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Eigenfrequenzen des 2?-Typus eines kapazitätsbelasteten
zylindrischen Hohlraumes

von F. Lüdi.
(Brown, Boveri & Cie., Baden.)

(18. VIII. 1944.)

Inhaït: Es erfolgt die ausführliche Rechnung und Spezialisierung der bereits
mitgeteilten Frequenzgleichung1)2)3). Die Berechnung geschah im Hinblick auf
die Verwendung eines kapazitätsbelasteten Hohlraumresonators für Magnetfeldgeneratoren

zur Erzeugung von Mikrowellen4). Als Kapazitätsbelastung werden
die axial angeordneten Segmente betrachtet (Fig. 1). Benachbarte Segmente
befinden sich auf Wechselpotential und die Ausgleichströme fliessen über die innere
Mantelfläche des ringförmigen Resonators, an dem die Segmente befestigt sind.
Die abgeleiteten Gleichungen sind aber auch für den allgemeinen Fall einer
zentralangeordneten Kapazität gültig. Solche in der Mitte eingedrückte Resonatoren
finden bei Klystrons Verwendung.
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Fig. 1.

§ 1. Die Differentialgleichung mit den Randbedingungen
und ihre Lösung.

Die Voraussetzungen sind:
1. Die Feldverteilung ist prinzipiell gleich wie beim kreiszylindrischen

Hohlraum, es existieren nur e (axiale Pfeile in Fig. 1)
und h (kleine Kreise).

2. Randbedingung: Für r bist e 0; für r a ist der Strom
i und die Spannung u durch die Kapazität C verknüpft, gemäss

i= C —rr (C totale Kapazität).
Bezeichnungen (vgl. Fig. 1 für das folgende) :

elektrisches Feld e= Ete?at
magnetisches Feld h H^e?""1
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f U= el= UVM(
Spannung \U= EZA
Strom ir= Ire}at (totaler radialer Strom)

Die Differentialgleichung für Ez heisst in Zylinderkoordinaten
(vgl. F. Borgnis) 5) :

**+±**+*.*-0. 1,^-^0 (1)
Or* r Or v Ae

wo le die dem Eigenwert fe entsprechende Eigenwelle des Resonanzsystems

ist. Die allgemeine Lösung lautet:
Ez A J0(kr) + BN0(kr) Z0(kr) (2)

Z0(kr) ist die allgemeine Zylinderfunktion, eine lineare Kombination

der Besselfunktion und Neumannfunktion 0-ter Ordnung. Die
Besselfunktion allein genügt nicht, weil diese gegen das Zentrum
nicht abnimmt ; bei unendlicher Kapazität (Kurzschluss) muss aber
das Feld an der inneren Begrenzung a Null werden. Die
Randbedingungen lauten' du de

für r= a C -^rr Cl-r-= CljcoEze>mt Jre>°"dt dt
für r= b Ez=0 W

Berechnung von I für r a.
Aus der Divergenzgleichung folgt für die Änderung des radialen

de
Stromes durch den Verschiebungsstrom -tt zwischen den beiden

Seitenflächen
d%r

a o a
de

—r— dr e2nr dr —r—dr dt
allgemeine Dielektrizitätskonstante e 0,0886 pF

oder für die Amplituden
dlr e2nr dr j a>Ez

und integriert
Ir ej 2 nco j Ez(r) ¦ rdr+c

Dies in die Randbedingung (3) eingesetzt, gibt

„ e 2 n r
Ez -örjEz(r)rdr.

Die Integrationskonstante ist Null, weil im Spannungsbauch 1=0
sein muss.

Wenn von den Rechenregeln für Zylinderfunktionen (Jahnke-
Emde, S. 166) mit der Setzung kr y,dr= -y->

yZ0(y)dy= yZx(y)./'
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Gebrauch gemacht wird (Zx Zylinderfunktion 1. Ordnung), so
heissen die beiden Randbedingungen explizit in geordneter Form :

r a A 'na
¦ Jt (fe a) + B

0.

N0(ka)
e2na
Clk Nx(ka) 0

A(x)

J0(ka)- Clk
r=b AJ0(kb) + BN0(kb)
Dieses homogene Gleichungssystem dient zur Bestimmung des

Eigenwertes fe (Eigenwelle le) ohne Kenntnis der Konstanten A, B
durch Nullsetzen der Determinante der Koeffizienten von A und B.
Mit der weiteren Substitution

b
ka= x kb x —

a
wird also die Frequenzgleichung

[N0(xb/a)J0(x) - J0(xbja)N0(x)] -O 2 "1

—JßCl ~x~ iNo(^/a)Jt(x) - J9(xb/a)Nt(x)] =0. (4)
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Fig. 2.

Für C oo geht der Ausdruck in denjenigen von Borgnis6) für
den ringförmigen Resonator über. In vorliegender Form ist der
Eigenwert x resp. fc nicht analytisch auszurechnen und muss
graphisch gefunden werden. Fig. 2 zeigt eine solche Auswertung für
das Beispiel

a 0,6 cm b 1,2 cm l 1,2 cm C= 1,5 pF



432 F. Lüdi.

Die genaue Bestimmung von C ist nicht einfach. Einen
Näherungswert erhält man, wenn man sich die Segmente in ihrem mittleren

Abstand parallel gegenübergestellt denkt und die Kapazität
als diejenige eines tt-paarigen Plattenkondensators berechnet. Der
erste Schnittpunkt der beiden Kurven in Fig. 2 gibt für x 0,41,
woraus sich die Grundwelle

2na
a, 9,3 cm

x

berechnet; die gemessene selbsterregte Welle eines solchen
Magnetfeldgenerators war etwa 10,1 cm, also sicher keine schlechte
Übereinstimmung mit der Theorie, die vor allem zeigt, dass das
physikalische Bild der Erregung richtig ist.

§ 2. Näherungslösungen.

Es kommt weniger darauf an, die Eigenwelle exakt zu bestimmen,

als vielmehr ihre Abhängigkeit von der Konstruktionsart.
Einen guten analytischen Einblick bekommt man in zwei Grenzfällen,

nämlich für kleine x (x->0) und grosse x (x-> oo), d. h. für
kleines a und für b/a-r-1.

1. x-^-0. Nach Jahnke-Emde gilt für die Entwicklung von
N0(x), Nt(x) für kleine Argumente

N0(x) J0(x) ln x 7 ÇPi(x)

Nt(x) Jt(x) ln x-\ J0(x) 7 y2(x)

wo <?ß1(x),'olß2(x) Polynome der folgenden Form sind:

ftw-(4)"Aih •••

%(*)--!+(!)%...
Setzt man dies in (4) ein, so erhält man mit den Abkürzungen

2 na2
x=b/a K=Tf^l

J0(ux) J0(x) In a 7 Spx(ax) J0(x) — tyj(x) J0(ax)

— [J0(ax) Jt (x)lnu+°ßx (ax) J1(x)+ J°(m)J°-M -J0(ux)°ß2(x)
X X
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Mit den weiteren Entwicklungsformeln für J0 und Jx
x2

ATJ0(x)= 1 —

x x*
Ji(*)--g-—ie

bekommt man, wenn für J0(xx), Jx(ux) in der Entwicklung x durch
xx ersetzt wird und die Werte für die Polynome eingesetzt und
höhere Glieder als quadratische vernachlässigt werden, eine
biquadratische Gleichung

1 <x2 1

In a H—;4 4 4
K1- —-orv,L

daraus

und schliesslich

1 ± Vl + 4a'K
— [ IX.2«'

x= VK
wenn zur Abkürzung die eckige Klammer mit a' bezeichnet und
die Wurzel entwickelt wird.

Damit erhält man für die Eigenwelle
2 n a

A.= —rg-= 8-4 y/Cl cm

Hierbei ist die Kapazität C in Picofarad und die Axiallänge l des
Resonators in cm auszudrücken. Man erkennt, dass die Wellenlänge

in diesem Fall praktisch nur von der Belastungskapazität
abhängt! Für dasselbe Beispiel der Fig. 2 erhält man für

Xe= 11,2 cm
2. Für grosse x gelten ebenfalls nach Jahnke-Emde die

Näherungsformeln

cos(x —tt/4) sin (x —n/4)
Jo(x) - t==— N0(x)\/ \nx *A\nx

An(x — n/4) —eos(x — n/4)
Jx (x) 7t==— Nt (x) 71-—¦\f\nx V %nx

Setzt man diese Werte in die Frequenzgleichung (4) ein, so erhält man

1/eC l
x

2 na a

sin (xb/a — n/4) sin (x — n/4) + cos (x b/a — n/4) cos (x— n/4)
sin (xb/a — n/4) cos (x — n/4) — cos (xb/a — n/4) sin (x — n/4)
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Wird für x— ak eingesetzt und b — a durch den Abstand d der
beiden kreisförmigen Begrenzungen nach Fig. 1 ausgedrückt, so

folgt nach trigonometrischer Umformung
11eC
t Ik cotg dk
2na &

Dies ist die Bestimmungsgleichung für den Eigenwert fc und damit
für die Eigenwelle Xe des kapazitätsbelasteten ringförmigen
Resonators. Sie hat eine grosse Ähnlichkeit mit derjenigen eines
kapazitätsbelasteten Lechersystems. Es ist bemerkenswert, dass als
frequenzbestimmende Grössen nur die Dimension des Ringquerschnittes

(d, l) und die Kapazität pro cm Umfang eingehen. Man
kann also einen solchen Resonator beliebig vergrössern, ohne die
Eigenwelle zu verändern. Diese Schlussfolgerung wurde durch eine

entsprechende Bauart des Resonators mit grossem Innendurchmesser

experimentell verifiziert.

§ 3. Der Verlustwiderstand

Im Anschluss an Borgnis5) berechnen wir diesen aus einem
Ersatzparallelwiderstand Bv, bezogen auf die Wechselspannung für
r a, also an den Segmenten, wo die Einwirkung auf die
Elektronen stattfindet. Danach ist

-r, (^eff)r a / r\R, q
(5)

wo

feff —
EZA/ Z0

V *> f r=a V " / r=a

die effektive Spannung an der Stelle r a ist. Wir setzen sie gleich
derjenigen zwischen den Segmenten, vernachlässigen also die
Spannungsänderung längs der Segmente. Der Unterschied ist nur, dass
das Feld zwischen den Segmenten tangential verläuft statt axial
wie im Resonator; dies ist durch die Konstruktion bedingt.

Q ist der Joule'sche Verlust an der Innenfläche des Resonators
durch Skineffekt hervorgerufen und bestimmt sich aus

Q=l]/^f(HH*)df
Überfläche

mit
n2= 4n- IO"9
a 57 • IO4 (Kupfer)

2 nv
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d. h. das Magnetfeld unmittelbar an der Oberfläche auf der Vakuumseite

ist mit dem Absolutquadrat des Oberflächenstromes im Leiter
durch HH* verknüpft, wodurch die Verluste aus der Feldverteilung
berechenbar sind. Für das Magnetfeld gilt nach der MaxweU'schen

Gleichung h rot -r-.

* fe8o òr 30 d(ftf) So

3o 377 û Wellenwiderstand des Vakuums.

Damit wird Q

n- _li/C07T2 1
V 2 V 2 a 31

b

Z2(kb)2nbl 7 Z\(ka)2nal + 2 I'z\(kr)2nr dr

äussere innere beide
Zylinderfläche Zylinderfläche Seitenflächen

Das Integral ist:

2n [b2Z\(kb)-a2Zl(ka)-b2ZAkb)Z2(kb) + a2Z0(ka)Z2(ka)]

Für Zx Jx(kr) und a 0, J0(fcò) 0 erhält man daraus den Wert
von Borgnis für die Seitenflächen des kreiszylindrischen Resonators.

2 7tò2^2J21(fe&)
Z2 ist analog Zx.

Z2= AJ2(kr) + BN2(kr)

dabei ist berücksichtigt, dass Z0(kr) für r= b die Randbedingung
erfüllt. Benützt man jetzt Gl. 5 zur Ausrechnung von Bv, so
entsteht ein Quotient aus Zylinderfunktionen, wo Zähler und Nenner
noch die Konstanten A, B der linearen Kombination von J und N
enthalten. Werden dann Zähler und Nenner mit A • B dividiert,AB A
so entstehen Faktoren -g-und-j-- Weiter ist -5- aus der Randbedingung

für Ez 0 bei r b zu bestimmen

A^_ N0(kb)
B"= ~ J0(kb)

und in der Gleichung für B^ einzusetzen. Indem noch

b
ka= x und kb= x —

a



436 F. Lüdi.

gesetzt wird, so erhält man für Bv die etwas umständliche Form

1

Bn
1 -i jmn%
2 V 2a

An i
3o P/2 [ 3;ï)'^w+2jo(^ow-_J9(xö/a)

N0(xb/a) uv '

(er -fc2)

+ (al

+ a2

N0(xb/a)
J0(xbja)

J\(xb/a) + 2J1(xb/a)N1(xb/a)

-a2)
N0(xb/a)
J0 (xb/a

N0(xbja)
J0(xb/a)

J0(xb/a)

J2(x)Y-2J1(x)N1(x)

J0(xb/a)
N0(xb/a)

J0(xb/a)
N0(xb/a)

J0(x)J2(x) + J0(x)N2(x) + N0(x)J2(x)

N2(xb/a)

Nl(x)

N0(xb/a)
N0(x)J2(x)

Diese Gleichung wurde benützt, um den Ersatzwiderstand der
Dämpfung für das Beispiel der Fig. 2 mit a 0,6 cm, b/a 2,
1 1,2 cm, C 1,5 pF, d. h. also x 0,41 auszurechnen. Man erhält

B„= 17000 Q.

Für die erste Oberwelle (x 3,15) hat man dagegen für Bv nahezu

den Wert Null, d. h. praktisch Kurzschluss, so dass man sagen
kann, dass sich nur die Grundwelle des Systems erregt. Experimentell

wurde auch nie eine andere beobachtet.
Die Dämpfung ist bei diesem Generator nicht entscheidend

wie etwa beim Kylstron, weil infolge des anderen Elektronenmechanismus

die Wechselwirkung der Elektronenpakete mit dem Resonator

nicht nur beim einmaligen Durchtritt vorhanden ist, sondern
sich an den kreisförmig angeordneten Segmentpaaren beliebig oft
wiederholt, weswegen man die kleinen Anschwingströme beobachtet.
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