) et (7,11) permettent d'établir la relation
suivante :

/ret\ /ret\
lim (P[^>(+T)-P[^>(-T))ß 7zß{+ T)-nß{-T)±Pßi«*> (7,12)

qu'on compare avec l'intégrale de (7,9a) et de (7,9). Les deux
premiers termes de la fonctionnelle / en (7,9) sont indépendants de

w(inc)(;r). Leurs intégrales
+ A

— lim J dX ff^ (X) nß {+A) — nß (— A) ô Tip

- A
+ A

- limf dX jf*>* {X) P/rad>
- (7,13)

- A

doivent ainsi représenter l'augmentation bnß de la constante de
mouvement portée par le champ stationnaire et celle portée par
l'onde émise P^rad). Les développements suivants avec des
coefficients constants nik_ et dépendant du choix de la théorie,
expriment que /(s5™> et /(rad) sont des fonctionnelles paires et
impaires de z (X) et que /(def) peut être développé en termes de /<inc).

/<¦*"> - m(z ~ 4V2Xl(Y- 3 z {z ,'z)) +WrìiXi0(f ~ •¦•) + •••

+ ^o('?o2^— 4?722 A2(T + •••) (z, z)

+ X±(rlmè + ...)Cz, zV+--)ß (7,14)*)

/(frein) mA0 ((ï z (z ,'z)^) 4|2A2(T- è (4 z, T
+ 8 (*,*)) +
+ ^(lo2 (* - -) + -) (2, i) + •¦)„ (7,15)*)**)

/(define) e„ (stai) (X) n U%f (z {X))

+ (termes en da P(ino), da ôy U<inc>, et (U<inc>)2, (C7<illc>)3, •••
dépendant de z, z,...) (7,16)

Le facteur m de — z (-z, z)-1 en (7,14) doit être la même
constante qu'en (7,4) parce que les considérations du § 5 restent va-

*) Dans les théories envisagées (électrodynamique, gravitation), la force /
satisfait à l'identité (/, h) 0. Cette relation détermine les coefficients numériques
des à en (7,14), (7,15) et (8,8). Les F en (7,14) à (7,16) sont les dérivées par
rapport au temps propre (=F(-z,

**) si « 0.
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labiés: Comme rien n'a été changé dans les équations du champ
à grande distance r, l'équation (6,11) est encore juste dans la limite
"z "z 0 (cas quasistatique). Cette même considération limite
nous a obligé à poser la charge totale e(stat) (et non e(s)a) comme
facteur de L7(in°)a p dans le développement (7,16) de /(def) en termes.de
U(inc>. Les généralisations contenues en (7,9), (7,14), (7,15) et (7,16)

par rapport à notre théorie linéaire en I et à notre théorie limite
en II sont les suivantes:

1° Contrairement à I, les coefficients nlk_„ des termes non-
linéaires en % sont maintenant indépendants des coefficients des
termes linéaires rj{. Nous avons montré en II que les ni pourraient
être choisis arbitrairement (r\ (2X0co) 1 + i-j2(2co X0)2 r]2+ ¦••=:
fonction du modèle). La liberté additionnelle dont on dispose dans
une forme non-linéaire de la théorie du champ cp u (et des champs
additionnels 5>W r\e n) nous permet de prendre aussi pour les

fin. _
des constantes arbitraires.

2° La force de freinage f^eio) détermine, en (7,13), la quantité
de mouvement rayonnée. Le coefficient de cette force (la longueur
X0) est ainsi obtenu en calculant l'énergie du rayonnement dipole de
la charge libre e(statb Si l'on connaît la charge électrique e, portée
par un corps, on a e(stat)a ez« e(s)oc et, conformément à (5,5),
e(stat)a/5=im gtt'zßr=e^ 2<x |/J; la théorie de rayonnement (pour la
gravitation cf. Pauli (1921), éq. (450)) détermine 4 nX0=(fe2+fe(g2/)m-1.
Dans une théorie non-linéaire, cette charge libre se trouve distribuée

sur une étendue finie. Il en résulte un freinage multipole,
exprimé par les termes "z", etc., avec des coefficients £^..4=0.

3° Pour l'approximation linéaire, le résultat correspond à l'équation

(1,17) et (1,19) de II, avec une fonction de modèle complexe

(g(2X0œ))-i=r](2X0t»)+ ^(2Xaco) £(2X0co) 1 + rÌ2(2X0cA)2 + -
+ iX0co(l + ?2(2X0co)2+..-) (7,17)

à la place du 1 + n2 (2 X0 ca)2 + • • • + i X0 co en IL Ve g (2 X0 co)

en (7,17) est la nouvelle «fonction de prémonition». (=2ng0 en
II, équation (1,23)).

§ 8. Discussion des solutions stationnaires.

Les solutions de l'équation fonctionnelle avec TAinQ) 0
représentent le mouvement de la singularité dans le cas stationnaire. La
droite (1,2) est une solution possible. Considérons d'autres
solutions :
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1° Si tous les £4<ii sont nuls (théorie du champ linéaire), la
droite d'univers est la seule solution car, sinon, pour t= + T,
la solution devient une hyperbole (accélération continuelle vers la
vitesse de lumière. Cf. Dirac (1938) et II), ce qui est contradictoire

à la décomposition faite.
2° Pour le modèle £*...:£ 0, par expl. pour

4r,2X2 4Ç2X2=-co0-2; r,. - |4= - niK= U..= 0 (8,1)

on a, comme solution générale, la spirale d'univers (1,1). Discutons
ce cas intéressant et déterminons le moment magnétique du modèle.

Nous calculons d'abord la moyenne de la force (pour z y (1,1))
sur une période co0~2

_ i
f(^inc)=ez«B^>(z)(z,z) *-eY«B<™>(Y) + f$dyB<%» + - (8,2)

et nous trouvons
A+co,,-1

(0) leco0f (y -Y)vdyß l eco0(qv(s)Pm ~ qß(s)qy{s)) (8,3)

Mais, en (7,16), nous avons vu que d'autres termes, linéaires en
rj(inc) maig dépendant des z, peuvent s'ajouter à /<inc)_ Les termes
suivants

/(def) /(ine) + fi XI J« B(ine) (_ £
; £)~J (g,4)

+ X2(C2kß(z, z) + CJß) z" *'B£«>(- * 'A~Y + -
ne dépendent que de 'z et 'z. C2 et J3 doivent être déterminés en
termes de Cx pour avoir (/(inc), à) 0. Alors, (8,4) contribue à un
moment magnétique additionnel

u^ Ci fio «>„)2 (1 - («(8) *, a(s))) /*%? (8,5)

La quantité de mouvement n« du champ stationnaire ne peut être

parallèle qu'au seul vecteur constant Ya. Le moment intérieur (spin)
o«ß ne peut dépendre que du seul tenseur antisymétrique constant
(y — Y)ayß — (y — Y)ßyx. En termes des constantes de (1,1), ceci
revient à dire que

n«= YYL p«;M«ß=Y«nß-Yßn*+i^(<1«MpßM — qßMp«M) (8,6)

doivent représenter la quantité de mouvement et le moment. Les
scalaires m' et h' sont, dans le cas général, fonctions de l'amplitude

a(s) du spin.
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On obtient un modèle particulièrement simple admettant (1,1)
si l'on introduit encore

%2^o2=fo^o2=-f%-2 (8,7)

Alors, le terme f^m) est une différentielle totale

f(^)=-hß(-z,z)-Knß m(z(l~fco0-2(z,z)(-z,z)-*)
CO.0

-2 'S(—è, ^-^(—'z, z)

Va fréquence co'0 et le facteur m' en (8,6) du spin dépendent de

l'amplitude a(s).

L'analogie avec la théorie des quanta devient encore plus
évidente si l'on remarque que (1,1) est la solution (lim Biìnc)-> 0) de

¦Z00 yO. yC m2 m-2 a«ßjrß

ö«ß y«nß — yßn«; na e (yßB(ff + ¦¦¦) (8,10)

avec o)'02 — a>02 (n, n) m~2. Ces équations rappellent nettement la
théorie du spin de Dirac (Stueckelberg (1942), Q. d. Ch. équation

(19,4)). Mais, ici, la masse ((m'= + a/— (n, tt)) et la fréquence
«Qsont fonctions de l'amplitude («*(s), a(s)) du spin, tandis que h' h.

(Il est possible qu'un choix particulier pour les r\tk„, £ilc„ et Cik...

existe, qui rend (a*, a)(s) constant.) Pour B<toc) 0, n« et le
moment M«ß

M«ß L«ß + S«ß ; L«ß =z«nß~ zß n« ; S«ß a«ß (8,11)

sont les constantes d'intégration.
Enfin, les considérations de § 1 montrent que ga/3 doit être

statique, dans le système de repos. Par contre, le terme en q^"' de

(7,2b) montre que T'«ß ne l'est pas. Donc, le "y — Y défini par (6,2)
décrit le mouvement circulaire prévu en (1,1).

Le modèle particulier que nous venons de discuter a donc
d degrés de liberté intérieurs (restreints par (1,1 a)). Le modèle général
(avec rji]c__ et Çiic__ £ 0) peut avoir 4n degrés (restreints par certaines
conditions du type (1,1a)).

§ 9. Le formalisme canonique pour les champs sans singularité.

Le champ u(x) u(x,t) u(x) (p(t), q(t)), peut être exprimé
comme fonction de 2 go variables p (k) (t) et q(k) (f), numérotées par
l'indice fe 1, 2, et fonctions de la coordonnée t xi. Il est

quelquefois avantageux de relier p(k) et q(k) en une variable
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complexeos(fc) (éq.(1,1a)). Entre deux fonctions F(p, q) etG(p, q),
on définit par

/p r\=fw r\ y( dp ^® ^^ ÖG

^,urj- ^,^-) Zj\dp(k) dq(k) dq(k) dp(k),

A^\da*(k) da(k) daß) da*(k)J \yA)*-ï

{^0}(+) T-Ç(â
dF dG dF dG

a*(k) da(k) ' da(k) d a* (k)

les parenthèses et antiparenthèses de Poisson. Le choix particulier
des variables satisfaisant

{ V^(x, t),uar(x', t)} - ôaa,ô(x-x') (9,2)

définit, à une transformation canonique près, les variables
canoniques du champ. La substitution infinitésimale (2,10) peut alors
être obtenue par

F(ûa(x))-F(ua(x)) -{Pa®OT* + Ma(t)ôy**,F} (9,3)

Avec ôxi dt et P4 H, (9,3) contient le formalisme Hamiltonien
(1,3) et (1,4). F(t + df) resp. F(+T) est ainsi le résultat d'une
transformation (canonique) infinitésimale (1,3) resp. d'une
transformation finie (1,4). Elle exprime la valeur finale p(t + dt) resp.
p(+ T) d'une variable en termes des valeurs initiales p(t) resp.
p(— T) des 2 oo variables.

Pour la théorie des champs, la méthode de la variation des
constantes est avantageuse. On définit par

ua(x, t) ua(x)(t) sa(x/k) a(k)(t) + a*(k)(t) s(k/x)a

...k)(k...= 2J> ^(xlk)=s(k/x): rAk)(h/2V)-iexp(i(k,x)) (9,&A)

(k,k)=-x2(r); fc4>0; fc4 < (fc) t<*'(fc) ôaa' **)
des «constantes» canoniques a(k)(t), qui varient avec t, dès que
la théorie devient non-linéaire. Les sa(x/k) sont solutions des équations

linéaires (2,22) et (2,26) (û=q 0). Va dérivée totale est

dtua(x, t) lim (d.ua(x)(t') + {H(V), ua(x)(t')}) (9,7)
t t'

H(t) -f(dx)3 L<ta« (x) (t) (9,8)

L(int)(x)(i) est l'intégrale formée par les u(x)(t) en (9,6).

*) h est une constante quelconque pour donner aux a la dimension [1]. t (k)
dénombre les tenseurs des polarisations t.

**) sommé sur les polarisations t.

avec ' ('
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Chaque transformation finie (1,4) étant une transformation
canonique, il doit exister une grandeur oc(p(—T),..) a(—T) telle
que la transformation canonique générale finie (1,5) est équivalente
à (1,4). Pour un L(int> exprimé par la série eLw + e2 L(2) + on
trouve (cf. II, éq. (6,20))

oc=ea<1> + e2oc<2)+ •••
+ T

a*1) ~f(dxy LW (x) (- T) (9,10)

+ T x1 + T

a<2>= (-y J(dxAJ' {dx')*{U»(x),L™(x')}- J'(dx)*UV(xty-T)
-T

y(3)

Mais, naturellement, des transformations oc finies et irréductibles
existent, pour lesquelles il n'existe pas de H.

Pour en donner un exemple, nous introduisons les deux fonctions D(±' à

composantes B(a\,, D<a\, et DAA, :

fl<±) (xa j x'A') Z)<±>, (xlx') ={ua(x), VA,(x')){±) (9,11)

L'une d'elles sert à représenter les potentiels et champs retardés et avancés d'une
inhomogénéité quelconque q" en (2,26)

oa(x) j (dx-^Dfl, (x/x')<f'(x') (9,12)*)av
rete«

±T
et l'autre permet d'exprimer la moyenne des deux potentiels par l'intégrale
complexe dans le plan x'1 le long d'un contour

(0)= J((- oo-t |t| -»-0 -? + oo + ì|t]) + (-oo-H|t| -+0^+oo-*|t|))

i (ret + a.v)oa(x)= sym Qa (x) 3mag f (dx')* D <*J (xlx')ea' (x') (9,13)

(c)

Pour des champs tensoriels (resp. spinoriels) on a D*-~'> (resp. Z/+')= D^ et
D< + (resp. !)<->) D(1).

Ainsi, d'une expression aw du (M + 2)ième ordre dans les u, on obtient en

«<») f(dx)iua(x)ub(x)..ov(ua(x) .op(. .ub(x). (9,14)
^ I

une expression «(2m)du (n + 2-2 m)ième ordre, si l'on substitue pour m paires

la fonction Z>^b

m6 (x) m6' (s') D(b v (xjx') (9,15)
| I

op est une opération différentielle (ye, à a1"...) ou intégrale (ret, av) quelconque.

Naturellement, on doit se limiter à des «Sb qui ne divergent pas.

*\ „a,' na' /-^l'
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Les oc(— T) définis par (9,10) (ou par les formes plus générales
(9,14)) sont invariants, dans la limite T->co. Les fonctions de p, q

avec

(9,16)

P(0)(i) J(dx)»T^(x)(t)=2JN(k)(()hka
a*(k)a(k) - N(k)

M<°>(*) -1® + s%

m<)- iZa*(k)(k' dk« k« dfc*)a(/f)(i)

W -h£a*(k)oik(k/k')a(k')(t)

o,- kaa'sar(x/k) sa(x/k')aik(k'/k)

sont les Pa et Mik de la théorie linéaire. Ils transforment donc en
(9,3) toute fonction des u(x)(t') à t'= const. Or, l'invariance des

ol(—T) dans la limite T-> oo s'exprime par ôc —a=0 en (9,3).
Ceci équivaut à dire

lim Pa(+T) PA--T)
lim Maß (+ T) Maß (- T) (9,17)

parce que la transformation des Pa et Maß en (1,5) est devenue
l'identité. Nous avons écrit en (9,17) Pa et Mafj pour P<?> et M(Œ°>,

parce que la dispersion naturelle réduit, à ces époques asymptotiques,
les champs à des intensités infiniment faibles. La quantité de mouvement

et l'énergie portées par de telles ondes sont identiques à celles
de la théorie linéaire.

§ 10. Le formalisme canonique pour les singularités.

Il est inutile de vouloir chercher des transformations infinitésimales

pour représenter la solution de l'équation fonctionnelle. Par
contre, une transformation finie du type (1,5) existe. Pour la trouver,

nous cherchons d'abord la transformation (9,3) pour u(x) (Yz T)
aux époques asymptotiques où la décomposition (7,5) est possible.

/out\
La partie trinc' (A T), solution infiniment faible du problème homogène,

se transforme avec les P(0) et M(0) de (9,16). u™' (Yz T) est
la solution statique caractérisée par les 8 constantes p, q, pM et g(s)

de la ligne (1,2) (resp. par 4 + n4 constantes dans un modèle plus
compliqué). Les fonctions

PA-T)^P£)(-T) + pA-T) (io,i)
Maß(- T) M«g(- T) + (qxPß-qßpa) (- T) + (#>?<?>-#>?<.«)(- T)
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transforment les deux parties de u, si les p, q et p(s>, g(s) sont des
variables conjuguées. Tout oc(—T), fonction invariante des a(—T)
et des (p«, cf, a^«) (- T), satisfait à {Maß(— T) ,*(—T)}= {Pa (— T),
a(— T)} 0. Va transformation a, finie et asymptotique, garantit
ainsi, en vertu de l'invariance, les lois de conservation intégrale,
que nous avons postulées sous forme différentielle pour établir
l'équation fonctionnelle.

Le problème s'est ainsi réduit à chercher un invariant a qui
correspond à un modèle (rjik $ih et dk. donné. Ainsi, la série
(cp cp(y(X)),cp' cp(y(X')*))\

+ A

he«.W[<p] —e fdXtp (10,2)

- A
+ A A + A

he2AV[cp}[cp] -~£2m-1(fdXd«cpfdX'(X-X')dacp'-JdXcp2}
-A -A -A

e3%^[cp][cp~\[cp~\ fonctionnelle trilinéaire en cp, etc.

est équivalente au problème du mouvement d'une singularité
e(s) e sans spin d'un champ scalaire u- cp (électrodynamique
longitudinale, cf. II). Les coefficients de Fourier de cp(x)(t) (nous
écrirons, en cp (9,6), c(u) à la place de a(fc)) subissent, dans
l'approximation linéaire, les changements

ôc(u') c(u') (+T)-c(u') (-T)=-i(^g(^))(u'/u)c(ru) (-T)
(10,3)

g(y.{2)) est la fonction matricielle g (A) 1 + gxcc + g2 a2 + ¦ • • de la
matrice

AV(u'lu) e22nô (m-1 (u' - u, p)) (10,4)

hm-l (2 F^'V)*)-1 (1+(A, fi) m2 \ ((/, p)-2+ (u, p)'2))
Les coefficients de g sont g„ (— i)n/ (n+1) (10,3) est la formule
(2,6) de II, écrite de façon covariante pour le modèle quantique. Mais
des termes, bilinéaires en cp, du type A2™^2) (9,14) peuvent être
ajoutés

«$[?][>] («(2)[y]W)(«(2)[y][y]) (io,5)

A{oc<4>, c(fot')} 2 i (-i<A*y (A/u) c(u) etc.

Us remplacent, dans la série g, les coefficients gn par des constantes
arbitraires, g a ainsi la forme

o(oc) (7?(a)+ia|(«))™1 (10,6)

Nous écrivons cp pour le champ scalaire u.
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avec rj0 |0 1. Dans le système en repos, on a a.'=2X0ki=2X0a>*).
Ainsi, le oc de (10,2) avec les termes arbitraires oc[2™ + 2), caractérise

en (1,5) une transformation finie, qui correspond à la
solution de l'équation fonctionnelle pour le modèle le plus général
r](2coX0) + ico0Xï;(2coX0) (défini en (7,17)**)). Une application de

ce formalisme pour l'électron de Dirac a été donnée autre part
par M. Bouvier et l'auteur (1944).

Je tiens à remercier mon ami et collègue, Monsieur J. Weigle,
pour la mise au point du présent article.

Genève, Institut de Physique de l'Université.
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