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Eigenfrequenzen des E-Typus éines kapazititsbelasteten
zylindrisechen Hohlraumes

von F. Lidi.
(Brown, Boveri & Cie., Baden.)

(18. VIIL. 1944.)

Inhalt: Es erfolgt die ausfiihrliche Rechnung und Spezialisierung der bereits
mitgeteilten Frequenzgleichung')?)?). Die Berechnung geschah im Hinblick auf
die Verwendung eines kapazititsbelasteten Hohlraumresonators fiir Magnetfeld-
generatoren zur Erzeugung von Mikrowellen?). Als Kapazititsbelastung werden
die axial angeordneten Segmente betrachtet (Fig. 1). Benachbarte Segmente be-
finden sich auf Wechselpotential und die Ausgleichstréme fliessen iiber die innere
Mantelfliche des ringférmigen Resonators, an dem die Segmente befestigt sind.
Die abgeleiteten Gleichungen sind aber auch fiir den allgemeinen Fall einer zentral-
angeordneten Kapazitat giiltig. Solche in der Mitte eingedriickte Resonatoren
finden bei Klystrons Verwendung. '
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Fig. 1.

§ 1. Die Diiierentialgleichung mit den Randbedingungen
und ihre Lésung.

Die Voraussetzungen sind:

1. Die Feldverteilung ist prinzipiell gleich wie beim kreiszylin-
drischen Hohlraum, es existieren nur e (axiale Pfeile in Fig. 1)
und b (kleine Kreise). |

2. Randbedingung: Fiir » = bist e = 0; fiir r = a i1st der Strom
v und die Spannung 4 durch die Kapazitit C verkniipft, geméss

i= C-2% (C= totale Kapazitat).
Bezeichnungen (vgl. Fig. 1 fur das folgende):

elektrisches Feld e= E,e/@!
magnetisches Feld h= H e/ “*
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u=el= Ue®!
Spannung U=E, I
Strom i, = I,e/°t (totaler radialer Strom)

Die Differentialgleichung fiir E, heisst in Zylinderkoordinaten
(vgl. F. Boranis) 9):
0%2E 1 0E w 2xn
et R L AR =0, h=— 1
0r2 r or * v A, ()
wo A, die dem Eigenwert k entsprechende Eigenwelle des Resonanz-
systems 1st. Die allgemeine Losung lautet:

E,= AJy(kr) + BNy(kr) = Zy(kr) 2)

Zy(kr) 1st die allgemeine Zylinderfunktion, eine lineare Kombina-
tion der Besselfunktion und Neumannfunktion 0-ter Ordnung. Die
Besselfunktion allein gentigt nicht, weil diese gegen das Zentrum
nicht abnimmt; bei unendlicher Kapazitat (Kurzschluss) muss aber
das Feld an der inneren Begrenzung a Null werden. Die Rand-
bedingungen lauten du De

_— . * jwt jot
- =Cl——= CljoE,d* ~ L ¢
fir r—b E,—0 (3)

Berechnung von I fiir » = a. )
Aus der Divergenzgleichung folgt fiir die Anderung des radialen

firr=a C

Stromes durch den Verschiebungsstrom 9¢ ,wischen den beiden

ot

Seitenflichen .
01, Dr— e9mrd Oe
5 r=ce2nrdr T

allgemeine Dielektrizititskonstante ¢ = 0,0886 pF

oder fiir die Amplituden
dl,=e2ardrijokl,

und integriert

;A ejansz(r) crdrte

Dies in die Randbedingung (3) eingesetzt, gibt
| e2m
Ez = Wsz(i)T dr.

Die Integrationskonstante ist Null, weil im Spannungsbauch I = 0
seln muss.

Wenn von den Rechenregeln fir Zylinderfunktionen (JARNKE-

EmpEe, S. 166) mit der Setzung kr = y, dr = dky ;

fyZo(y) dy = yZ,(y).
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Gebrauch gemacht wird (Z; Zylinderfunktion 1. Ordnung), so
heissen die beiden Randbedingungen explizit in geordneter Form'

e2ma

Tl Ni(ka)|=

r=a A[J (ka)— glk J (ka)]+B[N (ka) —
r=>b  AdJy(kb) + BN,y(kb) = 0.

Dieses homogene Gleichungssystem dient zur Bestimmung des
Eigenwertes k (Eigenwelle 4,) ohne Kenntnis der Konstanten 4, B
durch Nullsetzen der Determinante der Koeffizienten von 4 und B.
Mit der weiteren Substitution |
ka=g2, kb=xzn i
a
wird also die Frequenzgleichung

A(x) = [No(zbfa) o (x) — Jo(xba) No(2)] —

2ma? 1
~ 0T 7 MNo(@bla) Ty(2) — Jo(wbja) Ny ()] = 0. (4
1,2
[ z
07}
06} b
| =
' ==
e
t + + —l
osl 7 2 3W 7 s
2nma
—02} Ro=—
=03 1= N, (zb/a)J,(x)— J,(xb/a) N, ()
i %% Ny (2bfa) Jy (2)~ Ty (2Da) N, (2)]
A{z)=1-2
Fig. 2.

Fir C = oo geht der Ausdruck in denjenigen von Boranis®) fiir
den ringférmigen Resonator iiber. In vorliegender Form ist der
Eigenwert x resp. k nicht analytisch auszurechnen und muss gra-
phisch gefunden werden. Fig. 2 zeigt eine solche Auswertung fiir
das Beispiel

a=06cm b=12cm [ =12cm (C=1,5pF
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Die genaue Bestimmung von C ist nicht einfach. Einen Nahe-
rungswert erhilt man, wenn man sich die Segmente in threm mitt-
leren Abstand parallel gegeniibergestellt denkt und die Kapazitét
als diejenige eines m-paarigen Plattenkondensators berechnet. Der
erste Schnittpunkt der beiden Kurven in Fig. 2 gibt fir z = 0,41,
woraus sich die Grundwelle :

o
J= 2% 98 em
. I

berechnet ; die gemessene selbsterregte Welle eines solchen Magnet-
feldgenerators war etwa 10,1 cm, also sicher keine schlechte Uber-
einstimmung mit der Theorie, die vor allem zeigt, dass das physi-
kalische Bild der Erregung richtig ist.

§ 2. Niherungslosungen.

Es kommt weniger darauf an, die Eigenwelle exakt zu bestim-
men, als vielmehr ihre Abhingigkeit von der Konstruktionsart.
Einen guten analytischen Einblick bekommt man in zwei Grenz-
fallen, namlich fiir kleine z (x = 0) und grosse x (x - o), d. h. fur
kleines a und fiir b/a > 1.

1. z-> 0. Nach Jannke-EmpE gilt fur die Entwicklung von
Ny(z), N, (x) fiir kleine Argumente

No(z) = Jo(2) In z + B, ()
Ny(2) = Jy(2) In a— Jo(2) + Py (2)
wo Py (), B (z) Polynome der folgenden Form sind:
T - (3) +(3)+-
Py(a) = —2 4 (_;i)% ..

Setzt man dies in (4) ein, so erhdlt man mit den Abkiirzungen

2ma?
x=bla K= 1/8?71
Jo(oz)Jo(z) In o0 + Py (2 x) Jo(2) — By () S (2 7) =

Jo(2)

= % Jo(ox) J; (2)In 0+ P, (e x) J; () + J"(Maz — o (o x) Po()
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Mit den weiteren Entwicklungsformeln fiir J, und J,

mz

To(e) = 11—
r  x3

Jl(w): ) - 16

bekommt man, wenn fiir J (¢ ), J; () in der Entwicklung = durch
ax ersetzt wird und die Werte fiir die Polynome eingesetzt und
hohere Glieder als quadratische vernachléssigt werden, eine biqua-
dratische Gleichung

2 2
r2| — x ;—1 Inoc-i-“%“'—-% -I-l—%: 0
daraus '
g —1 4 \/1'+4.oc’K K
2 «
und schhiesslich
z=+K

wenn zur Abkiirzung die eckige Klammer mit «" bezeichnet und
die Wurzel entwickelt wird.
Damit erhélt man fiir die Eigenwelle

2 _
\/”_Ig’ —8-44/00 cm
Hierbei 1st die Kapazitit C in Picofarad und die Axiallange I des
Resonators in em auszudriicken. Man erkennt, dass die Wellen-
lange in diesem Fall praktisch nur von der Belastungskapazitit ab-
hangt! Fir dasselbe Beispiel der Fig. 2 erhélt man fiir

A= 11,2 cm

2. Fir grosse x gelten ebenfalls nach JAENKE-EmMDE die Néhe-
rungsformeln

A=

Jo(2) = 'cos\(/wl— n/4) | N,y (2) = sin (:cl— m/4)
| L gL
sin (z — 7/4 —cos (x—m/4
v e AU R e
Setzt man diese Werte in die Frequenzgleichung (4) ein, so erhélt man
\ 1/eC 1
Sma a ©

_ sin (zb/a — m/4) sin (x — 7/4) + cos (x bja — 7/4) cos (z— 7/4)
sin (xb/a — n/4) cos (x — 7/4) — cos (xbja — 7/4) sin (x — 7/4)

28




434 F. Lidi.

Wird fiir £ = ak eingesetzt und b — a durch den Abstand d der
beiden kreisférmigen Begrenzungen nach Fig. 1 ausgedriickt, so
folgt nach trigonometrischer Umformung

1/eC
2ma

Dies ist die Bestimmungsgleichung fiir den Eigenwert k und damit
fir die Eigenwelle 4, des kapazitiatsbelasteten ringformigen Reso-
nators. Sie hat eine grosse Ahnlichkeit mit derjenigen eines kapazi-
tatsbelasteten Lechersystems. Es ist bemerkenswert, dass als fre-
quenzbestimmende Grossen nur die Dimension des Ringquer-
schnittes (d, l) und die Kapazitidt pro cm Umfang eingehen. Man
kann also emnen solchen Resonator beliebig vergrossern, ohne die
Eigenwelle zu verédndern. Diese Schlussfolgerung wurde durch eine
entsprechende Bauart des Resonators mit grossem Innendurch-
messer experimentell verifiziert.

lk = cotg dk

§ 3. Der Verlustwiderstand

Im Anschluss an Boranis®) berechnen wir diesen aus einem
Ersatzparallelwiderstand R,, bezogen auf die Wechselspannung fiir
r= a, also an den Segmenten, wo die Einwirkung auf die Elek-
tronen stattfindet. Danach 1st

R, = (Uﬁfo)r =a (5)

g _Bol) _Zy]
et '\/2_ r=a '\/2— r=a

die effektive Spannung an der Stelle r = a ist. Wir setzen sie gleich
derjenigen zwischen den Segmenten, vernachlassigen also die Span-
nungsénderung langs der Segmente. Der Unterschied i1st nur, dass
das Feld zwischen den Segmenten tangential verlauft statt axial
wie im Resonator; dies ist durch die Konstruktion bedingt.

() ist der Joule’sche Verlust an der Innenfliche des Resonators
durch Skineffekt hervorgerufen und bestimmt sich aus

WO

— 1 /0w, i
Q=5 )" f(HH )df
. Oberfliche
mit,
o= 47109
o = 57-10* (Kupfer)
2mv

) —

Jee



Eigenfrequenzen eines kapazititsbelasteten Hohlraumes. 435

d. h. das Magnetfeld unmittelbar an der Oberfliche auf der Vakuum-
seite 1st mit dem Absolutquadrat des Oberflichenstromes im Leiter
durch H H* verkniipft, wodurch die Verluste aus der Feldverteilung
berechenbar sind. Fir das Magnetfeld gilt nach der Maxwell’schen

Gleichung h = rot ?7%
_ 1 0B, j 0Z, _ 4
By g = B, 0(kr) 8o Ay o)

Bo= 877 Q Wellenwiderstand des Vakuums.
Damit wird @

14/0m, 1

b
() = —= | Z2(kb) 2nbl + Z2(ka)2mal + 2 Z2(kr 27‘6’!‘(1’)”:|
0= 352 g [AOD 201+ 230 220 1 27300

A A
P

aussere innere beide
Zylinderfliche Zylinderflache Seitenflachen

Das Integral ist:
27 [b223(kb) —aZ3(ka) — b2Zy(kb) Zy(kb) + a?Zy(ka) Zy(ka)]

Fir Zy= Jy(kr)und a = 0, J,(kb) :% erhélt man daraus den Wert
von Boranis fiir die Seitenflichen des kreiszylindrischen Resonators.

2 b2 A%J2 (kb)
Z, 1st analog Z,.
Zo= AdJd,(kr) + BNy(kr)

dabei ist berticksichtigt, dass Z,(kr) fur »r = b die Randbedingung
erfiillt. Bentitzt man jetzt Gl. 5 zur Ausrechnung von E,, so ent-
steht ein Quotient aus Zylinderfunktionen, wo Zihler und Nenner
noch die Konstanten 4, B der linearen Kombination von J und N
enthalten. Werden dann Zihler und Nenner mit A - B dividiert,

so entstehen Faktoren %und %- Weiter 1st —% aus der Randbe-
dingung fir E,= 0 bei r= b zu bestimmen

A N, (kb)

B~ J,(kb)

und in der Gleichung fiir I, einzusetzen. Indem noch

b
ka= x und kb= J;E
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gesetzt wird, so erhilt man fir R, die etwas umstidndliche Form

1
R,
1_ wmy, 27 i
2V 20 B8 pyp|— JHE . T30 + 2 Jy(o) No(e) — S N ()|
{(bl+ b2) [—%Jﬂwb/a)+2J1(mb/a)N1(xb/ a)— ((wlg/a))N%(wb/a)

. Ny(zbla) Jo(xbla) .,
rlal—at |- JUIS ) + 20, (@) (o) — R NE @)

bla
+ at| = U @) Ty (0) + oo Vo) + No(o) Ju(a)
To(wbla)
=Rt Yoo}

Diese Gleichung wurde beniitzt, um den Ersatzwiderstand der
Déampfung fiir das Beispiel der Fig. 2 mit a= 0,6 cm, bfa= 2,
1=1,2cm, C= 1,5 pF, d.h. also = 0,41 auszurechnen. Man erhilt

R,= 17000 2.

Fir die erste Oberwelle (z = 8,15) hat man dagegen fiir E, nahe-
zu den Wert Null, d. h. praktisch Kurzschluss, so dass man sagen
kann, dass sich nur die Grundwelle des Systems erregt. Experi-
mentell wurde auch nie eine andere beobachtet.

Die Dampfung ist bei diesem Generator nicht entscheidend
wie etwa beim Kylstron, weil infolge des anderen Elektronenmecha-
nismus die Wechselwirkung der Elektronenpakete mit dem Reso-
nator nicht nur beim einmaligen Durchtritt vorhanden ist, sondern
sich an den kreisférmig angeordneten Segmentpaaren beliebig oft
wiederholt, weswegen man die kleinen Anschwingstrome beobachtet.
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